35
INSTITUTE OF CHEMICAL TECHNOLOGY Heterogeneous Catalysis Engineering E. Klemm Topical Workshop Catalysis DFG Priority Program 1362 Stuttgart, April 12, 2011

Heterogeneous Catalysis Engineering - TU Dresden · 2011-04-07 · Heterogeneous Catalysis Engineering E. Klemm Topical Workshop Catalysis. DFG Priority Program 1362 . Stuttgart,

  • Upload
    others

  • View
    20

  • Download
    5

Embed Size (px)

Citation preview

INSTITUTE OFCHEMICAL TECHNOLOGY

Heterogeneous Catalysis EngineeringE. Klemm

Topical Workshop CatalysisDFG Priority Program 1362

Stuttgart, April 12, 2011

2

Outline

• What is „ Heterogeneous Catalysis Engineering“ ?

• Bulk Chemicals Manufacture• Space Time Yield• Selectivity-Conversion-Plots• Catalyst Life Time

• Fine Chemicals Manufacture• Space Time Yield• Atom Efficiency (E Factor)• Time-to-Market

• Bench Scale Reactors for Het. Cat. Eng.

3

What is “Heterogeneous Catalysis Engineering” ?

SurfaceScience

ReactionEngineering

Operando SpectroscopyQuantum Mechanics / DFT

Time Scale

Length Scale

ProcessEngineering

ProductionLevel

Reaction KineticsReactor ModellingScale-up

Separation unitsRecycle

Quality ControlLongterm Stability

Material andPressure Gap

HeterogeneousCatalysisResearch

HeterogeneousCatalysis Engineering

HeterogeneousCatalysisResearch

HeterogeneousCatalysis

Engineering

4

Activity

Selectivity

Active Site

Catalyst Pellet

Reactor Process

Turnover Frequency

Effective Reaction Rate

Conversion / Space Time Yield

Process Conversion

Differential Selectivity

on Active Site

Differential Selectivity on Pellet

Integral Selectivity

Process Selectivity

ReactorScale

E

E+P+SP

MolecularScale

E P

P SP

ParticleScale

E P+SP

SP

E

E+P+SP

P+SP

P

E

Purge

ProcessScale

What is “Heterogeneous Catalysis Engineering” ?

HeterogeneousCatalysis Research

HeterogeneousCatalysis Engineering

5

What is “Heterogeneous Catalysis Engineering” ?

time

Bench ScaleExperiments

FeasibilityStudy

time

Space Time Yield,Selectivity/Conversion,catalyst life time etc.

Market AnalysisProfitability (CAPEX, OPEX)

Preliminary Flow SheetTechnical Reactor Concept

Front EndEngineering

BasicEngineering

Detailed Flow SheetDimensioning of ApparatusesExpenditure Estimation (CAPEX, OPEX)

DetailedEngineering

Measuring and ControlDimensioning of PipesOrdering

MechanicalCompletion Erection of Plant

Commisioning Commisoning

HeterogeneousCatalysis

Engineering(University/

Industry)

HeterogeneousCatalysis

Engineering(Industry)

Start ofProduction

Start ofProduction

6

What is “Heterogeneous Catalysis Engineering” ?

„The bench scale results were so good that we by-passed the pilot-plant“aus E.H. Stitt, Chem.Eng.J. 90(2002)47

7

What is “Heterogeneous Catalysis Engineering” ?

Bulk Chemicals Fine Chemicals

Plant Capacity > 10,000 metric tons per year (usually: some 100,000 t/a)

< 10,000 metric tons per year (usually < 1,000 t/a)

Space Time Yield 1-10 kilogram per liter and hour

0.01-1 kilogram per liter and hour

Processing continuous batch-wise

Phase gas (liquid) liquid

Reactor typically tube typically stirred tank

Plant dedicated multi-purpose

Product price < 10 $/kg > 10 $/kg

Lifecycle of product long relatively short

Added value low high

Raw materials quote high low

kg waste / kg product (E Factor)

relatively low (< 1-5)

high (5-50)

8

Outline

• What is „ Heterogeneous Catalysis Engineering“ ?

• Bulk Chemicals Manufacture• Space Time Yield• Selectivity-Conversion-Plots• Catalyst-Life-Time

• Fine Chemicals Manufacture• Space-Time-Yield• Atom Efficiency (E Factor)• Time-to-Market

• Bench Scale Reactors for Het. Cat. Eng.

9

Bulk Chemicals Manufacture

Activity

Selectivity

Active Site

Catalyst Pellet

Reactor Process

Turnover Frequency

Effective Reaction Rate

Conversion / Space Time Yield

Process Conversion

Differential Selectivity

on Active Site

Differential Selectivity on Pellet

Integral Selectivity

Process Selectivity

ReactorScale

E

E+P+SP

MolecularScale

E P

P SP

ParticleScale

E P+SP

SP

E

E+P+SP

P+SP

P

E

Purge

ProcessScale

10

Bulk Chemicals Manufacture

Process Profitability = f(Reactor Costs, Separation Costs, Recycle Costs, Feedstock Costs…)

Separation Costs= f(Selectivity)

Recycle Costs= f(Conversion)

E+P+SP

E

E

P+SPP

SP

Reactor Costs= f(Space Time Yield)

Feedstock Costs= f(Selectivity)

CAPEX OPEX

11

Bulk Chemicals Manufacture

Process Profitability = f(Selectivity-Conversion-Plot, …)

Educt Product Side Product

Molecular Scale:• Turnover Frequencies• Reducing Formation of Side Products

Particle Scale:• Avoiding Film and Pore Diffusion Limitation

• Utilization of Shape Selective Effects

Reactor Scale:• Avoiding Backmixing• Avoiding Hot Spots

Process Scale:• Recycle of Educt• Integration of Separation

12

Bulk Chemicals Manufacture

• with increasing conversion the selectivity decreases-> feed-stock costs increase

• with increasing conversion less educt has to beseparated and recycled-> energy costs decrease

Xopt

13Source: SRI Consulting

Reactor

Bulk Chemicals Manufacture

CH3 OH

O

CH2

CH2CH3 O

CH

CH2

O

+ + + H2OPd/Au

0,5 O2

VAMXC2H4 = 8-10 %XHAc = 15-35 % SVAM,C2H4 = 88-96 %

14

Bulk Chemicals Manufacture

Process Profitability = f(Reactor Costs,…)

E+P+SP

E

E

P+SPP

SP

Reactor Costs= f(Space Time Yield)

15

Bulk Chemicals Manufacture

Process Profitability = f(Space Time Yield (STY), …)

⋅⋅⋅=

=⋅⋅⋅⋅

==

h Product

Reac

,

reac

,

reac

lkgMSXc

VMSXcV

VmSTY

PEPEEo

PEPEEoP

τ

Typical Values of STY: 1-10 kg product per 1 liter reaction volume

and hour

Residence Time

16

Bulk Chemicals Manufacture

Space Time Yield (STY):

Het. Catalysis: 1-10 kg/(l∙h)

Hom. Catalysis: 0.01 – 1 kg/(l∙h)

Biocatalysis: 0.001 – 0.01 kg/(l∙h)

hour and volume reaction of literproduct of kilogram

Reactiontemp.

Cat.conc.

17

Bulk Chemicals Manufacture

Process Profitability = f(Space Time Yield (STY), …)

Wird beim Arbeiten im Kreislauf jeweils nur ein geringer Umsatz der Reaktionsgase Stickstoff und Wasserstoff erreicht, so ist es von größter technischer und wirtschaftlicher Bedeutung, diese geringfügige Umsetzung noch bei schnellem Durchleiten, also kurzer Berührungszeit der Gase mit dem Katalysator zu erreichen. Solch reiche „Raum-Zeit-Ausbeute“ ist nun nur mit Katalysatoren erreichbar, die den um 1905 bekannten an Wirksamkeit um ein Vielfaches überlegen sind.

Alwin Mittasch, Geschichte der Ammoniaksynthese, Verlag Chemie, Weinheim 1951.

18

Bulk Chemicals Manufacture

undesired

time on stream (tos)or process time

usually:catalyst life time at least 8.000 hrs. (1 year)

catalyst activity

19

Bulk Chemicals Manufacture (Example I)

Direct Ring Oxidation of Aromatics with N2O(E. Klemm et al., Direct Ring Oxidation of Aromatics, in: G. Ertl, H. Knözinger, J. Weitkamp (Hg.), Handbook of Heterogeneous Catalysis, 2nd edition, WILEY-VCH, Weinheim, 2008)

A+B+NP

B+NP

NP

B

A

Purge

A B

A

A+B+NP

B NP

A B+NP

A

Strong adsorption and slowdiffusion of productcompared to educt !

0

20

40

60

80

100

0 2 4 6 8 10 12Verhältnis Benzol:N2O

Sele

ktiv

ität N

2O z

u Ph

enol

[%]

Solutia:

20

Bulk Chemicals Manufacture (Example II: DEMiS®)

equal up

E. Klemm et al., Ind. Eng. Chem. Res. 2008, 47, 2086.

gas

TS-1 cat.

3 cm

Labor

Ti O Si H2O2

SiOH

olefin

SiOH

epoxid

HOTi

O

SiOH

HOTi

O

OHTi

H2O

TS-1

hydroperoxidspecies

oxygen transfer

dehydratation

Foto: TU-Chemnitz

Lab Scale

1 m0,6 m

Industrieller Maßstab

Foto: Uhde GmbH / Degussa AG

Pilot Scale

21

Bulk Chemicals Manufacture (Example II: DEMiS®)

According to: E. Ananieva, A. Reitzmann, Chem. Eng. Sci., 59 (2004) 5509 - 5517

22

Bulk Chemicals Manufacture (Example II: DEMiS®)

3 – 8hydrogen peroxidein gas [vol%]

>1substrate/hydrogenperoxide

1reaction pressure[bar]

100-150

reaction temperature[°C]

Reaction conditions

Catalyst TS-1

3 – 8hydrogen peroxidein gas [vol%]

>1substrate/hydrogenperoxide

1reaction pressure[bar]

100-150

reaction temperature[°C]

Reaction conditions

Catalyst TS-1

0

20

40

60

80

100

0 20 40 60 80 100

X (propene) / %

S (p

ropy

lene

oxi

de, p

rope

ne) /

%

Lab scale fixed bed (C3H6/H2O2=1,0)Lab scale micro reactor (C3H6/H2O2=1,4)Lab scale micro reactor (C3H6/H2O2=2,4)Pilot scale micro reactor (C3H6/H2O2=1,4)Pilot scale micro reactor (C3H6/H2O2=2,4)

gas

TS-1 cat.

23

Bulk Chemicals Manufacture (Example II: DEMiS®)

3 – 8hydrogen peroxidein gas [vol%]

>1substrate/hydrogenperoxide

1reaction pressure[bar]

100-150

reaction temperature[°C]

Reaction conditions

Catalyst TS-1

3 – 8hydrogen peroxidein gas [vol%]

>1substrate/hydrogenperoxide

1reaction pressure[bar]

100-150

reaction temperature[°C]

Reaction conditions

Catalyst TS-1

0

20

40

60

80

100

0 20 40 60 80 100

X (H2O2) / %

S (p

ropy

lene

oxi

de, H

2O2)

/ %

Lab scale fixed bed (C3H6/H2O2=1,0)Lab scale micro reactor (C3H6/H2O2=1,4)Lab scale micro reactor (C3H6/H2O2=2,4)Pilot scale micro reactor (C3H6/H2O2=1,4)Pilot scale micro reactor (C3H6/H2O2=2,4)

gas

TS-1 cat.

24

Bulk Chemicals Manufacture (Example II: DEMiS®)

E. Klemm, G. Mathivanan, T. Schwarz, S. Schirrmeister,Evaporation of Hydrogen Peroxide with a MicrostructuredFalling Film, Chem. Eng. Proc, submitted.

E. Klemm et al.,Method for Obtaining a Gaseoues Phase From a Liquid Medium and Device for Carrying Out the Same,Disclosure WO 2004/036137 A2, 29.04.2004.

gas

TS-1 cat.

S. Heinrich, M. Plettig, E. Klemm,Role of the Ti(IV)-Superoxide Species in the Selective Oxidation of Alkanes with Hydrogen Peroxide in the Gas Phase on Titanium Silicalite-1 – an In-Situ EPR Investigation – Catal. Lett. 141(2011)251.

T. Schwarz, S. Schirrmeister, H. Döring, E. Klemm,Herstellung von Wandkatalysatoren für Mikrostruktur-reaktoren mittels der Niederdruckspritztechnologie,Chem. Ing. Tech. 82(2010)921.

S. Schirrmeister, K. Büker, M. Schmitz-Niederau, B. Langanke, A. Geißelmann, F. Becker, R. Machnik, G. Markowz, T. Schwarz, E. Klemm,Katalytisch beschichtete Träger, Verfahren zu dessen Herstellung und damit ausgestatteter Reaktor sowie dessen Verwendung,Disclosure DE 10 2005 019 000 A1, 26.10.2006.

E. Klemm et al., Ind. Eng. Chem. Res. 2008, 47, 2086.

25

Fine Chemicals Manufacture

Virtual, but realistic example:

Fine chemical synthesis with YP,E=80 %, cEo = 1 mol/l and MP = 100 g/mol(assuming stirred tank reactor witch Vreac = 2 m3)

3-shift batch-wise operation:

Production Capacity: ca. 170 t / aSpace Time Yield: ca. 0.01 kg per liter and hour

daykgmolglmoll

MYcVm EPEoreac

/480/1008.0/1000,23

3 P,yProduct/da

==⋅⋅⋅⋅=

=⋅⋅⋅⋅=

26

Fine Chemicals Manufacture

Process Profitability = f(Space Time Yield (STY), …)

⋅⋅=

=⋅

⋅⋅⋅=

⋅=

h Product

Reac

,

Reac

,Reac

Reac

lkg

tMYc

tVMYcV

tVmSTY

PEPEo

PEPEoP

Process Timefor batch-wiseoperation

Typical Values of STY: 0.01 – 1 kg product per 1 liter reaction

volume and hour

27

Fine Chemicals Manufacture

Space Time Yield (STY):

Het. Catalysis: 1-10 kg/(l∙h)

Hom. Catalysis: 0.01 – 1 kg/(l∙h)

Biocatalysis: 0.001 – 0.01 kg/(l∙h)

hour and volume reaction of literproduct of kilogram

Reactiontemp.

Cat.conc.

28

Fine Chemicals Manufacture

Plant Capacity E Factor (kg waste / kg product)

Oil Refining > 1 Mio t / year < 0.1

Bulk Chemicals 10.000 t / year up to 1 Mio t / vear

< 1-5

Fine Chemicals < 10.000 t / year 5-50

Pharmaceuticals < 1 t / year 25-100

According to: R.A. Sheldon, The E factor: fifteen years on, Green Chemistry 9 (2007) 1273.

Process Development for the Reduction of the E factor in Fine Chemicals and Pharmaceuticals Manufacture due to …… reduction of negative environmental impact… reduction of cost of disposing of waste

29

Fine Chemicals Manufacture

From: A. Stankiewicz, Process Intensification Workshop, DECHEMA, 29.05.2006.

Process time in batch-wise fine chemical manufacture is mostlylimited by heat and mass, and not by the chemical reaction itself.

Due to increasing V and decreasing A/V, process time increaseswhen scaling up from bench to production scale.

30

Fine Chemicals Manufacture

From: Dr. J. Lang, Evonik Degussa

26 cm

36 cm

Granulatdosierung

Zerkleinern/Feinmahlen

Granulatspeicher

Feinkorndosierung

Lösemittelpuffer

Flüssigdosierung

Überhitzung

Druckdosierung

Filtration

Filterkuchenaustrag

Rückstandspeicher Produkt

Extraktion

310 ml48 sec

23 L/h 204 tons/year

V=ca. 40 l

31

Fine Chemicals ManufactureShifting from batch-wise to continuous operation:

Fine chemical synthesis with YP,E=80 %, cE0 = 1 mol/l and MP = 100 g/mol(assuming continuous reactor with Vreac = 40 l andreaction time of 1 min):

Production Capacity: ca. 1,533 t / aSpace Time Yield: ca. 4.8 kg per liter and hour

higher capacity or shorter time-to-market

daytdaykg

molglmoll

MYcVm EPEo

/6,4/608,4min1

/1008.0/140

P,reacProduct

==

=⋅⋅⋅

=

=⋅⋅⋅

32J. Yoshida, A. Naganki, T. Yamada, Chem. Euro. J. 14(2008)7450.

Fine Chemicals Manufacture

33

Fine Chemicals Manufacture

34

Bench Scale Reactors for Heterogeneous Catalysis

Catalytic Wall Reactors

TubeReactor

RecycleReactor(Type Berty)

Stirred Autoclave Reactor

Source:Lehrstuhl Technische Chemie,Universität Erlangen-NürnbergUniversität Stuttgart

Slug Flow Reactor

35

List of Symbols

Symbol Dimension Description cE,0 mol ∙ m-3 concentration of educt species E at the beginning of the reaction ME g ∙ mol-1 molar mass of educt E

Pm kg ∙ s-1 productivity (mass flow of the product P) SP,E - selectivity to product P related to educt E t s process time Vreac m3 reaction volume V m3 ∙ s-1 volumetric flow rate XE - conversion of educt E YP,E - yield of product P related to educt E τ s residence time