17
Harald Sverdrup 1,2 ,Anna Hulda Olafsdottir 2 , Deniz Koca 3 4-System Dynamics Group, Gameschool, Norwegian Inland University, Hamar, Norway, 2-Industrial Engineering, University of Iceland, 3-University of Lund, Sweden

Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

Harald Sverdrup1,2, Anna Hulda Olafsdottir2, Deniz Koca3

4-System Dynamics Group, Gameschool, Norwegian Inland University, Hamar, Norway,

2-Industrial Engineering, University of Iceland, 3-University of Lund, Sweden

Page 2: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

WORLD7 EVOLUTION; TO REACH HIGH; STAND ON THE SHOULDERS OF OTHERS

• 1961-1971; World1-World2; Forrester team (1961-1971), MIT; Industrial dynamics, urban dynamics, world dynamics, the first

pioneering basic World model. Very simplified and aggregated because of computational constraints of the computers available

(Forrester 1961, 1969, 1971).

• 1971-2004; World3; The Meadows team (1972-2004), MIT; World dynamics and limits to growth. More elaborate than

World2, better parameterized, described in “Limits to growth” and “Dynamics of Growth in a Final World” (Meadows et al.,

1972, 1974). The model had significant simplifications because of computational constraints of the computers available.

• 2011-2018; WORLD4-6; Sverdrup, Koca, Olafsdottir, Lund University, University of Iceland. Reality-based market mechanisms

and simulates commodity and resource price dynamics internally. Handles global economic and financial development, and

captures economic cycles of growth and decline. The modules are linked and resource and policy aspects can be addressed.

The model is developed in the STELLA System Dynamics software (Sverdrup et al., 2013, Sverdrup and Ragnarsdottir 2014,

Lorenz et al., 2017). WORLD6 has no parts included from the earlier models.

• 2019-present: WORLD7, global integrated Assessment model (IAM). Harald Sverdrup and Anna Olafsdottir: Reorganization

of the whole model stucture. Completion of the resource parts. Emphasis on whole system cross-linked feedbacks. Inclusion

of social modules, development of a full biophysical economic model. (Sverdrup 2020, Sverdrup et al., 2020)

Page 3: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

Economy

Environment

Energy

Food and demography

Society Health and

people

Metals and materials

Industrial dynamics

MODELS AND POLICY DEVELOPMENT

Page 4: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

NATURAL RESOURCES, METALS AND MATERIALS

Page 5: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

READING WORLD7 DIAGRAMS FOR RESOURCES, UNDERSTANDING «SCARCITY»

Years

Lith

ium

,m

illio

nt

on

pe

rye

ar

0

0.2

0.4

0.6

0.8

1

1.2

2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200

1 2

3

4

5

1

2

3

4

5

1 23

4

5

1

2

3

4 5

Demand1 Modified2 Supply3 Mining4 Recycled5

Wanted

Afforded

Available

Page 6: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

3 DIFFERENT METHODS ALL GIVE THE SAME MESSAGE

• Simple mass balance and burn-off

estimates for 40 elements

• Hubbert’s curves for 16 elements

• WORLD7; Fully integrated dynamic

simulation of the extraction,

recycling and supply for 43 metals,

elements and materials

Page 7: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

THE KEY TECHNOLOGY METALS HAVE LIMITED SUPPLY

• Photovoltaics depend on having Indium, Germanium, Gallium, Tellurium, and Silver

available, limiting how much solar electricity we can collect

• Rechargeable batteries depend on Lithium, Cobalt and Rare Earth Elements for

good function, limiting how many electric vehicles we can build.

• High performance magnets, electric generators and eletromotors depend on Rare

Earth Elements and Copper for their functions. The number of energy-efficient eletric

engines may be limited, the availability sets a limit for how much wind energy we can

collect.

Germaniumandthinfilmphotovoltaics

Years

0

0.0001

0.0002

0.0003

0.0004

0

0.25

0.5

0.75

1

1850 1890 1930 1970 2010 2050 2090 2130 2170 2210 22501

23

4

1

2

3

4

1

2

3 4

1

23

4

Demand1 Supply2

Used3 Limit4

Page 8: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

COPPER, COBALT, INDIUM, IRON

DEMAND, MODIFIED DEMAND, SUPPLY, MINING, RECYCLING

Years

Co

pp

er,

Mil

lio

nt

onp

ery

ear

0.00

15.00

30.00

45.00

60.00

1900 1960 2020 2080 2140 2200

1 23 4

5

1

2

3

4

5

1

2

34

5

1

2

34

5

Cuprimarydemand1 CuMinedtorefining2

CuSocietysupply3 Cumodifieddemand4

CuSenttoRecycling5

Years

Co

bal

t,m

illi

on

to

np

er

yea

r

0.00

0.20

0.40

0.60

0.80

1900 1960 2020 2080 2140 22001 2 3 4

5

1

2

3

4

5 1

2

3

4

51

2

3

4

5

Cosupply1 Corecycled2

Cototalextraction3 Codemand4

Coadjusteddemand5

Years

Ind

ium

,m

illi

ont

onp

ery

ear

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1900 1960 2020 2080 2140 22001 2 3 4

5

1 2

3

4

5

1

2

3

4 5

1

2

3

4 5

Indemand1 Inmodifieddemand2

Insupplyintosociety3 Inrecycled4

Inextraction5

Copper Cobalt Indium

Years

Su

pp

lyk

gp

erp

erso

np

ery

ear

0

0.05

0.1

0.15

0

0.01

0.02

0.03

1850 1900 1950 2000 2050 2100 2150 2200 2250

Li REE Co Mo Nb

Years

Iron

,m

illi

on

to

np

er

year

0

500

1000

1500

2000

2500

3000

1900 1950 2000 2050 2100 2150 2200 2250

1 2 34 5 6

1

2 3

45

6

1

2

3

4

5

6

1

2

34 5

6

Mining1 Data2 Rich3

High4 Low5 Ultralow6

Page 9: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

ELECTRIC VEHICLES NEED RESOURCE MANAGEMENT, WITH FOCUS ON LITHIUM AND COBALT

Electric vehicle potential as a function of lithium requirement and

size of the extractable amount available.

Today; 1.2 billion cars globally

Lithium

resource

million

ton

Requirement per battery unit, kg lithium contained

5 10 30

Millions of electric battery units possible

116 1,200 610 203

73 800 400 133

34 396 198 66

Page 10: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

RESOURCE QUALITY IS CONSISTENTLY DECLINING FOR ALL RESOURCES

Iron, Manganese, Chromium, Nickel Copper, Zinc, Lead

Page 11: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

EROI

Years

En

erg

yR

etu

rnO

nI

nve

stm

ent

0

20

40

60

80

100

1900 1935 1970 2005 2040 2075 2110 2145 2180 2215 2250

Allenergy Gas Oil Coal

Nuclear Renewables Hydropower Geothermal

Page 12: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

WHEN DO RESOURCE EXTRACTION, PRODUCTION AND SUPPLY REACH MAXIMUM?

Metal Extraction

peak year

Supply peak

year

Recycling

degree (%) Metal

Extraction

peak year

Supply peak

year

Recycling

degree (%)

Oil 2012 2014 0 Titanium 2038 2060 40

Gas 2016 2016 0 Tellurium 1984 2060 0

Coal 2020 2018 0 Phosphorus 2035 2060 16

Cadmium 2010 2020 80 Palladium 2042 2065 60

Gold 2016 2036 85 Aluminium 2030 2070 75

Cobalt 2026 2040 40 Iron 2052 2072 60

Gallium 2026 2042 5 Stainless steel 2052 2070 65

Silver 2038 2045 70 Manganese 2053 2072 45

Selenium 2042 2050 0 Tantalum 2035 2078 60

Cut stone 2040 2050 20 Molybdenum 2038 2080 40

Lead 2041 2051 65 Rhenium 2042 2080 40

Niobium 2045 2052 60 Uranium 2035 2080 50

Tin 2046 2055 40 Zinc 2046 2090 20

Antimony 2048 2056 15 Chromium 2051 2110 22

Indium 2042 2055 20 Copper 2044 2120 60

Rhodium 2034 2058 60 Lithium 2060 2142 10

Germanium 2042 2058 20 Sand 2075 2150 30

Bismuth 2044 2059 5 Gravel 2130 2150 20

Nickel 2028 2060 50 Rare Earths 2045 2280 15

Platinum 2036 2060 70 Thorium 2090 2400 90

Page 13: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

RESOURCE SUPPLY CHALLENGES PILE UP

UNDER BUSINESS-AS-USUAL

TOWARDS 2040 - 2070

Page 14: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

AS RESOURCE QUALITY DECLINE, COST AND EFFORT GO UP IN ORDER TO MAINTAIN

CONSUMPTION

Years

%o

fG

DP

use

df

or

reso

urc

ep

rod

ucti

on

0

10

20

30

40

1850 1900 1950 2000 2050 2100 2150 2200 2250

Percenttakenbyresourceproduction

Years

Fra

ctio

no

fa

llenerg

ya

vaila

ble

used

0

0.2

0.4

0.6

0.8

1

1850 1890 1930 1970 2010 2050 2090 2130 2170 2210 2250

Fe,Ni,Cr,Mn,Cu,Zn,Pb,Cement,Plastics,Stonymaterials

Page 15: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

Policies suggested Energy Resources Social Works?

1. Reduce man-made greenhouse gas emissions as soon as possible – Global Energie-wende

Can be done with better energy

efficiency

Needs a lot of specialty materials

Depends on being socially sustainable

Only with

system change

2. Help poor nations grow faster – by rapid industrialisation similar to Japan, Korea and China

Challenging energy supply, challenging

pollution risks

High risk for hard scarcity on key technological

materials

Limited by corruption and

poor governance

Difficult

3. Reduce unemployment and inequity through more jobs

Can be done in Energiewende

Increases demand of key supplies

Social change stresses

Yes

4. Further slow population growth – through positive incentives

Decline reduce consumption

Decline reduce consumption

Needs global attitude change

Yes

5. UN high population scenario Energiewende

becomes far more challenging

Risk that resource scarcity strikes

Economic crisis and disruptions

Social stresses

Very difficult

Jørgen Randers suggested some future policies,

We ran WORLD7 to test them..

Page 16: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca

CO

NC

LUSI

ON

S • A systemic approach is a condition for resolving the challenges.

• Narrow sectorial appoaches are neither systemic, nor sufficient, it is not about adjusting the parameters of the present system, feedbacks co across sectors

• The circular society is systemic in nature and must be designed as such. When society is circular, that creates the circular economy

• Goal conflicts will demand to be solved at a systemic level

• Systemic changes need to be multi-sectorial, causally linked and pervasive • Energie-wende is linked to a Resource-wende

• Both are about rearranging the basic structure of the systems and resetting parameters

• It involves all fundamental systems; industrial, economic and social dynamics

• It may imply transformative changes to existing society and power-structures

• Unresolvable goal conflicts will lead to difficult choices

• All this leads to the necessity of a Social-wende

• Transformative changes take time,

• Plan with at least 20 years from start to full implementations (Ref; LRTAP protocol, IPCC progress). Starting is needed at once (2020+20 = 2040).

• Must engage all arenas: Science, Communication, Political

Page 17: Harald Sverdrup 1,2 , Anna Hulda Olafsdottir , Deniz Koca