45
Hendrik Bluhm Chemical Sciences Division Lawrence Berkeley National Laboratory Chuck Fadley Dept. of Physics, UC Davis and Materials Sciences Division Lawrence Berkeley National Laboratory Heterogeneous Interfaces Investigated by Photoelectron Spectroscopy LBNL Interdisciplinary Instrumentation Colloquium Wednesday, 27 May 2015

Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Hendrik Bluhm Chemical Sciences Division

Lawrence Berkeley National Laboratory

Chuck Fadley Dept. of Physics, UC Davis

and

Materials Sciences Division

Lawrence Berkeley National Laboratory

Heterogeneous Interfaces Investigated

by Photoelectron Spectroscopy

LBNL Interdisciplinary Instrumentation Colloquium

Wednesday, 27 May 2015

Page 2: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Interfaces in the environment and technology: Solid/gas, liquid/gas, solid/liquid, and solid/solid

Photoemission spectroscopy: Basic technical considerations; Inelastic mean free path in solids and gases

Studying interfaces under realistic conditions: Ambient pressure and buried interfaces

Ambient pressure photoemission-instrumentation

Solid/solid interfaces: Instrumentation and detectors

Standing wave photoemission

Application to the solid/liquid interface

Application to complex oxide interfaces

Outline

Page 3: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

enhanced ionic transport along surface

surface vs bulk composition

ice core and brine shell

solid/vapor interface

solution shell vs solid core composition

Complex Interface Chemistry of a Seasalt Aerosol Particle

Page 4: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Bridging the Pressure and Materials Gap in Catalysis

Pressure

Complexity

UHV surface science

(For Peugot 106;

from Wikipedia)

Real world

?

In situ

Spectroscopy

Model

Catalysts

Bridging the Materials and Pressure Gap in Catalysis

Page 5: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Bridging the Pressure and Materials Gap in Catalysis Interfaces in information and energy technology

Hard Drive Read Head

Fuel Cell

Photovoltaic

Cell

Transistor

The electrochemical

double layer

Page 6: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Interfaces in the environment and technology: Solid/gas, liquid/gas, solid/liquid, and solid/solid

Photoemission spectroscopy: Basic technical considerations; Inelastic mean free path in solids and gases

Studying interfaces under realistic conditions: Ambient pressure and buried interfaces

Ambient pressure photoemission-instrumentation

Solid/solid interfaces: Instrumentation and detectors

Standing wave photoemission

Application to the solid/liquid interface

Application to complex oxide interfaces

Outline

Page 7: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

inc

Photon

En

erg

y

K,s

X-ray photoemission: some key elements

Bin

din

g

En

erg

y

Bin

din

g

En

erg

y

Emission angle xk

ARPES

W(110)

No. e-

Kin

etic

E

ne

rgy

Three angles

Core-levels I(,)

Photoe- diffraction

NiO(001)

XPD

Angle-resolved XPS (ARXPS)

Up to 5-10 keVdeeper

H

H

e

+5-5

G

WX

0

2

4

6

Bin

din

g E

ne

rgy

(e

V)

d

One-Step Theory

Detector Angle ( )

-4 -2 0 2 4

10

12

14

(Ef) 0

2

8

4

6

Bin

din

g E

ne

rgy

(e

V)

T = 20 K (Corrected)

c

Free-electron theory

f

= 3.00

- kh

g = (13 ix + 13 iy)(2/a)kf- kh

1

14

12

10

8

6

4

2

0

700600500400

10

12

14

(Ef) 0

2

8

4

6

b

T = 20 K (Raw Data), W = 0.31, hv = 3238 eV

Bin

din

g E

ne

rgy

(e

V)

14

12

10

8

6

4

2

0

700600500400

10

12

14

(Ef) 0

2

8

4

6

a

Bin

din

g E

ne

rgy

(e

V)

T = 300 K (Raw Data), W = 0.01, hv = 3238 eV

DO

S

XPD

7

XPD

Valence-levels

DO

S

Bin

din

g

En

erg

y

Bin

din

g

En

erg

y

GaAs(100)

Emission angle

From UHV to multi-Torr

“Ambient Pressure”

Page 8: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Photonh

Photoelectron

kinE , p k,s

Photoemission from surfaces, complex

bulk materials, buried layers, interfaces

“The

interface

is the

device.”

Kroemer,

Nobel,

2000

“The

interface

is still the

device”,

Nat.

Mater.,

11, 91-91,

(2012)

Inelastic

Scattering:

exp(-L/e),

e5-10 Å

50-100 Å

Usually

ultrahigh

Vacuum

Multi-Torr

What do we want to know?

• Atomic structure, lattice distortions

• Depth profiles of composition, optical

properties, magnetization, from

surface inward, at interfaces

• Core-levelselement-specific

binding energies, charge states

electronic configurations,

magnetic moments/magnetization

• Band offsets, depth-dependent pot’ls.

• Valence-band densities of states

bandgaps, behavior near EF (XPS)

• Valence-band dispersions, via

depth- and angle- resolved

photoemission (ARPES)

Page 9: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

The reasons for higher photon energies

100

101

102

103

101

102

103

104

41 Elemental Solids

Inela

stic M

ea

n F

ree P

ath

)

Electron Energy (eV)

KCs

NaLi E0.78

Typical XPS

Typical valence ARPES

HAXPES, HXPS

Tanuma, Powell, Penn, Surf. and Interf. Anal. 43, 689 (2011)

“Bulklike”+

Buried layers &

interfaces

: Optical theory,

TPP-2M

400 6000

• More bulk sensitive spectra:

a versatile tool for any new

material or multilayer

nanostructure

• Broad range of applications

to date!: alloys, SC

materials, oxides, magnetic

devices, PVs, batteries, in

operando, ambient

pressure,…

“Recent advances in Hard X-ray Photoelectron Spectroscopy

(HAXPES)”, Journal of Electron Spectroscopy and Related

Phenomena, Volume 190, Part B, Pages 125-314 (October 2013)

“Some future perspectives in soft- and hard- x-ray photoemission”,

CSF and S. Nemšák, J. Electron Spect. 195, 409–422 (2014)

ALS 7.0.19.3.1

Page 10: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Inelastic Mean Free Path of Electrons in Water

Emfietzoglou & Nikjoo, Rad. Res. 2007.

6 nm ~ 20 ML

1.5 keV

20 nm~70 ML

8 keV

Inelastic Mean Free Path of Electrons in Water

Liquid water: Gas-phase water: IMFP(g) IMFP()x (g)/() Can limit pressure if energy is too low

Page 11: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Interfaces in the environment and technology: Solid/gas, liquid/gas, solid/liquid, and solid/solid

Photoemission spectroscopy: Basic technical considerations; Inelastic mean free path in solids and gases

Studying interfaces under realistic conditions: Ambient pressure and buried interfaces

Ambient pressure photoemission-instrumentation

Solid/solid interfaces: Instrumentation and detectors

Standing wave photoemission

Application to the solid/liquid interface

Application to complex oxide interfaces

Outline

Page 12: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Early Ambient Pressures XPS Designs

h

gas, e-

R. Joyner, M.W. Roberts, Surf. Sci. 87, 501 (1979) M. Grunze et al., in: Surface Science of Catalysis (1987).

H. Siegbahn et al.,

JESRP 40, 163 (1986).

H. & K. Siegbahn et al., 1972 ff.

Early Ambient Pressure XPS Designs

Page 13: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

LBNL/FHI/Specs Ambient Pressures XPS Design

D.F. Ogletree, H. Bluhm, G. Lebedev, C.S. Fadley,

Z. Hussain, M. Salmeron, Rev. Sci. Instrum. 73 (2002) 3872.

1 mm

to pump to pump

X-rays from synchrotron

p0 p1<< p0 p2<< p1

LBNL/FHI Berlin/Specs

hemispherical analyzer

Measurements at 20 Torr water vapor are now possible (equilibrium vapor pressure at room temperature)

LBNL Ambient Pressure XPS Design (~2000)

Page 14: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Ambient Pressure XPS Instruments at Synchrotrons

Lund/Sweden

Barcelona/Spain

LBNL, Berkeley, CA

BNL, Upton, NY

SSRL, Stanford, CA

Berlin/ Germany

Campinas/Brazil

Oxfordshire/UK

Villigen/Switzerland

Tsukuba/Japan

Gif-sur-Yvette/France Shanghai/China

Ambient Pressure XPS Instruments at Synchrotrons

Page 15: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Summary APXPS for the Investigation of Solid/Vapor, Liquid/Vapor and

Solid/Liquid Interfaces

Page 16: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Interfaces in the environment and technology: Solid/gas, liquid/gas, solid/liquid, and solid/solid

Photoemission spectroscopy: Basic technical considerations; Inelastic mean free path in solids and gases

Studying interfaces under realistic conditions: Ambient pressure and buried interfaces

Ambient pressure photoemission-instrumentation

Solid/solid interfaces: Instrumentation and detectors

Standing wave photoemission

Application to the solid/liquid interface

Application to complex oxide interfaces

Outline

Page 17: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Scienta

electron

spectrometer

(hidden)

Scienta

soft x-ray

spectrometer:

XES 300

Sample prep.

chamber: LEED,

Knudsen cells,

electromagnet,...

ALS

BL 9.3.1

h = 2-5 keV Chamber

rotation

56-axis

sample

manipulator

Permits using all relevant spectroscopies on a single sample:

XPS (incl. Al and Mg K), HXPS, XPD, XAS, soft XES/RIXS. All details at:

http://www.physics.ucdavis.edu/fadleygroup/Hard.Xray.Photoemission.at.the.ALS.pdf

Hard X-ray

Photoemission at

the Advanced Light

Source: The Multi-

Technique

Spectrometer/

Diffractometer

(MTSD)

Open to

general user

program

Page 18: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Hard X-Ray Photoemission (HXPS, HAXPES,

HX-PES, HIKE...) in the World

Diamond

CLS Und. B.M. Existing

Under construction

Lund

ALS 9.3.1 NSLS

X24A

Soleil

SSRL

Our group

BESSY Petra III

ESRF

SPring 8 Photon Factory

NSRRC Taiwan

Bend magnets or undulators

Fast scanning, esp. core levels

Resolutions: 200 meV60 meV

NSLS2

“Recent advances in Hard X-ray Photoelectron Spectroscopy (HAXPES)”,

Journal of Electron Spectroscopy and Related Phenomena, Volume 190, Part B,

Pages 125-314 (October 2013)

Page 19: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Multichannel Electron Detectors for Electron Spectroscopy

Page 20: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Up to 105 Hz

Multichannel Electron Detectors for Electron Spectroscopy

Page 21: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

SRI2003 8/28/03 P. Denes

Next Generation Detectors for Electron Spectroscopy

48µm

Power supplies

HV

LV to ASICs

Electron cloud

Preamplifier

Discriminator

Counter

Readout

Data

acquisition

board

(DAQ)

Analog Front end Binary readout

Electrons (or photons)

Labwindows

CVI

Collectors

(768 strips with

48 mm spacing)

Microchannel

plates-MCPs

(40 mm x

10 mm)

CAFE-M chip BMC chip

J.-M. Bussat, C.S. Fadley,

B.A. Ludewigt, G.J.

Meddeler, A. Nambu, M.

Press, H. Spieler, B. Turko,

M. West, G.J. Zizka, IEEE

Transactions on Nuclear

Science 51, 2341 (2004).

Energy-resolved photoelectrons from a next gen. FEL: 200 GHz at 270 eV to 8 x 109 = 8 GHz at 1200 eV

An ALS project:

Page 22: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

SRI2003 8/28/03 P. Denes

~2 GHz overall linear count-rate 100-1000x faster than present detectors Position resolution of 75 m E/E 1:104 Spectral readout in as little as 150 ms time-resolved measurements Programmable, robust Sized to fit existing spectrometers

(Scienta, PHI, ...)

e- or h

Micro- channel plates

Custom ICs

Microchannel plates

e-, h

ALS High-Speed 1D Detector--Project Overview 2003

Page 23: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

20.0M

Commercial Product 2011

Page 24: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Ideas for the future

Nm-thinned back

illumination of

CMOS pixel

detector with

electrons

accelerated to ca.

5 keV? (2015)

2D version of the

ALS Detector

(2003)

Page 25: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Interfaces in the environment and technology: Solid/gas, liquid/gas, solid/liquid, and solid/solid

Photoemission spectroscopy: Basic technical considerations; Inelastic mean free path in solids and gases

Studying interfaces under realistic conditions: Ambient pressure and buried interfaces

Ambient pressure photoemission-instrumentation

Solid/solid interfaces: Instrumentation and detectors

Standing wave photoemission

Application to the solid/liquid interface

Application to complex oxide interfaces

Outline

Page 26: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Lawrence Berkeley National Laboratory | MSD Materials Sciences Division

Reflected

SW (|E2|) =

x/2sininc

R 1

% modulation

100 x 4R

XMCD—Kim, Kortright,

PRL 86, 1347 (2001)

Incident

h e-

3. Phase scan with wedge-shaped sample (“Swedge” method)

SWI(hν ) 1 R(hν ) 2 R(hν ) f cos[φ(hν ) 2π( Δz / λ )]

inc inc inc inc SWI(θ ) 1 R(θ ) 2 R(θ ) f cos[φ(θ ) 2π( Δz / λ )]

1. Rocking curve:

2. Photon energy scan:

with: f = coherent fraction of atoms, = phase of coherent-atom position

Three ways to scan a standing wave:

Multilayer Mirror

Three ways to scan a standing wave formed in reflection

from single-crystal Bragg planes, or a multilayer mirror

x =

2dMLsininc

SW (|E2|) =

dML

dML

Z

SWΔz / λ

Page 27: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Standing Wave Behavior During a Rocking Curve

or Photon-Energy Scan

Reflectivity- R

Relative phase- /

With thanks to Martin Tolkiehn, Dimitri Novikov, DESY

+Same general forms if photon

energy is scanned

Bragg angle

Page 28: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Form of rocking curve is unique to position of emitter Photoemission

Inte

nsit

y

vs a

ng

le

Inte

nsit

y v

s

ato

mic

po

sit

ion

Page 29: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Interfaces in the environment and technology: Solid/gas, liquid/gas, solid/liquid, and solid/solid

Photoemission spectroscopy: Basic technical considerations; Inelastic mean free path in solids and gases

Studying interfaces under realistic conditions: Ambient pressure and buried interfaces

Ambient pressure photoemission-instrumentation

Solid/solid interfaces: Instrumentation and detectors

Standing wave photoemission

Application to the solid/liquid interface

Application to complex oxide interfaces

Outline

Page 30: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Heterogeneous Processes at Liquid/Solid Interfaces G

.E. B

row

n, G

eo

ch

em

. P

ers

p. (2

01

2).

Open questions

• Correlation between chemistry

and electrical potentials

• Structure of the electric double

layer

• Charge and mass transfer across

interfaces.

Relevant research areas

• Electrochemistry

• Corrosion

• Geochemistry

• Catalysis

Standing Wave APXPS for Solid/Liquid Interface Studies

Page 31: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Measuring Liquid/Solid Interfaces Using XPS

h

e-

Solid substrate

Liquid

Obstacles: - Preparation of sufficiently thick/thin liquid films. - Enhancement of interface signal over that of the bulk.

Challenges to Measuring Solid Liquid Interfaces

Page 32: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

+Samples: Liu Group UCD +Mirrors: CXRO LBNL

Standing wave photoemission from a liquid-like layer: CsOH and NaOH on Fe2O3

Andrey

Osman

Ioannis

Aru

Catherine Armela

Slavo

Matthias

S. Nemšák, A. Shavorskiy, O. Karslioglu, I. Zegkinoglou, A. Rattanachata, C.S. Conlon, P.K. Greene, K. Liu, F. Salmassi, E.M. Gullikson, H. Bluhm, Ch.S. Fadley , Nature Communictions 5, 5441 (2014).

Page 33: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Standing-wave photoemission at the solid-liquid interface: some first experiments at ambient pressure

Si

Mo Si

Mo

DRY

Fe2O3

Si SiO2

OH

Cs Na

H2O(g): PH2O = 0.4 Torr, 2.5 C, 8% rel. humidity

H2O(ads.): 5 Å

Na(OH) + Cs(OH)

Si

Mo Si

Mo

DRY

Fe2O3

Si SiO2

OH-

Cs

Na ALS

h = 910 eV

e-

H2O(ads.): 5-10 Å

Multi- layer Mirror 80x

dML= 34 Å SW

Bragg: x = dMLsininc

DML 2740 Å Kiessig: mx = DMLsininc

dFe2O3 37 Å

Fe2O3 on Si/Mo multilayer mirror 0.01M NaOH + 0.01M CsOH, dried in air, into APXPS chamber

Varying inc rocking curve

CSD BL 11.0.2 @ ALS

Page 34: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Standing Wave APXPS – Proof of Principle

O 1s

oxide

OH

H2O(a)

H2O(v) Si

MoSiMo

DRY

Fe2O3

SiSiO2

OH

CsNa

H2O(g):PH2O=0.4Torr,2.5°C,~8%rel.humidity

H2O(ads.):~5Å

Na(OH)+Cs(OH)

Si

MoSiMo

DRY

Fe2O3

SiSiO2

OH-

Cs

NaALS

hn=910eV

e-

H2O(ads.):~5-10Å

···

·

Mul -layerMirror80x

dML=34Å» lSW

Bragg:lx=dMLsinqinc

DML»2740ÅKiessig:mlx=DMLsinqinc

dFe2O3»37Å

Varyingqincàrockingcurve

O 1s Rocking Curves

2.2

2.0

1.8

1.6

1.4

1.2

1.0

Re

lative

XP

S I

nte

nsity [

1]

12.412.011.611.2

Incident Angle [°]

OH

oxide

H20()

H2O(g)

O1s

Rocking curves

Page 35: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,
Page 36: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Standing Wave APXPS – Proof of Principle

H2OOH-

Fe2O3

Na+

Cs+

hydrophobicC

hydrophilicC

S. Nemšák et al., Nature Communictions 5, 5441 (2014); O. Karslioglu et al., Faraday Discussions (2015).

Si#substrate#

Mo###1.5#nm#

Mo###1.5#nm#

Si###1.9#nm#

Si###1.9#nm#SiOx###1.0#nm#

hninc hnR

lSW=linc/2sinqinc Fe2O3##3.5#nm#

qinc

Mul; layer#mirror#80x#

Fe2O3(3.5nm)

0.1MCsOH/NaOH

Chemical Speciation at Interface from Standing Wave APXPS

Page 37: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

e-

hn

z1

z2

PtCE Ag/AgClRE

Tsol

Pvap

gas

x,y,zsample

vacuumseal

Rsample

x,y,zbeaker

S. Axnanda et al., Sci. Rep (2015). O. Karslioglu et al., Faraday Discussions (2015).

hν = 3100 eV

Preparing Thin Liquid Films Using “Meniscus Method”

Data taken at beamline 6.0.1.

Preparing Thin Liquid Films Using the “Meniscus Method”

Page 38: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Interfaces in the environment and technology: Solid/gas, liquid/gas, solid/liquid, and solid/solid

Photoemission spectroscopy: Basic technical considerations; Inelastic mean free path in solids and gases

Studying interfaces under realistic conditions: Ambient pressure and buried interfaces

Ambient pressure photoemission-instrumentation

Solid/solid interfaces: Instrumentation and detectors

Standing wave photoemission

Application to the solid/liquid interface

Application to complex oxide interfaces

Outline

Page 39: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

P. Moetakef, S. Stemmer,

UCSB

Multilayer GdTiO3/SrTiO3

dML

= 35.5 Å

Photoelectron

Incident X-ray

x

Beam spot

β = tilt

e

kz

Buried

Interfaces

xe

2DEG e-

gas

Page 40: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Stemmer et al., UCSB

SrTiO3

Band insulator (Eg=2.3 eV)

Low temperature

superconductor

GdTiO3

Mott-Hubbard insulator

GdTiO3/SrTiO3 interface

Two-dimensional electron gas (2DEG) at the interface

between two insulators (Appl. Phys. Lett. 99, 232116, 2011)

Sheet carrier density on the order of 3x1014 cm-2

Ferromagnetism in the 2DEG at the interface (Phys. Rev. X

2,021014, 2012)

S. Nemšák et al., TBP

Julich Res. Ctr.

SrTiO3/GdTiO3

An interface 2D electron gas

Page 41: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

The STO/GTO 2D Electron Gas

Can we see this 2DEG with standing

wave ARPES, including its momentum

dispersion and its depth distribution?

Stemmer et al.

Page 42: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

XP

S In

te

nsity [a

rb

.u

.]

-12eV -10 -8 -6 -4 -2 0 2

Binding Energy [eV]

GTO/STO

Au

-2.0eV -1.0 0.0

Binding Energy [eV]

200 meVLHB

GTO/STO multilayer:

Soft x-ray photoemission in the XPS limit @ 833 eV@ 298K

Matrix-element-weighted densities of states

Gd4f = 5

O 2p

GTO+STO

4

2

3

1

=EF

=EF

1 1’

1’

Soft x-ray 833 eV

ALS BL 7.0.2

Page 43: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

Re

lative

XP

S In

ten

sity [1

]

10.09.59.08.58.07.5

Incident Angle [°]

O 1s

C 1s

Sr 3d

Gd4f

LHB (GTO)

2DEG (STO)

P3 P2 P12.2

2.0

1.8

1.6

1.4

1.2

1.0

Re

lative

XP

S In

ten

sity [1

]

10.09.08.0

Incident Angle [°]

O 1s

C 1s

Sr 3d

Gd4f

LHB x3

1

P3 P2 P1

40

30

20

10

0-1

0-2

0

De

pth

in

sam

ple

]

11.010.09.08.07.0

Incident Angle [°]

CO

STO

GTO

STO

vacuum

1.20.8

E-field [arb.u.]

P3 P2 P1

2DEG(Interface)2DEG(STO)

Theory: E2 -field strength Experiment Theory

Rocking curves

Theoretical simulations vs. expt.—1187-just above Gd M5 edge SW emphasizng STO/GTO interface

Peak 1 = 2DEG & 2DEG occupies the full STO layer

STO

Interface

Bragg Kiessig Kiessig Bragg

Page 44: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Conclusions: Standing-Wave and Resonant PS

and ARPES of SrTiO3/GdTiO3

k-resolved bands of GTO LHB and 2DEG,

evidence for intermixing of the two

2DEG extends through the entire STO layer from

standing-wave rocking curve analysis

Results consistent with 2DEG tunneling subband

spacing measurements and tight binding- or LDA

+ hybrid functional- calculations

Rocking curve forms very sensitive measure of

depth distributions near buried interfacesfuture

applications to other systems CSF and S. Nemšák,, J. Electron Spect. ,

195, 409–422 (2014):

S. Nemšák, et al., TBP

Page 45: Hendrik Bluhm - Berkeley Lab Physics Division (Indico)...X-ray photoemission: some key elements g gy Emission angle k x ARPES W(110) No. e-Kinetic Energy Three angles Core-levels I(Τ,

Photoelectron spectroscopy has developed over the last 40 years from a vacuum-based technique to measurements at elevated pressures and operating conditions, including buried interfaces

New facilities and instrumentation:

Differential pumping to permit higher pressures near sample

Hard x-ray photoelectron spectroscopy: bulk and buried interfaces, higher gas pressures

Standing-wave excitation to more precisely probe in depth

A development need:

Detectors with higher efficiency, time resolution and dynamic range up to multi-GHz range

Summary