36
Heterogeneous Catalysis Opportunities and challenges • Challenges –Societal needs –Developing the basic understanding • Opportunities –Designing at the nano-scale J. K. Nørskov Center for Atomic-scale Materials Physics Technical University of Denmark [email protected]

Heterogeneous Catalysis Opportunities and challenges

  • Upload
    siusan

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

Heterogeneous Catalysis Opportunities and challenges. J. K. Nørskov Center for Atomic-scale Materials Physics Technical University of Denmark [email protected]. Challenges Societal needs Developing the basic understanding Opportunities Designing at the nano-scale. Challenges I. - PowerPoint PPT Presentation

Citation preview

Page 1: Heterogeneous Catalysis Opportunities and challenges

Heterogeneous CatalysisOpportunities and challenges

• Challenges–Societal needs–Developing the basic understanding

• Opportunities–Designing at the nano-scale

J. K. Nørskov Center for Atomic-scale Materials Physics

Technical University of [email protected]

Page 2: Heterogeneous Catalysis Opportunities and challenges

Challenges I

Jens Rostrup-Nielsen: XVII Sympósio Iberoamericano de Catálisis, July 16-21, 2000

Dream reactions waiting for a catalyst:

Page 3: Heterogeneous Catalysis Opportunities and challenges

Dreaming on ….

• Heterogeneous catalysts for assymmetric synthesis• Photolytic water splitting (hydrogen economy)• Biomimetics, synthetic enzymes• Non-thermal processes in general

(e.g. electro- and photocatalysis)• …

See: E. Derouane, CATTECH 5, 226 (2001)

Challenges II

Page 4: Heterogeneous Catalysis Opportunities and challenges

Challenges III

The science of heterogeneous catalysis:

• A comprehensive scientific basis– Much has been done

– Much more is needed (oxides, size effects, photocatalysis, electrocatalysis, relation to homogeneous and enzyme catalysis …)

• Making the insight useful!– The ultimate test

Page 5: Heterogeneous Catalysis Opportunities and challenges

Opportunities- design at the nano-scale

• Rational catalyst design- Discovery on the basis of insight

• Data-driven methods- Accelerated discovery by access to

large amounts of data

• Bio-inspired catalysis

Page 6: Heterogeneous Catalysis Opportunities and challenges

Rational catalyst design

1. What determines the catalytic activity/selectivity/lifetime ?

2. How can we affect it?

- We have tremendous new possibilities

Page 7: Heterogeneous Catalysis Opportunities and challenges

Ammonia synthesisN2+3H2 2NH3

Ozaki and Aika, Catalysis 1 (Anderson and Boudart, Ed.)

Page 8: Heterogeneous Catalysis Opportunities and challenges

Ammonia synthesis over Ru

Ru(0001)

step

Logadottir, Nørskov

Page 9: Heterogeneous Catalysis Opportunities and challenges

Steps do everything

Dahl, Logadottir, Egeberg, Larsen, Chorkendorff, Törnqvist, Nørskov, Phys.Rev.Lett. 83, 1814 (1999)

Au decorates steps:Hwang, Schroder, Gunther, Behm, Phys. Rev. Lett. 67, 3279 (1991) 

Page 10: Heterogeneous Catalysis Opportunities and challenges

Logatottir, Rod, Nørskov, Hammer, Dahl, Jacobsen, J. Catal. 197, 229 (2001)

The Brønsted-Evans-Polanyi relation

Page 11: Heterogeneous Catalysis Opportunities and challenges

-0.8 -0.4 0.0 0.4 0.8[E-E(Ru)](eV/N2)

10-5

10-4

10-3

10-2

10-1

100

101

TO

F(s

-1)

Fe

Mo

Ru

Co

Ni

Os

Calculated ammonia synthesis rates400 C, 50 bar, H2:N2=3:1, 5% NH3

Logatottir, Rod, Nørskov, Hammer, Dahl, Jacobsen, J. Catal. 197, 229 (2001)

Page 12: Heterogeneous Catalysis Opportunities and challenges

Interpolation in the periodic table

Jacobsen, Dahl, Clausen, Bahn, Logadottir, Nørskov, JACS 123 (2001) 8404.

Page 13: Heterogeneous Catalysis Opportunities and challenges

Jacobsen, Dahl, Clausen, Bahn, Logadottir, Nørskov, JACS 123 (2001) 8404.

Interpolation in the periodic table

Page 14: Heterogeneous Catalysis Opportunities and challenges

Jacobsen, Dahl, Clausen, Bahn, Logadottir, Nørskov, JACS 123 (2001) 8404.

Measured ammonia synthesis rates 400 C, 50 bar, H2:N2=3:1

Page 15: Heterogeneous Catalysis Opportunities and challenges

Data driven methods

• High throughput screening– Direct testing of many catalysts, fast,

efficiently

• Data mining – Correlating catalytic activity/selectivity/

durability to descriptors that can be tabulated

Page 16: Heterogeneous Catalysis Opportunities and challenges

The object of the game…

• Find sets of descriptors {Dik} of solid materials Mi , and a mathematical model F such that Aij being the Turn Over Frequency of Mi as catalyst for the reaction j at operationg conditions Cj one has:

• Identify ranges of Dik that maximize F• Screen Databases of Materials Properties before

screening real materials• Better if one descriptor is sufficient, but do not take it

for granted• Much better if F has a sound physical basis• Adsorbate/substrate bond strengths should provide

good descriptors according to the Sabatier principle

jikjiij CDFCMA ,,

Using DFT calculations

in the search of prospective catalysts

H. Toulhoat and P. Raybaud

Workshop Catalysis from First Principles Vienna 02/02

Page 17: Heterogeneous Catalysis Opportunities and challenges

Periodic Trends for E MC in Fm-3m (NaCl) carbides

ScCr

VMn

CoNi

Y

Zr

TcRu

Rh

Pd

Ta

ReOs

Ir

Ti

Fe

Cu

NbMo

La

Hf

W

Pt

AuAg

0

20

40

60

80

100

120

140

160

E M

C Y

Y/P

AW

/GG

A/S

P (

kJ

/mo

l)

Using DFT calculations

in the search of prospective catalysts

H. Toulhoat and P. Raybaud

Workshop Catalysis from First Principles Vienna 02/02

Page 18: Heterogeneous Catalysis Opportunities and challenges

Adsorption of C2H4 100K

: di-s bound : p bound

: No ads.

Sc Ti V Cr Mn Fe Co Ni Cu

Y Zr Nb Mo Tc Ru Rh Pd Ag

La Hf Ta W Re Os Ir Pt Au

Ru

Rh

Fe

CrW

Ni

Ta

Pt (Diss.)

Ag

AuCu Pt(molec)

Pd

y = 6,267x - 287,99

R2 = 0,894

y = 1,9625x - 29,758

R2 = 0,791

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

E MC YY (@NaCl/PAW/GGA/SP) (kJ/mol)

Qa

ds

ex

p. C

2H

4/M

(k

J/m

ol)

• E MC @ Fm-3m carbides is rather consistent with simple chemisorption models

• Onset of dissociative chemisorption as MC bond strength increases

Using DFT calculations

in the search of prospective catalysts

H. Toulhoat and P. Raybaud

Workshop Catalysis from First Principles Vienna 02/02

Page 19: Heterogeneous Catalysis Opportunities and challenges

Re3Ir

Ir3Re

Ir3Cu

Cu3Ir

Cu

Pd

Ru

IrPt

Os

Re

Co

Ni

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

10 12 14 16 18 20 22 24 26 28 30E MC YY (kCal.mol-1)

Ra

te i

n H

yd

rog

en

ati

on

of

C6

H6

(s

-1) TOF@30°C (M/Al2O3

Brunelle et al., 1977)

V théor.

• The experimental Alloying effects is correctly predicted

Using DFT calculations

in the search of prospective catalysts

H. Toulhoat and P. Raybaud

Workshop Catalysis from First Principles Vienna 02/02

Page 20: Heterogeneous Catalysis Opportunities and challenges

Getting data/descriptors

• Structure (in situ)

• Spectroscopy (in situ)

• Surface thermochemistry

• Calculations

• …

There is a large need for systematic data

- and for good descriptors

Page 21: Heterogeneous Catalysis Opportunities and challenges

Structure-activity CorrelationHydrodesulfurization of thiophene

1.5

10

0.5

00 1 2 3Number of Co edge atoms

(x1020/g catalyst)

HD

S a

cti

vit

y

(x10

2/m

ol/g

/h)

Topsøe, Clausen, MassothHydrotreating Catalysis, Science and Technology(Anderson and Boudart (Eds.), Springer (1996).

Page 22: Heterogeneous Catalysis Opportunities and challenges

Descriptors from spectroscopyCO TPD shift Core level shift

Goodman and Rodriguez, Science 279 (1992) 897

Page 23: Heterogeneous Catalysis Opportunities and challenges

Single crystal microcalorimerty

Cu/MgO

Ag/MgO

Pb/MgO

Larsen, Starr, Campbell, Chem.Thermodyn. 33, 333 (2001)Brown, Kose, King, Chem. Rev. 98, 797 (1998).

Page 24: Heterogeneous Catalysis Opportunities and challenges

Descriptors from

DFT

Correlation between adsorptionenergies and activation barriersand the d-band center

Mavrikakis , Hammer, NørskovPhys. Rev. Lett. 81, 2819 (1998)

Page 25: Heterogeneous Catalysis Opportunities and challenges

CO tolerance of Pt alloy anodes for PEM fuel cells

Pt

M

-0,5

0,0

0,5

1,0

1,5

2,0

Au Ir Ag Pd Rh Ru Cu Ni Co Fe Pt

EC

O ,

eV

- d,

eV

Substrate M

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

0,0

0,2

0,4

0,6

0,8

1,0

Measured overages of CO on the alloy electrodes with 100 ppm CO/H2

M. Watanabe et al., Phys. Chem. Chem. Phys. 3 (2001) 306

1- co

Calculated changes in CO adsorption energy

S. Gottesfeld et al., J. Electrochem. Soc. 148 (2001) A11.

   Christoffersen, Liu, Ruban, Skriver, Nørskov, J.Catal. 199, 123 (2001)

Page 26: Heterogeneous Catalysis Opportunities and challenges

How can the d-band center be changed?Calculated d band shifts:

Ruban, Hammer, Stoltze, Skriver, Nørskov, J.Mol.Catal. A 115, 421 (1997)

Overlayer

Host

Page 27: Heterogeneous Catalysis Opportunities and challenges

Methane activation

Bengaard, Rostrup-Nielsen, Nørskov

bTransition state for CH4

dissociation on Ni(211)

Page 28: Heterogeneous Catalysis Opportunities and challenges

Methane activation on Ni/Ru

Ni Coverage [ML]

0 1 2

Initi

alst

icki

ngpr

obab

ility

0

1e-7

2e-7

3e-7

4e-7

5e-7

Thermal dissociation of CH4 at T = 530 K

Egeberg, Chorkendorff, Catal. Lett. 77, 207 (2001)

Page 29: Heterogeneous Catalysis Opportunities and challenges

Lessons from biology

• Catalysis at ambient temperature and pressure

• Extreme selectivity

• Direct coupling of energy into the important reaction coordinate (non-thermal catalysis)

Page 30: Heterogeneous Catalysis Opportunities and challenges

Nitrogenase 8e8HN2 23 H2NH

nitrogenase

ATP

FeP +2(MgATP) MoFeP 1k

1-kFeP 2(MgATP) MoFeP

4k 2knucleotidereplacement

ATP cleavageelectron transfer

oxFeP 2(MgADP) + MoFeP 3k

3-k oxFeP 2i )P(MgADP, MoFeP

reduction

complex formation

complex dissociation

-4AlFADP

Fe protein

Fe protein

MoFe protein 4Fe-4S cluster

P-cluster

FeMo cofactor

Burgess, Lowe, Chem. Rev. 96, 2983 (1996)Schindelin, Kisker, Schlessman, Howard, Rees, Nature 387, 370 (1997)

Page 31: Heterogeneous Catalysis Opportunities and challenges

N2 hydrogenation on FeMoco

Rod, Nørskov JACS 122, 12751 (2000)

Page 32: Heterogeneous Catalysis Opportunities and challenges

The Fe Protein cycle

1)

2)

3)

4)

E

E

E

MoFe protein

FeMoco P-cluster

Fe protein

4Fe-4S cluster

ATP

ADP 24HPO

See also: Spee, Arendsen, Wassnik, Marrit, Hagen, Haaker, FEBS Lett. 432, 55 (1998)

Page 33: Heterogeneous Catalysis Opportunities and challenges

Comparing the FeMoco and Ru(0001)

Rod, Logadottir, Nørskov J.Chem.Phys. 112, 5343 (2000)

Page 34: Heterogeneous Catalysis Opportunities and challenges

Status

• Well developed basic understanding – theory-experiment

• Beginning to be able to use it directly in catalyst design

• Some activity-descriptor correlations

• Host of new in situ methods for catalyst characterization

• New very powerful screening methods

• We have a starting point which is radically different from the situation 5 or 10 years ago!

Page 35: Heterogeneous Catalysis Opportunities and challenges

Moving forward

• More basic understanding –theory-experiment

• Integration of the conceptual framework for heterogeneous, homogeneous and enzyme catalysis

• More systematic data (descriptors)

• Better synthesis methods

• Better coupling of catalyst design and process engineering

• INTEGRATION

Page 36: Heterogeneous Catalysis Opportunities and challenges

Promoting development

Synthesistestingcharacterization

Experiments, models

Theory

An integrated approach: