54
Catalysis in a Refinery Hartmut Schütter

Hartmut Schütter · 2010. 5. 25. · DK 4 Advanced Control (RMPCT) 0 2 4 6 8 10 12 14 16 18 Feb.02 Mrz.02 Apr.02 Jun.02 Jul.02 Aug.02 Okt.02 Nov.02 Sulfur content of raffinate, ppm

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Catalysis in a Refinery

    Hartmut Schütter

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 1

    Boiling Range of Crude Oil (REB)

    0100200300400500600700800900

    0 20 40 60 80 100wt%

    Boi

    ling

    Tem

    pera

    ture

    °C

    1,2% LPG

    16% Naphtha

    10% Kero

    32% Diesel / HEL

    appr. 50% atm. residue

    33%Vacuumgasoils

    17%Vacuum-residue

    (Heavy Fueloil/Bitumen)

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 2

    Crude Oil Distillation

    Crude Oil

    Vacuum residue(Bitumn/Heavy Fuel Oil

    VGO Hydrotreater/Cat Cracker

    Gas/ LPG

    Hydrotreater(Diesel/Domestic FuelOil)Hydrotreater(Jet Fuel)Cat Reformer(Gasoloine Pool)Cat Reformer(Aromatics)Steam CrackerIsomerization(Gasoline Pool)

    Middledistillates

    Mid/Heavy Naphtha

    Light NaphthasSteamreformer(H2)FuelSteam Cracker

    atm.Distillation

    Vacuumdistillation

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 3

    Demand of Oil Products differs from Composition of Crude Oil

    050

    100150200250300350400450500550600650700

    0 10 20 30 40 50 60 70 80 90 100

    Percentage wt%

    Boi

    ling

    Tem

    pera

    ture

    °C

    Refining

    Technical Services PCK

    crude oilR ussian E xport B lend

    32.4 °API 1.5 %S

    market demand

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 4

    CrudeOil

    RefineryTargetYields

    1.2

    5

    16

    30

    32

    55

    50

    5

    NaphthaRON500ppm

    GasolineRON92 -100

    S 3%

    Heavy Fuel Oil S

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 5

    DESUS / FCC /Alkylation / ETBE

    Refiner/reformerisomerization

    Jet fuelhydrotreating

    MD hydrotreating

    Claus units

    ETBE

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 6

    Gasoline Upgrading

    • Increasement of Octane number by IsomerizationConversion of normal C5/C6 Paraffins to iso Paraffins

    • Increasement of Octane number by catalytic ReformingAromatics from Dehydrogenation of Naphthenes as well as Dehydrocyclisation of Paraffins

    • Increasement of Octane number by AlkylationConversion of iso C4 with Butenes to iso Octane

    • Increasement of Octane number by EtherificationConversion of iso Butene with Ethanol to ETBE

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 7

    l Antiknock Property– Octane number = 0

    100 Vol% n-Heptane

    – Octane number = 100100 Vol% iso-Octane

    Octane number

    HHHHHHH|||||||

    HCCCCCCCH|||||||

    HHHHHHH

    −−−−−−−−

    HHHH|

    H-C-HH

    |||||HCCCCCH

    |||||

    HH-C-H

    |H

    HH-C-H

    |H

    H

    −−−−−−

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 8

    Light Naphtha Isomerization

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 9

    Catalytic Reforming

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 10

    Ether

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 11

    DESUS / FCC /Alkylation / ETBE

    Refiner/reformerisomerization

    Jet fuelhydrotreating

    MD hydrotreating

    Claus units

    ETBE

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 12

    Development of Sulfur Limit in Gasoline

    500

    150

    5010

    050

    100150200250300350400450500

    Sulf

    ur

    in p

    pm

    bis 2000 2000 2001 2002

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 13

    Development of Sulfur Limit in Diesel Fuels

    10000

    5000

    50050 10

    0100020003000400050006000700080009000

    10000Su

    lfur i

    n pp

    m

    past 80/90 1995 2000 2002

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 14

    Diesel Hydrotreating

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 15

    Increasing of Desulfurization from 95 % up to more than 99.9 %with existing Hydrotreaters by increasing of Reactortemperature only ?

    ⇒ > + 40 ° C WABT⇒ Reactor outlet temperature > 400 °C

    ▪ material?▪ Cycle length ↓ ↓ ↓▪ Productstability (color, ox.stab.)▪ target sulfur critical (10 ... 20 ppm → recombination to RSH,

    Thiophene)

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 16

    AOP - Targets

    l Reliability

    l Flexibility

    l Potential to future

    l Low opex (not lowest investment)

    l Improved margin

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 17

    Hydrogen partial pressure in the reactor

    40

    42

    44

    46

    48

    50

    52

    54

    56

    0 20 40 60 80 100

    pH2,ba

    r

    Recycle gas ratio 250 Nm³/m³∆p Reactor 2 bar

    PH2S=1,86bar

    > 50% higher reaction rate constant

    Recycle gas ratio 150 Nm³/m³∆p Reactor 4 bar

    PH2S=3,92bar

    catalyst bed length relativ, %

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 18

    Basic desulfurization reactions

    sulfides > thiophenes > benzothiophenes > dibenzothiophenes

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 19

    HDS - Kinetic

    −⋅

    −= −− 1

    01

    111 nn SSn

    LHSVk

    95,0% HDS → LHSV = 1·x99,9% HDS → LHSV = 0.33·x

    ⇒ Cat requirement 3 times more

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 20

    DK 4

    R2weight 535 tda = 4.6 ms = 98 mmh = 43.5 m

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 21

    DK4 Reactors R-901 and R-902

    R-901

    R-902

    60.03 bar325 °C

    357 °C

    Quenchgas

    7.1 weight ppm S

    382 m³/h329 t/h

    352 °C

    363 °C

    361 °C 361 °C 360 °C

    ∆p=0.56 bar

    325 °C 325 °C 326 °C

    338 °C 338 °C 339 °C

    338 °C 338 °C 340 °C

    354 °C 353 °C 352 °C

    356 °C 357 °C 357 °C

    352 °C353 °C352 °C

    356 °C 357 °C 358 °C

    360 °C 360 °C 360 °C

    362 °C363 °C361 °C

    56.85 kNm³/h

    ∆p=0.26 bar

    ∆T (R-901)=33 K ∆T (R-902)=11 K

    WABT (R-901 & R-902)=350°C

    23.09.2003 13:30:13

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 22

    DK 4 Reactor – pressure drop

    0.00.20.40.60.81.01.21.41.61.82.02.22.42.6

    Jan-0

    1

    Apr-0

    1Ju

    l-01

    Nov-0

    1

    Feb-0

    2

    May-0

    2

    Sep-0

    2

    Dec-0

    2

    Mar-0

    3

    Jun-0

    3

    Oct-0

    3

    pres

    sure

    dro

    p o

    f R 9

    01 +

    R 9

    02 (b

    ar)

    Technical Services PCK

    0.2 bar per 30 months < < 0.01 bar per month

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 23

    R M P C T - DK4(Robust Multivariable Predictive Control Technology) controlerstatus: ON

    03.12.2002 10:02:46

    321°C

    actual vorausber.

    321°C

    385 t/h 385 t/h MV is ONStatus

    MV is ON

    min. max.365 t/h

    316°C

    385 t/h

    362°C

    1 bar402°C643°C71%365°C1057 A6.81 ppm

    aktuell Status

    1 bar

    vorausber.

    403°C644°C71%364°C1059 A7,20 ppm

    GOODGOODGOODGOODGOODGOODGOOD

    1 bar0°C0°C10%0°C0 A0,00 ppm

    6 bar460°C700°C95%380°C1230 A7,20 ppm

    min. max.

    Set points (Sollwerte): Feed heater outlet temperature O-901

    FC9011:

    TC9027:

    Monitored points:

    pressure Feed – control valve FC9011 Max. Skintemperature O-901

    Max. combustion chambertemperature O-901Opening control valve fuelgas to O-901 Max. ReactortemperatureAmpere V-901 Raffinate sulfur

    Comparison measurement/calculated: Suflur analyzed: Sulfur calculated (corr.): 6.81 ppm

    6.37 ppmSulfur caculated (uncorr):

    6.82 ppm

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 24

    DK 4 Advanced Control (RMPCT)

    02

    46

    810

    1214

    1618

    Feb.02 Mrz.02 Apr.02 Jun.02 Jul.02 Aug.02 Okt.02 Nov.02

    Sul

    fur

    cont

    ent o

    f raf

    finat

    e, p

    pm

    actual data

    Set points

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 25

    Changeover fuel quality from 50 to < 10 ppm Sulfur

    1

    10

    100

    0 20 40 60 80 100 120

    Su

    lfu

    r co

    nte

    nt,

    pp

    m

    Supply 9 ppm

    Supply 4 ppm

    days

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 26

    DK 4 Sulfur content of raffinate

    1

    10

    100

    1000

    1 10 100 1000

    on line ppm

    Lab

    ppm

    Jan -Sept 2002 / Oct 2002 - Sept 2003

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 27

    ULSD Hydrotreater DK 4 unit

    300310320330340350360370380390400

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000catalyst life (t feed/ m³ catalyst)

    WA

    BT

    in d

    eg C

    Start to 10 ppm S

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 28

    DESUS / FCC /Alkylation / ETBE

    Refiner/reformerisomerization

    Jet fuelhydrotreating

    MD hydrotreating

    Claus units

    ETBE

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 29

    FCC HistoryCatalyst Research Associates

    Agreement signed in London on 12 Oct 1938• Standard Oil of New Jersey (Esso)

    • Standard Oil of Indiana (Amoco)

    • Kellogg

    • IG Farben added by

    • Anglo-Iranian Oil (BP)

    • Royal Dutch/Shell

    • Texaco

    • UOP

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 30

    FCC HistoryGroup of 1000 Researchers

    Massachusetts Institute of Technology(W.K. Lewis and E. R. Gilliland)

    ⇒ Big Research program(topped from Manhattan program only)

    ⇒ 25 May 1942: Start up of first commercialFluid Catalytic Cracking (FCC) Unit

    - Capacity 500 000 t/yr

    - Location Baton Rouge refinery of Standard Oil of Louisiana

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 31

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 32

    FCC Features at the Beginningand Today (1)

    • zeolitic catalyst era• stable up to 800 °C

    ⇒ residence time in regen. 3 - 4 min ⇒ < 0.05 % carbon on regen. cat⇒ complete combustion⇒ no afterburning

    • high activity⇒ no recycle⇒ coke yield

    • synthetic catalyst era• catalysts highly temperaturesensitive → Reg.-temp. limitedto 600 °C ⇒ residence time in regen. 10 -15 min⇒ 0.6 % carbon on regenerated cat⇒ CO2/CO ratio ∼ 1⇒ runaway afterburning

    → 1000 °C• catalysts rel. low activity

    → high recycle→ high coke yield

    todayearly daysofcatalytic cracking

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 33

    FCC Features at the Beginningand Today (2)

    todayearly daysofcatalytic cracking

    • Riser cracking- cat residence time 5 - 15 sec- vapor residence time 1 - 5 sec- 540 °C

    • Fluidized bed cracking- catalyst residence time 30 -120 sec- vapor residence time 10 - 60 sec- Temperatur 500 °C

    ⇒ Progress in TechnologyEquipmentCatalyst

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 34

    FCC History

    360 - 560

    Zeolite Re-H-Y ZSM 57.5

    0.15540802448

    FeedstockBoiling range, °C 265 - 400

    Catalyst natural dayCat/Oil 3.5Cat losses kg/t 1.5Reactor Temp. °C 490Conversion wt.-% 55C3/C4 wt.-% 10Gasoline wt.-% 38

    TodayPCLA* No 1 May 1942

    FCC Performance at the Begining and Today

    * Powdered Catalyst Louisiana No.1

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 35

    ... there have been so many changes

    in the ... FCC unit that its forefathers

    wouldn‘t recognize their offspring.

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 36

    ReactorRegenerator

    Air

    Vacuum Gasoil

    Flue gasCracked products to Distillation

    Light Naphtha

    Light Cycle Oil

    Slurry

    Heavy Naphtha

    Cracking of VGO by FCC

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 37

    FCC Unit PCK Schwedt

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 38

    FCC Catalyst Additives

    - for low sulfur gasoline

    - for light olefines

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 39

    Possible Gasoline Sulphur Reduction Mechanisms

    A) Removal of S from gasoline precursors

    B) Removal of S from gasoline range molecules

    C) Conversion of heavy S species to coke

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 40

    FCC Catalyst Additives

    - for low sulfur gasoline

    - for light olefines

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 41

    0

    10

    20

    30

    40

    50

    60

    70

    1993

    1994

    1995

    1996

    1997

    1998

    1999

    2000

    2001

    2002

    2003

    Dem

    and

    (mill

    ion

    Met

    ric T

    ons)

    Asia Middle East East Europe West Europe South America North America

    World Propylene Demand by Region(source: G.McElhiney Grace)

    • World wide long term growth of 5-6 % per annum

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 42

    Ø Use of ZSM-5 zeolite enables the FCC unitto make a valuable contribution

    to propylene production.

    Ø This contribution is expectedto increase significantly in the near future...

    World-wide Propylene Production

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 43

    European refiners must

    produce more diesel fuel

    reduce gasoline yield

    decrease production of heating oil.

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 44

    Fuels are becomingspeciality chemicals(Ultimate, V-Power)

    ⇒ there will be opportunities

    for new catalyst formulations

    to help control the composition

    of these products at a molecular level.

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 45

    Current catalyst market(∼ 13 billion $/yr)

    • environmental catalysts 27 %

    • polymers 22 %

    • refining 21 %

    • petrochemicals 20 %

    • fine chemicals and inter mediates 10 %

    The refining catalyst market is the most

    competitive segment of the global catalyst

    market (bid contract basis).

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 46

    Sales of Refining Catalysts- world wide -

    ∼ 2.5 Billion $/yr

    growth rate 75 Million$/yr

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 47

    Capacities of catalytic unitsin Germany (Millions t/yr)

    Fluid Catalytic Cracking 18

    Hydrocracking 9

    Catalytic Reforming 17

    Alkylation 1

    Isomerization 4

    Ether 0.5

    Hydrotreating 87(Naphtha 27/Kero 5/MD 43/VGO 12)__________________________________________

    Total 136.5⇒ ≈ 120 % of crude capacity

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 48

    Catalysts in the Schwedt Refinery

    1 460 0002 220 000Total

    1 000 000400 00030 00010 00010 00010 000

    200 0001 700 000

    65 00090 000

    105 00060 000

    FCCHydrotreaterMild HydrocrackerIsomerizationCat ReformerEther (ETBE)

    AnnualConsumption

    kgs/yr

    InventoryKilograms

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 49

    rule of thumb

    added value by only 10 %

    performance improvement

    is much more than the

    total catalyst cost

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 50

    Potentials for Improvement

    l deep hydrotreated FCC feed

    l new FCC catalysts (Low H-transfer)FCC Overcracking

    Reduction of gasoline acc. market

    Manufactoring of boosters (export)

    Increasement of propylene yield

    Increasement of biofuels(etherification of tertiary C4-/C5+-Olefines)

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 51

    FCC Yields (wt.-% on feed)

    13.0

    8.8

    9.3

    3.9

    3.1

    26.9

    7.0

    4.7

    5.2

    2.1

    1.7

    45.7

    Propylene

    Isobutane

    n-Butanes

    Isobutene

    Isoamylenes (tert.)

    Naphtha

    Overcracking(enhanced Catalyst)

    BaseY-Zeolith + ZSM5

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 52

    • Needs bothTeamplayers & Individuals

    • Is of interest to bothAcademe + Industry

    Closing Comments

    • R&D in catalysis will remainchallenging and rewarding

  • x:15_Info_Vorträge_Ringvortrag Februar 2005

    Figure 53

    Thank you for your attention