110
Czech Technical University in Prague Faculty of Civil Engineering Department of Microenvironmental and Building Services Engineering Michal Kabrhel 1 2008/2009 Heating systems Apllied thermodynamics Indoor environment

Heating systems mk tisk - cvut.cz

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Heating systems mk tisk - cvut.cz

Czech Technical University in PragueFaculty of Civil Engineering

Department of Microenvironmental and Building Services Engineering

Michal Kabrhel 12008/2009

Heating systemsApllied thermodynamics

Indoor environment

Page 2: Heating systems mk tisk - cvut.cz

2Michal Kabrhel

Heating

n The function n Heat supply to guarantee required indoor

temperaturen Heat supply for technology n Heat supply for hot water generation

n The principle

Page 3: Heating systems mk tisk - cvut.cz

3Michal Kabrhel

Heating - History 700 BC - 0

Hypocausta

Page 4: Heating systems mk tisk - cvut.cz

4Michal KabrhelBEE1 - prof.Kabele

Heating - History – Middle Ages

n Fireplace, stove

Page 5: Heating systems mk tisk - cvut.cz

5Michal Kabrhel

Heating - History 18th-19th

century - steam system

Page 6: Heating systems mk tisk - cvut.cz

6Michal Kabrhel

Heating - History 20thcentury

Page 7: Heating systems mk tisk - cvut.cz

7Michal Kabrhel

History 20th century warm water systems

Steam systems are replaced by warm water ones - use of electricity, pumps, control

Warm water boiler Strebl 1927

Page 8: Heating systems mk tisk - cvut.cz

8Michal Kabrhel

1900-1945

Page 9: Heating systems mk tisk - cvut.cz

9Michal Kabrhel

Heating nowadaysn Warm water systemsn Gas boilers operated by

electronics n Heating surface inside

floor, wall, ceilingn Computer models

Page 10: Heating systems mk tisk - cvut.cz

10Michal Kabrhel

Heating nowadays

Page 11: Heating systems mk tisk - cvut.cz

11Michal Kabrhel2008/2009

Applied thermodynamicsn Heat, heat energy

n Heat is the energy transferred between a system and its surroundings due solely to a temperaturedifference between the system and some parts of itssurroundings.

n Temperaturen State variable describing kinetics energy of the

particles of the systemn Thermodynamic /Kelvin/ T [K]n Celsius t [°C] t= T-273,15n Fahrenheit [°F] 1°F=5/9°C (°F-32).5/9=°C

Page 12: Heating systems mk tisk - cvut.cz

12Michal Kabrhel2008/2009

Basic laws of thermodynamics

n Zeroth lawn There is a state variable TEMPERATURE. Two

systems at the same temperature are in thermodynamics equilibrium.

n The zeroth law of thermodynamics states that if forexample you have a Body (A) and a Body (B), both atthe same temperature; and then you have a Body (C) which is at the same temperature as Body (B); Therefore the temperature of Body (C) is equal to thetemperature of Body (A).

Page 13: Heating systems mk tisk - cvut.cz

13Michal Kabrhel2008/2009

Basic laws of thermodynamics

n 1.lawn The total energy of the system plus the surroundings

is constant. (internal energy of system)n 2.law

n The second law is concerned with entropy (S), whichis a measure of disorder. The entropy of the universeincreases.

n 3.lawn It is impossible to cool a body to absolute zero

by any finite process

Page 14: Heating systems mk tisk - cvut.cz

14Michal Kabrhel2008/2009

Heat transfer modesn Heat Conductionn Heat is transferred between two systems

through a connecting medium, Biot-Fourier

n Heat Convection n Macroscopic movement of the matter in the

forms of convection currents. n Newton-Richman, Fourier-Kirchhof

Page 15: Heating systems mk tisk - cvut.cz

15Michal Kabrhel2008/2009

Heat transfer

n Transmissionconvection+conduction+convection

n Radiation nElectromagnetic waves

Page 16: Heating systems mk tisk - cvut.cz

16Michal Kabrhel2008/2009

Indoor environmentn Theory of the indoor environment

n Hygrothermal microclimaten Acoustic microclimaten Psychical microclimaten Light microclimaten Electrostatic microclimate

n Hygrothermal microclimaten Indoor environment state from the viewpoint of

thermal and moisture flows between the human body and surroundings

Page 17: Heating systems mk tisk - cvut.cz

17Michal Kabrhel2008/2009

Heat Exchange between the Human Body and the Enviroment

n Metabolic Rate Mn degree of muscular activities,n environmental conditions n body size.

n Heat loss Qn Respirationn Convectionn Radiationn Conductionn Evaporation

n Body thermal balance equationM=Q comfortM>Q hotM<Q cold

Ta

Tp

Page 18: Heating systems mk tisk - cvut.cz

18Michal Kabrhel

n Humann Metabolic Raten Clothing Insulation

n Spacen Air Temperature (Dry-Bulb)n Relative Humidityn Air Velocityn Radiation (Mean Radiant Temperature)

2008/2009

Factors Influencing Thermal Comfort

Page 19: Heating systems mk tisk - cvut.cz

19Michal Kabrhel

n Operative Temperature

n where tg = operative temperaturen ta = ambient air temperaturen tr = mean radiant temperaturen hc = convective heat transfer coefficientn hr = mean radiative heat transfer coefficient

2008/2009

Environmental indices

Page 20: Heating systems mk tisk - cvut.cz

20Michal Kabrhel2008/2009

Environmental indicesn Mean Radiant Temperature

n wheren tr = mean radiant temperaturen Ti = temperature of the surrounding surface i,

i=1,2,....,nn φrn = shape factor which indicates the fraction of

total radiant energy leaving the clothing surface 0 and arriving directly on surface i, i=1,2,...n

Page 21: Heating systems mk tisk - cvut.cz

21Michal Kabrhel2008/2009

Thermal comfort evaluation

n PMV index (Predicted mean vote)

n PPD index (Predictedpercentage ofdissatisfied)

Page 22: Heating systems mk tisk - cvut.cz

Czech Technical University in PragueFaculty of Civil Engineering

Department of Microenvironmental and Building Services Engineering

Michal Kabrhel 22125BEE1_2008/2009 Michal Kabrhel

HeatingPrinciples of heating equipment

Heat emmitters

Page 23: Heating systems mk tisk - cvut.cz

23Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Hot water heating

n Principlen Heating system

n Heat sourcen Distribution

networkn Heat emitter

n Heat transfer mediumn watern steamn air

Page 24: Heating systems mk tisk - cvut.cz

24Michal Kabrhel125BEE1_2008/2009

Convectors

NaturalFan-convectorsFloorWall

Michal Kabrhel

Page 25: Heating systems mk tisk - cvut.cz

25Michal Kabrhel125BEE1_2008/2009

Radiators

Michal Kabrhel

Page 26: Heating systems mk tisk - cvut.cz

26Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Off-peak storage

n Staticn Dynamicn Hybrid

n Convectorn Radiator

Page 27: Heating systems mk tisk - cvut.cz

27Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Air flow patterns

Page 28: Heating systems mk tisk - cvut.cz

28Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Heat emittersn Design principlesn Heating outputn Locationn Covering - furnituren Connection to the pipe systemn Type

Page 29: Heating systems mk tisk - cvut.cz

29Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Heater emitters design

n Covering = changes in the output

Page 30: Heating systems mk tisk - cvut.cz

30Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Low - temperature radiant heating

n floor, wall and/or ceiling with embedded pipes or el.wires in concrete slabn Temperature distribution

Page 31: Heating systems mk tisk - cvut.cz

31Michal Kabrhel125BEE1_2008/2009

Underfloor heating

n History

Michal Kabrhel

Page 32: Heating systems mk tisk - cvut.cz

32Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Low - temperature radiant heating

n Floor structure

Page 33: Heating systems mk tisk - cvut.cz

33Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Underfloor heating - structure

TYP ATYP B

TYP C

Page 34: Heating systems mk tisk - cvut.cz

34Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Low - temperature radiant heating

n Technical solutionn Pipe layout

Page 35: Heating systems mk tisk - cvut.cz

35Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Low - temperature radiant heating

n Output n Limited surface temperature á limited output cca

100 W.m-2

n Energy savings n Lower air temperature á lower heat losses

n Controln Low temperature difference á autocontrol effect

Page 36: Heating systems mk tisk - cvut.cz

36Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Underfloor heating - examples

Page 37: Heating systems mk tisk - cvut.cz

37Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Radiant panels

n Low temperaturen heaters max 110 °C (water, steam, el. power)

n High temperaturen dark - about 350°C - radiant tube heating

system (gas)n light - about 800 °C - flameless surface gas

combustion

Page 38: Heating systems mk tisk - cvut.cz

38Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Heat emitters

Page 39: Heating systems mk tisk - cvut.cz

Czech Technical University in PragueFaculty of Civil Engineering

Department of Microenvironmental and Building Services Engineering

Michal Kabrhel 39125BEE1_2008/2009 Michal Kabrhel

HeatingHot water heating systems

Page 40: Heating systems mk tisk - cvut.cz

40Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Hot-water heatingn Terminology

Boiler

Emitter

Main supply/return pipe

Branch supply/return pipe

Radiator valve

Ventcock

Drain/feed cock

Shutoff valves

Expansion vessel

Manual Control valve

Emitter

Page 41: Heating systems mk tisk - cvut.cz

41Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Heating system designInitial information about the

buildingn Type

n industrial, office, dwelling

n Operationn continuous, intermittentn single, multiple

n Structuren heavy, light n new, reconstruction

Page 42: Heating systems mk tisk - cvut.cz

42Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Heating system design Functional requirements

n Connection of the heat emitters with the heat source

n Deaerationn Drainingn Integration into the building

Page 43: Heating systems mk tisk - cvut.cz

43Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Design parameters of hot water heating systems

n (1) Water circulationn (2) Geometry of the systemn (3) Water temperaturen (4) Expansion vessel n (5) Materials

Page 44: Heating systems mk tisk - cvut.cz

44Michal Kabrhel125BEE1_2008/2009

Water circulation

n Natural – without pumpP1=h.ρ1 .g

P2=h.ρ2.g

ΔPF=ΔPn + ΔPP

n Forced – with pump

ΔPn=P2-P1=h.(ρ2- ρ1 ).g

P1 P2

Michal Kabrhel

Page 45: Heating systems mk tisk - cvut.cz

45Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Geometry of the system

n Relative connection of the heat emittersn One-pipe, two-pipe

n Main pipe lay-outn Upper, lower, combined

n Branch pipes lay-out n vertical, horizontal , microbore

Page 46: Heating systems mk tisk - cvut.cz

46Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Geometry of the system Relative connection of the heat emitters

n Two-pipe systemn One-pipe system

Page 47: Heating systems mk tisk - cvut.cz

47Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Two-pipe systems

n Contraflow, parallel flow

Tichelmann

Page 48: Heating systems mk tisk - cvut.cz

48Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

One-pipe systemsBasic schemes of the connection

•With mixing valve•Two-point•One-point

• With By-Pass–“Horse Rider“ – Controlled by-pass

•Serial

Page 49: Heating systems mk tisk - cvut.cz

49Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

One-pipe systemsMixing valves

Two-point valves

One-point valves

Ventil compact

Page 50: Heating systems mk tisk - cvut.cz

50Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Relative connection of the heat emitters

Conclusion

Two-pipe X one-pipe system

n Length of the pipesn Water circulationn Measuring and controln Pressures in the system

Page 51: Heating systems mk tisk - cvut.cz

51Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Geometry of the systemMain-pipe layout

Upper

Lower

Combined

Page 52: Heating systems mk tisk - cvut.cz

52Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Branch pipes layout

Vertical

Horizontal

Microbore

Page 53: Heating systems mk tisk - cvut.cz

53Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Temperature Operational temperature

n Design temperature

t2

t1

tw1

tw2

tTp,max

tw

Temperature difference - emitter = tw1 - tw2

Temperature difference system = t1 - t2

System supply t1

System return t2

Emitter supply tw1

Emitter return tw2

Maximal emitter surface temperature tTp max

Mean emitter temperature tw

Page 54: Heating systems mk tisk - cvut.cz

54Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Temperature in the system

n Heat transferred by the system

n Heat transferred by the emitter

t2

t1

tw1

tw2

tp1,max

tw

Page 55: Heating systems mk tisk - cvut.cz

55Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Temperatures Design Criterions

• Economical criterions

• Physical properties of the medium

• Hygiene requirements

• Technical properties of the heat source

Page 56: Heating systems mk tisk - cvut.cz

56Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

TemperatureParameters design

n Heating system supply temperature• Low- temperature t1 <=65°C• Medium - temperature 65°C< t1 <= 115°C• High temperature t1 > 115°C

n Temperature difference n 10K - 25K, high temperature 40K - 50K. n 90/70 °C, 80/60°C, 75/55°C, 55/45°C

Page 57: Heating systems mk tisk - cvut.cz

57Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Temperature Parameters Design

n Emitter n Maximal surface temperature (85 - 90°C)

n Temperature differencen Two-pipe = system temperature difference (15 - 25

K) n one-pipe < system temperature difference OS (5 -

10 K)

Page 58: Heating systems mk tisk - cvut.cz

58Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Piping materials

n The material should be selected at the beginning of the design process

n Used materialsn steeln coppern plastic

Page 59: Heating systems mk tisk - cvut.cz

59Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Piping materialsSteel

n Traditional materialn Welding, flanges

Page 60: Heating systems mk tisk - cvut.cz

60Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Piping materialCopper

n Lower material usagen Chemical reaction with water pH min7n Electrochemical corrosion (Al)n soldering , torch brazing

Page 61: Heating systems mk tisk - cvut.cz

61Michal Kabrhel125BEE1_2008/2009 Michal Kabrhel

Piping materialPlastic

• Materials• Netted polyethylene (PEX, VPE),• polybuten (polybutylen, polybuten-1,PB),• polypropylen (PP-R, PP-RC,PP-3),• Chlorided PVC (C-PVC, PVC-C)• Multilayer pipes with metal

n Life-cycle !!!n Oxygen barierre ?

Page 62: Heating systems mk tisk - cvut.cz

62Michal Kabrhel

Heating systemhydraulic calculation

Heating systemhydraulic calculation

Page 63: Heating systems mk tisk - cvut.cz

63Michal Kabrhel

Calculation

n Temp difference setupn Transferred outputn Circulation moden Hydraulic scheme,

sections, circuitsn Water flow rate

Page 64: Heating systems mk tisk - cvut.cz

64Michal Kabrhel

Design of the pipe diameter

n Forced circulationn method economical specific pressure loss

60 - 200 Pa.m-1

n method optimal velocityn 0,05 - 1,0 m.s-1 (!!! Noise)

– method given pressure differencen buoyancy + pump headn 10-70 kPa

n Natural circulation– method given pressure difference

n buoyancy

Page 65: Heating systems mk tisk - cvut.cz

65Michal Kabrhel

Pressure loss calculationn Pressure lossn frictionn local resistance

n Pressure loss of the circuit compare with the pump head

nPressure excess is reduced by the control valves

nPressure lack – must be changed the pump or redesigned the system

Page 66: Heating systems mk tisk - cvut.cz

66Michal Kabrhel2008/2009 66Michal Kabrhel

n boiler plantsn combustion process in the

boilers

n heat-exchanger plantsn district heating

n renewable sourcesn utilization of solar, wind,

geothermal energy, co-generation, heat pumps

Heat sources

Page 67: Heating systems mk tisk - cvut.cz

67Michal Kabrhel2008/2009 67Michal Kabrhel

Boiler plants classificationn Fuel

n solid, gas, liquid

n Burnern atmosphericn pressurized

n Operating temperature

n steam n hot watern low temperature -

condensing boilers

Page 68: Heating systems mk tisk - cvut.cz

Czech Technical University in PragueFaculty of Civil Engineering

Department of Microenvironmental and Building Services Engineering

Michal Kabrhel 682008/2009 68

District heating

Page 69: Heating systems mk tisk - cvut.cz

69Michal Kabrhel2008/2009 69Michal Kabrhel

Boiler plants classificationn Output

n I.category n >3500 kW

n II.categoryn >500 <3500 kW

n III.categoryn >50 <500 kW

Page 70: Heating systems mk tisk - cvut.cz

70Michal Kabrhel2008/2009 70Michal Kabrhel

Boiler rooms function

n Fuel supplyn solid, liquid, gas (natural x propane)

n Heat distributionn heatingn hot water generationn air-condition heatern technology

Page 71: Heating systems mk tisk - cvut.cz

71Michal Kabrhel2008/2009 71Michal Kabrhel

n Safety devicesn Expansion vessel, pressure relief valves

n Control of the boiler outputn Electronic control

n Requirements to the building constructionn Supports of the piping, foundation below heavy

elements (hw tanks, boiler)

n Operation

Boiler rooms function

Page 72: Heating systems mk tisk - cvut.cz

72Michal Kabrhel2008/2009 72Michal Kabrhel

Boiler rooms function

n Air supplyn combustionn ventilationn heat gains removal

n Air outletn ventilationn heat gains removal

n Waste gases removaln atmosphericn pressurizedn “turbo” boilers

Page 73: Heating systems mk tisk - cvut.cz

73Michal Kabrhel2008/2009 73Michal Kabrhel

District heating

n Heat sourcen Distribution networkn Transfer plantn Heating system

Heat source

DistributionPrimary network

DistributionSecondary network

Transfer plant

Page 74: Heating systems mk tisk - cvut.cz

74Michal Kabrhel2008/2009 74Michal Kabrhel

Distribution network

n ductn ductlessn collectorn surface

a) b) c) d)

Page 75: Heating systems mk tisk - cvut.cz

75Michal Kabrhel2008/2009 75Michal Kabrhel

Heat exchangersn Tubular n U-tubesn Kit

n Platen sealed and screwedn soldered

Page 76: Heating systems mk tisk - cvut.cz

76Michal Kabrhel2008/2009 76Michal Kabrhel

Heat transfer plantn Pressure dependent, water-water

Page 77: Heating systems mk tisk - cvut.cz

77Michal Kabrhel2008/2009 77Michal Kabrhel

Heat transfer plantn Pressure independent - water - water

Consumer network

Heat exchager

Secondary network

manifold

Safety and expansion device

Page 78: Heating systems mk tisk - cvut.cz

78Michal Kabrhel2008/2009 78Michal Kabrhel

Heat transfer plantn Pressure dependent - steam - steam

Condensate meter

Secondary network manifold

Reduction valve

Condensate tank

Repumping of the condensate

Steam trap

Page 79: Heating systems mk tisk - cvut.cz

79Michal Kabrhel2008/2009 Michal Kabrhel

Example of heat transfer plant water-water

79

Page 80: Heating systems mk tisk - cvut.cz

80Michal Kabrhel2008/2009 80Michal Kabrhel

Example of transfer plant

Page 81: Heating systems mk tisk - cvut.cz

81Michal Kabrhel2008/2009 81Michal Kabrhel

Electric energy - utilisation

n Direct heatingn Infra red heatersn radiatorsn Convectors, warm air

heatingn Radiant heating

n panelsn curtainsn sheetsn cables

n Warm water (electric boiler)

n Storage heatingn Off-peak storage

n staticn dynamicn hybrid

n warmwater (boiler)n Resistant cables

Appliances

Page 82: Heating systems mk tisk - cvut.cz

Czech Technical University in PragueFaculty of Civil Engineering

Department of Microenvironmental and Building Services Engineering

Michal Kabrhel 822008/2009 82

HeatingRenewable heat sources

Page 83: Heating systems mk tisk - cvut.cz

83Michal Kabrhel2008/2009 83Michal Kabrhel

Electric energy – productionSituation in CZ•70% coal 7,5 GW tj cca 51 000 ton of coal daily, •18% water 1,8 GW•17% nuclear 1,7 (2,7) GW 47,6 ton uranium anually (130 kg daily)•0,5 % other (wind, solar)

Page 84: Heating systems mk tisk - cvut.cz

84Michal Kabrhel2008/2009 84Michal Kabrhel

Biomass

² wood² wood residue² straw

Page 85: Heating systems mk tisk - cvut.cz

85Michal Kabrhel2008/2009 85Michal Kabrhel

Biomass sources

v Cultivation

v Waste product

Page 86: Heating systems mk tisk - cvut.cz

86Michal Kabrhel2008/2009 86Michal Kabrhel

Manufactured biomass

ØBriquettes

ØPellets

Page 87: Heating systems mk tisk - cvut.cz

87Michal Kabrhel2008/2009 Michal Kabrhel

Fuel value

vWood 16 MJ/kg

v Briquettes, Pelets 19 MJ/kg

87

Page 88: Heating systems mk tisk - cvut.cz

88Michal Kabrhel2008/2009 88Michal Kabrhel

Biomassv Renewable sourcev Local source – not related to

global politicsv Balanced production CO2 – no

greenhouse effect

• Water content – fuel value• Fuel storage• Ash• Lower operation comfort

Page 89: Heating systems mk tisk - cvut.cz

89Michal Kabrhel2008/2009 89Michal Kabrhel

Biomass combustion boiler - gasification

Page 90: Heating systems mk tisk - cvut.cz

90Michal Kabrhel2008/2009 90Michal Kabrhel

Scheme of gasification boiler connection

Page 91: Heating systems mk tisk - cvut.cz

91Michal Kabrhel2008/2009 91Michal Kabrhel

Pellets boiler

n = gasification boiler + fuel storage + screw conveyor

Page 92: Heating systems mk tisk - cvut.cz

92Michal Kabrhel2008/2009 92Michal Kabrhel

Pellets transport - pneumatic

Page 93: Heating systems mk tisk - cvut.cz

93Michal Kabrhel2008/2009 93Michal Kabrhel

Pellets delivery

Page 94: Heating systems mk tisk - cvut.cz

94Michal Kabrhel2008/2009

Pellets transport

Michal Kabrhel 94

Page 95: Heating systems mk tisk - cvut.cz

95Michal Kabrhel2008/2009 95Michal Kabrhel

Solar energyn SUN – sky move

n Difusse and direct radiation

n Solar constant 1360 W/m2

n Clouds

n Real radiation max 1000 W/m2

Global radiation ČR [MJ . m-2 .a]

Page 96: Heating systems mk tisk - cvut.cz
Page 97: Heating systems mk tisk - cvut.cz

97Michal Kabrhel2008/2009 97Michal Kabrhel

Renewable heat sourcesn Solar Energyn Passive Systems

n solar windown greenhousen accumulation wall

Page 98: Heating systems mk tisk - cvut.cz

98Michal Kabrhel2008/2009 98Michal Kabrhel

Renewable heat sourcesn Solar architecturen location in the countryn building plann thermal insulationn balanced accumulation of the structuren additional heating systemn minimizing of heat gains in summer by

shading

Page 99: Heating systems mk tisk - cvut.cz

99Michal Kabrhel2008/2009 99Michal Kabrhel

Renewable heat sourcesn Active solar systemsn Thermal solar systemn water, air collectors

Page 100: Heating systems mk tisk - cvut.cz

Water solar system

• Direct• Undirect

• Natural • Forced close

Page 101: Heating systems mk tisk - cvut.cz

Water solar system

11.12.20112008/2009 101Michal Kabrhel

Page 102: Heating systems mk tisk - cvut.cz

102Michal Kabrhel2008/2009 102Michal Kabrhel

Renewable heat sourcesn Active solar systemsn Photovoltaics cells

Cell Panel Field

Page 103: Heating systems mk tisk - cvut.cz

103Michal Kabrhel2008/2009 103Michal Kabrhel

Renewable heat sources

n Grid-onn Grid-off

Inverter Appliance

Appliance

Page 104: Heating systems mk tisk - cvut.cz

104Michal Kabrhel2008/2009 104Michal Kabrhel

Renewable heat sourcesGeothermal energy - Heat pumpsn Evaporator, compressor,

condenser, reducing valven Evaporator

n air, water, soil

n Condensatorn low temperature heating, hot

water, swimming pool

n Efficiency -n Output/Input= avg.2,4

http://www.geoexchange.org/frames/case_studies.htm

Energy ofenvironment

Utilisation: heating, hot water

Compressor

Medium vapour

Compressed hot vapour

Liquid mediumCooled medium

Evaporator

Condenser

Reducing

valve

Page 105: Heating systems mk tisk - cvut.cz

105Michal Kabrhel2008/2009 105Michal Kabrhel

Heat pumps - alternatives of heat sources

Page 106: Heating systems mk tisk - cvut.cz

106Michal Kabrhel2008/2009 106Michal Kabrhel

Combined heat and power generation (CHP)

n gas engine with el.powergenerator

n cooling of the engine is the heat source

n output e.g. 42 kW heat 25 kW electric

Page 107: Heating systems mk tisk - cvut.cz

107Michal Kabrhel2008/2009 107

Fuel CellsIn principle, a fuel cell operates

like a battery. Unlike a battery, a fuel cell does not run down or require recharging. It will produce energy in the form of electricity and heat as long as fuel is supplied.

A fuel cell consists of two electrodes sandwiched around an electrolyte. Oxygen passes over one electrode and hydrogen over the other, generating electricity, water and heat.

n http://www.esru.strath.ac.uk/EandE/Web_sites/00-01/fuel_cells/

Michal Kabrhel

Page 108: Heating systems mk tisk - cvut.cz

Wind energy

Page 109: Heating systems mk tisk - cvut.cz

Wind energyn Wind+building

Page 110: Heating systems mk tisk - cvut.cz

Geothermal energy