34
Hard Sensor Fusion: LIDAR and IR David Hall Rick Tutwiler Jeff Rimland 1

Hard Sensor Fusion: LIDAR and IR - University at Buffalo

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Hard Sensor Fusion: LIDAR and IR  

David HallRick TutwilerJeff Rimland

1

Page 2: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

2

Objectives:• Perform pre-processing of hard sensor data• Perform identification, localization, and tracking of people, vehicles and artifacts

• Represent data in OGC-compliant formats for compatibility with fusion processesDoD Benefit:• Extract/represent data that will be fused with soft data

Scientific/Technical Approach• Select sensor suite to emulate military grade sensors

for COIN environment• Begin fusion processing at data level and proceed to

feature and state vector levels• Process both synthetic and real sensor data (and

correlate with soft data opportunities)

Accomplishments• Selected and deployed a sensor suite • Developed 3-D LIDAR and MWIR data level fusion

techniques that out-perform conventional α-blending• Developed algorithms for stereoscopic 3-D estimation

from multiple camera suite• Initiated development of feature level and state vector

level algorithms (including neural net methods for feature detection)

Challenges• Challenging observational environments • Correlation of hard and soft data 2

Penn State UniversityHard Sensor Processing Overview

Page 3: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Anticipated Year‐3 Focus and Option Years

• Year 3: Fusion of hard sensor data: Continue algorithm development and evaluation for fusion of hard sensor data

• Continue development of hard and soft fusion algorithms • Use point cloud data to develop shape descriptors for 3D object recognition• 3D object identification via PCA anomaly detection (level set procedure to compute geometric features of each object)• Fuse bore‐sighted HSI sensor with point cloud dataset

• Extend target tracking and ID beyond image sensors to include acoustic sensors• Develop and evaluate methods for association/correlation of data related to moving targets in complex urban and non‐urban environments (e.g., tracking individuals in crowds and targets in on‐road/off road conditions)

• Develop framework for JDL Level 4 hard/soft resource allocation

•Years 4 and 5: Extend modalities of data fusion, implement Level 4 processes, address distributed end‐to‐end hard and soft fusion

• Automated computer tasking of soft sensing (viz., humans as observing resource for on‐going computational processes)• 3D smart pixel/point vector representation (size, shape, range, material signature) from fused LIDAR/HSI sensor products• Hybrid fusion processing to include data, feature and state‐vector levels

• Utilize manifold representation of smart pixel set• Implement theory of joint manifolds for hybrid fusion

• Introduction of semantic labeling/indexing methods for image & signal data for semantic‐level fusion and context‐based reasoning• Explore hybrid hard/soft data from mobile devices (e.g., dynamic human annotation of hard data with automated geo‐tagging)• Processing of human in the loop experimental data• Design and implementation of an integration  and transition environment• Exploration of hybrid environments (e.g., location‐based tasking for observing and cognition)• Develop semantic context‐based scene labeler for fused data

3

Page 4: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Sensor Selection

Selection Criteria• Sensors that are representative of tactically deployed sensors

• Sensors that provide informational “value added” to the inference process on our selected targets

•A suite that can be utilized in real demonstrations and campus‐based experiments

•At least one sensor that allows innovations for the hard sensor processing flow

Selected Sensors• LIDAR• Short‐Wavelength Infra‐red (SWIR)• Long Wavelength Infra‐red (LWIR)• Visual Video•Acoustic Sensors

4

Page 5: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

3‐D Po

int C

loud

 Noise Processing

Ortho‐rectify 3‐D image to 2D imageFlash LIDAR

Visual(2‐D)

Video

PixelLevelFusion

• Color Intensity Mapping

Range‐Intensity Fusion

PCA Shape Decomposition

• Point Cloud Classification

• 3D Descriptors

XI/DAtt.

2‐D Im

age Processin

g

Feature Extraction

• Ransac• HOG• SIFT• Hough ‐

Visual(2‐D)

•Pattern recognition• Jones & Rehg’sGaussian mixture models Da

ta Associatio

n via multi‐

camera ho

mograph

y& 

geom

etry‐based

 metho

ds   Target 

Tracking• K. Filter• P. Filter• LOB 

X

Target ID• Neural nets

• Bayes

I/D

Repo

rt (state vector) level  Association/Co

rrelation

Repo

rt  (state vector) level ta

rget tracking

TML Transform

Hard Sensor Processing Flow

• SWIR•VNIR

•LWIR

Pixel‐Level FusionPoint‐Cloud range estimates mapped to 2‐D camera components

Year 1 Year 2 Year 3+

5

Page 6: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Hard/Soft Tasking Framework

Hard Sensor Processing

Soft Sensor Processing

JDL 4 Tasking(Multi‐agent, 

capability‐based)

Hard / Soft 

Fusion Engine

Human Tasking

Sensor Tasking

HCI for hybrid processing/cognit

ion

Automated Algorithm Selection

6

Page 7: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

LIDAR Image Fusion and Cross‐Modality Representation

Rick Tutwiler

7

Page 8: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Event Summary

• Scenario/Theme: IED Attack / Coordinated Sniper Fire Participants: 21 (PSU+TSU)

• Vehicles: 3• Event Days: 3• Sensors: 9+ Cameras, 1 Flash LIDAR, 2+ KINECT Devices• Mobile Devices: GeoSuite Mobile App on Android tablet• Event/Activity Synchronization: auditory and visual cues

8

Page 9: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Hard Sensor Experiment Description

Observation Post

Building # 2

G1 B1 B2

9

Page 10: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Sensor Locations

IST Camera SuiteLocation:  Roof Building 2( Camera 1) Camera Type: Sony  HDR‐FX1( Camera 2) Camera Type:  Sony HDR‐HC5Location:  Insurgent Car Bomber( Camera 3) Camera Type:  Panasonic PV‐GS80ARL Camera SuiteLocation:  3rd Floor Building 2( Camera 4) Camera Type:   Panasonic MiniDVLocation: Observation Post( Camera 5 Bonnie Stereo Pair) Camera Type:   Cannon HV40( Camera 6 Clyde Stereo Pair) Camera Type:   Cannon HV40( Camera 7 Dylan) Camera Type:   Cannon HV40( Camera 8 Mounted Suite ) Camera Type:   Usoria ½” CMOS color camera( Camera 9 Mounted Suite ) Camera Type:   ASC Flash Lidar

Observation Post

Building # 2

Camera 8Camera 9 Camera 7

Camera 5

Camera 1

Camera 2

Camera 3

Camera 6

Camera 4

• Action is monitored by three cameras • Two cameras have overlapping field of views, and are calibrated as a stereo pair• Calibration involves;

• Computing the extrinsic camera parameters & determining if the translations (physical offsets between the cameras on the ground‐plane) match up with distances computed from these field measurements.

• Accounting for camera positional changes ‐ since the extrinsic parameters will be with respect to one of the cameras imaging axis, and not necessarily the orthogonal axes shown in this drawing, use the absolute distance for this “reality check”

10

Page 11: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Example:  Coordinated Text Message Generation

Urban Action Scene

Time:

Total Time: 1560 seconds = 26 min.

Definitions:

B(i,j) = Red Team, j = Team Member, i = Vehicle Number

C (k, l) = Blue Team l = Team Member, k = Vehicle Number/Group Association

G(i,j) = Green Team j = Team Member, i = Vehicle Number

G(1,1) = Dignitary

G(1,2) = Body Guard

P(m,n) = Green Team n = Team Member, m = Group Association

Pre-Event Messages

1. 01/24/2010: U.S. Embassy in Baghdad issues report stating: “The Iraqi Election Council (IEC) releases list of banned candidates from March’s upcoming Iraqi Parliamentary Election. The banned candidates are composed of mostly Sunni-Iraqis with ties to Saddam Hussein’s regime. Sectarian tensions are expected to rise in coming weeks as the election approaches.”

2. 01/25/2010: In response to U.S. Embassy Report of 01/24/2010, U.S. Force commanders conduct assessment of probable hot-spots and order increased patrol coverage, additional checkpoints at Sunni-Shi’a fault lines in Greater Baghdad and step up communications monitoring of political party headquarters and key politicians.

3. 01/27/2010: U.S. analysts monitoring websites of Iraqi political parties report that Mohammad Omar Salah, a former Saddam Hussein aid and the current leader of Sunni political party, The National Front for Iraqi Dialogue (NFID), has called for a protest against the Iraqi Government at Al-Anbia Mosque in Adhamiya on 1/31/2010, following mid-day prayers.

4. 01/28/2010: Communication monitoring of NFID reveals call for “strong” presence at planned 31 Jan protest of ICE, stemming from “Banned Candidate List.”

5. 01/28/2010: Analysts assess call for “strong” presence at Al-Anbia Mosque in Adhamiya by NFID slated for 1/31/2010 is a likely call for violence. 11

Page 12: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Example: Hard Sensor Data

12

Page 13: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

3D LIDAR Images

• Short‐wave Infrared (SWIR)– Intensity– Range

• Representation?– 2D or 3D?– Orthorectified?– Range or Intensity?

Range

SWIR

OrthorectifiedRaw

13

Page 14: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

2D/3D Fusion Concept

• Dimension Reduction– High Dimensional Information

– Low Dimensional Representation

• Choice of Representation– Max information content– Color, Intensity, and Saturation are orthogonal image measures

• Define sliding scales in each dimension (Intensity and Hue Scales shown)

• Assign the scales to a physical quantity to encode information in RGB

HUEINTENSITY

INTENSITY HUE

14

Page 15: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

• R = Range Image– Orthorectified– Registered to thermal image

• I = Video Image• MR = Hue map• MI = Intensity Map• F = Fused image

3:)( pxpRN RMR ℜ→ℜ=

pkIIR ℜ∈,,

ppIk IMI ℜ→ℜ= :)(

Nkkkkn RIIIF o][, =

Discretize Range into N color bins.  The three columns refer to Red, Green, and Blue components, respectively

For p pixels

Discretize Thermal intensity into k bins in the range [0,1]

Direct multiply the intensity values to scale colors in RN 15

2D/3D Fusion Algorithm

Page 16: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Example: Fusion Results

• The results of mapping thermal data to brightness and range to hue• Data can be artificially rotated to get a further sense of the 3D 

context• Thermal features stand out and can be spatially referenced

16

Page 17: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Example Fusion Results:Mounted Suite

VNIR

FLASH LIDAR

17

Page 18: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Lidar Range Image' Frame Number:1

100 200 300 400

100

200

300

400

500

600 20

30

40

50

60

70

80

90

100

110

120

130Lidar Intensity Image' Frame Number:1

100 200 300 400

100

200

300

400

500

600

0

500

1000

1500

2000

2500

3000RGB CompositeImage' Frame Number:1

100 200 300 400

100

200

300

400

500

600

Example Fusion Results:Alignment and Registration

18

Page 19: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Example Fusion Results:Fused Lidar and VNIR Video

19

Page 20: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Example Fusion Results:Mounted Suite

VNIR

FLASH LIDAR

2020

Page 21: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Example Fusion Results:Fused Lidar and VNIR Video

21

Page 22: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Hotter colors designate nearer objects in this range image.

Hotter colors designate stronger light  reflection.

Example Fusion Results:Persistent  Surveillance

22

Page 23: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

2D/3D Fusion Approach

– Multi‐Camera Handoff  for Occlusion Detection• Joint Manifold representation of Composite Track Files

– 2D/3D Fusion• Can Multiple Platforms be Fused using the same process

– Lidar/VNIR» Range/3D‐2D Shape/Color

– Lidar/VNIR/MWIR/LWIR» Range/3D‐2D Shape/Color/∆T

– Lidar/HSI» Range/3D‐2D Shape/Spectral Signatures Material 

– Joint Manifold Fusion• Can Manifold Representation of Composite/Disparate Sensor Suite’s  be utilized to Semantically Label Scene Attributes

• Can the Joint Manifold Relationship be utilized to ingest both Hard and Soft Data Sets

23

Page 24: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

• Since we know how spatial sample rate changes as a function of range we can define a spherical region centered on every sample in the cloud which is a constant number of sample intervals in diameter.

• This means that the spherical regions are large in the “back” of the cloud and smaller in the “front” of the data.

• What this gives us is a relatively consistent sample population in each neighborhood*

Decomposition of the Image into Shape Structural Classes• We then perform PCA on each sample population.

• Since the sample populations are rarely perfect geometric arrangements we threshold the singular values.

• What is returned is a local shape classification for each sample in the cloud.

• We can subdivide the cloud according to these classes.

• We can compute this for different sized neighborhoods (where size is specified in sample intervals)

These are our shape classes:

24

Image Shape Decomposition into Structural Classes

Page 25: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Multi‐Resolution Shape‐Class Flow

• Sometimes a particular sample in the cloud will change classes as neighborhood sizes are changes.

• As in the Plane to Volume, this can happen when the neighborhood grows to encompass a small object.  (lots of other examples)

• What Can this tell us about the geometry around the sample?

25

Page 26: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Multi‐Resolution Shape‐Class Flow

26

Page 27: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Implementation of Hard and Soft Data Collection, Processing and 

Interchange 

Jeff Rimland

27

Page 28: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Infrastructure & Transition Approach

• Challenges– Multi‐faculty, multi‐performer 

research environment– Heterogeneous software 

environment– Diversity of information processing 

types (text, signals, images, etc.)– Challenging knowledge 

representation– Transition to U. S. Army 

environment

• Approach– Utilize Service Oriented 

Architecture (SOA/ESB)• Standardized TML for report‐level 

data representation/interchange• ROS for inter‐process 

communication and efficient hardware utilization

– Create integration/evaluation environment to provide distributed & federated access

– Utilize OGC standards and best practices for data representation

– Integrate with the GeoSuite analysis and mobile applications for HCI

– Utilize multi‐agent approach to JDL level 4 tasking.

28

Page 29: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

GeoSuite Integration

ROS/TML Architecture

29

GeoSuite Integration

Web Tools

Mobile App

Extreme Events Lab

• SYNCOIN DATA• Ontologies

SSL

ROS Nodes

• Top‐level nodes communicate via TML for collaboration, mobile access, or additional processing capability

• Mid‐level nodes can communicate with lower‐level nodes as well as process data and create/transmit TML over Wi‐Fi or 3G/4G.

• Some nodes communicate only via low‐level protocols (e.g. UDP) or analog (e.g. 900mhz, 2.4ghz)

TML SOA

Uses IPC to leverage distributed processing power of mobile sensing devices

Local Video I/O

Local Sensor I/O

Page 30: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Integration / Transition via GeoSuite

• Civilian version of General Dynamics Command Post of the Future (CPOF)

• Enables shared, distributed collaboration

• Web and mobile (Android) apps for remote data entry

• Advanced geo‐spatial search and analysis capabilities 

30

Page 31: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Transducer Markup Language (TML)

• TML provides the ideal protocol for transmitting feature‐level sensor data with metadata.

• OGC standard

• Transition‐compatible via GeoSuite, FEF, etc.

• Ideal for transfer over SOA/ESB

• Demonstrated utility for hybrid simulated/actual sensor data

31

Page 32: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Hard/Soft Tasking Framework

Hard Sensor Processing

Soft Sensor Processing

JDL 4 Tasking(Multi‐agent, 

capability‐based)

Hard / Soft 

Fusion Engine

Human Tasking

Sensor Tasking

HCI for hybrid processing/cognit

ion

Automated Algorithm Selection

32

Page 33: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Multi‐agent approach

Critic‐adjudicated, agent‐based hybrid sensing / hybrid cognition model 

Hybrid‐agent architecture 

• System maintains ontology of human/machine analyst/observer capabilities and availability.

• Enterprise Service Bus (ESB) facilitates secure distributed tasking, alerting, and solicitation for data, analysis, or adjudication.

• A task may require multiple iterations through human/machine analysts/observers.

Visualization / HCI methods support human cognition

33

Page 34: Hard Sensor Fusion: LIDAR and IR - University at Buffalo

Anticipated Year‐3 Focus and Option Years

• Year 3: Fusion of hard sensor data: Continue algorithm development and evaluation for fusion of hard sensor data

• Continue development of hard and soft fusion algorithms • Use point cloud data to develop shape descriptors for 3D object recognition• 3D object identification via PCA anomaly detection (level set procedure to compute geometric features of each object)• Fuse bore‐sighted HSI sensor with point cloud dataset

• Extend target tracking and ID beyond image sensors to include acoustic sensors• Develop and evaluate methods for association/correlation of data related to moving targets in complex urban and non‐urban environments (e.g., tracking individuals in crowds and targets in on‐road/off road conditions)

• Develop framework for JDL Level 4 hard/soft resource allocation

•Years 4 and 5: Extend modalities of data fusion, implement Level 4 processes, address distributed end‐to‐end hard and soft fusion

• Automated computer tasking of soft sensing (viz., humans as observing resource for on‐going computational processes)• 3D smart pixel/point vector representation (size, shape, range, material signature) from fused LIDAR/HSI sensor products• Hybrid fusion processing to include data, feature and state‐vector levels

• Utilize manifold representation of smart pixel set• Implement theory of joint manifolds for hybrid fusion

• Introduction of semantic labeling/indexing methods for image & signal data for semantic‐level fusion and context‐based reasoning• Explore hybrid hard/soft data from mobile devices (e.g., dynamic human annotation of hard data with automated geo‐tagging)• Processing of human in the loop experimental data• Design and implementation of an integration  and transition environment• Exploration of hybrid environments (e.g., location‐based tasking for observing and cognition)• Develop semantic context‐based scene labeler for fused data

34