630

HANDBOOK FOR VEGETABLE GROWERS

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HANDBOOK FOR VEGETABLE GROWERS
Page 2: HANDBOOK FOR VEGETABLE GROWERS

KNOTT’S

HANDBOOK FOR

VEGETABLE GROWERS

FIFTH EDITION

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 3: HANDBOOK FOR VEGETABLE GROWERS

KNOTT’S

HANDBOOK FORVEGETABLE GROWERS

FIFTH EDITION

DONALD N. MAYNARD

University of FloridaWimauma, Florida

GEORGE J. HOCHMUTH

University of FloridaGainesville, Florida

JOHN WILEY & SONS, INC.

Page 4: HANDBOOK FOR VEGETABLE GROWERS

This book is printed on acid-free paper. ��

Copyright � 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New JerseyPublished simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in anyform or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, withouteither the prior written permission of the Publisher, or authorization through payment of theappropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requeststo the Publisher for permission should be addressed to the Permissions Department, John Wiley &Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail:[email protected].

Limit of Liability / Disclaimer of Warranty: While the publisher and author have used their bestefforts in preparing this book, they make no representations or warranties with respect to theaccuracy or completeness of the contents of this book and specifically disclaim any impliedwarranties of merchantability or fitness for a particular purpose. No warranty may be created orextended by sales representatives or written sales materials. The advice and strategies containedherein may not be suitable for your situation. You should consult with a professional whereappropriate. Neither the publisher nor author shall be liable for any loss of profit or any othercommercial damages, including but not limited to special, incidental, consequential, or otherdamages.

For general information on our other products and services or for technical support, please contactour Customer Care Department within the United States at (800) 762-2974, outside the UnitedStates at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in printmay not be available in electronic books. For more information about Wiley products, visit our website at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:Maynard, Donald N., 1932–

Knott’s handbook for vegetable growers / Donald N. Maynard. George J.Hochmuth.—5th ed.

p. cm.Includes bibliographical references.ISBN-13: 978-0471-73828-2ISBN-10: 0-471-73828-X

1. Truck farming—Handbooks, manuals, etc. 2. Vegetables—Handbooks,manuals, etc. 3. Vegetable gardening—Handbooks, manuals, etc. I. Title:Handbook for vegetable growers. II. Hochmuth, George J. (George Joseph) III.Knott, James Edward, 1897– Handbook for vegetable growers. IV. Title.

SB321.M392 2006635—dc22

2006000893

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Page 5: HANDBOOK FOR VEGETABLE GROWERS

CONTENTS

PREFACE xiii

PART 1—VEGETABLES AND THE VEGETABLEINDUSTRY 1

01 BOTANICAL NAMES OF VEGETABLESNAMES OF VEGETABLES IN NINELANGUAGES

02 EDIBLE FLOWERS

03 U.S. VEGETABLE PRODUCTION

04 CONSUMPTION OF VEGETABLES IN THEU.S.

05 WORLD VEGETABLE PRODUCTION

06 NUTRITIONAL COMPOSITION OFVEGETABLES

PART 2—PLANT GROWING AND GREENHOUSEVEGETABLE PRODUCTION 55

TRANSPLANT PRODUCTION

01 PLANT GROWING CONTAINERS

Page 6: HANDBOOK FOR VEGETABLE GROWERS

vi

02 SEEDS AND SEEDING

03 TEMPERATURE AND TIMEREQUIREMENTS

04 PLANT GROWING MIXES

05 SOIL STERILIZATION

06 FERTILIZING AND IRRIGATINGTRANSPLANTS

07 PLANT GROWING PROBLEMS

08 CONDITIONING TRANSPLANTS

09 ADDITIONAL TRANSPLANTPRODUCTION WEBSITES ANDREFERENCES

GREENHOUSE CROP PRODUCTION

10 CULTURAL MANAGEMENT

11 CARBON DIOXIDE ENRICHMENT

12 SOILLESS CULTURE

13 NUTRIENT SOLUTIONS

14 TISSUE COMPOSITION

15 ADDITIONAL SOURCES OFINFORMATION ON GREENHOUSEVEGETABLES

PART 3—FIELD PLANTING 103

01 TEMPERATURES FOR VEGETABLES

02 SCHEDULING SUCCESSIVE PLANTINGS

03 TIME REQUIRED FOR SEEDLINGEMERGENCE

Page 7: HANDBOOK FOR VEGETABLE GROWERS

vii

04 SEED REQUIREMENTS

05 PLANTING RATES FOR LARGE SEEDS

06 SPACING OF VEGETABLES

07 PRECISION SEEDING

08 SEED PRIMING

09 VEGETATIVE PROPAGATION

10 POLYETHYLENE MULCHES

11 ROW COVERS

12 WINDBREAKS

13 ADDITIONAL SOURCES OFINFORMATION ON PLASTICULTURE

PART 4—SOILS AND FERTILIZERS 143

01 NUTRIENT BEST MANAGEMENTPRACTICES

02 ORGANIC MATTER

03 SOIL-IMPROVING CROPS

04 MANURES

05 SOIL TEXTURE

06 SOIL REACTION

07 SALINITY

08 FERTILIZERS

09 FERTILIZER CONVERSION FACTORS

10 NUTRIENT ABSORPTION

11 PLANT ANALYSIS

Page 8: HANDBOOK FOR VEGETABLE GROWERS

viii

12 SOIL TESTS

13 NUTRIENT DEFICIENCIES

14 MICRONUTRIENTS

15 FERTILIZER DISTRIBUTORS

PART 5—WATER AND IRRIGATION 249

01 SUGGESTIONS ON SUPPLYING WATERTO VEGETABLES

02 ROOTING OF VEGETABLES

03 SOIL MOISTURE

04 SURFACE IRRIGATION

05 OVERHEAD IRRIGATION

06 DRIP OR TRICKLE IRRIGATION

07 WATER QUALITY

PART 6—VEGETABLE PESTS AND PROBLEMS 309

01 AIR POLLUTION

02 INTEGRATED PEST MANAGEMENT

03 SOIL SOLARIZATION

04 PESTICIDE USE PRECAUTIONS

05 PESTICIDE APPLICATION ANDEQUIPMENT

06 VEGETABLE SEED TREATMENT

07 NEMATODES

08 DISEASES

09 INSECTS

Page 9: HANDBOOK FOR VEGETABLE GROWERS

ix

10 PEST MANAGEMENT IN ORGANICPRODUCTION SYSTEMS

11 WILDLIFE CONTROL

PART 7—WEED MANAGEMENT 389

01 WEED MANAGEMENT STRATEGIES

02 WEED IDENTIFICATION

03 NOXIOUS WEEDS

04 WEED CONTROL IN ORGANIC FARMING

05 COVER CROPS AND ROTATION IN WEEDMANAGEMENT

06 HERBICIDES

07 WEED CONTROL RECOMMENDATIONS

PART 8—HARVESTING, HANDLING,AND STORAGE 401

01 FOOD SAFETY

02 GENERAL POSTHARVEST HANDLINGPROCEDURES

03 PREDICTING HARVEST DATES ANDYIELDS

04 COOLING VEGETABLES

05 VEGETABLE STORAGE

06 CHILLING AND ETHYLENE INJURY

07 POSTHARVEST DISEASES

08 VEGETABLE QUALITY

09 U.S. STANDARDS FOR VEGETABLES

Page 10: HANDBOOK FOR VEGETABLE GROWERS

x

10 MINIMALLY PROCESSED VEGETABLES

11 CONTAINERS FOR VEGETABLES

12 VEGETABLE MARKETING

PART 9—VEGETABLE SEEDS 503

01 SEED LABELS

02 SEED GERMINATION TESTS

03 SEED GERMINATION STANDARDS

04 SEED PRODUCTION

05 SEED YIELDS

06 SEED STORAGE

07 VEGETABLE VARIETIES

08 VEGETABLE SEED SOURCES

PART 10—APPENDIX 541

01 SOURCES OF VEGETABLEINFORMATION

02 PERIODICALS FOR VEGETABLEGROWERS

03 U.S. UNITS OF MEASUREMENT

04 CONVERSION FACTORS FOR U.S. UNITS

05 METRIC UNITS OF MEASUREMENT

06 CONVERSION FACTORS FOR SI ANDNON SI UNITS

07 CONVERSIONS FOR RATES OFAPPLICATION

Page 11: HANDBOOK FOR VEGETABLE GROWERS

xi

08 WATER AND SOIL SOLUTIONCONVERSION FACTORS

09 HEAT AND ENERGY EQUIVALENTS ANDDEFINITIONS

INDEX 565

Page 12: HANDBOOK FOR VEGETABLE GROWERS

PREFACE

The pace of change in our personal and business livescontinues to accelerate at an ever increasing rate.Accordingly, it is necessary to periodically updateinformation in a long-running reference such as Handbookfor Vegetable Growers. Our goal in this revision is to provideup-to-date information on vegetable crops for growers,students, extension personnel, crop consultants, and allthose concerned with commercial production and marketingof vegetables.

Where possible, information in the Fourth Edition hasbeen updated or replaced with current information. Newtechnical information has been added on World VegetableProduction, Best Management Practices, Organic CropProduction, Food Safety, Pesticide Safety, PostharvestDiseases, and Minimally Processed Vegetables. The Internethas become a valuable source of information since 1997.Hundreds of websites relating to vegetables are included inthis edition and are available online at www.wiley.com/college/Knotts.

We are grateful to our colleagues who have providedmaterials, reviewed portions of the manuscript, andencouraged us in this revision. We especially acknowledgethe assistance of Brian Benson, California Asparagus Seedand Transplants, Inc.; George Boyhan, University of Georgia;

Page 13: HANDBOOK FOR VEGETABLE GROWERS

xiv

Wallace Chasson, Florida Department of Agriculture andConsumer Services; Steve Grattan, University of California;Tim Hartz, University of California; Richard Hassell,Clemson University; Larry Hollar, Hollar and Company;Adel Kader, University of California; Tom Moore, Harris-Moran Seed Co.; Stu Pettygrove, University of California;Steven Sargent, University of Florida; Pieter Vandenberg,Seminis Vegetable Seeds; and Jim Watkins, Nunhems USA.

We appreciate the outstanding assistance provided byWiley editor Jim Harper, Senior Production Editor MillieTorres, and the attention to details and good humor in thepreparation of this manuscript by Gail Maynard.

We hope that Handbook for Vegetable Growers willcontinue to be the timely and useful reference for those withinterest in vegetable crops envisioned by Dr. J. E. Knottwhen it was first published in 1956. James E. Knott (1897–1977) was a Massachusetts native. He earned a B.S. degreeat Rhode Island State College and an M.S. and Ph.D. atCornell University. After distinguished faculty andadministrative service at Pennsylvania State College andCornell University he moved to the University of California,Davis, where he was administrator of the Vegetable CropsDepartment from 1940 to 1964. The department grew innumbers and stature to be one of the world’s best vegetablecenters. Dr. Knott was president of the American Society forHorticultural Science in 1948 and was made a Fellow in1965.

Oscar A. Lorenz (1914–1994), senior author of the SecondEdition (1980) and the Third Edition (1988) of Handbook forVegetable Growers, was a native of Colorado. He earned aB.S. degree from Colorado State College and a Ph.D. fromCornell University before joining the University ofCalifornia, Davis faculty in 1941. For the next 41 years hewas an esteemed scientist and administrator at both theRiverside and Davis campuses. His research on vegetable

Page 14: HANDBOOK FOR VEGETABLE GROWERS

xv

crops nutrition was the first to establish the relationshipbetween soil fertility, leaf nutrient composition, and yield.This concept has been used successfully by growersthroughout the world. Oscar was recognized as a Fellow ofthe American Society for Horticultural Science and of theAmerican Society of Agronomy and Soil Science Society ofAmerica, and received numerous industry awards. He was afriend to all and a personal mentor to me. (DNM)

DONALD N. MAYNARDGEORGE J. HOCHMUTH

Page 15: HANDBOOK FOR VEGETABLE GROWERS

PART 1VEGETABLES AND THEVEGETABLE INDUSTRY

01 BOTANICAL NAMES OF VEGETABLESNAMES OF VEGETABLES IN NINE LANGUAGES

02 EDIBLE FLOWERS

03 U.S. VEGETABLE PRODUCTION

04 CONSUMPTION OF VEGETABLES IN THE U.S.

05 WORLD VEGETABLE PRODUCTION

06 NUTRITIONAL COMPOSITION OF VEGETABLES

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 16: HANDBOOK FOR VEGETABLE GROWERS

2

01B

OT

AN

ICA

LN

AM

ES

OF

VE

GE

TA

BL

ES

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Div

isio

nS

phen

doph

yta

Equ

iset

acea

eH

OR

SE

TA

ILF

AM

ILY

Equ

iset

um

arve

nse

L.

Hor

seta

ilYo

un

gst

robi

liD

ivis

ion

Pte

roph

yta

FE

RN

GR

OU

PD

enn

stae

dtia

ceae

Pte

rid

ium

aqu

ilin

um

(L.)

Ku

hn

.B

rack

enfe

rnIm

mat

ure

fron

dO

smu

nda

ceae

Osm

un

da

cin

nam

omea

L.

Cin

nam

onfe

rnIm

mat

ure

fron

dO

smu

nd

aja

pon

ica

Th

.Ja

pan

ese

flow

erin

gfe

rnIm

mat

ure

fron

dP

arke

riac

eae

Cer

atop

teri

sth

alic

troi

des

(L.)

Bro

ngn

.W

ater

fern

You

ng

leaf

Pol

ypod

iace

aeD

ipla

ziu

mes

cule

ntu

m(R

etz.

)S

war

tz.

Veg

etab

lefe

rnYo

un

gle

afD

ivis

ion

An

thop

hyt

aC

lass

Mon

ocot

yled

ons

Ali

smat

acea

eW

AT

ER

PL

AN

TA

INF

AM

ILY

Sag

itta

ria

sagi

ttif

olia

L.

Arr

owh

ead

Cor

mS

agit

tari

atr

ifol

iaL

.(S

ieb.

)O

hw

iC

hin

ese

arro

wh

ead

Cor

m

Page 17: HANDBOOK FOR VEGETABLE GROWERS

3

All

iace

aeO

NIO

NF

AM

ILY

All

ium

ampe

lopr

asu

mL

.A

mpe

lopr

asu

mgr

oup

Gre

at-h

eade

dga

rlic

Bu

lban

dle

afA

lliu

mam

pelo

pras

um

L.

Ku

rrat

grou

pK

urr

atP

seu

dost

emA

lliu

mam

pelo

pras

um

L.

Por

rum

grou

pL

eek

Pse

udo

stem

and

leaf

All

ium

cepa

L.

Agg

rega

tum

grou

pS

hal

lot

Pse

udo

stem

and

leaf

All

ium

cepa

L.

Cep

agr

oup

On

ion

Bu

lbA

lliu

mce

paL

.P

roli

feru

mgr

oup

Tre

eon

ion

,E

gypt

ian

onio

nA

eria

lbu

lbA

lliu

mch

inen

seG

.D

on.

Rak

kyo

Bu

lbA

lliu

mfi

stu

losu

mL

.W

elsh

onio

n,

Japa

nes

ebu

nch

ing

onio

nP

seu

dost

eman

dle

af

All

ium

gray

iR

egel

Japa

nes

ega

rlic

Lea

fA

lliu

msa

tivu

mL

.G

arli

cB

ulb

and

leaf

All

ium

sch

oen

opra

sum

L.

Ch

ive

Lea

fA

lliu

msc

orod

opra

sum

L.

San

dle

ek,

gian

tga

rlic

Lea

fan

dbu

lbA

lliu

mtu

bero

sum

Rot

tler

exS

pren

gel

Ch

ines

ech

ive

Lea

f,im

mat

ure

flow

erA

lliu

mvi

ctor

iali

sL

.va

r.pl

atyp

hyl

lum

,Hu

lt.

Lon

groo

ton

ion

Bu

lb,

leaf

All

ium

�w

akeg

iA

raki

Tu

rfed

ston

ele

ekL

eaf

Ara

ceae

AR

UM

FA

MIL

YA

loca

sia

mac

rorr

hiz

a(L

.)S

chot

tG

ian

tta

ro,

aloc

asia

Cor

m,

imm

atu

rele

af,

peti

ole

Am

orph

oph

allu

spa

eon

iifo

liu

s(D

enn

st.)

Nic

olso

nE

leph

ant

yam

Cor

mC

oloc

asia

escu

len

ta(L

.)S

chot

tT

aro,

dash

een

,coc

oyam

Cor

m,

imm

atu

rele

afC

yrto

sper

ma

cham

isso

nis

(Sch

ott)

Mer

r.G

ian

tsw

amp

taro

Cor

mC

yrto

sper

ma

mer

kusi

i(H

assk

.)S

chot

t.G

alla

nC

orm

Xan

thos

oma

bras

ilie

nse

(Des

f.)E

ngl

erT

ann

ier

spin

ach

,cat

alou

Imm

atu

rele

afX

anth

osom

asa

gitt

ifol

ium

(L.)

Sch

ott

Tan

nia

,yel

low

yau

tia

Cor

man

dyo

un

gle

afC

ann

acea

eC

AN

NA

FA

MIL

YC

ann

ain

dic

aL

.In

dian

can

na,

arro

wro

ot,

edib

leca

nn

aR

hiz

ome

Page 18: HANDBOOK FOR VEGETABLE GROWERS

4

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Cyp

erac

eae

SE

DG

EF

AM

ILY

Cyp

eru

ses

cule

ntu

sL

.R

ush

nu

t,ch

ufa

Tu

ber

Ele

och

aris

du

lcis

(Bu

rm.f.

)T

rin

.ex

Hen

sch

elW

ater

ches

tnu

t,C

hin

ese

wat

erch

estn

ut

Cor

m

Ele

och

aris

kuro

guw

aiO

hw

iW

ild

wat

erch

estn

ut

Cor

mD

iosc

orea

ceae

YA

MF

AM

ILY

Dio

scor

eaal

ata

L.

Wh

ite

yam

,w

ater

yam

Tu

ber

Dio

scor

eaba

tata

sD

ecu

e.C

hin

ese

yam

Tu

ber

Dio

scor

eabu

lbif

era

L.

Pot

ato

yam

,ae

rial

yam

Tu

ber

Dio

scor

eaca

yen

ensi

sL

am.

Yell

owya

mT

ube

rD

iosc

orea

du

met

oru

m(K

un

th)

Pax

.B

itte

rya

mT

ube

rD

iosc

orea

escu

len

ta(L

our.

)B

urk

.L

esse

rya

mT

ube

rD

iosc

orea

rotu

nd

ata

Poi

r.W

hit

eG

uin

eaya

mT

ube

rD

iosc

orea

trifi

da

L.

f.In

dian

yam

Tu

ber

Irid

acea

eIR

ISF

AM

ILY

Tig

rid

iapa

von

iaK

er.-

Gaw

l.C

omm

onti

ger

flow

erB

ulb

Lil

iace

aeL

ILY

FA

MIL

YA

spar

agu

sac

uti

foli

us

L.

Wil

das

para

gus

Sh

oot

Asp

arag

us

offi

cin

alis

L.

Asp

arag

us

Sh

oot

Hem

eroc

alli

ssp

p.D

ayli

lyF

low

erL

eopo

ldia

com

osa

(L.)

Par

l.T

uff

edh

yaci

nth

Bu

lbL

iliu

msp

p.L

ily

Bu

lb

Page 19: HANDBOOK FOR VEGETABLE GROWERS

5

Lim

noc

har

itac

eae

FL

OW

ER

ING

RU

SH

FA

MIL

YL

imn

och

aris

flav

a(L

.)B

uch

enau

Yell

owve

lvet

leaf

You

ng

leaf

,pe

tiol

e,an

dfl

oral

shoo

tM

aran

tace

aeA

RR

OW

RO

OT

FA

MIL

YC

alat

hea

allo

uia

(Au

bl.)

Lin

dl.

Sw

eet

corn

root

Tu

ber

Mar

anta

aru

nd

inac

eaL

.W

est

Indi

anar

row

root

Rh

izom

eM

usa

ceae

BA

NA

NA

FA

MIL

YM

usa

�pa

rad

isia

caL

.va

r.pa

rad

isia

caP

lain

tain

Fru

it,

flow

erbu

dP

oace

aeG

RA

SS

FA

MIL

YB

ambu

sasp

p.B

ambo

osh

oots

You

ng

shoo

tD

end

roca

lam

us

lati

flor

us

Mu

nro

Bam

boo

shoo

tsYo

un

gsh

oot

Pen

nis

etu

mpu

rpu

reu

mS

chu

m.

Ele

phan

tgr

ass,

nap

ier

gras

sYo

un

gsp

ear

Ph

yllo

stac

hys

spp.

Bam

boo

shoo

tsYo

un

gsh

oot

Sac

char

um

edu

leH

assk

.S

uga

rcan

ein

flor

esce

nce

Imm

atu

rein

flor

esce

nce

Set

aria

palm

ifol

iaS

tapf

.P

alm

gras

sYo

un

gpl

ant

Zea

may

sL

.su

bsp.

may

sS

wee

tco

rnIm

mat

ure

kern

els

and

imm

atu

reco

bw

ith

kern

elZ

izan

iala

tifo

lia

(Gri

seb.

)T

urc

z.ex

Sta

pf.

Wat

erba

mbo

o,co

boS

wol

len

shoo

t/st

emP

onte

deri

acea

eP

ICK

ER

ELW

EE

DF

AM

ILY

Mon

och

oria

has

tata

(L.)

Sol

ms.

Has

tate

-lea

ved

pon

dwee

dYo

un

gle

afM

onoc

hor

iava

gin

alis

(Bru

m.)

Ku

nth

Ova

l-le

aved

pon

dwee

dYo

un

gle

afT

acca

ceae

TA

CC

AF

AM

ILY

Tac

cale

onto

peta

loid

es(L

.)K

un

tze

Eas

tIn

dian

arro

wro

otR

hiz

ome

Zin

gibe

race

aeG

ING

ER

FA

MIL

Y

Page 20: HANDBOOK FOR VEGETABLE GROWERS

6

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Alp

inia

gala

nga

(L.)

Sw

.G

reat

erga

lan

gal

Flo

ral

spro

ut

and

flow

er,

ten

der

shoo

t,rh

izom

eC

urc

um

alo

nga

L.

Tu

rmer

icR

hiz

ome

Cu

rcu

ma

zed

oari

a(C

hri

stm

.)R

osco

eL

ong

zedo

ary

Rh

izom

eZ

ingi

ber

mio

ga(T

hu

nb.

)R

osco

eJa

pan

ese

wil

dgi

nge

rR

hiz

ome,

ten

der

shoo

t,le

af,

flow

erZ

ingi

ber

offi

cin

ale

Ros

coe

Gin

ger

Rh

izom

ean

dte

nde

rsh

oot

Div

isio

nA

nth

oph

yta

Cla

ssD

ioco

tyle

don

sA

can

thac

eae

AC

AN

TH

US

FA

MIL

YJu

stic

iain

sula

ris

T.A

nd.

Tet

tuYo

un

gsh

oot,

leaf

,ro

otR

un

gia

klos

sii

S.

Moo

reR

un

gia

Lea

fA

izoa

ceae

CA

RP

ET

WE

ED

FA

MIL

YM

esem

brya

nth

emu

mcr

ysta

llin

um

L.

Ice

plan

tL

eaf

Tet

rago

nia

tetr

agon

iod

es(P

all.)

O.

Ku

ntz

eN

ewZ

eala

nd

spin

ach

Ten

der

shoo

tan

dle

afA

mar

anth

acea

eA

MA

RA

NT

HF

AM

ILY

Alt

ern

anth

era

phil

oxer

oid

es(M

arti

us)

Gri

seb.

All

igat

orw

eed,

Jose

ph’s

coat

You

ng

top

Alt

ern

anth

era

sess

ilis

(L.)

R.

Br.

Ses

sile

alte

rnan

ther

aYo

un

gto

p

Page 21: HANDBOOK FOR VEGETABLE GROWERS

7

Am

aran

thu

ssp

p.A

mar

anth

us,

tam

pala

Ten

der

shoo

t,le

af,

spro

ute

dse

edC

elos

iasp

p.C

ocks

com

bL

eaf

and

ten

der

shoo

tA

piac

eae

CA

RR

OT

FA

MIL

YA

nge

lica

arch

ange

lica

L.

An

geli

caT

ende

rsh

oot

and

leaf

An

geli

cake

iske

i(M

iq.)

Koi

dz.

Japa

nes

ean

geli

caT

ende

rsh

oot

and

leaf

An

thri

scu

sce

refo

liu

m(L

.)H

offm

.C

her

vil

Lea

fA

piu

mgr

aveo

len

sL

.va

r.d

ulc

e(M

ill.)

Per

s.C

eler

yP

etio

le,

leaf

Api

um

grav

eole

ns

L.

var.

rapa

ceu

m(M

ill.)

Gau

d.C

eler

iac,

turn

ip-r

oote

dce

lery

Roo

t,le

afA

rrac

acia

xan

thor

rhiz

aB

ancr

oft

Arr

acac

ha,

Per

uvi

anca

rrot

Roo

tC

ente

lla

asia

tica

(L.)

Urb

anA

siat

icpe

nn

ywor

tL

eaf

and

stol

onC

hae

roph

yllu

mbu

lbos

um

L.

Tu

bero

us

cher

vil

Roo

tC

oria

nd

rum

sati

vum

L.

Cor

ian

der

Lea

fan

dse

edC

rypt

otae

nia

japo

nic

aH

assk

.Ja

pan

ese

hor

nw

ort

Lea

fD

aucu

sca

rota

L.

subs

p.sa

tivu

s(H

offm

.)A

rcan

g.C

arro

tR

oot

and

leaf

Foe

nic

ulu

mvu

lgar

eva

r.az

oric

um

(Mil

ler)

Th

ell.

Fen

nel

Lea

fF

oen

icu

lum

vulg

are

var.

du

lce

Fio

riF

lore

nce

fen

nel

Lea

fba

seG

leh

nia

litt

oral

isF.

Sch

m.

Coa

stal

gleh

nia

Lea

f,st

em,

root

Hyd

roco

tyle

sibt

hor

pioi

des

Lam

.H

ydro

coty

leYo

un

gsh

oot

and

leaf

Myr

rhis

odor

ata

(L.)

Sco

p.G

arde

nm

yrrh

Lea

f,ro

ot,

and

seed

Oen

anth

eja

van

ica

(Blu

me)

DC

.su

bsp.

java

nic

aO

rien

tal

cele

ry,

wat

erdr

opw

ort

Lea

fan

dte

nde

rsh

oot

Pas

tin

aca

sati

vaL

.P

arsn

ipR

oot

and

leaf

Pet

rose

lin

um

cris

pum

(Mil

l.)N

ym.

var.

cris

pum

Par

sley

Lea

fP

etro

seli

nu

mcr

ispu

m(M

ill.)

Nym

.tu

bero

sum

Tu

rnip

-roo

ted

pars

ley

Roo

tan

dle

afP

etro

seli

nu

mcr

ispu

m(M

ill.)

Nym

.va

r.n

eapo

lita

nu

mIt

alia

npa

rsle

yL

eaf

Siu

msi

saru

mL

.S

kirr

etR

oot

Ara

liac

eae

AR

AL

IAF

AM

ILY

Ara

lia

cord

ata

Th

un

b.S

pike

nar

dT

ende

rsh

oot

Page 22: HANDBOOK FOR VEGETABLE GROWERS

8

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Ara

lia

elat

aS

eem

anJa

pan

ese

aral

iaYo

un

gle

afA

ster

acea

eS

UN

FL

OW

ER

FA

MIL

YA

rcti

um

lapp

aL

.E

dibl

ebu

rdoc

kR

oot,

peti

ole

Art

emis

iad

racu

ncu

lus

L.

var.

sati

vaL

.F

ren

chta

rrag

onL

eaf

Art

emis

iain

dic

aW

illd

.var

.m

axim

owic

zii

(Nak

ai)

Har

aM

ugw

ort

Lea

f

Ast

ersc

aber

Th

un

b.A

ster

Lea

fB

iden

spi

losa

L.

Bu

rm

arig

old

You

ng

shoo

tan

dle

afC

hry

san

them

um

spp.

Edi

ble

chry

san

them

um

Lea

fan

dte

nde

rsh

oot

Cic

hor

ium

end

ivia

L.

En

dive

,es

caro

leL

eaf

Cic

hor

ium

inty

bus

L.

Ch

icor

y,w

itlo

ofch

icor

yL

eaf

Cir

siu

md

ipsa

cole

pis

(Max

im.)

Mat

sum

.G

obou

azam

iR

oot

Cos

mos

cau

dat

us

Ku

nth

Cos

mos

Lea

fan

dyo

un

gsh

oot

Cra

ssoc

eph

alu

mbi

afra

e(O

liv.

etH

iern

)S

.M

oore

Sie

rra

Leo

ne

bolo

gni

You

ng

shoo

tan

dle

afC

rass

ocep

hal

um

crep

idio

des

(Ben

th.)

S.

Moo

reH

awks

bear

dve

lvet

plan

tYo

un

gsh

oot

and

leaf

Cyn

ara

card

un

culu

sL

.C

ardo

onP

etio

leC

ynar

asc

olym

us

L.

Glo

bear

tich

oke

Imm

atu

refl

ower

bud

Em

ilia

son

chif

olia

(L.)

DC

.E

mil

ia,

fals

eso

wth

istl

eYo

un

gsh

oot

and

leaf

En

ydra

flu

ctu

ans

Lou

r.B

uff

alo

spin

ach

You

ng

shoo

tan

dle

afF

arfu

giu

mja

pon

icu

m(L

.)K

itam

ura

Japa

nes

efa

rfu

giu

mP

etio

leF

edia

corn

uco

piae

DC

.H

orn

ofpl

enty

,Afr

ican

vale

rian

Lea

f

Page 23: HANDBOOK FOR VEGETABLE GROWERS

9

Gal

inso

gapa

rvifl

ora

Cav

.G

alin

soga

You

ng

shoo

tG

ynu

rabi

colo

rD

C.

Gyn

ura

You

ng

leaf

Hel

ian

thu

stu

bero

sus

L.

Jeru

sale

mar

tich

oke

Tu

ber

Lac

tuca

ind

ica

L.

Indi

anle

ttu

ceL

eaf

Lac

tuca

sati

vaL

.va

r.as

para

gin

aB

aile

yA

spar

agu

sle

ttu

ce,

celt

uce

Ste

mL

actu

casa

tiva

L.

var.

capi

tata

L.

Hea

dle

ttu

ce,

butt

erh

ead

lett

uce

Lea

f

Lac

tuca

sati

vaL

.va

r.lo

ngi

foli

aL

am.

Rom

ain

ele

ttu

ce,

leaf

lett

uce

Lea

fL

aun

aea

tara

xaci

foli

a(W

illd

.)A

min

exC

.Je

ffre

yW

ild

lett

uce

Lea

fP

etas

ites

japo

nic

us

(Sie

b.&

Zu

cc.)

Max

im.

Bu

tter

bur

Pet

iole

Pol

ymn

iaso

nch

ifol

iaP

oepp

.&

En

dl.

Yaco

nst

raw

berr

yR

oot

Sco

lym

us

his

pan

icu

sL

.G

olde

nth

istl

eR

oot

and

leaf

Sco

lym

us

mac

ula

tus

L.

Spo

tted

gard

enth

istl

eL

eaf

Sco

rzon

era

his

pan

ica

L.

Bla

cksa

lsif

yR

oot

and

leaf

Son

chu

sol

erac

eus

L.

Mil

kth

istl

e,so

wth

istl

eL

eaf

Spi

lan

thes

acm

ella

(L.)

Mu

rr.

Bra

zil

cres

sYo

un

gle

afS

pila

nth

esci

liat

aH

BK

Gu

asca

You

ng

leaf

Spi

lan

thes

iaba

dic

ensu

sA

.H.

Moo

reG

etan

gYo

un

gle

afan

dfl

ower

shoo

tS

pila

nth

espa

nic

ula

taW

all

exD

C.

Get

ang

You

ng

leaf

and

flow

ersh

oot

Str

uch

ium

spar

gan

oph

ora

(L.)

O.

Ktz

e.B

itte

rle

afYo

un

gsh

oot

Tar

axac

um

offi

cin

ale

Wig

gers

Dan

deli

onL

eaf,

root

Tra

gopo

gon

porr

ifol

ius

L.

Sal

sify

,veg

etab

leoy

ster

Roo

tan

dyo

un

gle

afT

rago

pogo

npr

aten

sis

L.

Goa

tsbe

ard,

mea

dow

sals

ify

You

ng

root

and

shoo

tV

ern

onia

amyg

dal

ina

Del

ile.

Bit

ter

leaf

You

ng

shoo

tB

asel

lace

aeB

AS

EL

LA

FA

MIL

Y

Page 24: HANDBOOK FOR VEGETABLE GROWERS

10

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Bas

ella

alba

L.

Indi

ansp

inac

h,M

alab

arsp

inac

hL

eaf

and

you

ng

shoo

t

Ull

ucu

stu

bero

sus

Loz

ano

Ull

uco

Tu

ber

Bor

agin

acea

eB

OR

AG

EF

AM

ILY

Bor

ago

offi

cin

alis

L.

Bor

age

Pet

iole

Sym

phyt

um

offi

cin

ale

L.

Com

mon

com

frey

Lea

fan

dte

nde

rsh

oot

Sym

phyt

um

�u

plan

dic

um

Nym

anR

uss

ian

com

frey

You

ng

leaf

and

shoo

tB

rass

icac

eae

MU

ST

AR

DF

AM

ILY

Arm

orac

iaru

stic

ana

Gae

rtn

.,M

ey.,

Sch

erb.

Hor

sera

dish

Roo

t,le

af,

spro

ute

dse

edB

arba

rea

vern

a(M

ill.)

Asc

her

sU

plan

dcr

ess

Lea

fB

rass

ica

cari

nat

aA

.B

rau

nA

byss

inia

nm

ust

ard

Lea

fB

rass

ica

jun

cea

(L.)

Cze

rnj.

&C

oss.

var.

capi

tata

Hor

t.C

apit

ata

mu

star

dL

eaf

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.cr

assi

cau

lus

Ch

enan

dYa

ng

Bam

boo

shoo

tm

ust

ard

Ste

m

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.cr

ispi

foli

aB

aile

yC

url

edm

ust

ard

Lea

f

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.fo

lios

aB

aile

yS

mal

l-le

afm

ust

ard

Lea

f

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.ge

mm

ifer

aL

ee&

Lin

Gem

mif

erou

sm

ust

ard

Ste

man

dax

illa

rybu

d

Page 25: HANDBOOK FOR VEGETABLE GROWERS

11

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.in

volu

taYa

ng

&C

hen

Invo

lute

mu

star

dL

eaf

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.la

tipa

Li

Wid

e-pe

tiol

em

ust

ard

Lea

fB

rass

ica

jun

cea

(L.)

Cze

rnj.

&C

oss.

var.

leu

can

thu

sC

hen

&Ya

ng

Wh

ite-

flow

ered

mu

star

dL

eaf

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.li

nea

rifo

lia

Lin

em

ust

ard

Lea

fB

rass

ica

jun

cea

(L.)

Cze

rnj.

&C

oss.

var.

lon

gepe

tiol

ata

Yan

g&

Ch

enL

ong-

peti

ole

mu

star

dL

eaf

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.m

egar

rhiz

aT

sen

&L

eeT

ube

rou

s-ro

oted

mu

star

dR

oot

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.m

ult

icep

sT

sen

&L

eeT

ille

red

mu

star

dL

eaf

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.m

ult

isec

taB

aile

yF

low

erli

kele

afm

ust

ard

Lea

f

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.ru

gosa

Bai

ley

Bro

wn

mu

star

d,m

ust

ard

gree

ns

Lea

f

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.st

rum

ata

Tse

n&

Lee

Str

um

ous

mu

star

dS

tem

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.tu

mid

aT

sen

&L

eeS

wol

len

-ste

mm

ust

ard

Ste

man

dle

af

Bra

ssic

aju

nce

a(L

.)C

zern

j.&

Cos

s.va

r.u

tili

sL

iP

endu

ncl

edm

ust

ard

You

ng

flow

erst

alk

Bra

ssic

an

apu

sL

.va

r.n

apob

rass

ica

(L.)

Rei

chb.

Ru

taba

gaR

oot

and

leaf

Bra

ssic

an

apu

sL

.va

r.n

apu

sV

eget

able

rape

Lea

fan

dyo

un

gfl

ower

stal

kB

rass

ica

nap

us

L.

var.

pabu

lari

a(D

C.)

Rei

chb.

Sib

eria

nka

le,

Han

over

sala

dL

eaf

Bra

ssic

an

igra

L.

Koc

h.

Bla

ckm

ust

ard

Lea

fB

rass

ica

oler

acea

L.

var.

acep

hal

aD

C.

Kal

e,co

llar

dsL

eaf

Page 26: HANDBOOK FOR VEGETABLE GROWERS

12

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Bra

ssic

aol

erac

eaL

.va

r.al

bogl

abra

Bai

ley

Ch

ines

eka

leYo

un

gfl

ower

stal

kan

dle

afB

rass

ica

oler

acea

L.

var.

botr

ytis

L.

Cau

lifl

ower

Imm

atu

refl

oral

stal

kB

rass

ica

oler

acea

L.

var.

capi

tata

L.

Cab

bage

Lea

fB

rass

ica

oler

acea

L.

var.

cost

ata

DC

.P

ortu

gues

eca

bbag

e,tr

onch

uda

cabb

age

Lea

fan

din

flor

esce

nce

Bra

ssic

aol

erac

eaL

.va

r.ge

mm

ifer

aZ

enk.

Bru

ssel

ssp

rou

tsA

xill

ary

bud

Bra

ssic

aol

erac

eaL

.va

r.go

ngy

lod

esL

.K

ohlr

abi

En

larg

edst

emB

rass

ica

oler

acea

L.

var.

ital

ica

Ple

nck

.B

rocc

oli

Imm

atu

refl

ower

stal

kB

rass

ica

oler

acea

L.

var.

med

ull

osa

Th

ell.

Mar

row

Mar

row

stem

kale

Lea

fB

rass

ica

oler

acea

L.

var.

ram

osa

Ale

f.T

hou

san

d-h

eade

dka

leL

eaf

Bra

ssic

aol

erac

eaL

.va

r.sa

bau

da

L.

Sav

oyca

bbag

eL

eaf

Bra

ssic

ape

rvir

idis

Bai

ley

Spi

nac

hm

ust

ard,

ten

derg

reen

mu

star

dL

eaf

Bra

ssic

ara

paL

.va

r.ch

inen

sis

(Ru

pr.)

Ols

son

Pak

choi

,C

hin

ese

mu

star

dL

eaf

Bra

ssic

ara

paL

.va

r.n

arin

osa

(Bai

ley)

Ols

son

Bro

ad-b

eake

dm

ust

ard

Lea

fB

rass

ica

rapa

L.

var.

para

chin

ensi

s(B

aile

y)T

sen

&L

eeM

ock

pak

choi

,ch

oysu

mL

eaf

Bra

ssic

ara

paL

.va

r.pe

kin

ensi

s(L

our.

)O

lsso

nC

hin

ese

cabb

age,

pe-t

sai

Lea

fB

rass

ica

rapa

L.

var.

(DC

.)M

etzg

.ra

paT

urn

ipE

nla

rged

root

Bra

ssic

ara

paL

.va

r.(D

C.)

Met

zg.

uti

lis

Tu

rnip

gree

nL

eaf

Page 27: HANDBOOK FOR VEGETABLE GROWERS

13

Bra

ssic

ara

paL

.va

r.(D

C.)

Met

zg.s

epti

ceps

Tu

rnip

broc

coli

,br

occo

lira

abIn

flor

esen

ceB

un

ias

orie

nta

lis

L.

Hil

lm

ust

ard

Lea

fC

apse

lla

burs

a-pa

stor

is(L

.)M

edik

us

Sh

eph

erd’

spu

rse

You

ng

leaf

Car

dam

ine

prat

ensi

sL

.C

uck

oofl

ower

Lea

fC

ram

bem

arit

ima

L.

Sea

kale

Pet

iole

and

you

ng

leaf

Cra

mbe

tata

rica

Jacq

.T

arta

rbr

eadp

lan

tP

etio

lean

dyo

un

gle

af,

root

Dip

lota

xis

mu

rali

s(L

.)D

C.

Wal

lroc

ket

Lea

fE

ruca

sati

vaM

ille

rR

ocke

tsa

lad,

aru

gula

Lea

fL

epid

ium

mey

enn

iW

alp.

Mac

aR

oot

Lep

idiu

msa

tivu

mL

.G

arde

ncr

ess

Lea

fN

astu

rtiu

mof

fici

nal

eR

.B

r.W

ater

cres

sL

eaf

Rap

han

us

sati

vus

L.

Cau

datu

sgr

oup

Rat

-tai

lra

dish

Imm

atu

rese

edpo

dR

aph

anu

ssa

tivu

sL

.R

adic

ula

grou

pR

adis

hR

oot

Rap

han

us

sati

vus

L.

Dai

kon

grou

pD

aiko

nR

oot

Sin

apis

alba

L.

Wh

ite

mu

star

dL

eaf

and

you

ng

flow

erst

alk

Was

abia

japo

nic

a(M

iq.)

Mat

sum

.W

asab

i,Ja

pan

ese

hor

sera

dish

Rh

izom

e,yo

un

gsh

oot

Cab

omba

ceae

WA

TE

RL

ILY

FA

MIL

YB

rase

nia

sch

rebe

riG

mel

inW

ater

shie

ldYo

un

gle

afC

acta

ceae

CA

CT

US

FA

MIL

YO

pun

tia

ficu

s-in

dic

a(L

.)M

ill.

Pri

ckly

pear

Pad

,fr

uit

Cam

pan

ula

ceae

BE

LL

FL

OW

ER

FA

MIL

YC

ampa

nu

lara

pun

culu

sL

.R

ampi

onR

oot

and

firs

tle

afC

appa

race

aeC

AP

ER

FA

MIL

YC

appa

ris

spin

osa

L.

Cap

per

Flo

wer

bud

Cle

ome

gyn

and

raL

.C

at’s

wh

iske

rsL

eaf,

you

ng

shoo

t,fr

uit

Page 28: HANDBOOK FOR VEGETABLE GROWERS

14

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Pla

tyco

don

gran

difl

oru

mA

.D

C.

Ch

ines

ebe

llfl

ower

Lea

fC

hen

opod

iace

aeG

OO

SE

FO

OT

FA

MIL

YA

trip

lex

hor

ten

sis

L.

Ora

chL

eaf

Bet

avu

lgar

isL

.C

icla

grou

pC

har

d,S

wis

sch

ard

Lea

fB

eta

vulg

aris

L.

Cra

ssa

grou

pG

arde

nbe

etR

oot

and

leaf

Ch

enop

odiu

mbo

nu

s-h

enri

cus

L.

Goo

dK

ing

Hen

ryL

eaf

Ch

enop

odiu

mqu

inoa

Wil

ld.

Qu

inoa

Lea

fK

och

iasc

opar

ia(L

.)S

chra

der

Moc

kcy

pres

sT

ende

rsh

oot

Sal

sola

kom

arov

iiIl

jin

.K

omar

ovR

uss

ian

this

tle

Lea

fan

dyo

un

gsh

oot

Sal

sola

sod

aL

.S

also

laL

eaf

and

you

ng

shoo

tS

pin

acia

oler

acea

L.

Spi

nac

hL

eaf

Su

aed

aas

para

goid

esM

ak.

Com

mon

seep

wee

dYo

un

gst

em,

leaf

,pl

ant

Con

volv

ula

ceae

BIN

DW

EE

DF

AM

ILY

Con

volv

ulu

sja

pon

icu

sT

hu

nb.

Ros

egl

oryb

ind

Roo

tIp

omoe

aaq

uat

ica

For

ssk.

Wat

ersp

inac

h,k

angk

ong

Ten

der

shoo

tan

dle

afIp

omoe

aba

tata

s(L

.)L

am.

Sw

eet

pota

toR

oot

and

leaf

Cra

ssu

lace

aeO

RP

INE

FA

MIL

YS

edu

msa

rmen

tosu

mB

urg

eS

edu

mL

eaf

Cu

curb

itac

eae

GO

UR

DF

AM

ILY

Ben

inca

sah

ispi

da

(Th

un

b.)

Cog

n.

Wax

gou

rdIm

mat

ure

/mat

ure

fru

it

Page 29: HANDBOOK FOR VEGETABLE GROWERS

15

Cit

rull

us

lan

atu

s(T

hu

nb.

)M

atsu

m&

Nak

aiW

ater

mel

onR

ipe

fru

itan

dse

edC

itru

llu

sla

nat

us

var.

citr

oid

es(B

aile

y)M

ansf

.C

itro

n,

pres

ervi

ng

mel

onF

ruit

Coc

cin

iagr

and

is(L

.)V

oigt

Ivy

gou

rd,t

indo

raF

ruit

,te

nde

rsh

oot,

leaf

Cu

cum

erop

sis

man

nii

Nau

din

Wh

ite-

seed

edm

elon

Fru

itan

dse

edC

ucu

mis

angu

ria

L.

Wes

tIn

dian

gher

kin

Imm

atu

refr

uit

Cu

cum

ism

elo

L.

Can

talo

upe

nsi

sgr

oup

Can

talo

upe

Fru

itC

ucu

mis

mel

oL

.C

hit

ogr

oup

Man

goF

ruit

Cu

cum

ism

elo

L.

Con

omon

grou

pO

rien

tal

pick

lin

gm

elon

You

ng

fru

itC

ucu

mis

mel

oL

.F

lexu

osu

sgr

oup

Japa

nes

ecu

cum

ber,

snak

em

elon

Imm

atu

refr

uit

Cu

cum

ism

elo

L.

Inod

oru

sgr

oup

Hon

eyde

wm

elon

,ca

saba

mel

onF

ruit

Cu

cum

ism

elo

L.

Ret

icu

latu

sgr

oup

Mu

skm

elon

(can

talo

upe

),P

ersi

anm

elon

Rip

efr

uit

Cu

cum

ism

etu

life

rus

E.

Mey

erex

Nau

din

Afr

ican

hor

ned

cucu

mbe

rF

ruit

Cu

cum

issa

tivu

sL

.C

ucu

mbe

rIm

mat

ure

fru

itC

ucu

rbit

aar

gyro

sper

ma

Hu

ber

Pu

mpk

inYo

un

g/m

atu

refr

uit

and

seed

Cu

curb

ita

fici

foli

aB

ouch

eF

ig-l

eaf

gou

rd,M

alab

argo

urd

Fru

it

Cu

curb

ita

max

ima

Du

ches

ne

Gia

nt

pum

pkin

,win

ter

squ

ash

Mat

ure

fru

itan

dse

ed

Cu

curb

ita

mos

chat

aD

uch

esn

eB

utt

ern

ut

squ

ash

,tro

pica

lpu

mpk

inYo

un

gan

dm

atu

refr

uit

Cu

curb

ita

pepo

L.

Su

mm

ersq

uas

h,z

ucc

hin

iYo

un

gfr

uit

Cu

curb

ita

pepo

L.

Com

mon

fiel

dpu

mpk

inM

atu

refr

uit

and

seed

Cyc

lan

ther

ape

dat

a(L

.)S

chra

der

var.

ped

ata

Pep

ino

Imm

atu

refr

uit

Page 30: HANDBOOK FOR VEGETABLE GROWERS

16

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Lag

enar

iasi

cera

ria

(Mol

.)S

tan

dl.

Bot

tle

gou

rd,

cala

bash

gou

rdIm

mat

ure

fru

it,

ten

der

shoo

t,an

dle

afL

uff

aac

uta

ngu

la(L

.)R

oxb.

An

gled

loof

ahIm

mat

ure

fru

itL

uff

aae

gypt

iaca

Mil

ler

Sm

ooth

loof

ah,

spon

gego

urd

Imm

atu

refr

uit

and

leaf

Mom

ord

ica

char

anti

aL

.B

itte

rgo

urd

,ba

lsam

pear

Imm

atu

refr

uit

and

you

ng

leaf

Pra

ecit

rull

us

fist

ulo

sus

(Sto

cks)

Pan

g.S

quas

hm

elon

Fru

itS

ech

ium

edu

le(J

acq.

)S

war

tz.

Ch

ayot

e,m

irli

ton

,ve

geta

ble

pear

Fru

it,

ten

der

shoo

t,le

afS

ican

aod

orif

era

(Vel

l.)N

audi

nC

asab

anan

aIm

mat

ure

/mat

ure

fru

itT

elfa

iria

occi

den

tali

sH

ook.

f.F

lute

dgo

urd

,flu

ted

pum

pkin

See

d,le

af,

ten

der

shoo

tT

elfa

iria

ped

ata

(Sm

ith

exS

ims)

Hoo

k.O

yste

rn

ut

See

dT

rich

osan

thes

cucu

mer

ina

L.

var.

angu

inea

(L.)

Hai

nes

Sn

ake

gou

rdIm

mat

ure

fru

it,

leaf

,an

dte

nde

rsh

oot

Tri

chos

anth

escu

cum

eroi

ds

(Ser

.)M

axim

.Ja

pan

ese

snak

ego

urd

Imm

atu

refr

uit

Tri

chos

anth

esd

ioic

aR

oxb.

Poi

nte

dgo

urd

Imm

atu

refr

uit

,te

nde

rsh

oot

Eu

phor

biac

eae

SP

UR

GE

FA

MIL

Y

Page 31: HANDBOOK FOR VEGETABLE GROWERS

17

Cn

idos

colu

sac

onit

ifol

ius

(Mil

ler)

Joh

nst

onC

hay

aL

eaf

Cn

idos

colu

sch

ayam

ansa

Mc

Vau

ghn

Ch

aya

Lea

fC

odia

eum

vari

egat

um

(L.)

Blu

me

Cro

ton

You

ng

leaf

Man

ihot

escu

len

taC

ran

tzY

uca

,ca

ssav

a,m

anio

cR

oot

and

leaf

Sau

ropu

san

dro

gyn

us

(L.)

Mer

r.C

omm

onsa

uro

pus

Lea

fFa

bace

aeP

EA

FA

MIL

YA

rach

ish

ypog

aea

L.

Pea

nu

t,gr

oun

dnu

tIm

mat

ure

/mat

ure

seed

Bau

hin

iaes

cule

nta

Bu

rch

ell

Mar

ama

bean

Imm

atu

repo

dan

dro

otC

ajan

us

caja

n(L

.)H

uth

.C

ajan

pea,

pige

onpe

aIm

mat

ure

pod

/lea

fC

anav

alia

ensi

form

is(L

.)D

C.

Jack

bean

,hor

sebe

anIm

mat

ure

seed

Can

aval

iagl

adia

ta(J

acq.

)D

C.

Sw

ord

bean

,h

orse

bean

Imm

atu

rese

edC

icer

arie

tin

um

L.

Gar

ban

zo,c

hic

kpea

See

dC

yam

posi

ste

trag

onol

oba

(L.)

Tau

b.C

lust

erbe

an,

guar

Imm

atu

repo

dan

dse

edF

lem

ingi

ave

stit

aB

enth

.ex

Bak

.F

lem

ingi

aT

ube

rG

lyci

ne

max

(L.)

Mer

r.S

oybe

anIm

mat

ure

and

spro

ute

dse

edL

abla

bpu

rpu

rus

(L.)

Sw

eet.

Hya

cin

thbe

anIm

mat

ure

seed

Lat

hyr

us

sati

vus

L.

Ch

ickl

ing

pea

Imm

atu

repo

d/s

eed

Lat

hyr

us

tube

rosu

sL

.G

rou

ndn

ut

Tu

ber

Len

scu

lin

aris

Med

iku

sL

enti

lIm

mat

ure

pod,

spro

ute

dse

edL

upi

nu

ssp

p.L

upi

nS

eed

Mac

roty

lom

age

ocar

pum

(Har

ms)

Mar

ech

alan

dB

aude

tH

ausa

grou

ndn

ut

See

d

Mac

roty

lom

au

nifl

oru

m(L

am.)

Ver

dc.

Hor

segr

amS

eed

Page 32: HANDBOOK FOR VEGETABLE GROWERS

18

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Med

icag

osa

tiva

L.

Alf

alfa

,lu

cern

eL

eaf,

you

ng

shoo

t,sp

rou

ted

seed

Mu

cun

apr

uri

ens

(L.)

DC

.B

uff

alo

bean

,ve

lvet

bean

See

dN

eptu

nia

oler

acea

Lou

r.W

ater

mim

osa

Lea

fan

dte

nde

rsh

oot

Pac

hyr

hiz

us

ahip

a(W

edd.

)P

arod

iYa

mbe

anR

oot

Pac

hyr

hiz

us

eros

us

(L.)

Urb

anJi

cam

a,M

exic

anya

mbe

anR

oot,

imm

atu

repo

d,an

dse

edP

ach

yrh

izu

stu

bero

sus

(Lam

.)S

pren

gel

Pot

ato

bean

Roo

tan

dim

mat

ure

pod

Ph

aseo

lus

acu

tifo

liu

sA

.G

ray

Tep

ary

bean

See

d,im

mat

ure

pod

Ph

aseo

lus

cocc

ineu

sL

.S

carl

etru

nn

erbe

anIm

mat

ure

pod

and

seed

Ph

aseo

lus

lun

atu

sL

.L

ima

bean

Imm

atu

rese

ed,

mat

ure

seed

Ph

aseo

lus

vulg

aris

L.

Gar

den

bean

,sn

apbe

anIm

mat

ure

pod

and

seed

Pis

um

sati

vum

L.

ssp.

sati

vum

Pea

,ga

rden

pea

Imm

atu

rese

ed,

ten

der

shoo

tP

isu

msa

tivu

mL

.ss

p.sa

tivu

mf.

mac

roca

rpon

Sn

owpe

a,ed

ible

-pod

ded

pea

Imm

atu

repo

dP

soph

ocar

pus

tetr

agon

olob

us

(L.)

DC

.G

oabe

an,

win

ged

bean

Imm

atu

repo

d,se

ed,

leaf

,ro

ot

Page 33: HANDBOOK FOR VEGETABLE GROWERS

19

Pu

erar

ialo

bata

(Wil

ld.)

Oh

wi

Ku

dzu

Roo

t,le

af,

ten

der

shoo

tS

phen

osty

lis

sten

ocar

pa(H

och

st.

ex.

A.

Ric

h.)

Har

ms.

Afr

ican

yam

bean

Tu

ber

and

seed

Tet

rago

nol

obu

spu

rpu

reu

sM

oen

chA

spar

agu

spe

a,w

inge

dpe

aIm

mat

ure

pod

Tri

gon

ella

foen

um

-gra

ecu

mL

.F

enu

gree

kL

eaf,

ten

der

shoo

t,im

mat

ure

pod

Vic

iafa

baL

.Fa

vabe

an,

broa

dbe

an,

hor

sebe

anIm

mat

ure

seed

Vig

na

acon

itif

olia

(Jac

q.)

Mar

ech

alM

oth

bean

Imm

atu

repo

dan

dse

edV

ign

aan

gula

ris

(Wil

ld.)

Oh

wi

&O

has

hi

Adz

uki

bean

See

dV

ign

am

un

go(L

.)H

eppe

rB

lack

gram

,u

rdIm

mat

ure

pod

and

seed

Vig

na

rad

iata

(L.)

Wil

cz.

Mu

ng

bean

Imm

atu

repo

d,sp

rou

ted

seed

,se

edV

ign

asu

bter

ran

ea(L

.)V

erdn

.M

adag

asca

rgr

oun

dnu

tIm

mat

ure

/mat

ure

seed

Vig

na

um

bell

ata

(Th

un

b.)

Oh

wi

&O

has

hi

Ric

ebe

anS

eed

Vig

na

un

guic

ula

ta(L

.)W

alp.

subs

p.cy

lin

dri

ca(L

.)V

anE

selt

.ex

Ver

dn.

Cat

jan

gIm

mat

ure

pod

and

seed

Vig

na

un

guic

ula

ta(L

.)W

alp.

subs

p.se

squ

iped

alis

(L.)

Asp

arag

us

bean

,ya

rd-l

ong

bean

Imm

atu

repo

dan

dse

edV

ign

au

ngu

icu

lata

(L.)

Wal

p.su

bsp.

un

guic

ula

ta(L

.)S

outh

ern

pea,

cow

pea

Imm

atu

repo

dan

dse

edG

net

acea

eG

NE

TU

MF

AM

ILY

Gn

etu

mgn

emon

L.

Bu

cko

Lea

f,te

nde

rsh

oot

and

fru

itH

alor

agac

eae

WA

TE

RM

ILF

OIL

FA

MIL

Y

Page 34: HANDBOOK FOR VEGETABLE GROWERS

20

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Myr

ioph

yllu

maq

uat

icu

m(V

ello

zo)

Ver

dc.

Par

rot’s

feat

her

Sh

oot

tip

Icac

inac

eae

ICA

CIN

AF

AM

ILY

Icac

ina

sen

egal

ensi

sA

.Ju

ss.

Fals

eya

mT

ube

rL

amia

ceae

MIN

TF

AM

ILY

Lyc

opu

slu

cid

us

Tu

rcz.

Sh

iny

bugl

ewee

dR

hiz

ome

Men

tha

pule

giu

mL

.P

enn

yroy

alm

int

Lea

fM

enth

asp

icat

aL

.em

.H

arle

yS

pear

min

tL

eaf

and

infl

ores

cen

ceO

cim

um

basi

licu

mL

.C

omm

onba

sil,

swee

tba

sil

Lea

fO

cim

um

can

um

Sim

s.H

oary

basi

lYo

un

gle

aves

Ori

gan

um

vulg

are

L.

Mar

jora

mF

low

erin

gpl

ant

and

infl

ores

cen

ceP

eril

lafr

ute

scen

s(L

.)B

ritt

.va

r.cr

ispa

(Th

un

b.)

Dea

ne

Per

illa

Lea

fan

dse

ed

Ple

ctra

nth

us

escu

len

tus

N.E

.B

r.K

affi

rpo

tato

Tu

ber

Sat

ure

jah

orte

nsi

sL

.S

avor

y,su

mm

ersa

vory

Lea

fan

dyo

un

gsh

oot

Sol

enos

tem

onro

tun

dif

oliu

s(P

oir.

)J.

K.

Mor

ton

Hau

sapo

tato

Tu

ber

Sta

chys

affi

nis

Bu

nge

Japa

nes

ear

tich

oke,

Ch

ines

ear

tich

oke

Tu

ber

Mal

vace

aeM

AL

LO

WF

AM

ILY

Abe

lmos

chu

ses

cule

ntu

s(L

.)M

oen

chO

kra,

gum

boIm

mat

ure

fru

itA

belm

osch

us

man

ihot

(L.)

Med

iku

sH

ibis

cus

root

Lea

fan

dte

nde

rsh

oot

Page 35: HANDBOOK FOR VEGETABLE GROWERS

21

Hib

iscu

sac

etos

ella

Wel

.ex

Hie

rnFa

lse

rose

lle

You

ng

leaf

and

shoo

tH

ibis

cus

sabd

arif

faL

.Ja

mai

can

sorr

elC

alyx

and

leaf

Mal

varo

tun

dif

olia

L.

Mal

low

Lea

fan

dyo

un

gsh

oot

Mor

acea

eM

UL

BE

RR

YF

AM

ILY

Hu

mu

lus

lupu

lus

L.

Hop

sT

ende

rsh

oot

Nel

um

bon

acea

eL

OT

US

FA

MIL

YN

elu

mbo

nu

cife

raG

aert

n.

Lot

us

root

Rh

izom

e,le

af,

seed

See

dN

ycta

gin

acea

eF

OU

RO

’CL

OC

KF

AM

ILY

Mir

abil

isex

pan

sa(R

uiz

&P

aron

)S

tan

dley

Mau

kaT

ube

rN

ymph

aeac

eae

WA

TE

RL

ILY

FA

MIL

YE

ury

ale

fero

xS

alis

b.F

oxn

ut

See

d,te

nde

rsh

oot,

root

Nym

phae

an

ouch

ali

Bu

rm.

f.W

ater

lily

Rh

izom

e,fl

ower

stal

k,se

edO

nag

race

aeE

VE

NIN

GP

RIM

RO

SE

FA

MIL

YO

enot

her

abi

enn

isL

.E

ven

ing

prim

rose

Lea

fan

dte

nde

rsh

oot

Oro

ban

chac

eae

BR

OO

MR

AP

EF

AM

ILY

Oro

ban

che

cren

ata

For

sska

l.B

room

rape

Sh

oot

Oxa

lida

ceae

OX

AL

ISF

AM

ILY

Oxa

lis

tube

rosa

Mol

ina

Oka

,oc

aT

ube

rP

assi

flor

acea

eP

AS

SIO

NF

LO

WE

RF

AM

ILY

Pas

sifl

ora

bifl

ora

Lam

.P

assi

onfl

ower

Sh

oot,

you

ng

leaf

,fl

ower

Ped

alia

ceae

PE

DA

LIU

MF

AM

ILY

Ses

amu

mra

dia

tum

Sch

um

.ex

Th

onn

.G

ogor

oYo

un

gsh

oot

Ph

ytol

acca

ceae

PO

KE

WE

ED

FA

MIL

Y

Page 36: HANDBOOK FOR VEGETABLE GROWERS

22

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Ph

ytol

acca

acin

osa

Rox

b.In

dian

poke

Lea

fan

dyo

un

gsh

oot

Ph

ytol

acca

amer

ican

aL

.P

oke

Lea

fan

dyo

un

gsh

oot

Ph

ytol

acca

escu

len

taV

anH

outt

eP

okew

eed

Lea

fan

dyo

un

gsh

oot

Ph

ytol

acca

octa

nd

raL

.In

kwee

dL

eaf

and

you

ng

shoo

tP

lan

tagi

nac

eae

PL

AIN

TA

INF

AM

ILY

Pla

nta

goco

ron

opu

sL

.va

r.sa

tiva

Fio

riB

uck

shor

npl

anta

inL

eaf

Pol

ygon

acea

eB

UC

KW

HE

AT

FA

MIL

YR

heu

mrh

abar

baru

mL

.R

hu

barb

,pie

plan

tP

etio

leR

um

exac

etos

aL

.S

orre

lL

eaf

Ru

mex

pati

enti

aL

.D

ock

Lea

fR

um

exsc

uta

tus

L.

Fre

nch

sorr

elL

eaf

Por

tula

cace

aeP

UR

SL

AN

EF

AM

ILY

Mon

tia

perf

olia

ta(D

onn

.ex

Wil

ld.)

How

ell

Win

ter

purs

lan

e,m

iner

’sle

ttu

ceL

eaf

Por

tula

caol

erac

eaL

.P

urs

lan

eL

eaf

and

you

ng

shoo

tT

alin

um

pan

icu

latu

m(J

acq.

)G

aert

n.

Fla

mefl

ower

You

ng

shoo

tT

alin

um

tria

ngu

lare

(Jac

q.)

Wil

ld.

Wat

erle

af,S

ura

imsp

inac

hL

eaf

Res

edac

eae

MIG

NO

NE

TT

EF

AM

ILY

Res

eda

odor

ata

L.

Mig

non

ette

Lea

fan

dfl

ower

Ros

acea

eR

OS

EF

AM

ILY

Fra

gari

a�

An

anas

saD

uch

esn

e.S

traw

berr

yF

ruit

Sau

rura

ceae

LIZ

AR

D’S

-TA

ILF

AM

ILY

Hou

ttu

ynia

cord

ata

Th

un

b.S

auru

ris,

tsi

Lea

f

Page 37: HANDBOOK FOR VEGETABLE GROWERS

23

Sol

anac

eae

NIG

HT

SH

AD

EF

AM

ILY

Cap

sicu

man

nu

um

L.

Gro

ssu

mgr

oup

Bel

lpe

pper

Fru

itC

apsi

cum

ann

uu

mL

.L

ongu

mgr

oup

Cay

enn

epe

pper

,ch

ile

pepp

erM

atu

refr

uit

Cap

sicu

mba

ccat

um

L.

var.

bacc

atu

mS

mal

lpe

pper

Fru

itC

apsi

cum

chin

ense

Jacq

.S

cotc

hbo

nn

etpe

pper

,h

aban

ero

pepp

erF

ruit

Cap

sicu

mfr

ute

scen

sL

.T

abas

cope

pper

Fru

itC

apsi

cum

pube

scen

sR

uiz

&P

avon

Roc

oto

Fru

itC

yph

oman

dra

beta

cea

(Cav

.)S

endt

ner

Tam

aril

lo,t

ree

tom

ato

Rip

efr

uit

Lyc

ium

chin

ense

Mil

l.B

oxth

orn

Lea

fL

ycop

ersi

con

escu

len

tum

Mil

l.T

omat

oR

ipe

fru

itL

ycop

ersi

con

pim

pin

elli

foli

um

(L.)

Mil

l.C

urr

ant

tom

ato

Rip

efr

uit

Ph

ysal

isal

keke

ngi

L.

Ch

ines

ela

nte

rnpl

ant

Rip

efr

uit

Ph

ysal

isix

ocar

paB

rot.

exH

orn

em.

Tom

atil

loU

nri

pefr

uit

Ph

ysal

ispe

ruvi

ana

L.

Cap

ego

oseb

erry

Rip

efr

uit

Sol

anu

mae

thio

picu

mL

.G

olde

nap

ple

Fru

itan

dle

afS

olan

um

amer

ican

um

Mil

l.A

mer

ican

blac

kn

igh

tsh

ade

Ten

der

shoo

t,le

af,

un

ripe

fru

itS

olan

um

gilo

Rad

diG

ilo,

jilo

You

ng

shoo

tS

olan

um

inca

nu

mL

.G

arde

neg

gU

nri

pefr

uit

Sol

anu

min

tegr

ifol

ium

Poi

r.S

carl

eteg

gpla

nt,

tom

ato

eggp

lan

tIm

mat

ure

fru

it

Sol

anu

mm

acro

carp

onL

.A

fric

aneg

gpla

nt

Lea

fan

dfr

uit

Sol

anu

mm

elon

gen

aL

.E

ggpl

ant,

aube

rgin

eIm

mat

ure

fru

itS

olan

um

mu

rica

tum

Ait

.P

epin

o,sw

eet

pepi

no

Rip

efr

uit

Sol

anu

mn

igru

mL

.B

lack

nig

hts

had

eM

atu

refr

uit

,le

af,

ten

der

shoo

tS

olan

um

quit

oen

seL

am.

Nar

anji

llo

Rip

efr

uit

Sol

anu

mto

rvu

mS

war

tzP

eaeg

gpla

nt

Ten

der

shoo

t,im

mat

ure

fru

it

Page 38: HANDBOOK FOR VEGETABLE GROWERS

24

TA

BL

E1.

1.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,A

ND

ED

IBL

EP

AR

TS

OF

PL

AN

TS

US

ED

AS

VE

GE

TA

BL

ES

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eE

dibl

eP

lan

tP

art

Sol

anu

mtu

bero

sum

L.

Pot

ato

Tu

ber

Til

iace

aeB

AS

SW

OO

DF

AM

ILY

Cor

chor

us

olit

oriu

sL

.Je

w’s

mar

row

Lea

fan

dte

nde

rsh

oot

Tra

pace

aeW

AT

ER

CH

ES

TN

UT

FA

MIL

YT

rapa

bico

rnis

Osb

eck

Wat

erch

estn

ut

See

dT

rapa

nat

ans

L.

Wat

erch

estn

ut

See

dT

ropa

cola

ceae

NA

ST

UR

TIU

MF

AM

ILY

Tro

paeo

lum

maj

us

L.

Nas

turt

ium

Lea

f,fl

ower

Tro

paeo

lum

tube

rosu

mR

uiz

&P

avon

Tu

bero

us

nas

turt

ium

Tu

ber

Urt

icac

eae

NE

TT

LE

FA

MIL

YP

ilea

glab

erri

ma

(Blu

me)

Blu

me

Pil

eaL

eaf

Pil

eatr

iner

via

Wig

ht

Pil

eaL

eaf

Urt

ica

dio

ica

L.

Sti

ngi

ng

net

tle

Lea

fV

aler

ian

acea

eV

AL

ER

IAN

FA

MIL

YV

aler

ian

ella

erio

carp

aD

esv.

Ital

ian

corn

-sal

adL

eaf

Val

eria

nel

lalo

cust

a(L

.)L

ater

rade

em.

Bet

cke

Eu

rope

anco

rn-s

alad

Lea

fV

iola

ceae

VIO

LE

TF

AM

ILY

Vio

latr

icol

orL

.V

iole

t,pa

nsy

Flo

wer

,le

afV

itac

eae

GR

AP

EF

AM

ILY

Cis

sus

java

na

DC

.K

anga

roo

vin

eL

eaf,

you

ng

shoo

t

Ada

pted

from

S.J

.K

ays

and

J.C

.S

ilva

Dia

s,C

ult

ivat

edV

eget

able

sof

the

Wor

ld(A

then

s,G

a.:

Exo

n,

1996

).U

sed

wit

hpe

rmis

sion

.

Page 39: HANDBOOK FOR VEGETABLE GROWERS

25

TA

BL

E1.

2.N

AM

ES

OF

CO

MM

ON

VE

GE

TA

BL

ES

INN

INE

LA

NG

UA

GE

S

En

glis

hD

anis

hD

utc

hF

ren

chG

erm

anIt

alia

nP

ortu

gues

eS

pan

ish

Sw

edis

h

Art

ich

oke

arti

skok

arti

sjok

arti

sch

aut

Art

isch

ocke

carc

iofo

alca

chof

raal

cach

ofa

kron

arts

kock

aA

spar

agu

sas

parg

esas

perg

eas

perg

eS

parg

elas

para

goes

parg

oes

parr

ago

spar

ris

Bro

adbe

anh

este

bøn

ne

tuin

boon

feve

Pu

ffbo

hn

efa

va mag

gior

efa

vah

aba

bon

dbon

a

Sn

apbe

anbø

nn

ebo

onh

aric

otB

ohn

efa

giol

ino

feij

aoju

dia

bon

aB

eet

rødb

ede

kroo

tbe

tter

ave

rou

geR

ote

Ru

bebi

etol

ada

orta

bete

rrab

ade

mes

abe

tabo

lro

dbet

a

Bro

ccol

ibr

occo

libr

occo

lich

ou-

broc

oli

Bro

kkol

ica

volo

broc

colo

broc

ulo

broc

uli

broc

coli

Bru

ssel

ssp

rou

tsro

sen

kal

spru

itko

olch

oude

Bru

xell

esR

osen

koh

lca

volo

diB

ruxe

lles

cou

vede

Bru

xela

sco

lde

Bru

sela

sbr

ysse

lkal

Cab

bage

kal

kool

chou

Koh

lca

volo

cou

veco

lka

lC

arro

tka

rott

epe

enca

rott

eK

arot

teca

rota

cen

oura

zan

ahor

iam

orot

Cau

lifl

ower

blom

kal

bloe

mko

olch

ou-fl

eur

Blu

men

koh

lca

volfi

ore

cou

rve-

flor

coli

flor

blom

kal

Cel

ery

sell

eri

seld

erij

cele

riS

chn

itts

elle

rise

dan

oda

erbu

cci

aipo

apio

sell

eri

Cel

eria

ckn

olds

elle

rikn

olse

lder

ijce

leri

-rav

eK

nol

len

sell

erie

seda

no

rapa

aipo

deca

bega

apio

nab

oro

tsel

leri

Ch

icor

yci

kori

eci

chor

eich

icor

eeZ

ich

orie

nw

urz

elci

cori

ach

icor

iado

cafe

ach

icor

iade

raiz

ciko

ria

Ch

ines

eca

bbag

eki

nes

isk

kal

Ch

ines

eko

olch

oude

Ch

ine

Ch

ines

isch

erK

ohl

cavo

loci

nes

eco

uve

daC

hin

aco

lde

Ch

ina

Sal

ladk

al

Sw

eet

corn

sukk

erm

ajs

suik

erm

ais

mai

ssu

cre

Zu

cker

mai

sm

ais

dolc

em

ilh

odo

cem

aiz

dulc

eso

cker

maj

s

Page 40: HANDBOOK FOR VEGETABLE GROWERS

26

TA

BL

E1.

2.N

AM

ES

OF

CO

MM

ON

VE

GE

TA

BL

ES

INN

INE

LA

NG

UA

GE

S(C

onti

nu

ed)

En

glis

hD

anis

hD

utc

hF

ren

chG

erm

anIt

alia

nP

ortu

gues

eS

pan

ish

Sw

edis

h

Cu

cum

ber

agu

rkko

mko

mm

erco

nco

mbr

eG

urk

ece

trio

lin

ope

pin

ope

pin

ogu

rka

Egg

plan

tae

gpla

nte

aube

rgin

eau

berg

ine

Au

berg

ine

mel

anza

na

beri

nge

labe

ren

jen

aag

gpla

nta

En

dive

endi

vie

andi

jvie

chic

oree

fris

eeE

ndi

vie

indi

via

chic

oria

esca

rola

endi

vies

alla

t

Hor

sera

dish

pebe

rrod

mie

riks

wor

tel

raif

ort

Mee

rret

tich

barb

afon

tera

ban

oru

stic

ora

ban

ape

ppar

rot

Kal

egr

ønka

lbo

erek

ool

chou

vert

Gru

nko

hl

cavo

loa

fogl

iari

ccia

cou

ve gale

gafr

izad

a

berz

aen

ana

gron

kal

Koh

lrab

ikn

ude

kal

kool

rabi

chou

-rav

eK

ohlr

abi

cavo

lo-r

apa

cou

ve-

raba

no

coli

rrab

ano

kalr

abbi

Lee

kpo

rre

prei

poir

eau

Por

ree

porr

oal

ho

porr

opu

erro

purj

olok

Let

tuce

sala

tsl

ala

itu

eS

alat

latt

uga

alfa

cele

chu

gasa

llad

Mel

onm

elon

mel

oen

mel

onM

elon

epo

pon

em

elao

mel

onm

elon

On

ion

løg

ui

ogn

onZ

wie

bel

cipo

lla

cebo

lace

boll

alo

kP

arsl

eype

rsil

lepe

ters

elie

pers

ilP

eter

sili

epr

ezze

mol

aco

mu

ne

sals

afr

isad

ape

reji

lpe

rsil

ja

Par

snip

past

inak

past

inaa

kpa

nai

sP

asti

nak

epa

stin

aca

past

inac

ach

irci

vıa

past

ern

acka

Pea

hav

eaer

ter

wt

pois

Erb

sepi

sell

oer

vilh

agu

isan

tear

tP

eppe

rpe

berf

rugt

papr

ika

poiv

ron

Pap

rika

pepe

ron

edo

lce

pim

ento

pim

entu

spa

prik

a

Pot

ato

kart

offe

laa

rdap

pel

pom

me

dete

rre

Kar

toff

elpa

tata

bata

tapa

tata

pota

tis

Page 41: HANDBOOK FOR VEGETABLE GROWERS

27

Pu

mpk

ince

ntn

ergr

aesk

arre

uze

npo

mpo

enpo

tiro

nZ

entn

erku

rbis

zucc

agi

gan

teab

obor

aca

laba

zagr

ande

jatt

epu

mpa

Rad

ish

radi

sra

dijs

radi

sR

adie

sra

van

ello

raba

net

era

ban

ora

disa

Rh

uba

rbra

barb

erra

barb

errh

uba

rbe

Rh

abar

ber

raba

rbar

oru

ibar

boru

ibar

bora

barb

erR

uta

baga

kalr

abi

kool

raap

chou

-nav

etK

ohlr

ube

nav

one

ruta

baga

coli

nab

oka

lrot

Spi

nac

hsp

inat

spin

azie

epin

ard

Spi

nat

spin

aci

espi

naf

rees

pin

aca

spen

atN

ew Zea

lan

dsp

inac

h

nyz

eela

nds

ksp

inat

Nie

uw

zeel

ands

esp

inaz

iete

trag

one

Neu

seel

ands

kS

pin

atsp

inac

iodi

Nu

ova

Zel

anda

espi

naf

reda

Nov

aZ

elan

dia

espi

nac

aN

uev

aZ

elan

dia

nyz

eela

nds

ksp

enat

Str

awbe

rry

jord

baer

aard

bei

frai

seE

rdbe

ere

frag

ola

mor

ango

fres

ajo

rdgu

bbe

Su

mm

ersq

uas

hm

ande

lgra

eska

vrpo

mpo

enci

trou

elle

Gar

ten

zucc

aab

obor

apo

rqu

iera

caba

baza

mat

pum

pa

Sw

iss

char

dbl

adbe

desn

ijbi

etpo

iree

Man

gold

biet

ola

daco

sta

acel

gaac

elga

man

gold

Tom

ato

tom

atto

maa

tto

mat

eT

omat

epo

mod

oro

tom

ate

tom

ate

tom

atT

urn

ipm

ajro

em

eira

apn

avet

Mai

rube

rapa bi

anca

nab

on

abo-

colz

aro

va

Wat

erm

elon

van

dmel

onw

ater

mel

oen

mel

ond’

eau

Was

serm

elon

em

elor

ed’

acqu

am

elan

cia

san

dia

vatt

enm

elon

Ada

pted

from

P.J.

Sta

dhou

ders

(ch

ief

ed.)

,Els

evie

r’s

Dic

tion

ary

ofH

orti

cult

ura

lan

dA

gric

ult

ura

lP

lan

tP

rod

uct

ion

(New

York

:E

lsev

ier

Sci

ence

,199

0).U

sed

wit

hpe

rmis

sion

.

Page 42: HANDBOOK FOR VEGETABLE GROWERS

28

02E

DIB

LE

FL

OW

ER

S

TA

BL

E1.

3.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,F

LO

WE

RC

OL

OR

,AN

DT

AS

TE

OF

SO

ME

ED

IBL

EF

LO

WE

RS

Cau

tion

s:

●P

rope

rid

enti

fica

tion

ofed

ible

flow

ers

isn

eces

sary

.●

Edi

ble

flow

ers

shou

ldbe

pest

icid

efr

ee.

●F

low

ers

ofpl

ants

trea

ted

wit

hfr

esh

man

ure

shou

ldn

otbe

use

d.●

Intr

odu

cen

ewfl

ower

sin

toth

edi

etsl

owly

sopo

ssib

leal

lerg

icre

acti

ons

can

beid

enti

fied

.

Bot

anic

alN

ame

Com

mon

Nam

eF

low

erC

olor

Tas

te

Aga

vace

aeC

EN

TU

RY

PL

AN

TF

AM

ILY

Yucc

afi

lam

ento

saL

.Y

ucc

aC

ream

yw

hit

ew

ith

purp

leti

nge

Sli

ghtl

ybi

tter

All

icac

eae

ON

ION

FA

MIL

YA

lliu

msc

hoe

nop

rasu

mL

.C

hiv

eL

aven

der

On

ion

,st

ron

gA

lliu

mtu

bero

sum

Rot

tl.

ex.

Spr

enge

lC

hin

ese

chiv

eW

hit

eO

nio

n,

stro

ng

Tu

lbag

hia

viol

acea

Har

v.S

ocie

tyga

rlic

Lil

acO

nio

nA

piac

eae

CA

RR

OT

FA

MIL

YA

net

hu

mgr

aveo

len

sL

.D

ill

Yell

owS

tron

ger

than

leav

esA

nth

risc

us

cere

foli

um

(L.)

Hof

fm.

Ch

ervi

lW

hit

e,pi

nk,

yell

ow,

red,

oran

geP

arsl

ey

Cor

ian

dru

msa

tivu

mL

.C

oria

nde

rW

hit

eM

ilde

rth

anle

afF

oen

icu

lum

vulg

are

Mil

l.F

enn

elP

ale

yell

owL

icor

ice,

mil

der

than

leaf

Page 43: HANDBOOK FOR VEGETABLE GROWERS

29

Ast

erac

eae

SU

NF

LO

WE

RF

AM

ILY

Bel

lis

pere

nn

isL

.E

ngl

ish

dais

yW

hit

eto

purp

lepe

tals

Mil

dto

bitt

erC

alen

du

laof

fici

nal

isL

.C

alen

dula

Yell

ow,

gold

,or

ange

Tan

gyan

dpe

pper

yC

arth

amu

sti

nct

oriu

sL

.S

affl

ower

Yell

owto

deep

red

Bit

ter

Ch

amae

mel

um

nob

ilis

Mil

l.E

ngl

ish

cham

omil

eW

hit

epe

tals

,ye

llow

cen

ter

Sw

eet

appl

e

Ch

rysa

nth

emu

mco

ron

ariu

mL

.G

arla

nd

chry

san

them

um

Yell

owto

wh

ite

Mil

dC

hic

oriu

min

tybu

sL

.C

hic

ory

Blu

eto

lave

nde

rS

imil

arto

endi

veD

end

ran

them

a�

gran

dif

oliu

mK

itam

.C

hry

san

them

um

Var

iou

sS

tron

gto

bitt

er

Leu

can

them

um

vulg

are

Lam

.O

xeye

dais

yW

hit

e,ye

llow

cen

ter

Mil

dT

aget

eser

ecta

L.

Afr

ican

mar

igol

dW

hit

e,go

ldV

aria

ble,

mil

dto

bitt

erT

aget

ote

nu

ifol

iaC

av.

Sig

net

mar

igol

dW

hit

e,go

ld,

yell

ow,

red

Cit

rus,

mil

der

than

T.er

ecta

Tar

axic

um

offi

cian

leL

.D

ande

lion

Yell

owB

itte

rB

egon

aice

aeB

EG

ON

IAF

AM

ILY

Beg

onia

tube

rhyb

rid

aT

ube

rou

sbe

gon

iaV

ario

us

Cit

rus

Bor

agin

acea

eB

OR

AG

EF

AM

ILY

Bor

ago

offi

cin

alis

L.

Bor

age

Blu

e,pu

rple

,la

ven

der

Cu

cum

ber

Bra

ssic

acea

eM

US

TA

RD

FA

MIL

YB

rass

ica

spp.

Mu

star

dYe

llow

Tan

gyto

hot

Eru

cave

sica

ria

Mil

l.A

ruga

laW

hit

eN

utt

y,sm

oky

Rap

han

us

sati

vus

L.

Rad

ish

Wh

ite,

pin

kS

picy

Car

yoph

ylla

ceae

PIN

KF

AM

ILY

Dia

nth

us

spp.

Pin

ksP

ink,

wh

ite,

red

Spi

cy,

clov

esC

ucu

rbit

acea

eG

OU

RD

FA

MIL

YC

ucu

rbit

ape

poL

.S

um

mer

squ

ash

,pu

mpk

inYe

llow

Mil

d,ra

wsq

uas

h

Page 44: HANDBOOK FOR VEGETABLE GROWERS

30

TA

BL

E1.

3.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,F

LO

WE

RC

OL

OR

,AN

DT

AS

TE

OF

SO

ME

ED

IBL

EF

LO

WE

RS

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eF

low

erC

olor

Tas

te

Faba

ceae

PE

AF

AM

ILY

Cer

cis

can

aden

sis

L.

Red

bud

Pin

kB

ean

-lik

eto

tart

appl

eP

has

eolu

sco

ccin

eus

L.

Sca

rlet

run

ner

bean

Bri

ght

oran

geto

scar

let

Mil

dra

wbe

an

Pis

um

sati

vum

L.

Gar

den

pea

Wh

ite,

tin

ged

pin

kR

awpe

aT

rifo

liu

mpr

eten

seL

.R

edcl

over

Pin

k,li

lac

Hay

Ger

ania

ceae

GE

RA

NIU

MF

AM

ILY

Pel

argo

niu

msp

p.L’

Her

itS

cen

ted

gera

niu

ms

Wh

ite,

red,

pin

k,pu

rple

Var

iou

s,e.

g.,

appl

e,le

mon

,ro

se,

spic

e,et

c.Ir

idac

eae

IRIS

FA

MIL

YG

lad

iolu

ssp

p.L

.G

ladi

olu

sV

ario

us

Med

iocr

eL

amia

ceae

MIN

TF

AM

ILY

Hys

sopu

sof

fici

nal

isL

.H

ysso

pB

lue,

pin

k,w

hit

eB

itte

r,si

mil

arto

ton

icL

avan

du

laau

gust

ifol

iaM

ill.

Lav

ende

rL

aven

der,

purp

le,

pin

k,w

hit

eH

igh

lype

rfu

med

Mel

issa

offi

cin

alis

L.

Lem

onba

lmC

ream

yw

hit

eL

emon

y,sw

eet

Men

tha

spp.

L.

Min

tL

aven

der,

pin

k,w

hit

eM

inty

Mon

ard

ad

idym

aL

.B

eeba

lmR

ed,

pin

k,w

hit

e,la

ven

der

Tea

-lik

e

Oci

mu

mba

sili

cum

L.

Bas

ilW

hit

eto

pale

pin

kS

picy

Ori

gan

um

vulg

are

L.

Ore

gan

oW

hit

eS

picy

,pu

nge

nt

Ori

gan

um

maj

oran

aL

.M

arjo

ram

Pal

epi

nk

Spi

cy,

swee

t

Page 45: HANDBOOK FOR VEGETABLE GROWERS

31

Ros

mar

inu

sof

fici

nal

isL

.R

osem

ary

Blu

e,pi

nk,

wh

ite

Mil

dro

sem

ary

Sal

via

ruti

lan

sC

arr.

Pin

eapp

lesa

geS

carl

etP

inea

pple

/sag

eov

erto

nes

Sal

via

offi

cin

alis

L.

Sag

eB

lue,

purp

le,

wh

ite,

pin

kF

low

ery

sage

Sat

ure

jah

orte

nsi

sL

.S

um

mer

savo

ryP

ink

Mil

dly

pepp

ery,

spic

yS

atu

reja

mon

tan

aL

.W

inte

rsa

vory

Pal

ebl

ue

topu

rple

Mil

dly

pepp

ery,

spic

yT

hym

us

spp.

L.

Th

yme

Pin

k,pu

rple

,w

hit

eM

ilde

rth

anle

aves

Lil

iace

aeL

ILY

FA

MIL

YH

emer

ocal

lis

fulv

aL

.D

ayli

lyT

awn

yor

ange

Coo

ked

aspa

ragu

s/zu

cch

ini

Mu

scar

in

egle

ctu

mG

uss

.ex

Ten

Gra

peh

yaci

nth

Pin

k,bl

ue

Gra

pey

Tu

lipa

spp.

L.

Tu

lip

Var

iou

sS

ligh

tly

swee

tor

bitt

erM

alva

ceae

MA

LL

OW

FA

MIL

YA

belm

och

us

escu

len

tus

(L.)

Moe

nch

.O

kra

Yell

ow,

red

Mil

d,sw

eet,

slig

htl

ym

uci

lagi

nou

sA

lcea

rosa

L.

Hol

lyh

ock

Var

iou

sS

ligh

tly

bitt

erH

ibis

cus

rosa

-sin

ensi

sL

.H

ibis

cus

Ora

nge

,re

d,pu

rple

Cit

rus,

cran

berr

yH

ibis

cus

syri

acu

sL

.R

ose

ofS

har

onR

ed,

wh

ite,

purp

le,

viol

etM

ild,

nu

tty

Myr

tace

aeM

YR

TL

EF

AM

ILY

Acc

ase

llow

iara

O.

Ber

gP

inea

pple

guav

aW

hit

eto

deep

pin

kP

apay

aor

exot

icm

elon

Ole

acea

eO

LIV

EF

AM

ILY

Syr

inga

vulg

aris

L.

Lil

acW

hit

e,pi

nk,

purp

le,

lila

cP

erfu

me,

slig

htl

ybi

tter

Pap

aver

acea

eP

OP

PY

FA

MIL

YS

angu

isor

bam

inor

Soe

p.B

urn

etR

edC

ucu

mbe

rR

osac

ese

RO

SE

FA

MIL

Y

Page 46: HANDBOOK FOR VEGETABLE GROWERS

32

TA

BL

E1.

3.B

OT

AN

ICA

LN

AM

ES

,CO

MM

ON

NA

ME

S,F

LO

WE

RC

OL

OR

,AN

DT

AS

TE

OF

SO

ME

ED

IBL

EF

LO

WE

RS

(Con

tin

ued

)

Bot

anic

alN

ame

Com

mon

Nam

eF

low

erC

olor

Tas

te

Mal

us

spp.

Mil

l.A

pple

,cr

abap

ple

Wh

ite

topi

nk

Sli

ghtl

yfl

oral

toso

ur

Ru

biac

eae

MA

DD

ER

FA

MIL

YG

aliu

mod

orat

um

(L.)

Sco

p.S

wee

tw

oodr

uff

Wh

ite

Sw

eet,

gras

sy,

van

illa

Ru

tace

aeR

UE

FA

MIL

YC

itru

sli

mon

(L.)

Bu

rm.

Lem

onW

hit

eC

itru

s,sl

igh

tly

bitt

erC

itru

ssi

nen

sis

(L.)

Osb

eck.

Ora

nge

Wh

ite

Cit

rus,

swee

t/st

ron

gT

ropa

eola

ceae

NA

ST

UR

TIU

MF

AM

ILY

Tro

paeo

lum

maj

us

L.

Nas

turt

ium

Var

iabl

eW

ater

cres

s,pe

pper

yV

iola

ceae

VIO

LE

TF

AM

ILY

Vio

laod

orat

aL

.V

iole

tV

iole

t,pi

nk,

wh

ite

Sw

eet

Vio

la�

wit

troc

kian

aG

ams.

Pan

syV

ario

us,

mu

ltic

olor

edS

tron

ger

than

viol

ets

Vio

latr

icol

orL

.Jo

hn

ny-

jum

p-u

pV

iole

t,w

hit

e,ye

llow

Str

onge

rth

anvi

olet

s

Ada

pted

from

K.B

.B

ader

tsh

eran

dS

.E.

New

man

,Ed

ible

Flo

wer

s(C

olor

ado

Coo

pera

tive

Ext

ensi

on),

htt

p://

ww

w.e

xt.c

olos

tate

.edu

/pu

bs/g

arde

n/0

7237

.htm

l.

Use

ful

refe

ren

ce:

Jean

ne

Mac

kin

,Cor

nel

lB

ook

ofH

erbs

and

Ed

ible

Flo

wer

s(I

thac

a,N

.Y.:

Cor

nel

lC

oope

rati

veE

xten

sion

).

Page 47: HANDBOOK FOR VEGETABLE GROWERS

33

03U.S. VEGETABLE PRODUCTION

TABLE 1.4. U.S. VEGETABLE PRODUCTION STATISTICS:LEADING FRESH MARKET VEGETABLE STATES, 20041

Rank

Harvested Acreage

State% ofTotal

Production

State% ofTotal

Value

State% ofTotal

1 California 43.4 California 48.8 California 52.92 Florida 9.5 Florida 9.1 Florida 11.83 Georgia 7.0 Arizona 8.4 Arizona 8.74 Arizona 6.7 Georgia 4.5 Georgia 3.95 New York 4.0 Texas 3.7 Texas 3.5

Adapted from Vegetables, 2004 Summary (USDA, National Agricultural Statistics Service Vg 1–2,2005), http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.1 Includes data for artichoke, asparagus, * lima bean, snap bean, broccoli, * Brussels sprouts, cabbage,carrot, cauliflower, * celery, cantaloupe, cucumber, eggplant, escarole / endive, garlic, honeydew melon,lettuce, onion, bell pepper, spinach, sweet corn, tomato, and watermelon.* Includes fresh market and processing.

Page 48: HANDBOOK FOR VEGETABLE GROWERS

34

TABLE 1.5. IMPORTANT STATES IN THE PRODUCTION OF U.S.FRESH MARKET VEGETABLES BY CROP VALUE, 2004

Crop First Second Third

Artichoke1 California — —Asparagus1 California Washington MichiganBean, snap Florida California GeorgiaBroccoli1 California Arizona —Cabbage California Texas New YorkCantaloupe California Arizona TexasCarrot California Texas MichiganCauliflower1 California Arizona New YorkCelery California Michigan —Cucumber Florida Georgia CaliforniaGarlic California Oregon NevadaHoneydew melon California Arizona TexasLettuce, head California Arizona ColoradoLettuce, leaf California Arizona —Lettuce, romaine California Arizona —Mushroom1 Pennsylvania California FloridaOnion California Texas OregonPepper, bell California Florida New JerseyPepper, chile California New Mexico TexasPumpkin New York Pennsylvania CaliforniaSpinach California Arizona TexasSquash California Florida New YorkStrawberry California Florida North CarolinaSweet corn California Florida New YorkTomato California Florida TexasWatermelon California Florida Texas

Adapted from Vegetables, 2004 Summary (USDA, National Agricultural Statistics Service Vg 1–2,2005), http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.1 Includes fresh market and processing.

Page 49: HANDBOOK FOR VEGETABLE GROWERS

35

TABLE 1.6. HARVESTED ACREAGE, PRODUCTION, AND VALUEOF U.S. FRESH MARKET VEGETABLES, 2002–2004AVERAGE

Crop AcresProduction(1000 cwt)

Value($1000)

Artichoke1 7,633 925 71,716Asparagus1 58,833 1,086 176,870Bean, snap 94,733 5,840 277,141Broccoli1 133,300 19,520 119,995Cabbage 75,460 23,967 316,398Cantaloupe 88,583 21,608 356,867Carrot 85,400 26,577 518,266Cauliflower1 40,533 6,612 218,110Celery1 27,300 18,932 260,904Cucumber 55,357 10,005 202,636Garlic1 33,133 5,705 151,452Honeydew melon 23,100 5,133 93,235Lettuce, head 185,400 78,785 1,282,088Lettuce, leaf 55,100 13,461 422,747Lettuce, romaine 72,000 22,649 534,087Onion 165,153 74,702 870,217Pepper, bell1 54,167 16,196 511,813Pepper, chile1 29,700 4,223 110,460Pumpkin1 41,657 8,878 90,867Spinach 36,393 5,543 203,619Squash1 51,867 8,078 207,571Strawberry1 49,200 20,847 1,336,008Sweet corn 246,243 28,031 559,580Tomato 125,707 37,094 1,309,213Watermelon 147,733 38,207 328,342

Adapted from Vegetables, 2004 Summary (USDA, National Agricultural Statistics Service Vg 1–2,2005), http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.1 Includes fresh market and processing.

Page 50: HANDBOOK FOR VEGETABLE GROWERS

36

TABLE 1.7. AVERAGE U.S. YIELDS OF FRESH MARKETVEGETABLES, 2002–2004

Crop Yield (cwt /acre)

Artichoke1 122Asparagus1 31Bean, snap 62Broccoli1 146Cabbage 317Cantaloupe 244Carrot 311Cauliflower1 163Celery1 693Cucumber 181Garlic1 172Honeydew melon 223Lettuce, head 371Lettuce, leaf 244Lettuce, romaine 315Onion 452Pepper, bell1 299Pepper, chile1 142Pumpkin1 211Spinach 152Squash1 156Strawberry1 423Sweet corn 114Tomato 295Watermelon 259

Adapted from Vegetables, 2004 Summary (USDA, National Agricultural Statistics Service Vg 1–2,2005), http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.1 Includes fresh market and processing.

Page 51: HANDBOOK FOR VEGETABLE GROWERS

37

TABLE 1.8. LEADING U.S. PROCESSING VEGETABLE STATES,20041

Rank

Harvested Acreage

State% ofTotal

Production

State% ofTotal

Value

State% ofTotal

1 California 24.1 California 67.8 California 51.22 Minnesota 16.0 Washington 6.3 Wisconsin 7.03 Wisconsin 15.0 Wisconsin 5.7 Minnesota 6.94 Washington 11.0 Minnesota 5.7 Washington 6.85 Oregon 5.0 Oregon 2.4 Michigan 4.1

Adapted from Vegetables, 2004 Summary (USDA, National Agricultural Statistics Service Vg 1–2,2005), http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.1 Includes lima bean, snap bean, carrot, sweet corn, cucumber for pickles, pea, spinach, and tomato.

TABLE 1.9. HARVESTED ACREAGE, PRODUCTION, AND VALUEOF U.S. PROCESSING VEGETABLES, 2002–2004AVERAGE

Crop AcresProduction

(tons)Value

($1000)

Bean, lima 46,267 59,757 25,854Bean, snap 196,600 781,630 122,141Carrot 15,770 426,300 32,081Cucumber 116,700 616,907 168,149Pea, green 215,833 402,540 101,186Spinach 12,640 118,140 13,354Sweet corn 416,500 3,100,640 217,495Tomato 302,247 11,252,313 658,516

Adapted from Vegetables, 2004 Summary (USDA, National Agricultural Statistics Service Vg 1–2,2005), http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.

Page 52: HANDBOOK FOR VEGETABLE GROWERS

38

TABLE 1.10. IMPORTANT STATES IN THE PRODUCTION OF U.S.PROCESSING VEGETABLES BY CROP VALUE, 2004

Crop First Second Third

Bean, snap Wisconsin Oregon New YorkCarrot California Washington WisconsinCucumber Michigan Florida North CarolinaPea, green Minnesota Washington WisconsinSpinach California — —Sweet corn Minnesota Washington WisconsinTomato California Indiana Ohio

Adapted from Vegetables, 2004 Sumary (USDA, National Agricultural Statistics Service Vg 1–2, 2005),http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.

TABLE 1.11. AVERAGE U.S. YIELDS OF PROCESSINGVEGETABLES, 2002–2004

CropYield

(tons /acre)

Bean, lima 1.29Bean, snap 3.97Carrot 27.02Cucumber 5.07Pea, green 1.86Spinach 9.44Sweet corn 7.44Tomato 37.20

Adapted from Vegetables, 2004 Summary (USDA, National Agricultural Statistics Service Vg 1–2,2005), http: / / jan.mannlib.cornell.edu / reports / nassr / fruit / pvg-bban / vgan0105.pdf.

Page 53: HANDBOOK FOR VEGETABLE GROWERS

39

TABLE 1.12. U.S. POTATO AND SWEET POTATO PRODUCTIONSTATISTICS: HARVESTED ACREAGE, YIELD,PRODUCTION, AND VALUE, 2002–2004 AVERAGE

Crop AcresYield

(cwt /acre)Production(1000 cwt)

Value($1000)

Potato 1,227,533 373 457,449 2,765,300Sweet Potato 89,400 168 15,029 269,176

Adapted from Vegetables and Melons Outlook VGS-307 (USDA Economic Research Service, 2005),http: / / www.ers.usda.gov / publications / vgs / Feb05 / vgs307.pdf.

TABLE 1.13. IMPORTANT U.S. STATES IN POTATO AND SWEETPOTATO PRODUCTION BY CROP VALUE, 2003

Rank Potato Sweet Potato

1 Idaho North Carolina2 Washington California3 California Louisiana4 Wisconsin Mississippi5 Colorado Alabama

Adapted from Vegetables and Melons Outlook VGS-307 (USDA Economic Research Service, 2005),http: / / www.ers.usda.gov / publications / vgs / Feb05 / vgs307.pdf.

Page 54: HANDBOOK FOR VEGETABLE GROWERS

40

TABLE 1.14. UTILIZATION OF THE U.S. POTATO CROP, 2001–2003AVERAGE

Item

Amount

1000 cwt % of Total

A. Sales 413,227 911. Table stock 129,936 292. Processing 256,808 57

a. Chips 52,825 12b. Dehydration 46,845 10c. Frozen french fries 126,033 28d. Other frozen products 25,473 6e. Canned potatoes 4,651 1f. Starch and flour 981 �1

3. Other sales 26,483 6a. Livestock feed 2,848 �1b. Seed 23,634 5

B. Nonsales 37,992 81. Seed used on farms where grown 5,516 12. Shrinkage 32,476 7

Total production 451,219

Adapted from Vegetables and Melons Outlook VGS-307 (USDA Economic Research Service, 2005),http: / / www.ers.usda.gov / publications / vgs / Feb05 / vgs307.pdf.

Page 55: HANDBOOK FOR VEGETABLE GROWERS

41

04VEGETABLE CONSUMPTION

TABLE 1.15. TRENDS IN U.S. PER CAPITA CONSUMPTION OFVEGETABLES

Year

Amount (lb)1

Fresh Processed Total

1971 171 189 3601975 180 187 3671980 172 184 3561985 187 198 3851990 198 212 4101995 210 223 4332000 228 222 4502004 227 219 446

Adapted from Vegetables and Melons Outlook VGS-307 (USDA Economic Research Service, 2005),http: / / www.ers.usda.gov / publications / vgs / Feb05 / vgs307.pdf.1 Fresh weight equivalent.

Page 56: HANDBOOK FOR VEGETABLE GROWERS

42

TABLE 1.16. U.S. PER CAPITA CONSUMPTION OFCOMMERCIALLY PRODUCED VEGETABLES, 2004

Vegetable

Amount (lb)

Fresh Canned Frozen Total

Artichoke, all — — — 0.7Asparagus 1.1 0.2 0.10 1.4Bean, dry, all — — — 6.7Bean, snap 2.1 3.5 1.9 7.4Broccoli 5.8 — 2.4 8.2Cabbage 7.9 1.1 — 9.0Cantaloupe 11.0 — — 11.0Carrot 8.4 1.5 1.7 11.5Cauliflower 1.7 — 0.5 2.2Celery 6.2 — — 6.2Cucumber 6.3 4.9 — 11.2Eggplant, all — — — 0.7Escarole /endive 0.2 — — 0.3Garlic, all — — — 2.8Honeydew melon 2.2 — — 2.2Lettuce, head 21.3 — — 21.3Lettuce, leaf & romaine 10.0 — — 10.0Mushroom, all 2.6 1.6 — 4.2Onion 19.3 — — 20.81

Pea, green — 1.3 1.9 3.3Pea and lentil, dry, all — — — 0.6Pepper, bell 7.2 — — 7.2Pepper, chile — 5.7 — 5.7Potato 45.6 33.82 56.6 136.0Spinach, all — — — 1.8Strawberry 5.4 — 1.7 7.1Sweet corn3 9.7 8.8 9.5 27.8Sweet potato, all — — — 4.3Tomato 19.1 69.8 — 88.9Watermelon 14.0 — — 14.0Other vegetables, all — — — 12.1

Adapted from Vegetables and Melons Outlook VGS-307 (USDA Economic Research Service, 2005),http: / / www.ers.usda.gov / publications / vgs / Feb05 / vgs307.pdf.1 Includes fresh and dehydrated onion.2 Other processed potato.3 On-cob basis.

Page 57: HANDBOOK FOR VEGETABLE GROWERS

43

TABLE 1.17. TRENDS IN U.S. PER CAPITA CONSUMPTION OFPOTATO, SWEET POTATO, DRY BEAN, AND DRYPEA

Period

Amount (lb)

Potato1 Sweet Potato2 Dry Bean Dry Pea

1947–1949 average 114 13 6.7 0.61957–1959 average 107 8 7.7 0.61965 108 6 6.6 0.41970 118 6 5.9 0.31975 122 5 6.5 0.41980 116 5 5.4 0.41985 122 5 7.1 0.51990 128 5 6.4 0.51995 139 4 7.4 0.52000 139 4 7.6 0.92004 136 4 6.7 0.6

Adapted from Vegetable Outlook and Situation Report TVS-233 (1984); Vegetables and SpecialtiesTVS-260 (1993); Vegetables and Specialties TVS-265 (1995); and Vegetables and Melons Outlook VGS-307 (USDA Economic Research Service, 2005), http: / / www.ers.usda.gov / publications / vgs / Feb05 /vgs307.pdf.1 Includes fresh and processed potato.2 Includes fresh and processed sweet potato.

Page 58: HANDBOOK FOR VEGETABLE GROWERS

44

05WORLD VEGETABLE PRODUCTION

TABLE 1.18. IMPORTANT VEGETABLE-PRODUCING COUNTRIES,2004

Crop First Second Third

Artichoke Italy Spain ArgentinaAsparagus China Peru United StatesBean, snap United States France MexicoCabbage China India Russian FederationCantaloupe China Turkey United StatesCarrot China United States RussiaCauliflower China India ItalyCucumber China Turkey IranEggplant China India TurkeyGarlic China India South KoreaLettuce China United States SpainMushroom China United States NetherlandsOkra India Nigeria PakistanOnion China India United StatesPea, green India China United StatesPepper China Mexico TurkeyPotato China Russian Federation IndiaPumpkin China India UkraineSpinach China United States JapanStrawberry1 United States Spain JapanSweet corn United States Nigeria FranceSweet potato China Uganda NigeriaTomato China United States TurkeyWatermelon China Turkey IranAll China India United States

Adapted from Vegetables and Melons Situation and Outlook Yearbook VGS-2005 (USDA, EconomicResearch Service, 2005), http: / / www.ers.usda.gov / publications / vgs / JulyYearbook2005 / VGS2005.pdf.1 http: / / usda.mannlib.cornell.edu / data-sets / specialty / 95003 /.

Page 59: HANDBOOK FOR VEGETABLE GROWERS

45

TABLE 1.19. WORLD VEGETABLE PRODUCTION, 2001–2003AVERAGE

CountryProduction

(million cwt) (%)

China 8,988.1 48.9India 1,697.3 9.2United States 823.6 4.5Turkey 552.5 3.0Russian Federation 326.0 1.7Italy 325.5 1.7Others 5,622.5 31.0World 18,351.3 100.0

Adapted from Vegetables and Melons Situation and Outlook Yearbook VGS-2005 (USDA, EconomicResearch Service, 2005), http: / / www.ers.usda.gov / publications / vgs / JulyYearbook2005 / VGS2005.pdf.

Page 60: HANDBOOK FOR VEGETABLE GROWERS

46

06N

UT

RIT

ION

AL

CO

MP

OS

ITIO

N

TA

BL

E1.

20.

CO

MP

OS

ITIO

NO

FT

HE

ED

IBL

EP

OR

TIO

NS

OF

FR

ES

H,R

AW

VE

GE

TA

BL

ES

Veg

etab

le

Am

oun

t/10

0g

Edi

ble

Por

tion

Wat

er(%

)E

ner

gy(k

cal)

Pro

tein

(g)

Fat

(g)

Car

boh

ydra

te(g

)F

iber

(g)

Ca

(mg)

P(m

g)F

e(m

g)N

a(m

g)K

(mg)

Art

ich

oke

8547

3.3

0.2

10.5

5.4

4490

1.3

9437

0A

spar

agu

s93

202.

20.

13.

92.

124

522.

12

202

Bea

n,

gree

n90

311.

80.

17.

13.

437

381.

06

209

Bea

n,

lim

a70

113

6.8

0.9

20.2

4.9

3413

63.

18

467

Bee

tgr

een

s91

222.

20.

14.

33.

711

741

2.6

226

762

Bee

tro

ots

8843

1.6

0.2

9.6

2.8

1640

0.8

7832

5B

rocc

oli

8934

2.8

0.4

6.6

2.6

4766

0.7

3331

6B

rocc

oli

raab

9322

3.2

0.5

2.9

2.7

108

732.

133

196

Bru

ssel

ssp

rou

ts86

433.

40.

39.

03.

842

691.

425

389

Cab

bage

,com

mon

9224

1.4

0.1

5.6

2.3

4723

0.6

1824

6C

abba

ge,r

ed90

311.

40.

67.

42.

145

300.

827

243

Cab

bage

,sav

oy91

272.

00.

16.

13.

135

420.

428

230

Car

rot

8841

0.9

0.2

9.6

2.8

3335

0.3

6932

0C

auli

flow

er92

252.

00.

15.

32.

522

440.

430

303

Cel

eria

c89

421.

50.

39.

21.

843

115

0.7

100

300

Cel

ery

9514

0.7

0.2

3.0

1.6

4024

0.2

8026

0

Page 61: HANDBOOK FOR VEGETABLE GROWERS

47

Ch

ayot

e95

170.

80.

13.

91.

717

180.

32

125

Ch

icor

y,w

itlo

of95

170.

90.

14.

03.

128

260.

22

211

Ch

ines

eca

bbag

e95

131.

50.

22.

21.

010

537

0.8

6525

2C

olla

rds

9130

2.5

0.4

5.7

3.6

145

100.

220

169

Cu

cum

ber

9515

0.7

0.1

3.6

0.5

1624

0.3

214

7E

ggpl

ant

9224

1.0

0.2

5.7

3.4

925

0.2

223

0E

ndi

ve94

171.

30.

23.

43.

152

280.

822

314

Gar

lic

5914

96.

40.

533

.12.

118

115

31.

717

401

Kal

e84

503.

30.

710

.02.

013

556

1.7

4344

7K

ohlr

abi

9127

1.7

0.1

6.2

3.6

2446

0.4

2035

0L

eek

8361

1.5

0.3

14.1

1.8

5935

2.1

2018

0L

ettu

ce,

butt

erh

ead

9613

1.4

0.2

2.3

1.1

3533

1.2

523

8L

ettu

ce,

cris

phea

d96

140.

90.

13.

01.

218

200.

410

141

Let

tuce

,gr

een

leaf

9418

1.3

0.3

3.5

0.7

6825

1.4

926

4L

ettu

ce,

red

leaf

9616

1.3

0.2

2.3

0.9

3328

1.2

2518

7L

ettu

ce,

rom

ain

e95

171.

20.

33.

32.

133

301.

08

247

Mel

on,

can

talo

upe

9034

0.8

0.2

8.2

0.9

915

0.2

1626

7M

elon

,ca

saba

9228

1.1

0.1

6.6

0.9

115

0.2

918

2M

elon

,h

oney

dew

9036

0.5

0.1

9.1

0.8

611

0.2

1822

8M

ush

room

9222

3.1

0.3

3.2

1.2

385

0.5

431

4M

ust

ard

gree

ns

9126

2.7

0.2

4.9

3.3

103

431.

525

354

Okr

a90

312.

00.

17.

03.

281

630.

88

303

On

ion

,bu

nch

ing

9032

1.8

0.2

7.3

2.6

7237

1.5

1627

6O

nio

n,

dry

8942

0.9

0.1

10.1

1.4

2227

0.2

314

4P

arsl

ey88

363.

00.

86.

33.

313

858

6.2

5655

4

Page 62: HANDBOOK FOR VEGETABLE GROWERS

48

TA

BL

E1.

20.

CO

MP

OS

ITIO

NO

FT

HE

ED

IBL

EP

OR

TIO

NS

OF

FR

ES

H,R

AW

VE

GE

TA

BL

ES

(Con

tin

ued

)

Veg

etab

le

Am

oun

t/10

0g

Edi

ble

Por

tion

Wat

er(%

)E

ner

gy(k

cal)

Pro

tein

(g)

Fat

(g)

Car

boh

ydra

te(g

)F

iber

(g)

Ca

(mg)

P(m

g)F

e(m

g)N

a(m

g)K

(mg)

Par

snip

8075

1.2

0.3

18.0

4.9

3671

0.6

1037

5P

ea,

edib

le-p

odde

d89

422.

80.

27.

62.

643

532.

14

200

Pea

,gr

een

7981

5.4

0.4

14.5

5.1

2510

81.

55

244

Pep

per,

hot

,ch

ile

8840

2.0

0.2

9.5

1.5

1846

1.2

734

0P

eppe

r,sw

eet

9420

0.9

0.2

4.6

1.7

1020

0.3

317

5P

otat

o79

772.

00.

117

.52.

212

570.

86

421

Pu

mpk

in92

261.

00.

16.

50.

521

440.

81

340

Rad

icch

io93

231.

40.

34.

50.

919

400.

622

302

Rad

ish

9516

0.7

0.1

3.4

1.6

2520

0.3

3923

3R

hu

barb

9421

0.9

0.2

4.5

1.8

8614

0.2

428

8R

uta

baga

9036

1.2

0.2

8.1

2.5

4758

0.5

2033

7S

alsi

fy77

823.

30.

218

.63.

360

750.

720

380

Sh

allo

t80

722.

50.

116

.8—

3760

1.2

1233

4S

outh

ern

pea

7790

3.0

0.4

18.9

5.0

126

531.

14

431

Spi

nac

h91

232.

90.

43.

62.

299

492.

779

558

Squ

ash

,aco

rn88

400.

80.

110

.41.

533

360.

73

347

Squ

ash

,bu

tter

nu

t86

451.

00.

111

.72.

048

330.

74

352

Page 63: HANDBOOK FOR VEGETABLE GROWERS

49

Squ

ash

,Hu

bbar

d88

402.

00.

58.

7—

1421

0.4

732

0S

quas

h,s

call

op94

181.

20.

23.

8—

1936

0.4

118

2S

quas

h,s

um

mer

9516

1.2

0.2

3.4

1.1

1538

0.4

226

2S

quas

h,z

ucc

hin

i97

161.

20.

23.

41.

115

380.

410

262

Str

awbe

rry

9132

0.7

0.3

7.7

2.0

1624

0.4

115

3S

wee

tco

rn76

863.

21.

219

.02.

72

890.

515

270

Sw

eet

pota

to77

861.

60.

120

.13.

030

470.

655

337

Sw

iss

char

d93

191.

80.

23.

71.

651

461.

821

337

9T

aro

7111

21.

50.

226

.54.

143

840.

611

591

Tom

ato,

gree

n93

231.

20.

25.

11.

113

280.

513

204

Tom

ato,

ripe

9518

0.9

0.2

3.9

1.2

1024

0.3

523

7T

urn

ipgr

een

s90

321.

50.

37.

13.

219

042

1.1

4029

6T

urn

ipro

ots

9228

0.9

0.1

6.4

1.8

3027

0.3

6719

1W

ater

mel

on92

300.

60.

27.

60.

47

100.

21

112

Wax

gou

rd96

130.

40.

23.

02.

919

190.

411

16

Ada

pted

from

US

DA

Nu

trie

nt

Dat

abas

efo

rS

tan

dar

dR

efer

ence

,Rel

ease

17(2

005)

,htt

p://

ww

w.n

al.u

sda.

gov

/fn

ic/f

oodc

omp

/Dat

a/S

R17

/rep

orts

/sr1

7pag

e.h

tm.

Page 64: HANDBOOK FOR VEGETABLE GROWERS

50

TA

BL

E1.

21.

VIT

AM

INC

ON

TE

NT

OF

FR

ES

HR

AW

,VE

GE

TA

BL

ES

Veg

etab

le

Am

oun

t/10

0g

Edi

ble

Por

tion

Vit

amin

A(I

U)

Th

iam

ine

(mg)

Rib

oflav

in(m

g)N

iaci

n(m

g)A

scor

bic

Aci

d(m

g)V

itam

inB

6

(mg)

Art

ich

oke

00.

070.

071.

0511

.70.

12A

spar

agu

s75

60.

140.

140.

985.

60.

09B

ean

,gr

een

690

0.08

0.11

0.75

16.3

0.07

Bea

n,

lim

a30

30.

220.

101.

4723

.40.

20B

eet

gree

ns

6,32

60.

100.

220.

4030

.00.

11B

eet

root

s33

0.03

0.04

0.33

4.9

0.07

Bro

ccol

i66

00.

070.

120.

6489

.20.

18B

rocc

oli

raab

2,62

20.

160.

131.

220

.20.

17B

russ

els

spro

uts

754

0.14

0.09

0.75

85.0

0.22

Cab

bage

,com

mon

171

0.05

0.04

0.30

32.2

0.10

Cab

bage

,red

1,11

60.

060.

070.

4257

.00.

21C

abba

ge,s

avoy

1,00

00.

070.

030.

3031

.00.

19C

arro

t12

,036

0.07

0.06

1.0

5.9

0.14

Cau

lifl

ower

130.

060.

060.

5346

.40.

22C

eler

iac

00.

050.

060.

708.

00.

17C

eler

y44

90.

020.

060.

323.

10.

07C

hay

ote

00.

030.

030.

477.

70.

08C

hic

ory,

wit

loof

290.

60.

030.

162.

80.

04C

hin

ese

cabb

age

4,46

80.

040.

070.

5045

.00.

19

Page 65: HANDBOOK FOR VEGETABLE GROWERS

51

Col

lard

s6,

668

0.05

0.13

0.74

35.3

0.17

Cu

cum

ber

105

0.03

0.03

0.10

2.8

0.04

Egg

plan

t27

0.04

0.04

0.65

2.2

0.08

En

dive

2,16

70.

080.

080.

406.

50.

02G

arli

c0

0.20

0.11

0.70

31.2

1.20

Kal

e15

,376

0.11

0.13

1.00

120.

00.

27K

ohlr

abi

360.

050.

020.

4062

.00.

15L

eek

1,66

70.

060.

030.

4012

.00.

23L

ettu

ce,

butt

erh

ead

3,31

20.

060.

060.

403.

70.

08L

ettu

ce,

cris

phea

d50

20.

040.

030.

122.

80.

04L

ettu

ce,

gree

nle

af7,

405

0.07

0.08

0.38

18.0

0.09

Let

tuce

,re

dle

af7,

492

0.06

0.08

0.32

3.7

0.10

Let

tuce

,ro

mai

ne

5,80

70.

100.

100.

3124

.00.

07M

elon

,ca

nta

lou

pe3,

382

0.04

0.02

0.73

36.7

0.07

Mel

on,

casa

ba0

0.02

0.03

0.23

21.8

0.16

Mel

on,

hon

eyde

w40

0.08

0.02

0.60

24.8

0.06

Mu

shro

om0

0.09

0.42

3.85

2.4

0.12

Mu

star

dgr

een

s10

,500

0.08

0.11

0.80

70.0

0.18

Okr

a37

50.

200.

061.

0021

.10.

22O

nio

n,

bun

chin

g99

70.

060.

080.

5318

.80.

06O

nio

n,

dry

20.

050.

030.

086.

40.

15P

arsl

ey8,

424

0.09

0.10

1.31

133.

00.

09P

arsn

ip0

0.09

0.05

0.70

17.0

0.09

Pea

,ed

ible

-pod

ded

1,08

70.

150.

080.

6060

.00.

16P

ea,

gree

n64

00.

270.

132.

0940

.00.

17P

eppe

r,h

ot,

chil

e1,

179

0.09

0.09

0.95

242.

50.

28P

eppe

r,sw

eet

370

0.06

0.03

0.48

80.4

0.22

Pot

ato

20.

080.

031.

0519

.70.

30

Page 66: HANDBOOK FOR VEGETABLE GROWERS

52

TA

BL

E1.

21.

VIT

AM

INC

ON

TE

NT

OF

FR

ES

HR

AW

VE

GE

TA

BL

ES

(Con

tin

ued

)

Veg

etab

le

Am

oun

t/10

0g

Edi

ble

Por

tion

Vit

amin

A(I

U)

Th

iam

ine

(mg)

Rib

oflav

in(m

g)N

iaci

n(m

g)A

scor

bic

Aci

d(m

g)V

itam

inB

6

(mg)

Pu

mpk

in7,

384

0.05

0.11

0.60

9.0

0.06

Rad

icch

io27

0.02

0.03

0.26

8.0

0.06

Rad

ish

70.

010.

040.

2514

.80.

07R

hu

barb

102

0.02

0.03

0.30

8.0

0.02

Ru

taba

ga2

0.09

0.04

0.70

25.0

0.10

Sal

sify

00.

080.

220.

508.

00.

28S

hal

lot

120.

060.

020.

28.

00.

35S

outh

ern

pea

00.

110.

151.

452.

50.

07S

pin

ach

9,37

70.

080.

190.

7228

.10.

20S

quas

h,a

corn

367

0.14

0.01

0.70

11.0

0.15

Squ

ash

,bu

tter

nu

t10

,630

0.10

0.02

1.20

21.0

0.15

Squ

ash

,Hu

bbar

d1,

367

0.07

0.04

0.50

11.0

0.15

Squ

ash

,sca

llop

110

0.07

0.03

0.60

18.0

0.11

Squ

ash

,su

mm

er20

00.

050.

140.

4917

.00.

22S

quas

h,z

ucc

hin

i20

00.

050.

140.

4917

.00.

22S

traw

berr

y12

0.02

0.02

0.39

58.8

0.05

Sw

eet

corn

208

0.20

0.06

1.70

6.8

0.06

Sw

eet

pota

to14

,187

0.08

0.06

0.56

2.4

0.80

Sw

iss

char

d6,

116

0.04

0.09

0.40

30.0

0.10

Page 67: HANDBOOK FOR VEGETABLE GROWERS

53

Tar

o76

0.10

0.03

0.60

4.5

0.28

Tom

ato,

gree

n64

20.

060.

040.

5023

.40.

08T

omat

o,ri

pe83

30.

040.

020.

6012

.70.

08T

urn

ipgr

een

s0

0.07

0.10

0.60

60.0

0.26

Tu

rnip

root

s0

0.04

0.03

0.40

21.0

0.09

Wat

erm

elon

569

0.03

0.02

0.18

8.1

0.05

Wax

gou

rd0

0.04

0.11

0.40

13.0

0.04

Ada

pted

from

US

DA

Nu

trie

nt

Dat

abas

efo

rS

tan

dar

dR

efer

ence

,Rel

ease

17(2

005)

,htt

p://

ww

w.n

al.u

sda.

gov

/fn

ic/f

oodc

omp

/Dat

a/S

R17

/rep

orts

/sr1

7pag

e.h

tm.

See

also

htt

p://

ww

w.5

aday

.com

.

Page 68: HANDBOOK FOR VEGETABLE GROWERS

PART 2PLANT GROWING AND

GREENHOUSE VEGETABLE PRODUCTION

TRANSPLANT PRODUCTION

01 PLANT GROWING CONTAINERS

02 SEEDS AND SEEDING

03 TEMPERATURE AND TIME REQUIREMENTS

04 PLANT GROWING MIXES

05 SOIL STERILIZATION

06 FERTILIZING AND IRRIGATING TRANSPLANTS

07 PLANT GROWING PROBLEMS

08 CONDITIONING TRANSPLANTS

09 ADDITIONAL INFORMATION SOURCES ON TRANSPLANTPRODUCTION

GREENHOUSE CROP PRODUCTION

10 CULTURAL MANAGEMENT

11 CARBON DIOXIDE ENRICHMENT

12 SOILLESS CULTURE

13 NUTRIENT SOLUTIONS

14 TISSUE COMPOSITION

15 ADDITIONAL SOURCES OF INFORMATION ON GREENHOUSEVEGETABLES

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 69: HANDBOOK FOR VEGETABLE GROWERS

56

TRANSPLANT PRODUCTION

Vegetable crops are established in the field by direct seeding or by use ofvegetative propagules (see Part 3) or transplants. Transplants are producedin containers of various sorts in greenhouses, protected beds, and openfields. Either greenhouse-grown containerized or field-grown bare-roottransplants can be used successfully. Generally, containerized transplantsget off to a faster start but are more expensive. Containerized transplants,sometimes called ‘‘plug’’ transplants have become the norm for melons,pepper, tomato, and eggplant.

Transplant production is a specialized segment of the vegetable businessthat demands suitable facilities and careful attention to detail. For thesereasons, many vegetable growers choose to purchase containerized or field-grown transplants from production specialists rather than grow themthemselves.

TABLE 2.1. RELATIVE EASE OF TRANSPLANTING VEGETABLES(referring to bare-root transplants)1

Easy Moderate Require Special Care2

Beet Celery Sweet cornBroccoli Eggplant CantaloupeBrussels sprouts Onion CucumberCabbage Pepper Summer squashCauliflower WatermelonChardLettuceTomato

1 Although containerized transplant production is the norm for most vegetables, information on bare-root transplants is available at http: / / pubs.caes.uga.edu / caespubs / pubs / PDF / B1144.pdf (2003).2 Containerized transplants are recommended.

Page 70: HANDBOOK FOR VEGETABLE GROWERS

57

Organic Vegetable Transplants

Organically grown vegetable transplants are not readily available from mostcommercial transplant producers. A good source of information on organictransplant production is at http: / /attra.ncat.org /attra-pub /plugs.html.

For information on organic seed production and seed handling, see J.Bonina and D. J. Cantliffe, Seed Production and Seed Sources of OrganicVegetables (University of Florida Cooperative Extension Service), http: / /edis.ifas.ufl.edu/hs227.

Page 71: HANDBOOK FOR VEGETABLE GROWERS

58

01P

LA

NT

GR

OW

ING

CO

NT

AIN

ER

S

TA

BL

E2.

2.A

DV

AN

TA

GE

SA

ND

DIS

AD

VA

NT

AG

ES

OF

VA

RIO

US

PL

AN

TG

RO

WIN

GC

ON

TA

INE

RS

Con

tain

erA

dvan

tage

sD

isad

van

tage

s

Sin

gle

peat

pell

etN

om

edia

prep

arat

ion

,low

stor

age

requ

irem

ent

Req

uir

esin

divi

dual

han

dlin

gin

setu

p,li

mit

edsi

zes

Pre

spac

edpe

atpe

llet

No

med

iapr

epar

atio

n,c

anbe

han

dled

asa

un

itof

50L

imit

edto

rath

ersm

all

size

s

Sin

gle

peat

pot

Goo

dro

otpe

net

rati

on,e

asy

toh

andl

ein

fiel

d,av

aila

ble

inla

rge

size

sD

iffi

cult

tose

para

te,m

aste

rco

nta

iner

isre

quir

ed,

drie

sou

tea

sily

,may

act

asa

wic

kin

the

fiel

dif

not

prop

erly

cove

red

Str

ippe

atpo

tsG

ood

root

pen

etra

tion

,eas

yto

han

dle

infi

eld,

avai

labl

ein

larg

esi

zes,

save

sse

tup

and

fill

ing

tim

e

May

besl

owto

sepa

rate

inth

efi

eld,

drie

sou

tea

sily

Page 72: HANDBOOK FOR VEGETABLE GROWERS

59

Pla

stic

flat

wit

hu

nit

Eas

ily

han

dled

,reu

sabl

e,go

odro

otpe

net

rati

onR

equ

ires

stor

age

duri

ng

off

seas

on,

may

beli

mit

edin

size

sP

last

icpa

ckE

asil

yh

andl

edR

oots

may

grow

out

ofco

nta

iner

cau

sin

gh

andl

ing

prob

lem

s,li

mit

edin

size

s,re

quir

esso

me

setu

pla

bor

Pla

stic

pot

Reu

sabl

e,go

odro

otpe

net

rati

onR

equ

ires

han

dlin

gas

sin

gle

plan

tP

olyu

reth

ane

foam

flat

Eas

ily

han

dled

,req

uir

esle

ssm

edia

than

sim

ilar

size

sof

oth

erco

nta

iner

s,co

mes

inm

any

size

s,re

usa

ble

Req

uir

esre

gula

rfe

rtil

izat

ion

,pla

nts

grow

slow

lyat

firs

tbe

cau

secu

ltu

ral

syst

ems

use

low

leve

lsof

nit

roge

nE

xpan

ded

poly

styr

ene

tray

Lig

htw

eigh

t,ea

syto

han

dle,

vari

ous

cell

size

san

dsh

apes

,re

usa

ble,

auto

mat

ion

com

pati

ble

Nee

dst

eril

izat

ion

betw

een

use

s,m

oder

ate

inve

stm

ent,

astr

ays

age,

root

sca

npe

net

rate

side

wal

lsof

cell

sIn

ject

ion

-mol

ded

tray

sV

ario

us

cell

size

s,re

usa

ble,

lon

gli

fe,

com

pati

ble

for

auto

mat

ion

Lar

gein

vest

men

t,n

eed

ster

iliz

atio

nbe

twee

nu

ses

Vac

uu

m-f

orm

edtr

ayL

owca

pita

lin

vest

men

tS

hor

tli

fesp

an,n

eeds

ster

iliz

atio

nbe

twee

nu

ses,

auto

mat

ion

inco

mpa

tibl

edu

eto

dam

age

totr

ay

Ada

pted

inpa

rtfr

omD

.C

.S

ande

rsan

dG

.R

.H

ugh

es(e

ds.)

,Pro

du

ctio

nof

Com

mer

cial

Veg

etab

leT

ran

spla

nts

(Nor

thC

arol

ina

Agr

icu

ltu

ral

Ext

ensi

onS

ervi

ce-

337,

1984

).

Page 73: HANDBOOK FOR VEGETABLE GROWERS

60

02SEEDS AND SEEDING

SEEDING SUGGESTIONS FOR GROWING TRANSPLANTS

1. Media. Field soil alone usually is not a desirable seeding mediumbecause it may crust or drain poorly under greenhouse conditions.Adding sand or a sand and peat mix may produce a good seedingmixture. Many growers use artificial mixes (see page 65) because ofthe difficulty of obtaining field soil that is free from pests andcontaminating chemicals.

A desirable seeding mix provides good drainage but retainsmoisture well enough to prevent rapid fluctuations, has good aeration,is low in soluble salts, and is free from insects, diseases, and weedseeds.

2. Seeding. Adjust seeding rates to account for the stated germinationpercentages and variations in soil temperatures. Excessively thickstands result in spindly seedlings, and poor stands are wasteful ofvaluable bench or bed space. Seeding into containerized trays can bedone mechanically using pelletized seeds. Pelletized seeds are seedsthat have been coated with a clay material to facilitate planting bymachine. Pelletized seeds also allow for easier singulation (one seedper cell in the tray).

Carefully control seeding depth; most seeds should be planted at1 /4 to 1 /2 in. deep. Exceptions are celery, which should only be 1 /8in. deep, and the vine crops, sweet corn, and beans, which can beseeded 1 in. or deeper.

3. Moisture. Maintain soil moisture in the desirable range by thoroughwatering after seeding and careful periodic watering as necessary. Acombination of spot watering of dry areas and overall watering isusually necessary. Do not overwater.

4. Temperature. Be certain to maintain the desired temperature. Coolerthan optimum temperatures may encourage disease, and warmertemperatures result in spindly seedlings. Seeded containerized trayscan be placed in a germination room where temperature and humidityare controlled. Germination rate and germination uniformity areenhanced with this technique. Once germination has initiated, movethe trays to the greenhouse.

5. Disease control. Use disease-free or treated seed to prevent earlydisease problems. Containers should be new or disease free. Adisease-free seeding medium is essential. Maintain a strict sanitationprogram to prevent introduction of diseases. Carefully control

Page 74: HANDBOOK FOR VEGETABLE GROWERS

61

watering and relative humidity. Use approved fungicides as drenchesor sprays when necessary. Keep greenhouse environment as dry aspossible with air-circulation fans and anti-condensate plasticgreenhouse covers.

6. Transplanting. Start transplanting when seedlings show the first trueleaves so the process can be completed before the seedlings becomelarge and overcrowded. Seedlings in containerized trays do not requiretransplanting to a final transplant growing container.

7. Fertilization. Developing transplants need light, water, andfertilization with nitrogen, phosphorus, and potassium to develop astocky, vigorous transplant, ready for the field. Excessive fertilization,especially with nitrogen, leads to spindly, weak transplants that aredifficult to establish in the field. Excessive fertilization of tomatotransplants with nitrogen can lead to reduced fruit yield in the field.Only 40–60 ppm nitrogen is needed in the irrigation solution fortomato. Many commercial soilless transplant mixes have a starternutrient charge, but this charge must be supplemented with anutrient solution after seedlings emerge.

Page 75: HANDBOOK FOR VEGETABLE GROWERS

62

TABLE 2.3. APPROXIMATE SEED REQUIREMENTS FOR PLANTGROWING

VegetablePlants /oz

Seed

Seed Required toProduce 10,000

Transplants

Asparagus 550 11⁄4 lbBroccoli 5,000 2 ozBrussels sprouts 5,000 2 ozCabbage 5,000 2 ozCantaloupe 500 11⁄4 lbCauliflower 5,000 2 ozCelery 15,000 1 ozSweet corn 100 61⁄4 lbCucumber 500 11⁄4 lbEggplant 2,500 4 ozLettuce 10,000 1 ozOnion 4,000 3 ozPepper 1,500 7 ozSummer squash 200 31⁄4 lbTomato 4,000 3 ozWatermelon 200 31⁄4 lb

To determine seed requirements per acre:

Desired plant population� seed required for 10,000 plants

10,000

Example 1: To grow enough broccoli for a population of 20,000 plants /acre:

20,000� 2 � 4 oz seed

10,000

Example 2: To grow enough summer squash for a population of 3600 plants /acre:

3600 1 1� 3 ⁄4 � 1 ⁄4 lb approximately10,000

Page 76: HANDBOOK FOR VEGETABLE GROWERS

63

03T

EM

PE

RA

TU

RE

AN

DT

IME

RE

QU

IRE

ME

NT

S

TA

BL

E2.

4.R

EC

OM

ME

ND

AT

ION

SF

OR

TR

AN

SP

LA

NT

PR

OD

UC

TIO

NU

SIN

GC

ON

TA

INE

RIZ

ED

TR

AY

S

Cro

p1C

ell

Siz

e(i

n.)

See

dR

equ

ired

for

10,0

00T

ran

spla

nts

See

din

gD

epth

(in

.)

Opt

imu

mG

erm

inat

ion

Tem

pera

ture

(�F

)G

erm

inat

ion

(day

s)2

pHT

oler

ance

3

Tim

eR

equ

ired

(wee

ks)

Bro

ccol

i0.

8–1.

02

oz1⁄4

854

6.0–

6.8

5–7

Bru

ssel

ssp

rou

ts0.

8–1.

02

oz1⁄4

805

5.5–

6.8

5–7

Cab

bage

0.8–

1.0

2oz

1⁄4

854

6.0–

6.8

5–7

Can

talo

upe

1.0

11⁄4

lb1⁄2

903

6.0–

6.8

4–5

Cau

lifl

ower

0.8–

1.0

2oz

1⁄4

805

6.0–

6.8

5–7

Cel

ery

0.5–

0.8

1oz

1⁄8–

1⁄4

707

6.0–

6.8

5–7

Col

lard

s0.

8–1.

02

oz1⁄4

855

5.5–

6.8

5–7

Cu

cum

ber

1.0

11⁄4

lb1⁄2

903

5.5–

6.8

2–3

Egg

plan

t1.

04

oz1⁄4

855

6.0–

6.8

5–7

Page 77: HANDBOOK FOR VEGETABLE GROWERS

64

TA

BL

E2.

4.R

EC

OM

ME

ND

AT

ION

SF

OR

TR

AN

SP

LA

NT

PR

OD

UC

TIO

NU

SIN

GC

ON

TA

INE

RIZ

ED

TR

AY

S(C

onti

nu

ed)

Cro

p1C

ell

Siz

e(i

n.)

See

dR

equ

ired

for

10,0

00T

ran

spla

nts

See

din

gD

epth

(in

.)

Opt

imu

mG

erm

inat

ion

Tem

pera

ture

(�F

)G

erm

inat

ion

(day

s)2

pHT

oler

ance

3

Tim

eR

equ

ired

(wee

ks)

Let

tuce

0.5–

0.8

1oz

1⁄8

752

6.0–

6.8

4O

nio

n0.

5–0.

83

oz1⁄4

754

6.0–

6.8

10–1

2P

eppe

r0.

5–0.

87

oz1⁄4

858

5.5–

6.8

5–7

Squ

ash

0.5–

0.8

31⁄4

lb1⁄2

903

5.5–

6.8

3–4

Tom

ato

1.0

3oz

1⁄4

855

5.5–

6.8

5–7

Wat

erm

elon

1.0

31⁄4

lb1⁄2

903

5.0–

6.8

3–4

Ada

pted

from

C.

S.

Vav

rin

a,A

nIn

trod

uct

ion

toth

eP

rod

uct

ion

ofC

onta

iner

ized

Tra

nsp

lan

ts,F

lori

daC

oope

rati

veE

xten

sion

Ser

vice

Fac

tS

hee

tH

S84

9(2

002)

,h

ttp:

//ed

is.if

as.u

fl.e

du/H

S12

6.1O

ther

crop

sca

nbe

grow

nas

tran

spla

nts

bym

atch

ing

seed

type

san

dgr

owin

gac

cord

ing

toth

eab

ove

spec

ifica

tion

s(e

xam

ple:

endi

ve�

lett

uce

).S

wee

tco

rnca

nbe

tran

spla

nte

d,bu

tta

pro

otis

susc

epti

ble

tobr

eaka

ge.

2U

nde

rop

tim

um

germ

inat

ion

tem

pera

ture

s.3P

lug

pHw

ill

incr

ease

over

tim

ew

ith

alka

lin

eir

riga

tion

wat

er.

Page 78: HANDBOOK FOR VEGETABLE GROWERS

65

04PLANT GROWING MIXES

SOILLESS MIXES FOR TRANSPLANT PRODUCTION

Most commercial transplant producers use some type of soilless media forgrowing vegetable transplants. Most such media employ various mixtures ofsphagnum peat and vermiculite or perlite, and growers may incorporatesome fertilizer materials as the final media are blended. For small growersor on-farm use, similar types of media can be purchased premixed andbagged. Most of the currently used media mixes are based on variations ofthe Cornell mix recipe below:

TABLE 2.5. CORNELL PEAT-LITE MIXES

Component Amount (cu yd)

Spagnum peat 0.5Horticultural vermiculite 0.5

Additions for Specific Uses (amount /cu yd)

AdditionSeedling or

Bedding Plants

Greenhouse Tomatoes

LiquidFeed

Slow-releaseFeed

Ground limestone (lb) 5 10 1020% superphosphate (lb) 1–2 2.5 2.5Calcium or potassium nitrate (lb) 1 1.5 1.5Trace element mix (oz) 2 2 2Osmocote (lb) 0 0 10Mag Amp (lb) 0 0 5Wetting agent (oz) 3 3 3

Adapted from J. W. Boodley and R. Sheldrake Jr., Cornell Peat-lite Mixes for Commercial PlantGrowing, New York State Agricultural Experiment Station, Station Agriculture Information Bulletin43 (1982).

Page 79: HANDBOOK FOR VEGETABLE GROWERS

66

05SOIL STERILIZATION

TABLE 2.6. STERILIZATION OF PLANT GROWING SOILS

Agent Method Recommendation

Heat Steam 30 min at 180�FAerated steam 30 min at 160�FElectric 30 min at 180�F

Chemical Chloropicrin 3–5 cc / cu ft of soil. Cover for 1–3 days.Aerate for 14 days or until no odor isdetected before using.

Vapam 1 qt /100 sq ft. Allow 7–14 days before use.Methyl bromide The phase-out of methyl bromide:

http: / /www.epa.gov /spdpublc /mbr /

Caution: Chemical fumigants are highly toxic. Follow manufacturer’s recommendations on thelabel.

Soluble salts, manganese, and ammonium usually increase after heat sterilization. Delay usingheat-sterilized soil for at least 2 weeks to avoid problems with these toxic materials.

Adapted from K. F. Baker (ed.), The UC System for Producing Healthy Container-grown Plants,California Agricultural Experiment Station Manual 23 (1972).

Page 80: HANDBOOK FOR VEGETABLE GROWERS

67

TABLE 2.7. TEMPERATURES REQUIRED TO DESTROY PESTS INCOMPOSTS AND SOIL

Pests 30-min Temperature (�F)

Nematodes 120Damping-off organisms 130Most pathogenic bacteria and fungi 150Soil insects and most viruses 160Most weed seeds 175Resistant weeds and resistant viruses 212

Adapted from K. F. Baker (ed.), The UC System for Producing Healthy Container-grown Plants,California Agricultural Experiment Station Manual 23 (1972).

Page 81: HANDBOOK FOR VEGETABLE GROWERS

68

06FERTILIZING AND IRRIGATING TRANSPLANTS

TABLE 2.8. FERTILIZER FORMULATIONS FOR TRANSPLANTFERTILIZATION BASED ON NITROGEN ANDPOTASSIUM CONCENTRATIONS

Fertilizer

N and K2O Concentrations (ppm)

50 100 200 400

oz /100 gal1

20-20-20 3.3 6.7 13.3 26.715-0-15 4.5 8.9 17.8 35.620-10-20 3.3 6.7 13.3 26.7Ammonium nitrate 1.4 2.9 5.7 11.4

� potassium nitrate 1.5 3.0 6.1 12.1Calcium nitrate 3.0 6.0 12.0 24.0

� potassium nitrate 1.5 3.0 6.0 12.0Ammonium nitrate 1.2 2.5 4.9 9.9

� potassium nitrate 1.5 3.0 6.0 12.0� monoammonium phosphate 0.5 1.1 2.2 4.3

Adapted from P. V. Nelson, ‘‘Fertilization,’’ in E. J. Holcomb (ed.). Bedding Plants IV: A Manual on theCulture of Bedding Plants as a Greenhouse Crop (Batavia, Ill.: Ball, 1994), 151–176. Used withpermission.1 1.0 oz in 100 gal is equal to 7.5 g in 100 L.

Page 82: HANDBOOK FOR VEGETABLE GROWERS

69

TABLE 2.9. ELECTRICAL CONDUCTIVITY (EC) IN SOIL ANDPEAT-LITE MIXES

Mineral Soils(mS)1

Peat-liteMixes(mS)1 Interpretations

2.0� 3.5� Excessive Plants may be severely injured.1.76–2.0 2.25–3.5 Very high Plants may grow adequately, but

range is near danger zone,especially if soil dries.

1.26–1.75 1.76–2.25 High Satisfactory for establishedplants. May be too high forseedlings and cuttings.

0.51–1.25 1.0–1.76 Medium Satisfactory for general plantgrowth. Excellent range forconstant fertilization program.

0.0–0.50 0.0–1.0 Low Low EC does no harm but mayindicate low nutrientconcentration.

Adapted from R. W. Langhans and E. T. Paparozzi, ‘‘Irrigation’’ in E. J. Holcomb (ed.), Bedding PlantIV: A Manual on the Culture of Bedding Plants as a Greenhouse Crop (Batavia, Ill.: Ball, 1994), 139–150. Used with permission.1 EC of soil determined from 1 part dry soil to 2 parts water. EC of mix determined from level tsp drymix to 40 mL water.

Page 83: HANDBOOK FOR VEGETABLE GROWERS

70

TABLE 2.10. MAXIMUM ACCEPTABLE WATER QUALITY INDICESFOR BEDDING PLANTS

Variable Plug Production Finish Flats and Pots

pH1 (acceptable range) 5.5–7.5 5.5–7.5Alkalinity2 1.5 me/L (75 ppm) 2.0 me/L (100 ppm)Hardness3 3.0 me/L (150 ppm) 3.0 me/L (150 ppm)EC 1.0 mS 1.2 mSAmmonium-N 20 ppm 40 ppmBoron 0.5 ppm 0.5 ppm

Adapted from P. V. Nelson, ‘‘Fertilization,’’ in E. J. Holcomb (ed.), Bedding Plants IV: A Manual on theCulture of Bedding Plants as a Greenhouse Crop (Batavia, Ill.: Ball, 1994), 151–176. Used withpermission.1 pH not very important alone; alkalinity level more important.2 Moderately higher alkalinity levels are acceptable when lower amounts of limestone are incorporatedinto the substrate during its formulation. Very high alkalinity levels require acid injection into watersource.3 High hardness values are not a problem if calcium and magnesium concentrations are adequate andsoluble salt level is tolerable.

IRRIGATION OF TRANSPLANTS

There are two systems for application of water (and fertilizer solutions) totransplants produced in commercial operations: overhead sprinklers andsubirrigation. Sprinkler systems apply water or nutrient solution byoverhead water sprays from various types of sprinkler or emitterapplicators. Advantages of sprinklers include the ability to apply chemicalsto foliage and the ability to leach excessive salts from media. Disadvantagesinclude high investment cost and maintenance requirements. Chemical andwater application can be variable in poorly maintained systems, andnutrients can be leached if excess amounts of water are applied. One type ofsubirrigation uses a trough of nutrient solution in which the transplanttrays are periodically floated, sometimes called ebb and flow or the floatsystem. Water and soluble nutrients are absorbed by the media and moveupward into the media. Advantages of this system include uniformapplication of water and nutrient solution to all flats in a trough or basin.Subirrigation with recirculation of the nutrient solution minimizes thepotential for pollution because all nutrients are kept in an enclosed system.

Page 84: HANDBOOK FOR VEGETABLE GROWERS

71

Challenges with subirrigation include the need for care to avoidcontamination of the entire trough with a disease organism. In addition,subirrigation systems restrict the potential to vary nutrient needs ofdifferent crops or developmental stages of transplants within a specificsubirrigation trough.

With either production system, transplant growers must exercise care inapplication of water and nutrients to the crop. Excessive irrigation can leachnutrients. Irrigation and fertilization programs are linked. Changes in oneprogram can affect the efficiency of the other program. Excessivefertilization can lead to soluble salt injury, and excessive nitrogenapplication can lead to overly vegetative transplants. More information ontransplant irrigation and the float system is available from:

http: / /pubs.caes.uga.edu/caespubs /pubs /PDF/B1144.pdf (2003)http: / /www.utextension.utk.edu/publications /pbfiles /PB819.pdf (1999)

Page 85: HANDBOOK FOR VEGETABLE GROWERS

72

07PLANT GROWING PROBLEMS

TABLE 2.11. DIAGNOSIS AND CORRECTION OF TRANSPLANTDISORDERS

Symptoms Possible Causes1 Corrective Measures

1. Spindly growth Shade, cloudy weather,excessive watering,excessive temperature

Provide full sun, reducetemperature, restrictwatering, ventilate orreduce night temperature,fertilize less frequently,provide adequate space.

2. Budless plants Many possible causes; noconclusive cause

Maintain optimumtemperature andfertilization programs.

3. Stunted plants Low fertility Apply fertilizer frequentlyin low concentration.

A. Purple leaves Phosphorus deficiency Apply a soluble,phosphorus-rich fertilizerat 50 ppm P everyirrigation for up to 1week.

B. Yellow leaves Nitrogen deficiency Apply N fertilizer solutionat 50–75 ppm eachirrigation for 1 week.Wash the foliage withwater after application.

C. Wilted shoots Pythium root rot,flooding damage,soluble salt damage toroots

Check for Pythium or otherdisease organism. Reduceirrigation amounts andreduce fertilization.

D. Discoloredroots

High soluble salts fromoverfertilization; highsoluble salts from poorsoil sterilization

Leach the soil by excesswatering. Do not sterilizeat temperatures above160�F. Leach soils beforeplanting when soil testsindicate high amounts ofsoluble salts.

E. Normal roots Low temperature Maintain suitable day andnight temperatures.

Page 86: HANDBOOK FOR VEGETABLE GROWERS

73

TABLE 2.11. DIAGNOSIS AND CORRECTION OF TRANSPLANTDISORDERS (Continued )

Symptoms Possible Causes1 Corrective Measures

4. Tough, woodyplants

Overhardening Apply starter solution (10-55-10 or 15-30-15 at 1 oz /gal to each 6–12 sq ftbench area) 3–4 daysbefore transplanting.

5. Water-soaked anddecayed stemsnear the soilsurface

Damping off Use a sterile, well-drainedmedium. Adjust wateringand ventilation practicesto provide a less moistenvironment. Useapproved fungicidaldrenches.

6. Poor root growth Poor soil aeration; poorsoil drainage; low soilfertility; excess solublesalts; lowtemperature; residuefrom chemicalsterilization; herbicideresidue

Determine the cause andtake corrective measures.

7. Green algae ormosses growingon soil surface

High soil moisture,especially in shade orduring cloudy periods

Adjust watering andventilation practices toprovide a less moistenvironment. Use abetter-drained medium.

1 Possible causes are listed here; however, more than one factor may lead to the same symptom.Therefore, plant producers should thoroughly evaluate all possible causes of a specific disorder.

SUGGESTIONS FOR MINIMIZING DISEASES IN VEGETABLETRANSPLANTS

Successful vegetable transplant production depends on attention to diseasecontrol. With the lack of labeled chemical pesticides, growers must focus oncultural and greenhouse management strategies to minimize opportunitiesfor disease organisms to attack the transplant crop.

Page 87: HANDBOOK FOR VEGETABLE GROWERS

74

Greenhouse environment: Transplant production houses should be located atleast several miles from any vegetable production field to avoid the entryof disease-causing agents in the house. Weeds around the greenhouseshould be removed and the area outside the greenhouse maintained freeof weeds, volunteer vegetable plants, and discarded transplants.

Media and water: All media and irrigation water should be pathogen free. Ifmedia are to be blended on site, all mixing equipment and surfaces mustbe routinely sanitized. Irrigation water should be drawn from pathogen-free sources. Water from ponds or recycling reservoirs should be avoided.

Planting material: Only pathogen-free seed or plant plugs should be broughtinto the greenhouse to initiate new transplant crops. Transplantproducers should not accept seeds of unknown quality for use intransplant production. This can be a problem, especially when producingsmall batches of transplants from small packages of seed, e.g., for avariety trial.

Cultural practices: Attention must be given to transplant productionpractices such as fertilization, irrigation, and temperature so that plantvigor is optimum. Free moisture, from sprinkler irrigation orcondensation, on plants should be avoided. Ventilation of houses byexhaust fans and horizontal airflow fans helps reduce free moisture onplants. Growers should follow a strict sanitation program to preventintroduction of disease organisms into the house. Weeds under benchesmust be removed. Outside visitors to the greenhouse should be strictlyminimized, and all visitors and workers should walk through adisinfecting foot bath. All plant material and soil mix remaining betweentransplant crops should be removed from the house.

CONTROLLING TRANSPLANT HEIGHT

One aspect of transplant quality involves transplants of size and height thatare optimum for efficient handling in the field during transplantation andfor rapid establishment. Traditional means for controlling plant heightincluded withholding water and nutrients and/or application of growthregulator chemicals. Today, growth regulator chemicals are not labeled forvegetable transplant production. Plant height control research focuses onnutrient management, temperature manipulation, light quality, andmechanical conditioning of plants.

Nutrient management: Nitrogen applied in excess often causes transplantsto grow tall rapidly. Using low-N solutions with 30–50 parts per million(ppm) nitrogen helps control plant height when frequent (daily)

Page 88: HANDBOOK FOR VEGETABLE GROWERS

75

irrigations are needed. Higher concentrations of N may be needed whenirrigations are infrequent (every 3 to 4 days). Often, an intermediate Nconcentration (e.g., 80 ppm) is chosen for the entire transplant life cycle,and an excessive growth rate often results. Irrigation frequency shouldguide the N concentration. Research has shown that excessive N appliedto the transplant can lead to reduced fruit yield in the field.

Moisture management: Withholding water is a time-tested method ofreducing plant height, but transplants can be damaged by drought.Sometimes transplants growing in Styrofoam trays along the edge of agreenhouse walkway dry out faster than the rest of the transplants inthe greenhouse. These dry plants are always shorter compared to theother transplants. Overwatering transplants should therefore be avoided,and careful attention should be given to irrigation timing.

Light intensity: Transplants grown under reduced light intensity stretch;therefore, growers must give attention to maximizing light intensity inthe greenhouse. Aged polyethylene greenhouse covers should be replacedand greenhouse roofs and sides should be cleaned periodically, especiallyin winter. Supplementing light intensity for some transplant crops withlights may be justified.

Temperature management: Transplants grown under cooler temperatures(e.g., 50�F) are shorter than plants grown under warmer temperatures.Where possible, greenhouse temperatures can be reduced or plantsmoved outdoors. Under cool temperatures, the transplant productioncycle is longer by several days and increased crop turnaround time maybe unacceptable. For some crops, such as tomato, growing transplantsunder cool temperatures may lead to fruit quality problems, e.g.,catfacing of fruits.

Mechanical conditioning: Shaking or brushing transplants frequently resultsin shorter transplants. Transplants can be brushed by several physicalmethods—for example, by brushing a plastic rod over the tops of theplants. This technique obviously should be practiced on dry plants onlyto avoid spreading disease organisms.

Day /night temperature management: The difference between the day andnight temperatures (DIF) can be employed to help control plant height.With a negative DIF, day temperature is cooler than night temperature.Plants grown with a positive DIF are taller than plants grown with azero or negative DIF. This system is not used during germination butrather is initiated when the first true leaves appear. The DIF systemrequires the capability to control the greenhouse temperature and ismost applicable to temperate regions in winter and spring, when daytemperatures are cool and greenhouses can be heated.

Page 89: HANDBOOK FOR VEGETABLE GROWERS

76

TABLE 2.12. VEGETABLE TRANSPLANT RESPONSE TO THEDIFFERENCE IN DAY AND NIGHT TEMPERATURE(DIF)

Common Name Response to DIF1

Broccoli 3Brussels sprouts 3Cabbage 3Cantaloupe 3Cucumber 1–2Eggplant 3Pepper 0–1Squash 2Tomato 2Watermelon 3

From E. J. Holcomb (ed.), Bedding Plants IV (Batavia, Ill.: Ball, 1994). Original source: J. E. Erwinand R. D. Heins, ‘‘Temperature Effects on Bedding Plant Growth,’’ Bulletin 42:1–18, MinnesotaCommercial Flower Growers Association (1993). Used with permission.1 0 � no response; 3 � strong response

Page 90: HANDBOOK FOR VEGETABLE GROWERS

77

08CONDITIONING TRANSPLANTS

Objective: To prepare plants to withstand stress conditions in the field.These may be low temperatures, high temperatures, drying winds, lowsoil moisture, or injury to the roots in transplanting. Growth ratesdecrease during conditioning, and the energy otherwise used in growth isstored in the plant to aid in resumption of growth after transplanting.Conditioning is used as an alternative to the older term, hardening.

Methods: Any treatment that restricts growth increases hardiness. Cool-season crops generally develop hardiness in proportion to the severity ofthe treatment and length of exposure and when well-conditionedwithstand subfreezing temperatures. Warm-season crops, even whenhighly conditioned, do not withstand temperatures much below freezing.1. Water supply. Gradually reduce water by watering lightly at less

frequent intervals. Do not allow the plants to dry out suddenly, withsevere wilting.

2. Temperature. Expose plants to lower temperatures (5–10�F) thanthose used for optimum growth. High day temperatures may reversethe effects of cool nights, making temperature management difficult.Do not expose biennials to prolonged cool temperatures, which inducesbolting.

3. Fertility. Do not fertilize, particularly with nitrogen, immediatelybefore or during the initial stages of conditioning. Apply a startersolution or liquid fertilizer 1 or 2 days before field setting and/or withthe transplanting water (see page 78).

4. Combinations. Restricting water and lowering temperatures andfertility, used in combination, are perhaps more effective than anysingle approach.

Duration: Seven to ten days are usually sufficient to complete theconditioning process. Do not impose conditions so severe that plants areoverconditioned in case of delayed planting because of poor weather.Overconditioned plants require too much time to resume growth, andearly yields may be lower.

PRETRANSPLANT HANDLING OF CONTAINERIZEDTRANSPLANTS

Field performance of transplants is related not only to productiontechniques in the greenhouse but also to handling techniques before field

Page 91: HANDBOOK FOR VEGETABLE GROWERS

78

planting. In the containerized tray production system, plants can bedelivered to the field in the trays if the transplant house is near theproduction fields. For long-distance transport, the plants are usually pulledfrom the trays and packed in boxes. Tomato plants left in trays until fieldplanting tend to have more rapid growth rates and larger fruit yields thanwhen transplants were pulled from the trays and packed in boxes. Storageof pulled and packed tomato plants also reduces yields of large fruitscompared to plants kept in the trays. If pulled plants must be stored priorto planting, storage temperatures should be selected to avoid chilling oroverheating the transplants. Transplants that must be stored for shortperiods can be kept successfully at 50–55�F.

TABLE 2.13. STARTER SOLUTIONS FOR FIELD TRANSPLANTING1

MaterialsQuantity to Use inTransplanter Tank

Readily Soluble Commercial Mixtures

8-24-8, 11-48-0 (Follow manufacturer’s directions.)23-21-17, 13-26-13 Usually 3 lb /50 gal water6-25-15, 10-52-17

Straight Nitrogen Chemicals

Ammonium sulfate, calcium nitrate,or sodium nitrate

21⁄2 lb /50 gal water

Ammonium nitrate 11⁄2 lb /50 gal water

Commercial Solutions

30% nitrogen solution 11⁄2 pt /50 gal water8-24-0 solution (N and P2O5) 2 qt /50 gal water

Regular Commercial Fertilizer Grades

4-8-12, 5-10-5, 5-10-10, etc.

1 lb /gal for stock solution; stir welland let settle

5 gal stock solution with 45 galwater

1 Apply at a rate of about 1⁄2 pt / plant.

Page 92: HANDBOOK FOR VEGETABLE GROWERS

79

09ADDITIONAL INFORMATION SOURCES ON TRANSPLANT

PRODUCTION

Charles W. Marr, Vegetable Transplants (Kansas State University, 1994),http: / /www.oznet.ksu.edu/ library /hort2 /MF1103.pdf.

W. Kelley et al., Commercial Production of Vegetable Transplants(University of Georgia, 2003), http: / /pubs.caes.uga.edu/caespubs /pubcd /b1144.htm.

J. Bodnar and R. Garton, Growing Vegetable Transplants in Plug Trays(Ontario Ministry of Agriculture, Food, and Rural Affairs, 1996), http: / /www.omafra.gov.on.ca /english /crops / facts /96-023.htm.

L. Greer and K. Adam, Organic Plug and Transplant Production (2002),http: / /attra.ncat.org /attra-pub /plugs.html.

D. Krauskopf, Vegetable Transplant Production Tips (Michigan StateUniversity), http: / /www.horticulture.wisc.edu/ freshveg /Publications /WFFVGC%202005/Vegetable%20Transplant%20Production%20Tips.doc.

R. Styer and D. Koranski, Plug and Transplant Production: A Grower’sGuide (Batavia, Ill.: Ball).

GREENHOUSE CROP PRODUCTION

10CULTURAL MANAGEMENT

CULTURAL MANAGEMENT OF GREENHOUSE VEGETABLES

Although most vegetables can be grown successfully in greenhouses, only afew are grown there commercially. Tomato, cucumber, and lettuce are thethree most commonly grown vegetables in commercial greenhouses. Somegeneral cultural management principles are discussed here.

Greenhouse Design

Successful greenhouse vegetable production depends on careful greenhousedesign and construction. Consideration must be provided for environmentalcontrols, durability of components, and ease of operations, among otherfactors. The publications listed at the end of this chapter offer helpful advicefor construction.

Page 93: HANDBOOK FOR VEGETABLE GROWERS

80

Sanitation

There is no substitute for good sanitation for preventing insect and diseaseoutbreaks in greenhouse crops.

To keep greenhouses clean, remove and destroy all dead plants,unnecessary mulch material, flats, weeds, etc. Burn or bury all plant refuse.Do not contaminate streams or water supplies with plant refuse. Weedsgrowing in and near the greenhouse after the cropping period should bedestroyed. Do not attempt to overwinter garden or house plants in thegreenhouses. Pests can also be maintained and ready for an early invasionof vegetable crops. To prevent disease organisms from carrying over on thestructure of the greenhouse and on the heating pipes and walks, spray withformaldehyde (3 gal 37% formalin in 100 gal water). Immediately afterspraying, close the greenhouse for 4–5 days, then ventilate. Caution: Wear arespirator when spraying with formaldehyde.

A 15–20-ft strip of carefully maintained lawn or bare ground around thegreenhouse helps decrease trouble from two-spotted mites and other pests.To reduce entry of whiteflies, leafhoppers, and aphids from weeds and otherplants near the greenhouses, spray the area growth occasionally with alabeled insecticide and control weeds around the greenhouse. Some pestscan be excluded with properly designed screens.

Monitoring Pests

Insects such as greenhouse and silverleaf whiteflies, thrips, and leaf minersare attracted to shades of yellow and fly toward that color. Thus, insecttraps can be made by painting pieces of board with the correct shade ofyellow pigment and then covering the paint with a sticky substance. Similartraps are available commercially from several greenhouse supply sources.By placing a number of traps within the greenhouse range, it is possible tocheck infestations daily and be aware of early infestations. Controlprograms can then be commenced while populations are low.

Two-spotted mites cannot be trapped in this way, but infestations usuallybegin in localized areas. Check leaves daily and begin control measures assoon as the first infested areas are noted.

Spacing

Good-quality container-grown transplants should be set in arrangements toallow about 4 sq ft /plant for tomato, 5 sq ft /plant for American-typecucumber, and 7–9 sq ft /plant for European-type cucumber. Lettuce requires36–81 sq in. /plant.

Page 94: HANDBOOK FOR VEGETABLE GROWERS

81

Temperature

Greenhouse tomato varieties may vary in their temperature requirements,but most varieties perform well at a day minimum temperature of 70–75�Fand a night minimum temperature of 62–64�F. Temperatures for cucumberseedlings should be 72–76�F day and 68�F night. In a few weeks, nighttemperature can be gradually lowered to 62–64�F. Night temperatures forlettuce can be somewhat lower than for tomato and cucumber.

In northern areas, provisions should be made to heat water to be used ingreenhouses to about 70�F.

Pruning and Tying

Greenhouse tomatoes and cucumbers are usually pruned to a single stem byfrequent removal of axillary shoots or suckers. Other pruning systems arepossible and sometimes used. Various tying methods are used; one commonmethod is to train the pruned plant around a string suspended from anoverhead wire.

Pollination

Greenhouse tomatoes must be pollinated by hand or with bumblebees toassure a good set of fruit. This involves tapping or vibrating each flowercluster to transfer the pollen grains from the anther to the stigma. Thisshould be done daily as long as there are open blossoms on the flowercluster. The pollen is transferred most readily during sunny periods andwith the most difficulty on dark, cloudy days. The electric or battery-operated hand vibrator is the most widely accepted tool for vibrating tomatoflower clusters. Most red-fruited varieties pollinate more easily than pink-fruited varieties and can often be pollinated satisfactorily by tapping theoverhead support wires or by shaking flowers in the airstream of a motor-driven backpack air-blower. Modern growers now use bumblebees forpollinating tomato. Specially reared hives of bumblebees are purchased bythe grower for this purpose.

Pollination of European seedless cucumbers causes off-shape fruit, sobees must be excluded from the greenhouse. To help overcome this,gynoecious cultivars have been developed that bear almost 100% femaleflowers. Only completely gynoecious and parthenocarpic (set fruits withoutpollination) cultivars are now recommended for commercial production.

American-type cucumbers require bees for pollination. One colony ofhoneybees per house should be provided. It is advisable to shade coloniesfrom the afternoon sun and to avoid excessively high temperatures and

Page 95: HANDBOOK FOR VEGETABLE GROWERS

82

humidities. Honeybees fly well in glass and polyethylene plastic houses butfail to work under certain other types of plastic. Under these conditions,crop failures may occur through lack of pollination.

Adapted from Ontario Ministry of Agriculture Publication 356 (1985–1986) and from G. Hochmuth,‘‘Production of Greenhouse Tomatoes,’’ Florida Greenhouse Vegetable Production Handbook, vol. 3,(2001), http: / / edis.ifas.ufl.edu / CV266, and from G. Hochmuth and R. Hochmuth, Keys to SuccessfulTomato and Cucumber Production in Perlite Media (2003), http: / / edis.ifas.ufl.edu / HS169. See also:

D. Ross, Planning and Building a Greenhouse, www.wvu.edu / �agexten / hortcult / greenhou /building.htm.

G. Hochmuth and R. Hochmuth, Design Suggestions and Greenhouse Management for VegetableProduction in Perlite and Rockwool Media in Florida (2004), http: / / edis.ifas.ufl.edu / CV195.

Ray Bucklin, ‘‘Physical Greenhouse Design Considerations,’’ Florida Greenhouse Vegetable ProductionHandbook, vol. 2 (2001), http: / / edis.ifas.ufl.edu / CV254.

Page 96: HANDBOOK FOR VEGETABLE GROWERS

83

11CARBON DIOXIDE ENRICHMENT

CARBON DIOXIDE ENRICHMENT OF GREENHOUSEATMOSPHERES

The beneficial effects of adding carbon dioxide (CO2) to the northerngreenhouse environment are well established. The crops that respond mostconsistently to supplemental CO2 are cucumber, lettuce, and tomato,although almost all other greenhouse crops also benefit. CO2 enrichment ofsouthern greenhouses probably has little benefit due to frequent ventilationrequirements under the warm temperatures.

Outside air contains about 340 parts per million (ppm) CO2 by volume.Most plants grow well at this level, but if levels are higher, the plantsrespond by producing more sugars. During the day, in a closed greenhouse,the plants use the CO2 in the air and reduce the level below the normal 340ppm. This is the point at which CO2 addition is most important. Most cropsrespond to CO2 additions up to about 1300 ppm. Somewhat lowerconcentrations are adequate for seedlings or when growing conditions areless than ideal.

Carbon dioxide can be obtained by burning natural gas, propane, orkerosene and directly from containers of pure CO2. Each source haspotential advantages and disadvantages. When natural gas, propane, orkerosene is burned, not only is CO2 produced but also heat, which cansupplement the normal heating system. Incomplete combustion orcontaminated fuels may cause plant damage. Most sources of natural gasand propane have sufficiently low levels of impurities, but you should notifyyour supplier of your intention to use the fuel for CO2 addition. Sulfur levelsin the fuel should not exceed 0.02% by weight.

A number of commercial companies have burners available for naturalgas, propane, and liquid fuels. The most important feature of a burner isthat it burns the fuel completely.

Because photosynthesis occurs only during daylight hours, CO2 additionis not required at night, but supplementation is recommended on dull days.Supplementation should start approximately 1 hour before sunrise, and thesystem should be shut off 1 hour before sunset. If supplemental lighting isused at night, intermittent addition of CO2 or the use of a CO2 controllermay be helpful.

When ventilators are opened, it is not possible to maintain high CO2

levels. However, it is often during these hours (high light intensity and

Page 97: HANDBOOK FOR VEGETABLE GROWERS

84

temperature) that CO2 supplementation is beneficial. Because maintainingoptimal levels is impossible, maintaining at least ambient levels issuggested. A CO2 controller, whereby the CO2 concentration can bemaintained at any level above ambient, is therefore useful.

One important factor is an adequate distribution system. Thedistribution of CO2 mainly depends on the air movement in thegreenhouse(s), for CO2 does not travel far by diffusion. This means that if asingle source of CO2 is used for a large surface area or several connectinggreenhouses, a distribution system must be installed. Air circulation(horizontal fans or a fanjet system) that moves a large volume of airprovides uniform distribution within the greenhouse.

Adapted from Ontario Ministry of Agriculture and Food AGDEX 290 / 27 (1984) and from G.Hochmuth and R. Hochmuth (eds.), Florida Greenhouse Vegetable Production Handbook, vol. 3,‘‘Greenhouse Vegetable Crop Production Guide,’’ Florida Cooperative Extension Fact Sheet HS784(2001), http: / / edis.ifas.ufl.edu / pdffiles / CV / CV26200.pdf.

Page 98: HANDBOOK FOR VEGETABLE GROWERS

85

12SOILLESS CULTURE

SOILLESS CULTURE OF GREENHOUSE VEGETABLES

Well-managed field soils supply crops with sufficient water and appropriateconcentrations of the 13 essential inorganic elements. A combination ofdesirable soil chemical, physical, and biotic characteristics providesconditions for extensive rooting, which results in anchorage, the thirdgeneral quality provided to crops by soil.

When field soils are used in the greenhouse for repeated intensive cropculture, desirable soil characteristics deteriorate rapidly. Diminishingconcentrations of essential elements and impaired physical properties arerestored as in the field by applications of lime, fertilizer, and organic matter.Deterioration of the biotic quality of the soil by increased pathogenicmicroorganism and nematode populations is restricted mostly by steamsterilization.

Even with the best management, soils may deteriorate in quality overtime. In addition, the costs—particularly of steam sterilization—ofmaintaining greenhouse soils in good condition have escalated so thatsoilless culture methods are competitive with or perhaps more economicallyfavorable than soil culture. Accordingly, recent years have seen aconsiderable shift from soil culture to soilless culture in greenhouses. Liquidand solid media systems are used.

Liquid Soilless Culture

The nutrient film technique (NFT) is the most commonly used liquidsystem.

NFT growing systems consist of a series of narrow channels throughwhich nutrient solution is recirculated from a supply tank. A plumbingsystem of plastic tubing and a submersible pump in the tank are the basiccomponents. The channels are generally constructed of opaque plastic filmor plastic pipe; asphalt-coated wood and fiberglass are also used. The basiccharacteristic of all NFT systems is the shallow depth of solutionmaintained in the channels. Flow is usually continuous, but sometimessystems are operated intermittently by supplying solution a few minutesevery hour. The purpose of intermittent flow is to assure adequate aerationof the root systems. This also reduces the energy required, but under rapidgrowth conditions, plants may experience water stress if the flow period is

Page 99: HANDBOOK FOR VEGETABLE GROWERS

86

too short or infrequent. Therefore, intermittent flow management seemsbetter adapted to mild temperature periods or to plantings during the earlystages of development. Capillary matting is sometimes used in the bottom ofNFT channels, principally to avoid the side-to-side meandering of thesolution stream around young root systems; it also acts as a reservoir byretaining nutrients and water during periods when flow ceases.

NFT channels are frequently designed for a single row of plants with achannel width of 6–8 inches. Wider channels of 12–15 in. are used toaccommodate two rows of plants, but meandering of the shallow solutionstream becomes a greater problem with greater width. To minimize thisproblem, small dams can be created at intervals down the channel byplacing thin wooden sticks across the stream, or the channel may be linedwith capillary matting. The channels should be sloped 4–6 in. per 100 ft tomaintain gravity flow of the solution. Flow rate into the channels should bein the range of 1–2 qt /min.

Channel length should be limited to a maximum of 100 feet in order tominimize increased solution temperature on bright days. The ideal solutiontemperature for tomato is 68–77�F. Temperatures below 59� or above 86�Fdecrease plant growth and tomato yield. Channels of black plastic filmincrease solution temperature on sunny days. During cloudy weather, it maybe necessary to heat the solution to the recommended temperature. Solutiontemperatures in black plastic channels can be decreased by shading orpainting the surfaces white or silver. As an alternative to channels linedwith black polyethylene, 4–6-in. PVC pipe may be used. Plant holes arespaced appropriately along the pipe. The PVC system is permanent once itis constructed; polyethylene-lined channels must be replaced for each crop.Initial costs are higher for the PVC, and sanitation between crops may bemore difficult. In addition, PVC pipe systems are subject to root flooding ifroot masses clog pipes.

Solid Soilless Culture

Lightweight media in containers or bags and rockwool mats are the mostcommonly used media culture systems.

Media Culture

Soilless culture in bags, pots, or troughs with a lightweight medium is thesimplest, most economical, and easiest to manage of all soilless systems.The most common media used in containerized systems of soilless cultureare perlite, peat-lite, or a mixture of bark and wood chips. Container typesrange from long wooden troughs in which one or two rows of plants are

Page 100: HANDBOOK FOR VEGETABLE GROWERS

87

grown to polyethylene bags or rigid plastic pots containing one to threeplants. Bag or pot systems using bark chips or peat-lite are in common usethroughout the United States and offer major advantages over other typesof soilless culture:

1. These materials have excellent retention qualities for nutrients andwater.

2. Containers of medium are readily moved in or out of the greenhousewhenever necessary or desirable.

3. They are lightweight and easily handled.4. The medium is useful for several successive crops.5. The containers are significantly less expensive and less time-

consuming to install.6. In comparison with recirculated hydroponic systems, the nutrient-

solution system is less complicated and less expensive to manage.

From a plant nutrition standpoint, the latter advantage is of significantimportance. In a recirculated system, the solution is continuously changingin its nutrient concentration because of differential plant uptake. In the bagor pot system, the solution is not recirculated. Nutrient solution is suppliedfrom a fertilizer proportioner or large supply tank to the surface of themedium in a sufficient quantity to wet the medium. Any excess is drainedaway from the system through drain holes in the base of the containers.Thus, the concentration of nutrients in solution supplied to the plants is thesame at each application. This eliminates the need to sample and analyzethe solution periodically to determine necessary adjustments and avoids thepossibility of solution excess or deficiencies.

In the bag or pot system, the volume of medium per container variesfrom about 1 /2 cu ft in vertical polyethylene bags or pots to 2 cu ft in lay-flat bags. In the vertical bag system, 4-mil black polyethylene bags withprepunched drain holes at the bottom are common. One, but sometimes two,tomato or cucumber plants are grown in each bag. Lay-flat bagsaccommodate two or three plants. In either case, the bags are aligned inrows with spacing appropriate to the type of crop. It is good practice toplace vertical bags or pots on a narrow sheet of plastic film to prevent rootcontact or penetration into the underlying soil. Plants in lay-flat bags, whichhave drainage slits (or overflow ports) cut along the sides an inch or soabove the base, also benefit from a protective plastic sheet beneath them.

Nutrient solution is delivered to the containers by supply lines of blackpolyethylene tubing, spaghetti tubing, spray sticks, or ring drippers in thecontainers. The choice of application system is important in order to provide

Page 101: HANDBOOK FOR VEGETABLE GROWERS

88

proper wetting of the medium at each irrigation. Texture and porosity of thegrowing medium and the surface area to be wetted are importantconsiderations in making the choice. Spaghetti tubing provides a point-source wetting pattern, which might be appropriate for fine-textured mediathat allow water to be conducted laterally with ease. In lay-flat bags, singlespaghetti tubes at individual plant holes provide good wetting of peat-lite.In a vertical bag containing a porous medium, a spray stick with a 90-degree spray pattern does a good job of irrigation if it is located to wet themajority of the surface. Ring drippers are also a good choice for verticalbags, although somewhat more expensive. When choosing an applicationsystem for bag or container culture, remember that the objective ofirrigation is to distribute nutrient solution uniformly so that all of themedium is wet.

Rockwool and Perlite Culture

Rockwool is made by melting various types of rocks at very hightemperatures. The resulting fibrous particles are formed into growing blocksor mats that are sterile and free of organic matter. The growing mats havea high water-holding capacity, no buffering capacity, and an initial pH of 7–8.5, which is lowered quickly with application of slightly acidic nutrientsolutions. Uncovered mats, which are covered with polyethylene duringsetup, or polyethylene enclosed mats can be purchased. The mats are 8–12in. wide, 36 in. long, and 3 in. thick. Perlite, a volcanic mineral, is heatedand expanded into small, granular particles. Perlite has a high water-holding capacity but provides good aeration.

The greenhouse floor should be carefully leveled and covered with 3-milblack /white polyethylene, which restricts weed growth and acts as a lightreflector with the white side up. The mats are placed end to end to form arow; single or double rows are spaced for the crop and greenhouseconfiguration.

A complete nutrient solution made with good-quality water is used forinitial soaking of the mats. Large volumes are necessary because of the highwater-holding capacity of the mats. Drip irrigation tubing or spaghettitubing arranged along the plant row are used for initial soaking and, later,for fertigation. After soaking, uncovered mats are covered with polyethyleneand drainage holes made in the bagged mats.

Cross-slits, corresponding in size to the propagating blocks, are made inthe polyethylene mat cover at desired in-row plant spacings; usually twoplants are grown in each 30-in.-long mat. The propagating blocks containingthe transplant are placed on the mat, and the excess polyethylene from thecross-slit is arranged around the block. Frequent irrigation is required until

Page 102: HANDBOOK FOR VEGETABLE GROWERS

89

Figure 2.1. NFT culture system using polyethylene film to hold plants andsupply nutrient solution through a recirculation system (From Florida Coop-erative Extension Bulletin 218).

plant roots are established in the mat; thereafter, fertigation is applied 4–10times a day depending on the growing conditions and stage of crop growth.The mats are leached with good-quality water when samples taken from themats with a syringe have increased conductivity readings.

Adapted in part from H. Johnson Jr., G. J. Hochmuth, and D. N. Maynard, ‘‘Soilless Culture ofGreenhouse Vegetables,’’ Florida Cooperative Extension Bulletin 218 (1985), and from M. Sweat andG. Hochmuth, ‘‘Production Systems,’’ Florida Greenhouse Vegetable Production Handbook, vol. 3, FactSheet HS785, http: / / edis.ifas.ufl.edu / pdffiles / CV / CV26300.pdf.

Page 103: HANDBOOK FOR VEGETABLE GROWERS

90

Figure 2.2. Arranged mats are covered with white /black polyethylene.

Figure 2.3. Irrigation system and drainage holes for rockwool mats enclosedin a polyethylene bag.

Figure 2.4. Cross-slits are made to accommodate transplants in propagationblocks.

Page 104: HANDBOOK FOR VEGETABLE GROWERS

91

Figure 2.5. Ordinarily, two plants are placed in each 30-in.-long mat.

Figure 2.6. Fertigation supplied by spaghetti tubing to each plant.

Figure 2.7. Fertigation supplied by drip irrigation tubing.

Page 105: HANDBOOK FOR VEGETABLE GROWERS

92

Figure 2.8. Removal of sample from rockwool mat with a syringe for con-ductivity determination.

Figures 2.2. through 2.8. Adapted from GRODAN� Instructions for cultivation—cucumbers, GrodaniaA / S, Denmark and used with permission.

13NUTRIENT SOLUTIONS

NUTRIENT SOLUTIONS FOR SOILLESS CULTURE

Because the water and/or media used for soilless culture of greenhousevegetables is devoid of essential elements, these must be supplied in anutrient solution.

Commercially available fertilizer mixtures may be used, or nutrientsolutions can be prepared from individual chemical salts. The most widelyused and generally successful nutrient solution is one developed by D. R.Hoagland and D. I. Arnon at the University of California. Many commercialmixtures are based on their formula.

Detailed directions for preparation of Hoagland’s nutrient solutions,which are suitable for experimental or commercial use, and the formulas forseveral nutrient solutions suitable for commercial use follow.

Page 106: HANDBOOK FOR VEGETABLE GROWERS

93

TABLE 2.14. HOAGLAND’S NUTRIENT SOLUTIONS

SaltStock Solution(g to make 1 L)

Final Solution(ml to make 1 L)

Solution 1

Ca(NO3)2 � 4H2O 236.2 5KNO3 101.1 5KH2PO4 136.1 1MgSO4 � 7H2O 246.5 2

Solution 2

Ca(NO3)2 � 4H2O 236.2 4KNO3 101.1 6NH4H2PO4 115.0 1MgSO4 � 7H2O 246.5 2

Micronutrient Solution

Compound Amount (g) Dissolved in 1 L Water

H3BO3 2.86MnCl2 � 4H2O 1.81ZnSO4 � 7H2O 0.22CuSO4 � 5H2O 0.08H2MoO4 � H2O 0.02

Iron Solution

Iron chelate, such as Sequestrene 330, made to stock solution containing 1 gactual iron /L. Sequestrene 330 is 10% iron; thus, 10 g /L are required. Theamounts of other chelates must be adjusted on the basis of their ironcontent.

Page 107: HANDBOOK FOR VEGETABLE GROWERS

94

Procedure: To make 1 L of Solution 1, add 5 ml Ca(NO3)2 � 4H2O stocksolution, 5 ml KNO3, 1 ml KH2PO4, 2ml MgSO4 � 7H2O, 1 ml micronutrientsolution, and 1 ml iron solution to 800 ml distilled water. Make up to 1 L.Some plants grow better on Solution 2, which is prepared in the same way.

Adapted from D. R. Hoagland and D. I. Arnon, ‘‘The Water-culture Method for Growing PlantsWithout Soil,’’ California Agricultural Experiment Station Circular 347 (1950).

SOME NUTRIENT SOLUTIONS FOR COMMERCIAL GREENHOUSEVEGETABLE PRODUCTION

These solutions are designed to be supplied directly to greenhouse vegetablecrops.

Page 108: HANDBOOK FOR VEGETABLE GROWERS

95

TABLE 2.15. JOHNSON’S SOLUTION

CompoundAmount

(g /100 gal water)

Potassium nitrate 95Monopotassium phosphate 54Magnesium sulfate 95Calcium nitrate 173Chelated iron (FeDTPA) 9Boric acid 0.5Manganese sulfate 0.3Zinc sulfate 0.04Copper sulfate 0.01Molybdic acid 0.005

N P K Ca Mg S Fe B Mn Zn Cu Mo

ppm 105 33 138 85 25 33 2.3 0.23 0.26 0.024 0.01 0.007

Page 109: HANDBOOK FOR VEGETABLE GROWERS

96

TABLE 2.16. JENSEN’S SOLUTION

CompoundAmount

(g /100 gal water)

Magnesium sulfate 187Monopotassium phosphate 103Potassium nitrate 77Calcium nitrate 189Chelated iron (FeDTPA) 9.6Boric acid 1.0Manganese chloride 0.9Cupric chloride 0.05Molybdic acid 0.02Zinc sulfate 0.15

N P K Ca Mg S Fe B Mn Zn Cu Mo

ppm 106 62 156 93 48 64 3.8 0.46 0.81 0.09 0.05 0.03

Adapted from H. Johnson, Jr., G. J. Hochmuth, and D. N. Maynard, ‘‘Soilless Culture of GreenhouseVegetables,’’ Florida Cooperative Extension Service Bulletin 218 (1985).

Page 110: HANDBOOK FOR VEGETABLE GROWERS

97

TA

BL

E2.

17.

NU

TR

IEN

TS

OL

UT

ION

FO

RM

UL

AT

ION

FO

RT

OM

AT

OG

RO

WN

INP

ER

LIT

EO

RR

OC

KW

OO

LIN

FL

OR

IDA

Sta

geof

Gro

wth

1T

ran

spla

nt

toF

irst

Clu

ster

2F

irst

Clu

ster

toS

econ

d

3S

econ

dC

lust

erto

Th

ird

4T

hir

dC

lust

erto

Fif

th

5F

ifth

Clu

ster

toT

erm

inat

ion

Sto

ckA

3.3

pt3.

3pt

3.3

pt3.

3pt

3.3

ptP

hos

phor

us1

Ph

osph

oru

sP

hos

phor

us

Ph

osph

oru

sP

hos

phor

us

6lb

KC

l6

lbK

Cl

6lb

KC

l6

lbK

Cl

6lb

KC

l10

lbM

gSO

410

lbM

gSO

410

lbM

gSO

412

lbM

gSO

412

lbM

gSO

4

2lb

KN

O3

2lb

KN

O3

6lb

KN

O3

1lb

NH

4NO

3

10g

Cu

SO

410

gC

uS

O4

10g

Cu

SO

410

gC

uS

O4

10g

Cu

SO

4

35g

Mn

SO

435

gM

nS

O4

35g

Mn

SO

435

gM

nS

O4

35g

Mn

SO

4

10g

Zn

SO

410

gZ

nS

O4

10g

Zn

SO

410

gZ

nS

O4

10g

Zn

SO

4

40g

Sol

ubo

r40

gS

olu

bor

40g

Sol

ubo

r40

gS

olu

bor

40g

Sol

ubo

r3

ml

Mol

ybde

nu

m2

3m

lM

olyb

den

um

3m

lM

olyb

den

um

3m

lM

olyb

den

um

3m

lM

olyb

den

um

Page 111: HANDBOOK FOR VEGETABLE GROWERS

98

TA

BL

E2.

17.

NU

TR

IEN

TS

OL

UT

ION

FO

RM

UL

AT

ION

FO

RT

OM

AT

OG

RO

WN

INP

ER

LIT

EO

RR

OC

KW

OO

LIN

FL

OR

IDA

(Con

tin

ued

) Sta

geof

Gro

wth

1T

ran

spla

nt

toF

irst

Clu

ster

2F

irst

Clu

ster

toS

econ

d

3S

econ

dC

lust

erto

Th

ird

4T

hir

dC

lust

erto

Fif

th

5F

ifth

Clu

ster

toT

erm

inat

ion

Sto

ckB

2.1

gal

2.4

gal

2.7

gal

3.3

gal

3.3

gal

Ca(

NO

3)23

Ca(

NO

3)2

Ca(

NO

3)2

Ca(

NO

3)2

Ca(

NO

3)2

or11

.5lb

dry

or13

.1lb

dry

or14

.8lb

dry

or18

.0lb

dry

or18

.0lb

dry

Ca(

NO

3)2

Ca(

NO

3)2

Ca(

NO

3)2

Ca(

NO

3)2

Ca(

NO

3)2

0.7

lbF

e33

040.

7lb

Fe

330

0.7

lbF

e33

00.

7lb

Fe

330

0.7

lbF

e33

0

Ada

pted

from

G.

Hoc

hm

uth

(ed.

),F

lori

da

Gre

enh

ouse

Veg

etab

leP

rod

uct

ion

Han

dbo

ok,v

ol.

3,F

lori

daC

oope

rati

veE

xten

sion

Ser

vice

SP

-48

(199

1).

1P

hos

phor

us

from

phos

phor

icac

id(1

3lb

/gal

spec

ific

wt.

,23

%P

)2M

olyb

den

um

from

liqu

idso

diu

mm

olyb

date

(11.

4lb

/gal

spec

ific

wt.

,17

%M

o)3L

iqu

idC

a(N

O3)

2fr

oma

7-0-

11(N

-P2O

5-K

2O-C

a)so

luti

on4Ir

onas

Seq

ues

tren

e33

0(1

0%F

e)

Page 112: HANDBOOK FOR VEGETABLE GROWERS

99

TA

BL

E2.

18.

RE

CO

MM

EN

DE

DN

UT

RIE

NT

SO

LU

TIO

NC

ON

CE

NT

RA

TIO

NS

FO

RT

OM

AT

OG

RO

WN

INR

OC

KW

OO

LO

RP

ER

LIT

EIN

FL

OR

IDA

Nu

trie

nt

Sta

geof

Gro

wth

1T

ran

spla

nt

toF

irst

Clu

ster

2F

irst

Clu

ster

toS

econ

d

3S

econ

dC

lust

erto

Th

ird

4T

hir

dC

lust

erto

Fif

th

5F

ifth

Clu

ster

toT

erm

inat

ion

Fin

alde

live

red

nu

trie

nt

solu

tion

con

cen

trat

ion

(ppm

)

N70

8010

012

015

0P

5050

5050

50K

120

120

150

150

200

Ca

150

150

150

150

150

Mg

4040

4050

50S

5050

5060

60F

e2.

82.

82.

82.

82.

8C

u0.

20.

20.

20.

20.

2M

n0.

80.

80.

80.

80.

8Z

n0.

30.

30.

30.

30.

3B

0.7

0.7

0.7

0.7

0.7

Mo

0.05

0.05

0.05

0.05

0.05

Ada

pted

from

G.

Hoc

hm

uth

,‘‘F

erti

liza

tion

Man

agem

ent

for

Gre

enh

ouse

Veg

etab

les,

’’F

lori

da

Gre

enh

ouse

Veg

etab

leP

rod

uct

ion

Han

dbo

ok,v

ol.

3,F

lori

daC

oope

rati

veE

xten

sion

Ser

vice

Fac

tS

hee

tH

S78

7,h

ttp:

//ed

is.if

as.u

fl.e

du/p

dffi

les

/CV

/CV

2650

0.pd

f,an

dG

.H

och

mu

than

dR

.H

och

mu

th,N

utr

ien

tS

olu

tion

For

mu

lati

onfo

rH

ydro

pon

ic(P

erli

te,R

ockw

ool,

NF

T)

Tom

atoe

sin

Flo

rid

a(2

001)

,htt

p://

edis

.ifas

.ufl

.edu

/CV

216.

Page 113: HANDBOOK FOR VEGETABLE GROWERS

100

14TISSUE COMPOSITION

TABLE 2.19. APPROXIMATE NORMAL TISSUE COMPOSITION OFHYDROPONICALLY GROWN GREENHOUSEVEGETABLES1

Element Tomato Cucumber

K 5–8% 8–15%Ca 2–3% 1–3%Mg 0.4–1.0% 0.3–0.7%NO3-N 14,000–20,000 ppm 10,000–20,000 ppmPO4-P 6,000–8,000 ppm 8,000–10,000 ppmFe 40–100 ppm 90–120 ppmZn 15–25 ppm 40–50 ppmCu 4–6 ppm 5–10 ppmMn 25–50 ppm 50–150 ppmMo 1–3 ppm 1–3 ppmB 20–60 ppm 40–60 ppm

Adapted from H. Johnson, Hydroponics: A Guide to Soilless Culture Systems, University of CaliforniaDivision of Agricultural Science Leaflet 2947 (1977).1 Values are for recently expanded leaves, 5th or 6th from the growing tip, petiole analysis formacronutrients, leaf blade analysis for micronutrients. Expressed on a dry weight basis.

Page 114: HANDBOOK FOR VEGETABLE GROWERS

101

TABLE 2.20. SUFFICIENCY NUTRIENT RANGES FOR SELECTEDGREENHOUSE VEGETABLE CROPS USING DRIEDMOST RECENTLY MATURED WHOLE LEAVES

Element

Beginning of HarvestSeason

Tomato Cucumber

Just Before Harvest

Lettuce

percent

N 3.5–4.0 2.5–5.0 2.1–5.6P 0.4–0.6 0.5–1.0 0.5–0.9K 2.8–4.0 3.0–6.0 4.0–8.0Ca 0.5–2.0 0.8–6.0 0.9–2.0Mg 0.4–1.0 0.4–0.8 0.4–0.8S 0.4–0.8 0.4–0.8 0.2–0.5

parts per million

B 35–60 40–100 25–65Cu 8–20 4–10 5–18Fe 50–200 90–150 50–200Mn 50–125 50–300 25–200Mo 1–5 1–3 0.5–3.0Zn 25–60 50–150 30–200

Adapted from G. Hochmuth, ‘‘Fertilizer Management for Greenhouse Vegetables,’’ Florida GreenhouseVegetable Production Handbook, vol. 3, Florida Cooperative Extension Fact Sheet HS787 (2001),http: / / edis.ifas.ufl.edu / pdffiles / cv / cv26500.pdf.

Page 115: HANDBOOK FOR VEGETABLE GROWERS

102

15ADDITIONAL SOURCES OF INFORMATION ON GREENHOUSE

VEGETABLES

University of Georgia, http: / /pubs.caes.uga.edu/caespubs /pubcd /B1182.htm.Organic herbs, http: / /attra.ncat.org /attra-pub /gh-herbhold.html.Mississippi State University, http: / /msucares.com/crops / comhort /

index.html.Mississippi State University, http: / /msucares.com/pubs /publications /

p1828.htm.North Carolina State University, http: / /www.ces.ncsu.edu/depts /hort /

greenhouse veg /.University of Arizona, http: / /ag.arizona.edu/hydroponictomatoes /.University of Florida, http: / / smallfarms.ifas.ufl.edu/greenhouse /.List of greenhouse manufacturers /suppliers, http: / /nfrec-sv.ifas.ufl.edu/gh

suppliers.htm.

Page 116: HANDBOOK FOR VEGETABLE GROWERS

PART 3FIELD PLANTING

01 TEMPERATURES FOR VEGETABLES

02 SCHEDULING SUCCESSIVE PLANTINGS

03 TIME REQUIRED FOR SEEDLING EMERGENCE

04 SEED REQUIRMENTS

05 PLANTING RATES FOR LARGE SEEDS

06 SPACING OF VEGETABLES

07 PRECISION SEEDING

08 SEED PRIMING

09 VEGETATIVE PROPAGATION

10 POLYETHYLENE MULCHES

11 ROW COVERS

12 WINDBREAKS

13 ADDITIONAL SOURCES OF INFORMATION ON PLASTICULTURE

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 117: HANDBOOK FOR VEGETABLE GROWERS

104

01TEMPERATURES FOR VEGETABLES

COOL-SEASON AND WARM-SEASON VEGETABLES

Vegetables generally can be divided into two broad groups. Cool-seasonvegetables develop edible vegetative parts, such as roots, stems, leaves, andbuds or immature flower parts. Sweet potato and other tropical root crops(root used) and New Zealand spinach (leaf and stem used) are exceptions tothis rule. Warm-season vegetables develop edible immature and maturefruits. Pea and broad bean are exceptions, being cool-season crops.

Cool-season crops generally differ from warm-season crops in thefollowing respects:

1. They are hardy or frost tolerant.2. Seeds germinate at cooler soil temperatures.3. Root systems are shallower.4. Plant size is smaller.5. Some, the biennials, are susceptible to premature seed stalk

development from exposure to prolonged cool weather.6. They are stored near 32�F, except for the white potato. Sweet corn is

the only warm-season crop held at 32�F after harvest.7. The harvested product is not subject to chilling injury at

temperatures between 32� and 50�F, as is the case with some of thewarm-season vegetables.

Page 118: HANDBOOK FOR VEGETABLE GROWERS

105

TABLE 3.1. CLASSIFICATION OF VEGETABLE CROPSACCORDING TO THEIR ADAPTATION TO FIELDTEMPERATURES

Cool-season Crops

Hardy1 Half-hardy1

Asparagus Kohlrabi BeetBroad bean Leek CarrotBroccoli Mustard CauliflowerBrussels sprouts Onion CeleryCabbage Parsley ChardChive Pea ChicoryCollards Radish Chinese cabbageGarlic Rhubarb Globe artichokeHorseradish Spinach EndiveKale Turnip Lettuce

ParsnipPotatoSalsify

Warm-season Crops

Tender1 Very Tender1

Cowpea CantaloupeNew Zealand spinach CucumberSnap bean EggplantSoybean Lima beanSweet corn OkraTomato Pepper, hot

Pepper, sweetPumpkinSquashSweet potatoWatermelon

Adapted from A. A. Kader, J. M. Lyons, and L. L. Morris, ‘‘Postharvest Responses of Vegetables toPreharvest Field Temperatures,’’ HortScience 9:523–529 (1974).1 Relative resistance to frost and light freezes.

Page 119: HANDBOOK FOR VEGETABLE GROWERS

106

TABLE 3.2. GROWING DEGREE DAY BASE TEMPERATURES

Crop Base Temperature (�F)1

Asparagus 40Bean, snap 50Beet 40Broccoli 40Cantaloupe 50Carrot 38Collards 40Cucumber 55Eggplant 60Lettuce 40Onion 35Okra 60Pea 40Pepper 50Potato 40Squash 45Strawberry 39Sweet corn 48Sweet potato 60Tomato 51Watermelon 55

Adapted from D. C. Sanders, H. J. Kirk, and C. Van Den Brink, ‘‘Growing Degree Days in NorthCarolina,’’ North Carolina Agricultural Extension Service AG-236 (1980).1 Temperature below which growth is negligible.

Page 120: HANDBOOK FOR VEGETABLE GROWERS

107

TABLE 3.3. APPROXIMATE MONTHLY TEMPERATURES FORBEST GROWTH AND QUALITY OF VEGETABLECROPS

Some crops can be planted as temperatures approach the proper range.Cool-season crops grown in the spring must have time to mature beforewarm weather. Fall crops can be started in hot weather to ensure asufficient period of cool temperature to reach maturity. Within a crop,varieties may differ in temperature requirements; hence this listingprovides general rather than specific guidelines.

Temperatures (�F)

Optimum Minimum Maximum Vegetable

55–75 45 85 Chicory, chive, garlic, leek, onion,salsify, scolymus, scorzonera,shallot

60–65 40 75 Beet, broad bean, broccoli, Brusselssprouts, cabbage, chard, collards,horseradish, kale, kohlrabi,parsnip, radish, rutabaga, sorrel,spinach, turnip

60–65 45 75 Artichoke, cardoon, carrot,cauliflower, celeriac, celery,Chinese cabbage, endive,Florence fennel, lettuce,mustard, parsley, pea, potato

60–70 50 80 Lima bean, snap bean60–75 50 95 Sweet corn, southern pea, New

Zealand spinach65–75 50 90 Chayote, pumpkin, squash65–75 60 90 Cucumber, cantaloupe70–75 65 80 Sweet pepper, tomato70–85 65 95 Eggplant, hot pepper, martynia,

okra, roselle, sweet potato,watermelon

Page 121: HANDBOOK FOR VEGETABLE GROWERS

108

TABLE 3.4. SOIL TEMPERATURE CONDITIONS FOR VEGETABLESEED GERMINATION1

VegetableMinimum

(�F)Optimum Range

(�F)Optimum

(�F)Maximum

(�F)

Asparagus 50 60–85 75 95Bean 60 60–85 80 95Bean, lima 60 65–85 85 85Beet 40 50–85 85 95Cabbage 40 45–95 85 100Cantaloupe 60 75–95 90 100Carrot 40 45–85 80 95Cauliflower 40 45–85 80 100Celery 40 60–70 702 852

Chard, Swiss 40 50–85 85 95Corn 50 60–95 95 105Cucumber 60 60–95 95 105Eggplant 60 75–90 85 95Lettuce 35 40–80 75 85Okra 60 70–95 95 105Onion 35 50–95 75 95Parsley 40 50–85 75 90Parsnip 35 50–70 65 85Pea 40 40–75 75 85Pepper 60 65–95 85 95Pumpkin 60 70–90 90 100Radish 40 45–90 85 95Spinach 35 45–75 70 85Squash 60 70–95 95 100Tomato 50 60–85 85 95Turnip 40 60–105 85 105Watermelon 60 70–95 95 105

1 Compiled by J. F. Harrington, Department of Vegetable Crops, University of California, Davis.2 Daily fluctuation to 60�F or lower at night is essential.

Page 122: HANDBOOK FOR VEGETABLE GROWERS

109

02SCHEDULING SUCCESSIVE PLANTINGS

Successive plantings are necessary to ensure a continuous supply ofproduce. This seemingly easy goal is in fact extremely difficult to achievebecause of interrupted planting schedules, poor stands, and variableweather conditions.

Maturity can be predicted in part by use of days to harvest or heat units.Additional flexibility is provided by using varieties that differ in time andheat units to reach maturity. Production for fresh market entails the use ofdays to harvest, while some processing crops may be scheduled using theheat unit concept.

Fresh Market Crops

Sweet corn is used as an example because it is an important fresh-marketcrop in many parts of the country and requires several plantings to obtain aseason-long supply.

1. Select varieties suitable for your area that mature over time. Weillustrate with five fictitious varieties maturing in 68–84 days fromplanting, with 4-day intervals between varieties.

2. Make the first planting as early as possible in your area.3. Construct a table like the one following and calculate the time of the

next planting, so that the earliest variety used matures 4 days after‘‘Late’’ in the first planting. We chose to use ‘‘Mainseason’’ as theearliest variety in the second planting; thus, 88 days � 80 days � 8days elapsed time before the second and subsequent plantings.

4. As sometimes happens, the third planting was delayed 4 days by rain.To compensate for this delay, ‘‘Midseason’’ is selected as the earliestvariety in the third planting to provide corn 96 days after the firstplanting.

Page 123: HANDBOOK FOR VEGETABLE GROWERS

110

TABLE 3.5. EXAMPLES OF SWEET CORN PLANTINGS

Planting Variety

Time (days)

ToMaturity

From FirstPlanting

To NextPlanting

First Early 68 68Second Early 72 72Midseason 76 76Mainseason 80 80Late 84 84

8Second Mainseason 80 88

Late 84 9212

Third Midseason 76 96Mainseason 80 100Late 84 104

Adapted from H. Tiessen, ‘‘Scheduled Planting of Vegetable Crops,’’ Ontario Ministry of Agricultureand Food AGDEX 250 / 22 (1980).

Processing Crops

The heat unit system is used to schedule plantings and harvests for someprocessing crops, most notably pea and sweet corn. The use of this systemimplies that accumulated temperatures over a selected base temperatureare a more accurate means of measuring growth than a time unit such asdays.

In simplest form, heat units are calculated as follows:

Maximum � minimum daily temperature� base temperature

2

The base temperature is 40�F for pea and 50�F for sweet corn. A numberof variations to this basic formula are proposed to further extend itsusefulness.

Heat unit requirements to reach maturity are determined for mostprocessing pea and sweet corn varieties and many snap bean varieties.Processors using the heat unit system assist growers in schedulingplantings to coincide with processing plant operating capacity.

Page 124: HANDBOOK FOR VEGETABLE GROWERS

111

03T

IME

RE

QU

IRE

DF

OR

SE

ED

LIN

GE

ME

RG

EN

CE

TA

BL

E3.

6.D

AY

SR

EQ

UIR

ED

FO

RS

EE

DL

ING

EM

ER

GE

NC

EA

TV

AR

IOU

SS

OIL

TE

MP

ER

AT

UR

ES

FR

OM

SE

ED

PL

AN

TE

D1⁄2

IN.

DE

EP

Th

eda

ysfr

ompl

anti

ng

toem

erge

nce

con

stit

ute

the

tim

ein

terv

alw

hen

apr

eem

erge

nce

wee

dco

ntr

oltr

eatm

ent

can

beu

sed

safe

lyan

def

fect

ivel

y.M

ore

days

are

requ

ired

wit

hde

eper

seed

ing

beca

use

ofco

oler

tem

pera

ture

san

dth

egr

eate

rdi

stan

ceof

grow

th.

Veg

etab

le

Soi

lT

empe

ratu

re(�

F)

3241

5059

6877

8695

104

Asp

arag

us

NG

NG

5324

1510

1220

28B

ean

,li

ma

——

NG

3118

77

NG

—B

ean

,sn

apN

GN

GN

G16

118

66

NG

Bee

t—

4217

106

55

5—

Cab

bage

——

159

65

4—

—C

anta

lou

pe—

——

—8

43

——

Car

rot

NG

5117

107

66

9N

GC

auli

flow

er—

—20

106

55

——

Cel

ery

NG

4116

127

NG

NG

NG

—C

orn

,sw

eet

NG

NG

2212

74

43

NG

Cu

cum

ber

NG

NG

NG

136

43

3—

Egg

plan

t—

——

—13

85

——

Page 125: HANDBOOK FOR VEGETABLE GROWERS

112

TA

BL

E3.

6.D

AY

SR

EQ

UIR

ED

FO

RS

EE

DL

ING

EM

ER

GE

NC

EA

TV

AR

IOU

SS

OIL

TE

MP

ER

AT

UR

ES

FR

OM

SE

ED

PL

AN

TE

D1⁄2

IN.

DE

EP

(Con

tin

ued

)

Veg

etab

le

Soi

lT

empe

ratu

re(�

F)

3241

5059

6877

8695

104

Let

tuce

4915

74

32

3N

GN

GO

kra

NG

NG

NG

2717

137

67

On

ion

136

3113

75

44

13N

GP

arsl

ey—

—29

1714

1312

——

Par

snip

172

5727

1914

1532

NG

NG

Pea

—36

149

86

6—

—P

eppe

rN

GN

GN

G25

138

89

NG

Rad

ish

NG

2911

64

43

——

Spi

nac

h63

2312

76

56

NG

NG

Tom

ato

NG

NG

4314

86

69

NG

Tu

rnip

NG

NG

53

21

11

3W

ater

mel

on—

NG

——

125

43

Ada

pted

from

J.F.

Har

rin

gton

and

P.A

.M

inge

s,‘‘V

eget

able

See

dG

erm

inat

ion

,’’C

alif

orn

iaA

gric

ult

ura

lExt

ensi

onM

imeo

Lea

flet

(195

4).

NG

�N

oge

rmin

atio

n;

—�

not

test

ed

Page 126: HANDBOOK FOR VEGETABLE GROWERS

113

04SEED REQUIREMENTS

TABLE 3.7. APPROXIMATE NUMBER OF SEEDS PER UNITWEIGHT AND FIELD SEEDING RATES FORTRADITIONAL PLANT DENSITIES

VegetableSeeds(no.)

UnitWeight

Field Seeding1

(lb /acre)

Asparagus2 14,000–20,000 lb 2–3Bean, baby lima 1,200–1,500 lb 60Bean, Fordhook lima 400–600 lb 85Bean, bush snap 1,600–2,000 lb 75–90Bean, pole snap 1,600–2,000 lb 20–45Beet 24,000–26,000 lb 10–15Broad bean 300–800 lb 60–80Broccoli3 9,000 oz 1⁄2–11⁄2Brussels sprouts3 9,000 oz 1⁄2–11⁄2Cabbage3 9,000 oz 1⁄2–11⁄2Cantaloupe3 16,000–20,000 lb 2Cardoon 11,000 lb 4–5Carrot 300,000–400,000 lb 2–4Cauliflower3 9,000 oz 1⁄2–11⁄2Celeriac 72,000 oz 1–2Celery3 72,000 oz 1–2Chicory 27,000 oz 3–5Chinese cabbage 9,000 oz 1–2Collards 9,000 oz 2–4Corn salad 13,000 oz 10Cucumber 15,000–16,000 lb 3–5Dandelion 35,000 oz 2Eggplant3 6,500 oz 2Endive 25,000 oz 3–4Florence fennel 7,000 oz 3Kale 9,000 oz 2–4Kohlrabi 9,000 oz 3–5Leek3 200,000 lb 4Lettuce, head3 20,000–25,000 oz 1–3Lettuce, leaf 25,000–30,000 oz 1–3

Page 127: HANDBOOK FOR VEGETABLE GROWERS

114

TABLE 3.7. APPROXIMATE NUMBER OF SEEDS PER UNITWEIGHT AND FIELD SEEDING RATES FORTRADITIONAL PLANT DENSITIES (Continued )

VegetableSeeds(no.)

UnitWeight

Field Seeding1

(lb /acre)

Mustard 15,000 oz 3–5New Zealand spinach 5,600 lb 15Okra 8,000 lb 6–8Onion, bulb3 130,000 lb 3–4Onion, bunching 180,000–200,000 lb 3–4Parsley 250,000 lb 20–40Parsnip 192,000 lb 3–5Pea 1,500–2,500 lb 80–250Pepper3 4,200–4,600 oz 24Pumpkin 1,500–4,000 lb 2–4Radish 40,000–50,000 lb 10–20Roselle 900–1,000 oz 3–5Rutabaga 150,000–190,000 lb 1–2Salsify 1,900 oz 8–10Sorrel 30,000 oz 2–3Southern pea 3,600 lb 20–40Soybean 4,000 lb 20–40Spinach 45,000 lb 10–15Squash, summer 3,500–4,500 lb 4–6Squash, winter 1,600–4,000 lb 2–4Swiss chard 25,000 lb 6–8Sweet corn, su, se 1,800–2,500 lb 12–15Sweet corn, sh2 3,000–5,000 lb 12–15Tomato3 10,000–12,000 oz 1⁄2–1Turnip 150,000–200,000 lb 1–2Watermelon, small seed3 8,000–10,000 lb 1–3Watermelon, large seed3 3,000–5,000 lb 2–4

1 Actual seeding rates are adjusted to desired plant populations, germination percentage of the seedlot, and weather conditions that influence germination.2 6–8 lbs / acre for crown production3 Transplants are used frequently instead of direct field seeding. See pages 62–64 for seeding rates fortransplants.

Page 128: HANDBOOK FOR VEGETABLE GROWERS

115

05PLANTING RATES FOR LARGE SEEDS

Weigh out a 1-oz sample of the seed lot and count the number of seeds.The following table gives the approximate pounds of seed per acre for

certain between-row and in-row spacings of lima bean, pea, snap bean, andsweet corn. These are based on 100% germination. If the seed germinatesonly 90%, for example, then divide the pounds of seed by 0.90 to get theplanting rate. Do the same with other germination percentages.

Example: 30 seeds /oz to be planted in 22-in. rows at 1-in. spacingbetween seeds.

595� 661 lb /acre

0.90

Only precision planting equipment begins to approach as exact a job ofspacing as this table indicates. Moreover, field conditions such as soilstructure, temperature, and moisture affect germination and final stand.

Page 129: HANDBOOK FOR VEGETABLE GROWERS

116

TA

BL

E3.

8.P

LA

NT

ING

RA

TE

SF

OR

LA

RG

ES

EE

DS

Spa

cin

gB

etw

een

Row

s(i

n.)

1820

22

Spa

cin

gB

etw

een

See

ds

inR

ow(i

n.)

12

34

56

12

34

56

12

34

56

No. of

See

ds/o

zS

eed

Nee

ded

(lb

/acr

e)

3072

636

424

218

214

612

165

532

821

816

413

110

959

529

819

814

911

998

4054

527

318

213

611

090

491

246

163

123

9982

446

223

148

112

9074

5044

022

014

611

088

7439

619

813

299

7966

361

180

120

9072

6060

354

178

118

9076

5931

815

910

680

6453

289

145

9773

5848

7031

215

610

478

6256

281

140

9470

5647

256

128

8564

5143

8027

213

690

6854

4624

512

382

6249

4122

311

274

5645

3790

242

120

8260

4840

218

109

7355

4437

198

9966

5040

3310

021

610

872

5442

3819

899

6650

3933

181

9060

4535

3011

019

899

6650

4034

173

8959

4435

3016

180

5440

3227

120

180

9060

4536

3016

281

5440

3327

148

7449

3730

2513

016

884

5642

3428

152

7651

3831

2513

869

4634

2823

140

156

7852

3830

2614

170

4735

2824

128

6443

3225

2215

014

673

4936

2824

131

6644

3326

2211

960

4030

2420

Page 130: HANDBOOK FOR VEGETABLE GROWERS

117

Spa

cin

gB

etw

een

Row

s(i

n.)

2430

36

Spa

cin

gB

etw

een

See

ds

inR

ow(i

n.)

12

34

56

12

34

56

12

34

56

No. of

See

ds/o

zS

eed

Nee

ded

(lb

/acr

e)

3054

527

318

213

610

991

437

219

146

109

8873

363

182

121

9173

6140

408

204

136

102

8268

328

164

106

8266

5427

213

691

6855

4550

330

165

110

8266

5526

513

288

6653

4422

011

073

5544

3760

265

133

8867

5744

212

106

7159

4335

177

8959

4538

2970

234

117

7859

4739

188

9463

4738

3115

678

5239

3126

8020

410

268

5141

3416

482

5341

3327

136

6845

3427

2390

181

9061

4536

3014

673

4937

2925

121

6041

3024

2010

016

281

5540

3228

131

6744

3327

2210

854

3727

2119

110

148

7449

3730

2511

960

4030

2420

9949

3325

2017

120

135

6845

3427

2310

854

3627

2218

9045

3023

1815

130

126

6342

3225

2110

151

3425

2017

8442

2821

1714

140

117

5839

2923

2094

4732

2319

1678

3926

1915

1315

010

955

3827

2218

8844

2922

1815

7337

2418

1412

Page 131: HANDBOOK FOR VEGETABLE GROWERS

118

06SPACING OF VEGETABLES

SPACING OF VEGETABLES AND PLANT POPULATIONS

Spacing for vegetables is determined by the equipment used to plant,maintain, and harvest the crop as well as by the area required for growth ofthe plant without undue competition from neighboring plants. Previously,row spacings were dictated almost entirely by the space requirement ofcultivating equipment. Many of the traditional row spacings can be traced tothe horse cultivator.

Modern herbicides have largely eliminated the need for extensivecultivation in many crops; thus, row spacings need not be related tocultivation equipment. Instead, the plant’s space requirement can be usedas the determining factor. In addition, profitability is related to maximumuse of field growing space.

Invariably, plant populations increase when this approach is used. Amore uniform product with a higher proportion of marketable vegetables aswell as higher total yields result from the closer plant spacings. The termhigh-density production has been developed to describe vegetable spacingsdesigned to satisfy the plant’s space requirement.

TABLE 3.9. HIGH-DENSITY SPACING OF VEGETABLES

VegetableSpacing

(in.)

PlantPopulation

(plants /acre)

Bean, snap 3 � 12 174,000Beet 2 � 12 261,000Carrot 11⁄2 � 12 349,000Cauliflower 12 � 18 29,000Cabbage 12 � 18 29,000Cucumber (processing) 3 � 20 104,000Lettuce 12 � 18 29,000Onion 1 � 12 523,000

Page 132: HANDBOOK FOR VEGETABLE GROWERS

119

TABLE 3.10. TRADITIONAL PLANT AND ROW SPACINGS FORVEGETABLES

VegetableBetween Plants

in Row (in.)Between

Rows (in.)

Artichoke 48–72 84–96Asparagus 9–15 48–72Bean, broad 8–10 20–48Bean, snap 2–4 18–36Bean, lima, bush 3–6 18–36Bean, lima, pole 8–12 36–48Bean, pole 6–9 36–48Beet 2–4 12–30Broccoli1 12–24 18–36Broccoli raab 3–4 24–36Brussels sprouts 18–24 24–40Cabbage1 12–24 24–36Cantaloupe and other melons 12 60–84Cardoon 12–18 30–42Carrot 1–3 16–30Cauliflower1 14–24 24–36Celeriac 4–6 24–36Celery 6–12 18–40Chard, Swiss 12–15 24–36Chervil 6–10 12–18Chicory 4–10 18–24Chinese cabbage 10–18 18–36Chive 12–18 24–36Collards 12–24 24–36Corn 8–12 30–42Cress 2–4 12–18Cucumber1 8–12 36–72Dandelion 3–6 14–24Dasheen (taro) 24–30 42–48Eggplant 18–30 24–48Endive 8–12 18–24Florence fennel 4–12 24–42Garlic 1–3 12–24Horseradish 12–18 30–36

Page 133: HANDBOOK FOR VEGETABLE GROWERS

120

TABLE 3.10. TRADITIONAL PLANT AND ROW SPACINGS FORVEGETABLES (Continued )

VegetableBetween Plants

in Row (in.)Between

Rows (in.)

Jerusalem artichoke 15–18 42–48Kale 18–24 24–36Kohlrabi 3–6 12–36Leek 2–6 12–36Lettuce, cos 10–14 16–24Lettuce, head1 10–15 16–24Lettuce, leaf 8–12 12–24Mustard 5–10 12–36New Zealand spinach 10–20 36–60Okra 8–24 42–60Onion 1–4 16–24Parsley 4–12 12–36Parsley, Hamburg 1–3 18–36Parsnip 2–4 18–36Pea 1–3 24–48Pepper1 12–24 18–36Potato 6–12 30–42Pumpkin 36–60 72–96Radish 1⁄2–1 8–18Radish, storage type 4–6 18–36Rhubarb 24–48 36–60Roselle 24–46 60–72Rutabaga 5–8 18–36Salsify 2–4 18–36Scolymus 2–4 18–36Scorzonera 2–4 18–36Shallot 4–8 36–48Sorrel 1⁄2–1 12–18Southern pea 3–6 18–42Spinach 2–6 12–36Squash, bush1 24–48 36–60Squash, vining 36–96 72–96Strawberry1 10–24 24–64Sweet potato 10–18 36–48

Page 134: HANDBOOK FOR VEGETABLE GROWERS

121

TABLE 3.10. TRADITIONAL PLANT AND ROW SPACINGS FORVEGETABLES (Continued )

VegetableBetween Plants

in Row (in.)Between

Rows (in.)

Tomato, flat 18–48 36–60Tomato, staked 12–24 36–48Tomato, processing 2–10 42–60Turnip 2–6 12–36Turnip greens 1–4 6–12Watercress 1–3 6–12Watermelon 24–36 72–96

1 Some crops can be grown double-row fashion on polyethylene mulched beds with 10–20 in. betweenrows.

TABLE 3.11. LENGTH OF ROW PER ACRE AT VARIOUS ROWSPACINGS

DistanceBetween Rows

(in.)Row Length

(ft /acre)

DistanceBetween Rows

(in.)Row Length

(ft /acre)

6 87,120 40 13,06812 43,560 42 12,44515 34,848 48 10,89018 29,040 60 8,71220 26,136 72 7,26021 24,891 84 6,22324 21,780 96 5,44530 17,424 108 4,84036 14,520 120 4,356

Page 135: HANDBOOK FOR VEGETABLE GROWERS

122

TABLE 3.12. NUMBER OF PLANTS PER ACRE AT VARIOUSSPACINGS

In order to obtain other spacings, divide 43,560, the number of square feetper acre, by the product of the between-rows and in-the-row spacings, eachexpressed as feet—that is, 43,560 divided by 0.75 (36 � 3 in. or 3 � 0.25ft) � 58,080.

Spacing(in.) Plants

Spacing(in.) Plants

Spacing(ft) Plants

12 � 1 522,720 30 � 3 69,696 6 � 1 7,26012 � 3 174,240 30 � 6 34,848 6 � 2 3,63012 � 6 87,120 30 � 12 17,424 6 � 3 2,42012 � 12 43,560 30 � 15 13,939 6 � 4 1,815

30 � 18 11,616 6 � 5 1,452151 � 1 418,176 30 � 24 8,712 6 � 6 1,21015 � 3 139,39215 � 6 69,696 36 � 3 58,080 7 � 1 6,22315 � 12 34,848 36 � 6 29,040 7 � 2 3,111

36 � 12 14,520 7 � 3 2,074181 � 3 116,160 36 � 18 9,680 7 � 4 1,55618 � 6 58,080 36 � 24 7,260 7 � 5 1,24418 � 12 29,040 36 � 36 4,840 7 � 6 1,03718 � 14 24,891 7 � 7 88918 � 18 19,360 40 � 6 26,136

40 � 12 13,068 8 � 1 5,445201 � 3 104,544 40 � 18 8,712 8 � 2 2,72220 � 6 52,272 40 � 24 6,534 8 � 3 1,81520 � 12 26,136 8 � 4 1,36120 � 14 22,402 42 � 6 24,891 8 � 5 1,08920 � 18 17,424 42 � 12 12,445 8 � 6 907

42 � 18 8,297 8 � 8 680211 � 3 99,564 42 � 24 6,22321 � 6 49,782 42 � 36 4,148 10 � 2 2,17821 � 12 24,891 10 � 4 1,08921 � 14 21,336 48 � 6 21,780 10 � 6 72621 � 18 16,594 48 � 12 10,890 10 � 8 544

48 � 18 7,260 10 � 10 43524 � 3 87,120 48 � 24 5,445

Page 136: HANDBOOK FOR VEGETABLE GROWERS

123

TABLE 3.12. NUMBER OF PLANTS PER ACRE AT VARIOUSSPACINGS (Continued )

Spacing(in.) Plants

Spacing(in.) Plants

Spacing(ft) Plants

24 � 6 43,560 48 � 36 3,63024 � 12 21,780 48 � 48 2,72224 � 18 14,52024 � 24 10,890 60 � 12 8,712

60 � 18 5,80860 � 24 4,35660 � 36 2,90460 � 48 2,17860 � 60 1,742

1 Equivalent to double rows on beds at 30-, 36-, 40-, and 42-in. centers respectively.

Page 137: HANDBOOK FOR VEGETABLE GROWERS

124

07PRECISION SEEDING

High-density plantings, high costs of hand thinning, and erraticperformance of mechanical thinners have resulted in the development ofprecision seeding techniques. The success of precision seeding depends onhaving seeds with nearly 100% germination and on exact placement of eachseed.

Some of the advantages of precision seeding are:

● Reduced seed costs. Only the seed that is needed is sown.● Greater crop uniformity. Each seed is spaced equally, fewer harvests

are necessary, and/or greater yield is obtained at harvest.● Improved yields. Each plant has an equal chance to mature; yields

can increase 20% to 50%.● Improved plant stands. Seeds are dropped shorter distances, resulting

in less scatter and a uniform depth of planting.● Thinning can be reduced or eliminated.

Some precautions must be taken to ensure the proper performance ofprecision seeding equipment:

1. A fine, smooth seedbed is required for uniform seeding depth.2. Seed must have high germination.3. Seed must be uniform in size; this can be achieved by seed sizing or

seed coating.4. Seed must be of regular shape; irregular seeds such as carrot, lettuce,

and onion must be coated for satisfactory precision seeding. Seed sizeis increased 2 to 5 times with clay or proprietary coatings.

Several types of equipment are available for precision seeding ofvegetables.

Belt type—represented by the StanHay seeder. Circular holes punched in abelt accommodate the seed size. Holes are spaced along the belt atspecified intervals. Coated seed usually improves the uniformity obtainedwith this type of seeder.

Plate type—represented by the John Deere 33 or Earth Way. Seeds drop intoa notch in a horizontal plate and are transported to the drop point. Theplate is vertical in the Earth Way and catches seed in a pocket in aplastic plate. Most spacing is achieved by gearing the rate of turn of theplate.

Page 138: HANDBOOK FOR VEGETABLE GROWERS

125

Vacuum type—represented by the Gaspardo, Heath, Monosem, StanHay, andseveral other seeders. Seed is drawn against holes in a vertical plate andagitated to remove excess seed. Various spacings are achieved through acombination of gears and number of holes per plate. Coated seed shouldnot be used in these planters.

Spoon type—represented by the Nibex. Seed is scooped up out of a reservoirby small spoons (sized for the seed) and then carried to a drop shoot,where the spoon turns and drops the seed. Spacing is achieved by spoonnumber and gearing.

Pneumatic type—represented by the International Harvester cyclo planter.Seed is held in place against a drum until the air pressure is broken.Then it drops in tubes and is blown to the soil. This planter isrecommended only for larger vegetable seed.

Grooved cylinder type—represented by the Gramor seeder. This seederrequires round seed or seed that is made round by coating. Seven seedsfall from a supply tube into a slot at the top of a metal case into a metalcylinder. The cylinder turns slowly. As it reaches the bottom of the case,the seed drops out of a diagonal slot. The seed is placed in desiredincrements by a combination of forward speed and turning rate. Thisplanter can be used with seed as small as pepper seed, but it works bestwith coated seed.

Guidelines for Operation and Maintenance of Equipment

1. Check the planter for proper operation and replace worn parts duringthe off season.

2. Thoroughly understand the contents of the manufacturer’s manual.3. Make certain that the operator is trained to use the equipment and

check its performance.4. Double-check settings to obtain desired spacing and depth.5. Make a trial run before moving to the field.6. Operate the equipment at the recommended tractor speed.7. Check the seed drop of each unit periodically during the planting

operation.

Adapted in part from D. C. Sanders, ‘‘Precision Seeding for Vegetable Crops,’’ North CarolinaCooperative Extension Service Publication HIL-36 (1997).

Page 139: HANDBOOK FOR VEGETABLE GROWERS

126

TABLE 3.13. NUMBER OF SEEDS PLANTED PER MINUTE ATVARIOUS SPEEDS AND SPACINGS1

Planter Speed(mph)

In-row Spacing (in.)

2 3 4 6

2.5 1,320 880 660 4403.0 1,584 1,056 792 5284.0 2,112 1,408 1,056 7045.0 2,640 1,760 1,320 880

Adapted from Precision Planting Program, Asgrow Seed Co., Kalamazoo, Mich.1 For most conditions, a planter speed of 2–3 mph results in the greatest precision.

Page 140: HANDBOOK FOR VEGETABLE GROWERS

127

08SEED PRIMING

Seed priming is a physiology-based seed enhancement technique designed toimprove the germination characteristics of seeds. Germination speed,uniformity, and seedling vigor are all improved by priming. These benefitsare especially pronounced under adverse temperature and/or moistureconditions.

The commercial applications of seed priming have been expandingrapidly in recent years. Important vegetable crops now enhanced throughpriming include brassicas, carrot, celery, cucurbits, lettuce, onion, pepper,and tomato. More crop species are being added on an ongoing basis.

Priming is accomplished by partially hydrating seed and maintaining itunder defined moisture, temperature, and aeration conditions for aprescribed period. In this state, the seed is metabolically active. In anoptimally hydrated, metabolically active state, important germination stepscan be accomplished within the seed. These include repair of membranesand/or genetic material, development of immature embryos, alteration oftissues covering the embryo, and destruction or removal of dormancy blocks.

At the conclusion of the process, the seed is redried to its storagemoisture level. The gains made in priming are not lost during storage.Primed seed is physiologically closer to germination than nonprimed seed.When planted at a later date, primed seed starts at this advanced state andmoves directly into the final stages of germination and growth.

There are several commercial methods of seed priming. All are based onthe basic principles of hydrated seed physiology. They differ in the methodsused to control hydration, aeration, temperature, and dehydration. The mostimportant commercial priming methods include:

Liquid osmotic. In this approach, seed is bubbled in a solution of knownosmotic concentration (accomplished with various salts or organicosmotic agents). The osmotic properties of the solution control wateruptake by the seed. The bubbling is necessary to provide sufficientoxygen to keep the seed alive during the process. The temperature of thesolution is controlled throughout the process. After priming is completed,the seeds are removed, washed, and dried.

Membrane and /or flat media osmotic. This method is a variation of liquidosmotic priming. With this method, the seed is placed on a porousmembrane suspended on the surface of the osmotic solution. This methodaddresses some of the aeration concerns associated with liquid osmoticpriming but is limited by practical considerations to smaller seed lots.

Page 141: HANDBOOK FOR VEGETABLE GROWERS

128

Drum hydration. With this method, seeds are placed in a rotating drum andcontrolled quantities of water are sprayed onto the seed, bringing it tothe desired moisture level. Drum rotation provides the necessaryaeration to the seeds, and temperature and air flow are controlledthroughout the process. After the priming period, the seed is dried byflushing air through the drum. Drum priming is a patented technology.

Solid matrix priming (SMP). With the SMP method, water uptake iscontrolled by suspending seed in a defined medium (or matrix) of solids(organic and/or inorganic) of known water-holding properties. The seedand matrix compete for available water, coming to equilibrium atprecisely the right point for priming to occur. Aeration and temperatureare precisely controlled throughout the process. After the process iscomplete, the seed and matrix are separated. The seed is dried to itsoriginal moisture. The SMP method is a patented technology.

In maintaining processing conditions during priming, it is important toprevent the seed from progressing too far through the germination process.If germination is allowed to progress beyond the early stages, it is too lateto return to a resting state. The seed is committed to growth and cannot beredried without damage and/or reduced shelf life.

Priming alters many basic characteristics of germination and seedlingemergence, as indicated below:

Germination speed. Primed seed has already accomplished the early stagesof germination and begins growing much more rapidly. The total timerequired is cut approximately in half. This is especially important withslow-germinating species such as celery and carrot.

Increased temperature range. Primed seed emerges under both cooler andwarmer temperatures than unprimed seed. Generally, the temperaturerange is extended 5–8�F in both directions.

More uniform emergence. The distribution of germination times within mostseed lots is greatly reduced, resulting in improved uniformity.

Germination at reduced seed water content. Primed seed germinates at alower seed water content than unprimed seed.

Control of dormancy mechanisms. In many cases, priming overcomesdormancy mechanisms that slow germination.

Germination percentages. An increase in the germination percentage occursin many instances with individual seed lots as a result of the primingprocess. The increase is generally due to repair of weak or abnormalseeds within the lot.

Page 142: HANDBOOK FOR VEGETABLE GROWERS

129

Considerations with Primed Seed

Shelf Life of Primed SeedShelf life is a complicated subject and is influenced by many factors. Themost important factors are crop species, seed lot quality, seed moisturecontent in storage, transportation and storage conditions (especiallytemperature), the degree to which a lot is primed, and subsequent seedtreatments (fungicides, film coating, pelleting).

Assuming proper transportation and storage conditions and no othercomplicating factors (such as coating), deterioration in seed lot performanceis rarely experienced during the growing season for which a lot was primed(generally 4 months). In most cases (assuming the same qualifiers listedabove), lot performance is maintained for much longer.

As storage time increases, the risk of loss also increases. Most lots arestable, but a percentage deteriorate rapidly. Not only is the priming effectlost, but generally a significant percentage of the lot dies. Screeningmethods to predict high-risk lots are needed. The results of research in thisarea are promising, but a usable method of predicting deterioration is notyet available.

Seed should be primed for planting during the immediate growing seasononly. Priming seed for planting in subsequent years is discouraged. In caseswhere primed seed must be held for extended periods, the seed should beretested before planting to assess whether or not deterioration occurred.

Treating, Coating, and Pelleting Primed SeedThe compatibility of primed seed with any subsequent seed treatment,coating, or pelleting must be determined on a case-by-case basis. Thegermination characteristics may be influenced. In some cases, priming isperformed to improve the vigor of lots that would otherwise not tolerate thestress of coating or pelleting. In other cases, primed seeds may be moresensitive than unprimed seeds and experience deterioration. Combinationsmust be tested after priming, on a case-by-case basis, before othercommercial treatments are performed.

Transport and Storage ConditionsExposure to high temperatures, even for brief periods, can induce rapiddeterioration of all seeds. The risk is greater with primed seeds. In storageand transport, it is important to maintain seeds that have been enhancedunder dry, cool conditions (temperatures of 70�F or lower are recommended).Unfavorable conditions may negatively influence shelf life.

Adapted from John A. Eastin and John S. Vendeland. Kamterter Products, Inc., Lincoln, Neb. ‘‘SeedPriming’’ Presented at Florida Seed Association Seminar (1996), and C. Parera and D. Cantliffe, ‘‘SeedPriming,’’ Horticultural Reviews 16 (1994):109–141.

Page 143: HANDBOOK FOR VEGETABLE GROWERS

130

09VEGETATIVE PROPAGATION

TABLE 3.14. STORAGE OF PLANT PARTS USED FORVEGETATIVE PROPAGATION

Plant Part Temperature (�F)

RelativeHumidity

(%) Comments

Asparagus crowns 30–32 85–90 Roots may be trimmedto 8 in. Preventheating andexcessive drying.

Garlic bulbs 50 50–65 Fumigate for mites, ifpresent. Hot-water-treat (120�F for 20min) for control ofstem and bulbnematodeimmediately beforeplanting.

Horseradish roots 32 85–90 Pit storage is used incold climates.

Onion sets 32 70–75 Sets may be curednaturally in thefield, in trays, orartificially withwarm, dry air.

Potato tubers 36–40 (extendedstorage), 45–50(short storage)

90 Cure at 60–65�F and90–95% relativehumidity for 10–14days. Move to 60–65�F 10–14 daysbefore planting.

Rhubarb crowns 32–35 80–85 Field storage issatisfactory in coldclimates.

Strawberry plants 30–32 85–90 Store in crates linedwith 1.5-milpolyethylene.

Page 144: HANDBOOK FOR VEGETABLE GROWERS

131

TABLE 3.14. STORAGE OF PLANT PARTS USED FORVEGETATIVE PROPAGATION (Continued )

Plant Part Temperature (�F)

RelativeHumidity

(%) Comments

Sweet potato roots 55–60 85–90 Cure roots at 85�Fand 85–90% relativehumidity for 6–8days before storage.

Witloof chicory roots 32 90–95 Prevent excessivedrying.

TABLE 3.15. FIELD REQUIREMENTS FOR VEGETATIVELYPROPAGATED CROPS

Vegetable Plant Parts Quantity /acre1

Artichoke Root sections 807–1,261Asparagus Crowns 5,808–10,890Dasheen Corms (2–5 oz) 9–18 cwtGarlic Cloves 8–20 cwtJerusalem artichoke Tubers (2 oz) 10–12 cwtHorseradish Root cuttings 9,000–11,000Onion Sets 5–10 cwtPotato Tubers or tuber sections 13–26 cwtRhubarb Crown divisions 4,000–5,000Strawberry Plants 6,000–50,000Sweet potato Roots for bedding 5–6 cwt

1 Varies with field spacing, size of individual units, and vigor of stock.

Page 145: HANDBOOK FOR VEGETABLE GROWERS

132

TABLE 3.16. SEED POTATOES REQUIRED PER ACRE, WITHVARIOUS PLANTING DISTANCES AND SIZES OFSEED PIECE

Spacing of Rowsand Seed Pieces

Seed Piece Weights

1 oz 11⁄4 oz 11⁄2 oz 13⁄4 oz 2 oz

(Pounds of Seed/Acre)Rows 30 in. Apart

8-in. spacing 1632 2040 2448 2856 327010-in. spacing 1308 1638 1956 2286 261412-in. spacing 1089 1361 1632 1908 217814-in. spacing 936 1164 1398 1632 186816-in. spacing 816 1020 1224 1428 1632

Rows 32 in. Apart

8-in. spacing 1530 1914 2298 2682 306610-in. spacing 1224 1530 1836 2142 244812-in. spacing 1020 1278 1536 1788 204014-in. spacing 876 1092 1314 1530 175216-in. spacing 768 960 1152 1344 1536

Rows 34 in. Apart

8-in. spacing 1440 1800 2160 2520 288010-in. spacing 1152 1440 1728 2016 230412-in. spacing 960 1200 1440 1680 192014-in. spacing 822 1026 1236 1440 164416-in. spacing 720 900 1080 1260 1440

Rows 36 in. Apart

8-in. spacing 1362 1704 2040 2382 272410-in. spacing 1086 1362 1632 1902 217812-in. spacing 906 1134 1362 1590 181214-in. spacing 780 972 1164 1362 155416-in. spacing 678 852 1020 1188 136218-in. spacing 606 756 906 1056 1212

Page 146: HANDBOOK FOR VEGETABLE GROWERS

133

TABLE 3.16. SEED POTATOES REQUIRED PER ACRE, WITHVARIOUS PLANTING DISTANCES AND SIZES OFSEED PIECE

Spacing of Rowsand Seed Pieces

Seed Piece Weights

1 oz 11⁄4 oz 11⁄2 oz 13⁄4 oz 2 oz

Rows 42 in. Apart

18-in. spacing 516 648 780 906 103824-in. spacing 390 486 582 678 78030-in. spacing 312 390 468 546 62436-in. spacing 258 324 390 456 516

Rows 48 in. Apart

18-in. spacing 456 570 678 792 90624-in. spacing 342 426 510 594 67830-in. spacing 270 342 408 474 54636-in. spacing 228 282 342 396 456

Page 147: HANDBOOK FOR VEGETABLE GROWERS

134

10POLYETHYLENE MULCHES

Polyethylene mulch has been used commercially on vegetables since theearly 1960s. Currently, it is used on thousands of acres of vegetables in theUnited States. Florida and California lead in use, with about 100,000 acresof mulched vegetables in each state.

Types of Mulch

Basically, three major colors of mulch are used commercially: black, clear,and white (or white-on-black). Black mulch is used most widely because itsuppresses weed growth, resulting in less chemical usage. Further, it isuseful for cool seasons because it warms the soil by contact. Clearpolyethylene is used widely in the northern United States because itpromotes warmer soil temperatures (by the greenhouse effect) than doesblack mulch. Clear mulch requires use of labeled fumigants or herbicidesunderneath to prevent weed growth. White or white-on-black mulch is usedfor fall crops established under hot summer conditions. Soils under whitemulch or white-on-black mulch remain cooler because less radiant energy isabsorbed by the mulch. Some growers create their own white mulch bypainting the surface of black-mulched beds with white latex paint. Thereare some other specialized mulches, such as red or metallized mulch, usedfor specialized circumstances, such as weed control, plant growth regulation,and insect repelling. Films can be made of thinner gauge and high densitycompared with low-density polyethylenes.

Benefits of Mulch

Increases early yields. The largest benefit from polyethylene mulch is theincrease in soil temperature in the bed, which promotes faster cropdevelopment and earlier yields.

Aids moisture retention. Mulch reduces evaporation from the bed soilsurface. As a result, a more uniform soil moisture regime is maintainedand the frequency of irrigation is reduced slightly. Irrigation is stillmandatory for mulched crops so that the soil under the mulch doesn’tdry out excessively. Tensiometers placed in the bed between plants canhelp indicate when irrigation is needed.

Inhibits weed growth. Black and white-on-black mulches greatly inhibit lightpenetration to the soil. Therefore, weed seedlings cannot survive underthe mulch. Nutgrass can still be a problem, however. The nuts provide

Page 148: HANDBOOK FOR VEGETABLE GROWERS

135

enough energy for the young nutgrass to puncture the mulch andemerge. Other pests, such as soilborne pathogens, insects, andnematodes, are not reduced by most mulches. Some benefit has beenshown from high temperatures under clear mulch (solarization).Currently, the best measure for nutgrass and pest control under themulch is labeled fumigation.

Reduces fertilizer leaching. Fertilizer placed in the bed under the mulch isless subject to leaching by rainfall. As a result, the fertilizer program ismore efficient, and the potential exists for reducing traditional amountsof fertilizer. Heavy rainfall that floods the bed can still result in fertilizerleaching. This fertilizer can be replaced if the grower is using dripirrigation, or it can be replaced with a liquid fertilizer injection wheel.

Decreases soil compaction. Mulch acts as a barrier to the action of rainfall,which can cause soil crusting, compaction, and erosion. Less compactedsoil provides a better environment for seedling emergence and rootgrowth.

Protects fruits. Mulch reduces rain-splashed soil deposits on fruits. Inaddition, mulch reduces fruit rot caused by soil-inhabiting organismsbecause it provides a protective barrier between the fruit and theorganisms.

Aids fumigation. Mulches increase the effectiveness of soil fumigantchemicals. Acting as a barrier to gas escape, mulches help keep gaseousfumigants in the soil. Recently, virtually impermeable films (VIF) havebeen developed to help trap fumigants better and reduce amounts offumigants needed.

Negative Aspects of Mulch

Mulch removal and disposal. The biggest problems associated with mulchuse are removal and disposal. Because most mulches are notbiodegradable, they must be removed from the field after use. Thisusually involves some hand labor, although mulch lifting and removalmachines are available. Some growers burn the mulch, but the buriededges still must be removed by hand. Disposal also presents a problembecause of the quantity of waste generated.

Specialized equipment. The mulch cultural system requires a smallinvestment in specialized equipment, including a bed press, mulch layer,and mulch transplanter or plug-mix seeder. Vacuum seeders are alsoavailable for seeding through mulch. This equipment is inexpensive andeasily obtained, and some can even be manufactured on the farm.

Page 149: HANDBOOK FOR VEGETABLE GROWERS

136

Mulch Application

Mulch is applied by machine for commercial operations. Machines thatprepare beds, fertilize, fumigate, and mulch in separate operations or incombination are available. The best option is to complete all of theseoperations in one pass across the field. In general, all chemicals andfertilizers are applied to the soil before mulching. Nitrogen and potassiumfertilizers can be injected through a drip irrigation system under the mulch.

When laying mulch, be sure the bed is pressed firmly and that the mulchis in tight contact with the bed. This helps transfer heat from mulch to bedand reduces flapping in the wind, which results in tears and blowing ofmulch from the bed. The mulch layer should be adjusted so that the edgesare buried sufficiently to prevent uplifting by wind.

Degradable Mulches

Degradable plastic mulches have many of the properties and provide theusual benefits of standard polyethylene mulches. One important differenceis that degradable mulches begin to break down after the film has receiveda predetermined amount of ultraviolet (UV) light.

When a film has received sufficient UV light, it becomes brittle anddevelops cracks, tears, and holes. Small sections of film may tear off and beblown around by the wind. Finally, the film breaks down into small flakesand disintegrates into the soil. The edges covered by the soil retain theirstrength and break down only after being disked to the surface, where theyare exposed to UV light.

The use of long-lasting degradable mulches formulated for long-seasoncrops, such as peppers, results in some plastic residue fragments remainingin the soil for the next crop. This residue is primarily the edges of film thatwere covered with soil. Seeding early crops in a field that had a long-term,degradable mulch the previous season should be avoided. Most plasticfragments should break down and disappear into the soil by the end of thegrowing season after the mulch was used.

Factors affecting the time and rate of breakdown:

● The formulation and manufacturing of the film—that is, short-,intermediate-, or long-lasting film.

● Factors that influence the amount of UV light received by the mulchfilm and, thus, the breakdown include the growth habit of the crop(vine or upright), the time of year the film is applied, the timebetween application and planting, crop vigor, and double- or single-

Page 150: HANDBOOK FOR VEGETABLE GROWERS

137

row planting. Weed growth, mowing off the crop, and length of timethe mulch is left in the field after harvest also influence time andextent of breakdown.

● High temperatures can increase the rate of breakdown, and wind canrapidly enlarge tears and holes in film that is breaking down.

● Other factors, including depressions in the bed, footprints, animal andtire tracks, trickle irrigation tubes under the film, and stress on theplastic resulting from making holes for plants and planting, allweaken the film and increase the rate of breakdown.

Suggestions for using degradable mulches:

● Select the proper mulch formulation for the crop. Consult thecompany representative.

● Make uniform beds, free from depressions and footprints. Apply long-term mulches 1–2 weeks before planting. This allows the mulch toreceive UV light and initiate the breakdown process. Apply short-duration films a few days to immediately before planting.

● Minimize damage to the film and avoid unnecessary footprints,especially during planting and early in the growing season.

● Maintain clean weed control between mulch strips. Shading fromweed growth can slow the rate of mulch breakdown.

● Lift the soil-covered edges before final harvest or as soon as possibleafter harvest. This exposes some of the covered edges to UV light andstarts the breakdown process.

● Mow down crop immediately after the last harvest to allow UV lightto continue the breakdown process.

● When film is brittle, disk the beds. Then, angle or cross-disk to breakthe mulch (especially the edges) into small fragments.

● Plant a cover crop to trap larger fragments and prevent them fromblowing around. Plant a border strip of a tall-growing grass aroundthe field to prevent fragments from blowing into neighboring areas.

Adapted from G. J. Hochmuth, R.C. Hochmuth, and S. M. Olson, ‘‘Polyethylene Mulching for EarlyVegetable Production in North Florida,’’ Florida Cooperative Extension Service Circular 805 (2001),http: / / edis.ifas.ufl.edu / CV213, E. R. Kee, P. Mulrooney, D. Caron, M. VanGessel, and J. Whalen,‘‘Commercial Vegetable Production,’’ Delaware Cooperative Extension Bulletin 137 (2005); W. L.Schrader, ‘‘Plasticulture in California,’’ Publ. 8016 (2001), http: / / anrcatalog.ucdavis.edu, and TheCenter for Plasticulture at Penn State, http: / / plasticulture.cas.psu.edu.

Page 151: HANDBOOK FOR VEGETABLE GROWERS

138

11ROW COVERS

Row covers have been used for many years for early growth enhancement ofcertain vegetables in a few production areas such as San Diego County,California. New materials and methods have been developed recently thatmake the use of row covers a viable production practice wherever vegetablesare seeded or transplanted when temperatures are below optimum andearly production is desired. Row covers, when properly used, result inearlier harvest and, perhaps, greater total production. There are twogeneral types of row covers—supported and floating; many variations of therow cover concept are possible, depending on the needs of the individualgrower. Row covers generally work best when used in conjunction with blackpolyethylene-mulched rows or beds.

Supported Row Covers

Clear polyethylene, 5–6 ft wide and 1–11⁄2 mils thick, is the most convenientmaterial to use and is generally used just once. Slitted row covers have slits5 in. long and 3⁄4 in. apart in two rows. The slits, arranged at the uppersides of the constructed supported row cover, provide ventilation; otherwisethe cover would have to be manually opened and closed each day. Hoops ofno. 8 or no. 9 wire are cut 63 in. long for 5-ft-wide polyethylene.

Hoops are installed over the polyethylene-mulched crop so that thecenter of the hoop is 14–16 in. above the row. The slitted row cover can bemechanically applied over the hoops with a high-clearance tractor and amodified mulch applicator.

Floating Row Covers

Floating row covers are made of spun-bonded polyester and polypropylene.The material is similar to the fabrics used in the clothing industry forinterlining, interfacing, and other uses. It is white or off-white, porous to airand water, lightweight (0.6 oz /sq yd) and transmits about 80% of the light.The material comes in rolls 67 in. wide and 250–2,500 ft long. One-pieceblankets are also available. With care, the spun-bonded fabrics can be usedtwo to three or more times.

Immediately after planting (seeds or transplants), the spun-bonded fabricis laid directly over the row and the edges secured with soil, boards, bricks,or wire pins. Because the material is of such light weight, the plants push itup as they grow. Accordingly, enough slack should be provided to allow forthe plants to reach maximum size during the time the material is left overthe plants. For bean or tomato, about 12 in. slack should be left. For a crop

Page 152: HANDBOOK FOR VEGETABLE GROWERS

139

such as cucumber, 8 in. is sufficient. Supports should be considered in windygrowing areas so plants are not damaged by cover abrasion.

Floating covers can be left over vegetables for 3–8 weeks, depending onthe crop and the weather. For tomato and pepper, it can be left on for about1 month but should be removed (at least partially) when the temperatureunder the covers reaches 86�F and is likely to remain that high for severalhours.

Cantaloupe blossoms can withstand high temperatures, but the covermust be removed when the first female flowers appear so bees can beginpollination.

Frost Protection

Frost protection with slitted and floating covers is not as good as with solidplastic covers. A maximum of 3–4�F is all that can be expected, whereaswith solid covers, frost protection of 5–7�F has been attained. Polypropylenefloating row covers can be used for frost protection of vegetables andstrawberries. Heavier covers 1.0–1.5 oz /yd can protect strawberries to 23–25�F. Row covers should not be viewed merely as a frost protection systembut as a growth-intensifying system during cool spring weather. Therefore,do not attempt to plant very early and hope to be protected against heavyfrosts. An earlier planting date of 10 days to 2 weeks is more reasonable.The purpose of row covers is to increase productivity through an economicalincrease of early and perhaps total production per unit area.

Adapted from O. S. Wells and J. B. Loy, ‘‘Row Covers for Intensive Vegetable Production,’’ NewHampshire Cooperative Extension Service (1985); G. Hochmuth and R. Hochmuth, ‘‘Row Covers forGrowth Enhancement,’’ Florida Cooperative Extension Service Fact Sheet HS716 (2004), http: / /edis.ifas.ufl.edu / cv106.

W. L. Schrader, ‘‘Plasticulture in California,’’ Publ. 8016 (2000), http: / / anrcatalog.ucdavis.edu; andThe Center for Plasticulture at Penn State, http: / / plasticulture.cas.psu.edu.

Page 153: HANDBOOK FOR VEGETABLE GROWERS

140

Figure 3.1. Air temperature, evaporation rate, and wind speed changes withdistance from windbreak. Variables are expressed as percent of their level ifthe windbreak was not present.

12WINDBREAKS

Windbreaks are important considerations in an intensive vegetableproduction system. Use of windbreaks can result in increased yield andearlier crop production.

Young plants are most susceptible to wind damage and sand blasting.Rye or other tall-growing grass strips between rows can provide protectionfrom wind and windborne sand. Windbreaks can improve early plant growthand earlier crop production, particularly with melons, cucumbers, squash,peppers, eggplant, tomatoes, and okra.

A major benefit of a windbreak is improved use of moisture. Reducingthe wind speed reaching the crop reduces both direct evaporation from thesoil and the moisture transpired by the crop. This moisture advantage alsoimproves conditions for seed germination. Seeds germinate more rapidly,and young plants establish root systems more quickly. Improved moistureconditions continue to enhance crop growth and development throughout thegrowing season.

The type and height of the windbreak determine its effect. Windbreakscan be living or nonliving. Rye strips are suggested for intensive vegetableproduction based on economics. In general, windbreaks should be as close as

Page 154: HANDBOOK FOR VEGETABLE GROWERS

141

economically viable—for example, every three or four beds of melons. Thewindbreak should be planted perpendicular to the prevailing wind direction.Rye strips should be planted prior to the crop to be protected so as to obtaingood plant establishment and to provide adequate time for plant growthprior to beginning the next production season. Fertilization and pestmanagement of rye windbreaks may be necessary to encourage growth tothe desired height.

Adapted from J. R. Schultheis, D. C. Sanders, and K. B. Perry, ‘‘Windbreaks and Drive Rows,’’ inD. C. Sanders (ed.), A Guide to Intensive Vegetable Systems (North Carolina Cooperative ExtensionAG-502, 1993, 9, and from R. Rouse and L. Hodges, ‘‘Windbreaks,’’ in W. Lamont (ed.), Production ofVegetables, Strawberries, and Cut Flowers Using Plasticulture, (Ithaca, N.Y.: NRAES, CooperativeExtension Service, 2004), 57–66.

Vegetable Production in High Tunnels

Growing vegetables in large, walk-in, plastic-covered structures is popularin many parts of the world and is becoming more popular in the UnitedStates. Benefits of vegetable production in high-tunnels include earlier andextended-season production, tunnels can be sited on field soil, protectionfrom rain, reduced disease, and insect pressure, less costly system thangreenhouses, and less technology required. Most vegetables can be grown ina high-tunnel but the most popular crops are melons, cucumber, tomato,pepper, strawberry, salad crops, and herbs. More information on high-tunnelproduction can be found at The Center for Plasticulture at Penn State citedbelow.

http: / /plasticulture.cas.psu.edu/H-tunnels.html

13ADDITIONAL SOURCES OF INFORMATION ON PLASTICULTURE

W. L. Schrader, ‘‘Plasticulture in California: Vegetable Production,’’University of California. Publ. 8016 (2000), http: / /anardatalog.ucdavis.edu.

H. Taber and V. Lawson, ‘‘Melon Row Covers,’’ Iowa State University, http: / /www.public.iastate.edu/�taber /Extension /Melon /melonrc.html.

The Center for Plasticulture at Penn State, http: / /plasticulture.cas.psu.edu.J. Brandle and L. Hodges, ‘‘Field Windbreaks,’’ University of Nebraska

Cooperative Extension Service EC-00-1778x.

Page 155: HANDBOOK FOR VEGETABLE GROWERS

PART 4SOILS AND FERTILIZERS

01 NUTRIENT BEST MANAGEMENT PRACTICES

02 ORGANIC MATTER

03 SOIL-IMPROVING CROPS

04 MANURES

05 SOIL TEXTURE

06 SOIL REACTION

07 SALINITY

08 FERTILIZERS

09 FERTILIZER CONVERSION FACTORS

10 NUTRIENT ABSORPTION

11 PLANT ANALYSIS

12 SOIL TESTS

13 NUTRIENT DEFICIENCIES

14 MICRONUTRIENTS

15 FERTILIZER DISTRIBUTORS

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 156: HANDBOOK FOR VEGETABLE GROWERS

144

01NUTRIENT BEST MANAGEMENT PRACTICES (BMPs)

With the passage of the Federal Clean Water Act in 1972, states wererequired to assess the impact of nonpoint sources of pollution on surface andground waters and to establish programs to minimize these sources ofpollution. This Act also requires states to identify impaired water bodiesand establish total maximum daily loads (TMDLs) for pollutants enteringthose water bodies. TMDLs are the maximum amounts of pollutants thatcan enter a water body and still allow it to meet its designated uses, suchas swimming, potable water, fishing, etc. States have implemented variousprograms to address TMDLs. For example, Florida has adopted a bestmanagement practice (BMP) approach to addressing TMDLs wherebynutrient BMPs are adopted by state rule. The following definition of a BMPis taken from the Florida Department of Agriculture and Consumer Serviceshandbook, Water Quality /Quantity Best Management Practices for FloridaVegetable and Agronomic Crops. BMPs are a practice or combination ofpractices determined by state agencies, based on research, field testing, andexpert review, to be the most effective and practical on-location means,including economic and technical considerations, for improving water qualityin agricultural and urban discharges. BMPs must be technically feasible,economically viable, socially acceptable, and based on sound science. Somestates’ programs involve incentive measures for adopting BMPs, such ascost-share for certain management practices on the farm, and othertechnical assistance. Agricultural producers who adopt approved BMPs,depending on the state and the program, may be ‘‘presumed to be incompliance’’ with state water quality standards and are eligible for cost-share funds to implement certain BMPS on the farm. States designateagencies for implementing the BMP programs and for verifying that theBMPs are effective at reducing pollutant loads.

Some information on BMP programs can be found at:

● USDA Natural Resources Conservation Service field office technicalguide, http: / /www.nrcs.usda.gov.

● Florida Department of Agriculture and Consumer Services WaterQuality /Quantity Best Management Practices for Florida Vegetableand Agronomic Crops, http: / /www.floridaagwaterpolicy.com/PDFs/BMPs/vegetable&agronomicCrops.pdf.

● Farming for Clean Water in South Carolina: A Handbook ofConservation Practices (S.C.: NRCS), http: / /www.sc.nrcs.usda.gov /pubs.html.

Page 157: HANDBOOK FOR VEGETABLE GROWERS

145

● T. K. Hartz, Efficient Nitrogen Management for Cool-season Vegetables(University of California Vegetable Research and Information Center),http: / /vric.ucdavis.edu/veginfo / topics /.

● G. Hochmuth, Nitrogen Management Practices for VegetableProduction in Florida, http: / / edis.ifas.ufl.edu/CV237.

● Maryland Nutrient Management Manual, http: / /www.mda.state.md.us/resource conservation /nutrient management /manual / index.php.

● Irrigation Management Practices: Checklist for Oregon, http: / /biosys.bre.orst.edu /bre /docs / irrigation.htm.

● Nutrient and Pesticide Management (Pacific Northwest RegionalWater Program), http: / /www.pnwwaterweb.com/National /nutpest.htm.

● Nutrient Management: NRCS Conservation Practice Standard (Wis.),http: / /www.dnr.state.wi.us /org /water /wm/nps /rules /.

Page 158: HANDBOOK FOR VEGETABLE GROWERS

146

02ORGANIC MATTER

FUNCTION OF ORGANIC MATTER IN SOIL

Rapid decomposition of fresh organic matter contributes most effectively tothe physical condition of a soil. Plenty of moisture, nitrogen, and a warmtemperature speed the rate of decomposition.

Organic matter serves as a source of energy for soil microorganisms andas a source of nutrients for plants. Organic matter holds the mineralsabsorbed from the soil against loss by leaching until they are released forplant uptake by the action of microorganisms. Bacteria thriving on theorganic matter produce complex carbohydrates that cement soil particlesinto aggregates. Acids produced in the decomposition of organic matter maymake available mineral nutrients of the soil to crop plants. The entranceand percolation of water into and through the soil are facilitated. Thisreduces losses of soil by erosion. Penetration of roots through the soil isimproved by good structure brought about by the decomposition of organicmatter. The water-holding capacity of sands and sandy soils may beincreased by the incorporation of organic matter. Aggregation in heavy soilsmay improve drainage. It is seldom possible to make a large permanentincrease in the organic matter content of a soil.

ORGANIC SOIL AMENDMENTS

Animal manures, sludges, and plant materials have been used commerciallyfor decades for vegetable production. Today, society demands efficient use ofnatural materials, so recycling of wastes into agriculture is viewed asimportant. Many municipalities are producing solid waste materials thatcan be used on the farm as soil amendments and sources of nutrients forplants. The technology of compost production and utilization is stilldeveloping. One challenge for the grower is to locate compost sources thatyield consistent chemical and physical qualities. Incompletely compostedwaste, sometimes called green compost, can reduce crop growth becausenitrogen is robbed, or used by the microorganisms to decompose the organicmatter in the compost. Growers contemplating use of soil amendmentsshould thoroughly investigate the quality of the product, including testingfor nutrient content.

Page 159: HANDBOOK FOR VEGETABLE GROWERS

147

ENVIRONMENTAL ASPECTS OF ORGANIC SOIL AMENDMENTS

Although the addition of organic matter, such as manures, to the soil canhave beneficial effects on crop performance, there are some potentialnegative effects. As the nitrogen is released from the organic matter, it canbe subject to leaching. Heavy applications of manure can contribute togroundwater pollution unless a crop is planted soon to utilize the nitrogen.This potential can be especially great in southern climates, where nitrogenrelease can be rapid and most nitrogen is released in the first season afterapplication. Plastic mulch placed over the manured soil reduces thepotential for nitrate leaching. In today’s environmentally aware world,manures must be used carefully to manage the released nutrients. Growerscontemplating using manures as soil amendment or crop nutrient sourceshould have the manure tested for nutrient content. The results from suchtests can help determine the best rate of application so that excessnutrients such as N or P are not available for leaching or losses to erosion.

Page 160: HANDBOOK FOR VEGETABLE GROWERS

148

03SOIL-IMPROVING CROPS

TABLE 4.1. SEED REQUIREMENTS OF SOIL-IMPROVING CROPSAND AREAS OF ADAPTATION

Soil-Improving CropsSeed

(lb /acre)U.S. Area Where Crop Is

Adapted

Winter Cover Crops

LegumesBerseem (Trifolium alexandrinum) 15 West and southeastBlack medic (Medicago lupulina) 15 AllBlack lupine (Lupinus hirsutus) 70 AllClover

Crimson (Trifolium incarnatum) 15 South and southeastBur, California (Medicago hispida) 25 SouthSouthern (M. arabica) unhulled 100 SoutheastTifton (M. rigidula) unhulled 100 SoutheastSour (Melilotus indica) 20 SouthSweet, hubam (Melilotus alba) 20 All

Fenugreek (Trigonellafoenumgraecum)

30 Southwest

Field pea (Pisum sativum)Canada 80 AllAustrian winter 70 All

Horse bean (Vicia faba) 100 Southwest and southeastRough pea (Lathyrus hirsutus) 60 Southwest and southeastVetch

Bitter (Vicia ervilia) 30 West and southeastCommon (V. sativa) 50 West and southeastHairy (V. villosa) 30 AllHungarian (V. pannonica) 50 West and southeastMonantha (V. articulata) 40 West and southeastPurple (V. bengalensis) 40 West and southeastSmooth (V. villosa var. glabrescens) 30 AllWoollypod (V. dasycarpa) 30 Southeast

NonlegumesBarley (Hordeum vulgare) 75 AllMustard (Brassica nigra) 20 AllOat (Avena sativa) 75 All

Page 161: HANDBOOK FOR VEGETABLE GROWERS

149

TABLE 4.1. SEED REQUIREMENTS OF SOIL-IMPROVING CROPSAND AREAS OF ADAPTATION (Continued )

Soil-Improving CropsSeed

(lb /acre)U.S. Area Where Crop is

Adapted

Rape (Brassica napus) 20 AllRye (Secale cereale) 75 AllWheat (Triticum sativum) 75 All

Summer Cover Crops

LegumesAlfalfa (Medicago sativa) 20 AllBeggarweed (Desmodium

purpureum)10 Southeast

CloverAlyce (Alysicarpus vaginalis) 20 SoutheastCrimson (Trifolium incartum) 15 SoutheastRed (T. pratense) 10 All

Cowpea (Vigna sinensis) 90 South and southwestHairy indigo (Indigofera hirsuta) 10 Southern tierLezpedeza

Common (Lezpedeza striata) 25 SoutheastKorean (L. stipulacea) 20 Southeast

Sesbania (Sesbania exaltata) 30 SouthwestSoybean (Glycine max) 75 AllSweet clover, white (Melilotus alba) 20 AllSweet clover (M. officinalis) 20 AllVelvet bean (Stizolobium

deeringianum)100 Southeast

NonlegumesBuckwheat (Fagopyrum esculentum) 75 AllPearl millet (Pennisetum glaucum) 25 Southern and southeastSorghum, Hegari (Sorghum vulgare) 40 Western halfSudan grass (Sorghum vulgare var.

sudanese)25 All

Adapted from Growing Summer Cover Crops, USDA Farmer’s Bulletin 2182 (1967); P. R. Henson andE. A. Hollowell, Winter Annual Legumes for the South, USDA Farmers Bulletin 2146 (1960); P. R.Miller, W. A. Williams, and B. A. Madson, Covercrops for California Agriculture, University ofCalifornia Division of Agriculture and Natural Resources Publication 21471 (1989), and CoverCropping in Vineyards: A Growers Handbook, University of California Publication 3338.

Page 162: HANDBOOK FOR VEGETABLE GROWERS

150

DECOMPOSITION OF SOIL-IMPROVING CROPS

The normal carbon-nitrogen (C�N) ratio in soils is about 10�1. Turningunder organic matter alters this ratio because most organic matter is richerin carbon than in nitrogen. Unless the residue contains at least 1.5%nitrogen, the decomposing organisms will utilize soil nitrogen as the energysource for the decomposition process. Soil organisms can tie up as much as25 lb nitrogen per acre from the soil in the process of decomposition ofcarbon-rich fresh organic matter.

A soil-improving crop should be fertilized adequately with nitrogen toincrease the nitrogen content somewhat and improve later decomposition.Nitrogen may have to be added as the soil-improving crop is incorporatedinto the soil. This speeds the decomposition and prevents a temporaryshortage of nitrogen for the succeeding vegetable crop.

As a general rule, about 20 lb nitrogen should be added for each ton ofdry matter for a nonlegume green-manure crop.

TABLE 4.2. APPROXIMATE CARBON-TO-NITROGEN RATIOS OFCOMMON ORGANIC MATERIALS

Material C�N Ratio

Alfalfa 12�1Sweet clover, young 12�1Sweet clover, mature 24�1Rotted manure 20�1Oat straw 75�1Corn stalks 80�1Timothy straw 80�1Sawdust 300�1

Page 163: HANDBOOK FOR VEGETABLE GROWERS

151

04MANURES

TYPICAL COMPOSITION OF MANURES

Manures vary greatly in their nutrient content. The kind of feed used, thepercentage and type of litter or bedding, the moisture content, and the ageand degree of decomposition or drying all affect the composition. Somenitrogen is lost in the process of producing commercially dried, pulverizedmanures. The following data are representative analyses from widelyscattered reports.

TABLE 4.3. COMPOSITION OF MANURES

Source Dry Matter (%)

Approximate Composition(% dry weight)

N P2O5 K2O

Dairy 15–25 0.6–2.1 0.7–1.1 2.4–3.6Feedlot 20–40 1.0–2.5 0.9–1.6 2.4–3.6Horse 15–25 1.7–3.0 0.7–1.2 1.2–2.2Poultry 20–30 2.0–4.5 4.5–6.0 1.2–2.4Sheep 25–35 3.0–4.0 1.2–1.6 3.0–4.0Swine 20–30 3.0–4.0 0.4–0.6 0.5–1.0

Page 164: HANDBOOK FOR VEGETABLE GROWERS

152

TABLE 4.4. NITROGEN LOSSES FROM ANIMAL MANURE TO THEAIR BY METHOD OF APPLICATION

Application MethodType ofManure

NitrogenLoss (%)1

Broadcast without incorporation Solid 15–30Liquid 10–25

Broadcast with incorporation Solid 1–5Liquid 1–5

Injection (knifing) Liquid 0–2Irrigation Liquid 30–40

Adapted from D. E. Chaney, L. E. Drinkwater, and G. S. Pettygrove. Organic Soil Amendments andFertilizers, University of California Division of Agriculture and Natural Resources Publication 21505(1992).1 Loss within 3 days of application

TYPICAL COMPOSITION OF SOME ORGANIC FERTILIZERMATERIALS

Under most environments, the nutrients in organic materials becomeavailable to plants slowly. However, mineralization of nutrients in organicmatter can be hastened under warm, humid conditions. For example, inFlorida, most usable nitrogen can be made available from poultry manureduring one season. There is considerable variation in nutrient contentamong samples of organic soil amendments. Commercial manure productsshould have a summary of the chemical analyses on the container. Growersshould have any organic soil amendment tested for nutrient content sofertilization programs can be planned. The data below are representative ofmany analyses noted in the literature and in reports of state analyticallaboratories.

Page 165: HANDBOOK FOR VEGETABLE GROWERS

153

TABLE 4.5. COMPOSITION OF ORGANIC MATERIALS

Organic Materials

Percentage on a Dry Weight Basis

N P2O5 K2O

Bat guano 10.0 4.0 2.0Blood 13.0 2.0 1.0Bone meal, raw 3.0 22.0 —Bone meal, steamed 1.0 15.0 —Castor bean meal 5.5 2.0 1.0Cottonseed meal 6.6 3.0 1.5Fish meal 10.0 6.0 —Garbage tankage 2.5 2.0 1.0Peanut meal 7.0 1.5 1.2Sewage sludge 1.5 1.3 0.4Sewage sludge, activated 6.0 3.0 0.2Soybean meal 7.0 1.2 1.5Tankage 7.0 10.0 1.5

Page 166: HANDBOOK FOR VEGETABLE GROWERS

154

TABLE 4.6. COMPOSITION OF ORGANIC MATERIALS

Materials

Approximate Pounds per Ton of Dry Material

Moisture (%) N P2O5 K2O

Alfalfa hay 10 50 11 50Alfalfa straw 7 28 7 36Barley hay 9 23 11 33Barley straw 10 12 5 32Bean straw 11 20 6 25Beggarweed hay 9 50 12 56Buckwheat straw 11 14 2 48Clover hay

Alyce 11 35 — —Bur 8 60 21 70Crimson 11 45 11 67Ladino 12 60 13 67Sweet 8 60 12 38

Cowpea hay 10 60 13 36Cowpea straw 9 20 5 38Field pea hay 11 28 11 30Field pea straw 10 20 5 26Horse bean hay 9 43 — —Lezpedeza hay 11 41 8 22Lezpedeza straw 10 21 — —Oat hay 12 26 9 20Oat straw 10 13 5 33Ryegrass hay 11 26 11 25Rye hay 9 21 8 25Rye straw 7 11 4 22Sorghum stover, Hegari 13 18 4 —Soybean hay 12 46 11 20Soybean straw 11 13 6 15Sudan grass hay 11 28 12 31Sweet corn fodder 12 30 8 24Velvet bean hay 7 50 11 53Vetch hay

Common 11 43 15 53Hairy 12 62 15 47

Page 167: HANDBOOK FOR VEGETABLE GROWERS

155

TABLE 4.6. COMPOSITION OF ORGANIC MATERIALS (Continued )

Materials

Approximate Pounds per Ton of Dry Material

Moisture (%) N P2O5 K2O

Wheat hay 10 20 8 35Wheat straw 8 12 3 19

Adapted from Morrison Feeds and Feeding (Ithaca, N.Y.: Morrison, 1948).

Page 168: HANDBOOK FOR VEGETABLE GROWERS

156

05SOIL TEXTURE

The particles of a soil are classified by size into sand, silt, and clay.

TABLE 4.7. CLASSIFICATION OF SOIL-PARTICLE SIZES

Soil Particle Size Classes (diameter, mm)

2.0 0.02 0.002 0

Gravel Sand Silt Clay

Particles visible withthe naked eye

Particles visible undermicroscope

Particles visible underelectron microscope

SOIL TEXTURAL TRIANGLE

The percentage of sand, silt, and clay may be plotted on the diagram todetermine the textural class of that soil.

Example: A soil containing 13% clay, 41% silt, and 46% sand would have aloam texture.

Page 169: HANDBOOK FOR VEGETABLE GROWERS

157

Figure 4.1. Soil textural triangle. From Soil Conservation Service, Soil Sur-vey Manual, USDA Agricultural Handbook 18 (1951).

Page 170: HANDBOOK FOR VEGETABLE GROWERS

158

06SOIL REACTION

RELATIVE TOLERANCE OF VEGETABLE CROPS TO SOILACIDITY

Vegetables in the slightly tolerant group can be grown successfully on soilsthat are on the alkaline side of neutrality. They do well up to pH 7.6 ifthere is no deficiency of essential nutrients. Vegetables in the very tolerantgroup grow satisfactorily at a soil pH as low as 5.0. For the most part, eventhe most tolerant crops grow better at pH 6.0–6.8 than in more acidic soils.Calcium, phosphorus, magnesium, and molybdenum are the nutrients mostlikely to be deficient in acidic soils.

Page 171: HANDBOOK FOR VEGETABLE GROWERS

159

TABLE 4.8. TOLERANCE OF VEGETABLES TO SOIL ACIDITY

Slightly Tolerant(pH 6.8–6.0)

Moderately Tolerant(pH 6.8–5.5)

Very Tolerant(pH 6.8–5.0)

AsparagusBeetBroccoliCabbageCantaloupeCauliflowerCeleryChard, SwissChinese cabbageCressLeekLettuceNew Zealand spinachOkraOnionOrachParsnipSalsifySoybeanSpinachWatercress

BeanBean, limaBrussels sproutsCarrotCollardsCucumberEggplantGarlicGherkinHorseradishKaleKohlrabiMustardParsleyPeaPepperPumpkinRadishRutabagaSquashStrawberrySweet cornTomatoTurnip

ChicoryDandelionEndiveFennelPotatoRhubarbShallotSorrelSweet potatoWatermelon

EFFECT OF SOIL REACTION ON AVAILABILITY OF NUTRIENTS

Soil reaction affects plants by influencing the availability of nutrients.Changes in soil reaction caused by liming or by the use of sulfur and acid-forming fertilizers may increase or decrease the supply of the nutrientsavailable to the plants.

The general relationship between soil reaction and availability of plantnutrients in organic soils differs from that in mineral soils. The diagrams

Page 172: HANDBOOK FOR VEGETABLE GROWERS

160

Figure 4.2. Relation Between pH, alkalinity, acidity, and plant growth.

Page 173: HANDBOOK FOR VEGETABLE GROWERS

161

Figure 4.3. Influence of pH on the availability of plant nutrients in organicsoils; widest parts of the shaded areas indicate maximum availability of eachelement.

Adapted from R. E. Lucas and J. F. Davis, ‘‘Relationships Between pH Values of Organic Soils andAvailability of 12 Plant Nutrients,’’ Soil Science 92(1961): 177–182.

depict nutrient availability for both mineral and organic soils. The width ofthe band indicates the availability of the nutrient. It does not indicate theactual amount present.

CORRECTION OF SOIL ACIDITY

Liming materials are used to change an unfavorable acidic soil reaction to apH more favorable for crop production. However, soil types differ in their

Page 174: HANDBOOK FOR VEGETABLE GROWERS

162

Figure 4.4. Influence of pH on the availability of plant nutrients in mineralsoils; widest parts of the shaded areas indicate maximum availability of eachelement.

Adapted from L. B. Nelson (ed.), Changing Patterns in Fertilizer Use (Madison, Wis.: Soil ScienceSociety of America, 1968).

response to liming, a property referred to as the soil’s pH buffering capacity.Acidic soil reaction is caused by hydrogen ions present in the soil solution(active acidity) and attached to soil particles or organic matter (potentialacidity). Active acidity can be neutralized rapidly, whereas potential acidityis neutralized over time as it is released. Soils vary in their relative contentof these sources of acidity. Due to this complexity in soil pH, it is difficult toprovide a rule of thumb for rates of liming materials. Most soil testinglaboratories now use a lime requirement test to estimate the potentialacidity and therefore provide a more accurate liming recommendation thancould be done before. The lime requirement test treats the soil sample witha buffer solution to estimate the potential acidity, and thus provides a moreaccurate lime recommendation than can usually be obtained by treating thesoil sample with water only. Soils with similar amounts of active acidity

Page 175: HANDBOOK FOR VEGETABLE GROWERS

163

might have different amounts of potential acidity and thus require differentlime recommendations even though the rule-of-thumb approach might havegiven similar lime recommendations. Soils with large potential acidity (claysand mucks) require more lime than sandy soils with a similar water pH.

TABLE 4.9. COMMON LIMING MATERIALS

MaterialChemicalFormula

Pure CaCO3

Equivalent (%)

Liming Material(lb) Necessary to

Equal 100 lbLimestone

Burned lime CaO 150 64Hydrated lime Ca(OH)2 120 82Dolomitic limestone CaCO3, MgCO3 104 86Limestone CaCO3 95 100Marl CaCO3 95 100Shell, oyster, etc. CaCO3 95 100

TABLE 4.10. COMMON ACIDIFYING MATERIALS1

MaterialChemicalFormula

Sulfur(%)

Acidifying Material (lb)Necessary to Equal100 lb Soil Sulfur

Soil sulfur S 99.0 100Sulfuric acid (98%) H2SO4 32.0 306Sulfur dioxide SO2 50.0 198Lime-sulfur solution

(32� Baume)CaSx � water 24.0 417

Iron sulfate FeSO4 � 7H2O 11.5 896Aluminum sulfate Al2(SO4)3 14.4 694

1 Certain fertilizer materials also markedly increase soil acidity when used in large quantities (seepage 165).

Page 176: HANDBOOK FOR VEGETABLE GROWERS

164

TABLE 4.11. APPROXIMATE QUANTITY OF SOIL SULFURNEEDED TO INCREASE SOIL ACIDITY TO ABOUTpH 6.5

Change in pH Desired

Sulfur (lb /acre)

Sands Loams Clays

8.5–6.5 2,000 2,500 3,0008.0–6.5 1,200 1,500 2,0007.5–6.5 500 800 1,0007.0–6.5 100 150 300

Page 177: HANDBOOK FOR VEGETABLE GROWERS

165

TABLE 4.12. EFFECT OF SOME FERTILIZER MATERIALS ON THESOIL REACTION

Materials N (%)

Pounds Limestone(CaCO3)

Per lb N

Per 100 lbFertilizerMaterial

Needed to Counteractthe Acidity Produced

Acidity-FormingAmmonium nitrate 33.5 1.80 60Monoammonium phosphate 11 5.35 59Ammonium phosphate sulfate 16 5.35 88Ammonium sulfate 21 5.35 110Anhydrous ammonia 82 1.80 148Aqua ammonia 24 1.80 44Aqua ammonia 30 1.80 54Diammonium phosphate 16–18 1.80 70Liquid phosphoric acid 52 (P2O5) — 110Urea 46 1.80 84

Equivalents Produced

Alkalinity-FormingCalcium cyanamide 22 2.85 63Calcium nitrate 15.5 1.35 20Potassium nitrate 13 1.80 23Sodium nitrate 16 1.80 29

NeutralAmmonium nitrate-lime Potassium sulfateCalcium sulfate (gypsum) SuperphosphatePotassium chloride

Based on the method of W. H. Pierre, ‘‘Determination of Equivalent Acidity and Basicity ofFertilizers,’’ Industrial Engineering Chemical Analytical Edition, 5 (1933): 229–234.

Page 178: HANDBOOK FOR VEGETABLE GROWERS

166

RELATIVE SALT EFFECTS OF FERTILIZER MATERIALS ON THESOIL SOLUTION

When fertilizer materials are placed close to seeds or plants, they mayincrease the osmotic pressure of the soil solution and cause injury to thecrop. The term salt index refers to the effect of a material in relation to thatproduced by sodium nitrate, which is given a rating of 100. The partialindex shows the relationships per unit (20 lb) of the actual nutrientsupplied. Any material with a high salt index must be used with great care.

Page 179: HANDBOOK FOR VEGETABLE GROWERS

167

TABLE 4.13. SALT INDEX OF SEVERAL FERTILIZER MATERIALS

Material Salt Index

Partial Salt Indexper Unit of Plant

Food

Anhydrous ammonia 47.1 0.572Ammonium nitrate 104.7 2.990Ammonium nitrate-lime (Cal-Nitro) 61.1 2.982Ammonium sulfate 69.0 3.253Calcium carbonate (limestone) 4.7 0.083Calcium nitrate 52.5 4.409Calcium sulfate (gypsum) 8.1 0.247Diammonium phosphate 29.9 1.6141

0.6372

Dolomite (calcium and magnesiumcarbonates)

0.8 0.042

Monoammonium phosphate 34.2 2.4531

0.4852

Monocalcium phosphate 15.4 0.274Nitrogen solution, 37% 77.8 2.104Potassium chloride, 50% 109.4 2.189Potassium chloride, 60% 116.3 1.936Potassium nitrate 73.6 5.3361

1.5803

Potassium sulfate 46.1 0.853Sodium chloride 153.8 2.899Sodium nitrate 100.0 6.060Sulfate of potash-magnesia 43.2 1.971Superphosphate, 20% 7.8 0.390Superphosphate, 45% 10.1 0.224Urea 75.4 1.618

Adapted from L. F. Rader, L. M. White, and C. W. Whittaker, ‘‘The Salt Index: A Measure of the Effectof Fertilizers on the Concentration of the Soil Solution,’’ Soil Science 55 (1943):201–218.1N 2P2O5

3K2O

Page 180: HANDBOOK FOR VEGETABLE GROWERS

168

TABLE 4.14. RELATIVE SALT TOLERANCE OF VEGETABLESThe indicated salt tolerances are based on growth rather than yield. Withmost crops, there is little difference in salt tolerance among varieties. Borontolerances may vary depending on climate, soil condition, and crop variety.

Vegetable

Maximum Soil SalinityWithout Yield Loss(Threshold) (dS /m)

Decrease in Yield atSoil Salinities Above

the Threshold(% per dS/m)

Sensitive cropsBean 1.0 19Carrot 1.0 14Strawberry 1.0 33Onion 1.2 16

Moderately sensitiveTurnip 0.9 9Radish 1.2 13Lettuce 1.3 13Pepper 1.5 14Sweet potato 1.5 11Broad bean 1.6 10Corn 1.7 12Potato 1.7 12Cabbage 1.8 10Celery 1.8 6Spinach 2.0 8Cucumber 2.5 13Tomato 2.5 10Broccoli 2.8 9Squash, scallop 3.2 16

Moderately tolerantBeet 4.0 9Squash, zucchini 4.7 9

Adapted from E. V. Maas, ‘‘Crop Tolerance,’’ California Agriculture (October 1984).

Note: 1 decisiemens per meter (dS / m) � 1 mmho / cm � approximately 640 mg / L salt

Page 181: HANDBOOK FOR VEGETABLE GROWERS

169

07SALINITY

SOIL SALINITY

With an increase in soil salinity, plant roots extract water less easily fromthe soil solution. This situation is more critical under hot and dry thanunder humid conditions. High soil salinity may result also in toxicconcentrations of ions in plants. Soil salinity is determined by finding theelectrical conductivity of the soil saturation extract (ECe). The electricalconductivity is measured in millimhos per centimeter (mmho/cm). Onemmho/cm is equivalent to 1 decisiemens per meter (dS/m) and, on theaverage, to 640 ppm salt.

TABLE 4.15. CROP RESPONSE TO SALINITY

Salinity (expressedas ECe, mmho/cm,

or dS/m) Crop Responses

0–2 Salinity effects mostly negligible.2–4 Yields of very sensitive crops may be restricted.4–8 Yields of many crops restricted.8–16 Only tolerant crops yield satisfactorily.Above 16 Only a few very tolerant crops yield satisfactorily.

Adapted from Leon Bernstein, Salt Tolerance of Plants, USDA Agricultural Information Bulletin 283(1970).

Page 182: HANDBOOK FOR VEGETABLE GROWERS

170

08FERTILIZERS

FERTILIZER DEFINITIONS

Grade or analysis means the minimum guarantee of the percentage of totalnitrogen (N), available phosphoric acid (P2O5), and water-soluble potash(K2O) in the fertilizer.

Example: 20-0-20 or 5-15-5

Ratio is the grade reduced to its simplest terms.

Example: A 20-0-20 has a ratio of 1-0-1, as does a 10-0-10.

Formula shows the actual pound and percentage composition of theingredients or compounds that are mixed to make up a ton of fertilizer.

An open-formula mix carries the formula as well as the grade on the tagattached to each bag.

Carrier, simple, or source is the material or compound in which a givenplant nutrient is found or supplied.

Example: Ammonium nitrate and urea are sources or carriers that supplynitrogen.

Unit means 1% of 1 ton or 20 lb. On the basis of a ton, the units per ton areequal to the percentage composition or the pounds per 100 lb.

Example: Ammonium sulfate contains 21% nitrogen, or 21 lb nitrogen/100lb, or 21 units nitrogen in a ton.

Primary nutrient refers to nitrogen, phosphorus, and potassium, which areused in considerable quantities by crops.

Secondary nutrient refers to calcium, magnesium, and sulfur, which areused in moderate quantities by crops.

Micronutrient, trace, or minor element refers to iron, boron, manganese,zinc, copper, and molybdenum, the essential plant nutrients used inrelatively small quantities.

Page 183: HANDBOOK FOR VEGETABLE GROWERS

171

TABLE 4.16. APPROXIMATE COMPOSITION OF SOME CHEMICALFERTILIZER MATERIALS1

Fertilizer Material

TotalNitrogen

(% N)

AvailablePhosphorus

(% P2O5)

Water-solublePotassium(% K2O)

NitrogenAmmonium nitrate 33.5 — —Ammonium nitrate-lime

(A-N-L, Cal-Nitro)20.5 — —

Monoammonium phosphate 11.0 48.0 —Ammonium phosphate-sulfate 16.0 20.0 —Ammonium sulfate 21.0 — —Anhydrous ammonia 82.0 — —Aqua ammonia 20.0 — —Calcium cyanamide 21.0 — —Calcium nitrate 15.5 — —Calcium ammonium nitrate 17.0 — —Diammonium phosphate 16–18 46.0–48.0 —Potassium nitrate 13.0 — 44.0Sodium nitrate 16.0 — —Urea 46.0 — —Urea formaldehyde 38.0 — —

PhosphorusPhosphoric acid solution — 52.0–54.0 —Normal (single)

superphosphate— 18.0–20.0 —

Concentrated (triple or treble)superphosphate

— 45.0–46.0 —

Monopotassium phosphate — 53.0 —

PotassiumPotassium chloride — — 60.0–62.0Potassium nitrate 13.0 — 44.0Potassium sulfate — — 50.0–53.0Sulfate of potash-magnesia — — 26.0Monopotassium phosphate — — 34.0

1 See page 165 for effect of these materials on soil reaction.

Page 184: HANDBOOK FOR VEGETABLE GROWERS

172

TABLE 4.17. SOLUBILITY OF FERTILIZER MATERIALSSolubility of fertilizer materials is an important factor in preparing startersolutions, foliar sprays, and solutions to be knifed into the soil or injectedinto an irrigation system. Hot water may be needed to dissolve thechemicals.

MaterialSolubility in Cold Water

(lb /100 gal)

Primary NutrientsAmmonium nitrate 984Ammonium sulfate 592Calcium cyanamide DecomposesCalcium nitrate 851Diammonium phosphate 358Monoammonium phosphate 192Potassium nitrate 108Sodium nitrate 608Superphosphate, single 17Superphosphate, treble 33Urea 651

Secondary Nutrients and MicronutrientsAmmonium molybdate DecomposesBorax 8Calcium chloride 500Copper oxide InsolubleCopper sulfate 183Ferrous sulfate 242Magnesium sulfate 592Manganese sulfate 876Sodium chloride 300Sodium molybdate 467Zinc sulfate 625

Page 185: HANDBOOK FOR VEGETABLE GROWERS

173

TABLE 4.18. AMOUNT OF CARRIERS NEEDED TO SUPPLY ACERTAIN AMOUNT OF NUTRIENT PER ACRE1

Nutrients (lb /acre)

20 40 60 80 100 120 160 200

Nutrient inCarrier (%)

Carriers Needed (lb)

3 667 1,333 2,0004 500 1,000 1,500 2,0005 400 800 1,200 1,600 2,0006 333 667 1,000 1,333 1,667 2,0007 286 571 857 1,142 1,429 1,7148 250 500 750 1,000 1,250 1,500 2,0009 222 444 667 889 1,111 1,333 1,778

10 200 400 600 800 1,000 1,200 1,600 2,00011 182 364 545 727 909 1,091 1,455 1,81812 166 333 500 666 833 1,000 1,333 1,66613 154 308 462 615 769 923 1,231 1,53815 133 267 400 533 667 800 1,067 1,33316 125 250 375 500 625 750 1,000 1,25018 111 222 333 444 555 666 888 1,11120 100 200 300 400 500 600 800 1,00021 95 190 286 381 476 571 762 95225 80 160 240 320 400 480 640 80030 67 133 200 267 333 400 533 66734 59 118 177 235 294 353 471 58842 48 95 143 190 238 286 381 47645 44 89 133 178 222 267 356 44448 42 83 125 167 208 250 333 41750 40 80 120 160 200 240 320 40060 33 67 100 133 167 200 267 333

1 This table can be used in determining the acre rate for applying a material in order to supply acertain number of pounds of a nutrient.

Page 186: HANDBOOK FOR VEGETABLE GROWERS

174

Example: A carrier provides 34% of a nutrient. To get 200 lb of the nutrient,588 lb of the material is needed, and for 60 lb of the nutrient, 177 lb ofcarrier is required.

TABLE 4.19. APPROXIMATE RATES OF MATERIALS TO PROVIDECERTAIN QUANTITIES OF NITROGEN PER ACRE

N (lb /acre): 15 30 45 60 75 100

Fertilizer Material % N Material to Apply (lb /acre)

SolidsAmmonium nitrate 33 45 90 135 180 225 300Ammonium phosphate (48%

P2O5)11 135 270 410 545 680 910

Ammonium phosphate-sulfate(20% P2O5)

16 95 190 280 375 470 625

Ammonium sulfate 21 70 140 215 285 355 475Calcium nitrate 15.5 95 195 290 390 485 645Potassium nitrate 13 115 230 345 460 575 770Sodium nitrate 16 95 190 280 375 470 625Urea 46 35 65 100 130 165 215

LiquidsAnhydrous ammonia (approx.

5 lb /gal)182 20 35 55 75 90 120

Aqua ammonium phosphate(24% P2O5; approx. 10 lb /gal)

8 190 375 560 750 940 1250

Aqua ammonia (approx. 71⁄2lb /gal)1

20 75 150 225 300 375 500

Nitrogen solution (approx. 11lb /gal)

32 50 100 150 200 250 330

1 To avoid burning, especially on alkaline soils, these materials must be placed deeper and fartheraway from the plant row than dry fertilizers are placed.

Page 187: HANDBOOK FOR VEGETABLE GROWERS

175

TABLE 4.20. RATES OF APPLICATION FOR SOME NITROGENSOLUTIONS

Nitrogen(lb /acre)

Nitrogen Solution Needed (gal /acre)

21% Solution 32% Solution 41% Solution

20 8.9 5.6 5.125 11.1 7.1 6.430 13.3 8.5 7.735 15.6 9.9 9.040 17.8 11.3 10.345 20.0 12.7 11.550 22.2 14.1 12.855 24.4 15.5 14.160 26.7 16.5 15.465 28.9 18.4 16.770 31.1 19.8 17.975 33.3 21.2 19.280 35.6 22.6 20.585 37.8 24.0 21.890 40.0 25.4 23.195 42.2 26.8 24.4

100 44.4 28.2 25.6110 48.9 31.1 28.2120 53.3 33.9 30.8130 57.8 36.7 33.3140 62.2 39.6 35.9150 66.7 42.4 38.5200 88.9 56.5 51.3

Adapted from C. W. Gandt, W. C. Hulburt, and H. D. Brown, Hose Pump for Applying NitrogenSolutions, USDA Farmer’s Bulletin 2096 (1956).

Page 188: HANDBOOK FOR VEGETABLE GROWERS

176

09FERTILIZER CONVERSION FACTORS

TABLE 4.21. CONVERSION FACTORS FOR FERTILIZERMATERIALS

Multiply By To Obtain Equivalent Nutrient

Ammonia—NH3 4.700 Ammonium nitrate—NH4NO3

Ammonia—NH3 3.879 Ammonium sulfate—(NH4)2SO4

Ammonia—NH3 0.823 Nitrogen—NAmmonium nitrate—NH4NO3 0.350 Nitrogen—NAmmonium sulfate—

(NH4)2SO4

0.212 Nitrogen—N

Borax—Na2B4O7 � 10H2O 0.114 Boron—BBoric acid—H3BO3 0.177 Boron—BBoron—B 8.813 Borax—Na2B4O7 � 10H2OBoron—B 5.716 Boric acid—H3BO3

Calcium—Ca 1.399 Calcium oxide—CaOCalcium—Ca 2.498 Calcium carbonate—CaCO3

Calcium—Ca 1.849 Calcium hydroxide—Ca(OH)2

Calcium—Ca 4.296 Calcium sulfate—CaSO4 �

2H2O (gypsum)Calcium carbonate—CaCO3 0.400 Calcium—CaCalcium carbonate—CaCO3 0.741 Calcium hydroxide—Ca(OH)2

Calcium carbonate—CaCO3 0.560 Calcium oxide—CaOCalcium carbonate—CaCO3 0.403 Magnesia—MgOCalcium carbonate—CaCO3 0.842 Magnesium carbonate—

MgCO3

Calcium hydroxide—Ca(OH)2 0.541 Calcium—CaCalcium hydroxide—Ca(OH)2 1.351 Calcium carbonate—CaCO3

Calcium hydroxide—Ca(OH)2 0.756 Calcium oxide—CaOCalcium oxide—CaO 0.715 Calcium—CaCalcium oxide—CaO 1.785 Calcium carbonate—CaCO3

Calcium oxide—CaO 1.323 Calcium hydroxide—Ca(OH)2

Calcium oxide—CaO 3.071 Calcium sulfate—CaSO4 �

2H2O (gypsum)Gypsum—CaSO4 � 2H2O 0.326 Calcium oxide—CaO

Page 189: HANDBOOK FOR VEGETABLE GROWERS

177

TABLE 4.21. CONVERSION FACTORS FOR FERTILIZERMATERIALS (Continued )

Multiply By To Obtain Equivalent Nutrient

Gypsum—CaSO4 � 2H2O 0.186 Sulfur—SMagnesia—MgO 2.480 Calcium carbonate—CaCO3

Magnesia—MgO 0.603 Magnesium—MgMagnesia—MgO 2.092 Magnesium carbonate—

MgCO3

Magnesia—MgO 2.986 Magnesium sulfate—MgSO4

Magnesia—MgO 6.114 Magnesium sulfate— MgSO4 �

7H2O (Epsom salts)Magnesium—Mg 4.116 Calcium carbonate—CaCO3

Magnesium—Mg 1.658 Magnesia—MgOMagnesium—Mg 3.466 Magnesium carbonate—

MgCO3

Magnesium—Mg 4.951 Magnesium sulfate—MgSO4

Magnesium—Mg 10.136 Magnesium sulfate— MgSO4 �

7H2O (Epsom salts)Magnesium carbonate—MgCO3 1.187 Calcium carbonate—CaCO3

Magnesium carbonate—MgCO3 0.478 Magnesia—MgOMagnesium carbonate—MgCO3 0.289 Magnesium—MgMagnesium sulfate—MgSO4 0.335 Magnesia—MgOMagnesium sulfate—MgSO4 0.202 Magnesium—MgMagnesium sulfate—MgSO4 �

7H2O (Epsom salts)0.164 Magnesia—MgO

Magnesium sulfate—MgSO4 �

7H2O (Epsom salts)0.099 Magnesium—Mg

Manganese—Mn 2.749 Manganese(ous) sulfate—MnSO4

Manganese—Mn 4.060 Manganese(ous) sulfate—MnSO4 � 4H2O

Manganese(ous) sulfate—MnSO4

0.364 Manganese—Mn

Manganese(ous) sulfate—MnSO4 � 4H2O

0.246 Manganese—Mn

Nitrate—NO3 0.226 Nitrogen—NNitrogen—N 1.216 Ammonia—NH3

Nitrogen—N 2.856 Ammonium nitrate—NH4NO3

Page 190: HANDBOOK FOR VEGETABLE GROWERS

178

TABLE 4.21. CONVERSION FACTORS FOR FERTILIZERMATERIALS (Continued )

Multiply By To Obtain Equivalent Nutrient

Nitrogen—N 4.716 Ammonium sulfate—(NH4)2SO4

Nitrogen—N 4.426 Nitrate—NO3

Nitrogen—N 6.068 Sodium nitrate—NaNO3

Nitrogen—N 6.250 ProteinPhosphoric acid—P2O5 0.437 Phosphorus—PPhosphorus—P 2.291 Phosphoric acid—P2O5

Potash—K2O 1.583 Potassium chloride—KClPotash—K2O 2.146 Potassium nitrate—KNO3

Potash—K2O 0.830 Potassium—KPotash—K2O 1.850 Potassium sulfate—K2SO4

Potassium—K 1.907 Potassium chloride—KClPotassium—K 1.205 Potash—K2OPotassium—K 2.229 Potassium sulfate—K2SO4

Potassium chloride—KCl 0.632 Potash—K2OPotassium chloride—KCl 0.524 Potassium—KPotassium nitrate—KNO3 0.466 Potash—K2OPotassium nitrate—KNO3 0.387 Potassium—KPotassium sulfate—K2SO4 0.540 Potash—K2OPotassium sulfate—K2SO4 0.449 Potassium—KSodium nitrate—NaNO3 0.165 Nitrogen—NSulfur—S 5.368 Calcium sulfate—CaSO4 �

2H2O (gypsum)Sulfur—S 2.497 Sulfur trioxide—SO3

Sulfur—S 3.059 Sulfuric acid—H2SO4

Sulfur trioxide—SO3 0.401 Sulfur—SSulfuric acid—H2SO4 0.327 Sulfur—S

Examples: 80 lb ammonia (NH3) contains the same amount of N as 310 lbammonium sulfate [(NH4)2SO4], 80 � 3.88 � 310. Likewise, 1000 lb calciumcarbonate multiplied by 0.400 equals 400 lb calcium. A material contains20% phosphoric acid. This percentage (20) multiplied by 0.437 equals 8.74%phosphorus.

Page 191: HANDBOOK FOR VEGETABLE GROWERS

179

10NUTRIENT ABSORPTION

APPROXIMATE CROP CONTENT OF NUTRIENT ELEMENTS

Sometimes crop removal values are used to estimate fertilizer needs bycrops. Removal values are obtained by analyzing plants and fruits fornutrient content and then expressing the results on an acre basis. It is riskyto relate fertilizer requirements on specific soils to generalized listings ofcrop removal values. A major problem is that crop removal values areusually derived from analyzing plants grown on fertile soils where much ofthe nutrient content of the crop is supplied from soil reserves rather thanfrom fertilizer application. Because plants can absorb larger amounts ofspecific nutrients than they require, crop removal values can overestimatethe true crop nutrient requirement of a crop. Crop removal values canestimate the nutrient supply capacity on an unfertilized soil. The cropcontent (removal) values presented in the table are presented forinformation purposes and are not suggested for use in formulating fertilizerrecommendations. The values were derived from various sources andpublications. For example, a similar table was published in M. McVickerand W. Walker, Using Commercial Fertilizer (Danville, Ill.: InterstatePrinters and Publishers, 1978).

Page 192: HANDBOOK FOR VEGETABLE GROWERS

180

TABLE 4.22. APPROXIMATE ACCUMULATION OF NUTRIENTS BYSOME VEGETABLE CROPS

VegetableYield

(cwt /acre)

Nutrient Absorption(lb /acre)

N P K

Broccoli 100 heads 20 2 45Other 145 8 165

165 10 210

Brussels sprouts 160 sprouts 150 20 125Other 85 9 110

235 29 235

Cantaloupe 225 fruits 95 17 120Vines 60 8 35

155 25 155

Carrot 500 roots 80 20 200Tops 65 5 145

145 25 345

Celery 1000 tops 170 35 380Roots 25 15 55

195 50 435

Honeydew melon 290 fruits 70 8 65Vines 135 15 95

205 23 160

Lettuce 350 plants 95 12 170Onion 400 bulbs 110 20 110

Tops 35 5 45

145 25 155

Page 193: HANDBOOK FOR VEGETABLE GROWERS

181

TABLE 4.22. APPROXIMATE ACCUMULATION OF NUTRIENTS BYSOME VEGETABLE CROPS (Continued )

VegetableYield

(cwt /acre)

Nutrient Absorption(lb /acre)

N P K

Pea, shelled 40 peas 100 10 30Vines 70 12 50

170 22 80

Pepper 225 fruits 45 6 50Plants 95 6 90

140 12 140

Potato 400 tubers 150 19 200Vines 60 11 75

210 30 275

Snap bean 100 beans 120 10 55Plants 50 6 45

170 16 100

Spinach 200 plants 100 12 100

Sweet corn 130 ears 55 8 30Plants 100 12 75

155 20 105

Sweet potato 300 roots 80 16 160Vines 60 4 40

140 20 200

Tomato 600 fruits 100 10 180Vines 80 11 100

180 21 280

Page 194: HANDBOOK FOR VEGETABLE GROWERS

182

11P

LA

NT

AN

AL

YS

IS

TA

BL

E4.

23.

PL

AN

TA

NA

LY

SIS

GU

IDE

FO

RS

AM

PL

ING

TIM

E,P

LA

NT

PA

RT

,AN

DN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

EC

RO

PS

(DR

YW

EIG

HT

BA

SIS

)1

Cro

pT

ime

ofS

ampl

ing

Pla

nt

Par

tS

ourc

eN

utr

ien

tC

once

ntr

atio

n2

Nu

trie

nt

Lev

el

Defi

cien

tS

uffi

cien

t

Asp

arag

us

Mid

grow

thof

fern

4-in

.ti

pse

ctio

nof

new

fern

bran

ch

NO

3

PO

4

N,

ppm

P,pp

mK

,%

100

800 1

500

1,60

0 3B

ean

,bu

shsn

apM

idgr

owth

Pet

iole

of4t

hle

affr

omti

pN

O3

PO

4

N,

ppm

P,pp

mK

,%

2,00

01,

000 3

3,00

02,

000 5

Ear

lybl

oom

Pet

iole

of4t

hle

affr

omti

pN

O3

PO

4

N,

ppm

P,pp

mK

,%

1,00

080

0 2

1,50

01,

500 4

Bro

ccol

iM

idgr

owth

Mid

rib

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

7,00

02,

500 3

9,00

04,

000 5

Fir

stbu

dsM

idri

bof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

500 2

7,00

04,

000 4

Page 195: HANDBOOK FOR VEGETABLE GROWERS

183

Bru

ssel

ssp

rou

tsM

idgr

owth

Mid

rib

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

000 3

7,00

03,

500 5

Lat

egr

owth

Mid

rib

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

2,00

01,

000 2

3,00

03,

000 4

Cab

bage

At

hea

din

gM

idri

bof

wra

pper

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

500 2

7,00

03,

500 4

Can

talo

upe

Ear

lygr

owth

(sh

ort

run

ner

s)P

etio

leof

6th

leaf

from

grow

ing

tip

NO

3

PO

4

N,

ppm

P,pp

mK

,%

8,00

02,

000 4

12,0

003,

000 6

Ear

lyfr

uit

Pet

iole

of6t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

01,

500 3

8,00

02,

500 5

Fir

stm

atu

refr

uit

Pet

iole

of6t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

2,00

01,

000 2

3,00

02,

000 4

Ear

lygr

owth

Bla

deof

6th

leaf

from

grow

ing

tip

NO

3

PO

4

N,

ppm

P,pp

mK

,%

2,00

01,

500 1

3,00

02,

300 2.

5E

arly

fru

itB

lade

of6t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

1,00

01,

300 1

1,50

01,

700 2.

0F

irst

mat

ure

fru

itB

lade

of6t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

500

1,00

0 1

800

1,50

0 1.8

Page 196: HANDBOOK FOR VEGETABLE GROWERS

184

TA

BL

E4.

23.

PL

AN

TA

NA

LY

SIS

GU

IDE

FO

RS

AM

PL

ING

TIM

E,P

LA

NT

PA

RT

,AN

DN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

EC

RO

PS

(DR

Y-W

EIG

HT

BA

SIS

)(C

onti

nu

ed)

Cro

pT

ime

ofS

ampl

ing

Pla

nt

Par

tS

ourc

eN

utr

ien

t1

Con

cen

trat

ion

Nu

trie

nt

Lev

el

Defi

cien

tS

uffi

cien

t

Ch

ines

eca

bbag

eA

th

eadi

ng

Mid

rib

ofw

rapp

erle

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

8,00

02,

000 4

10,0

003,

000 7

Car

rot

Mid

grow

thP

etio

leof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

000 4

7,50

03,

000 6

Cau

lifl

ower

Bu

tton

ing

Mid

rib

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

500 2

7,00

03,

500 4

Cel

ery

Mid

grow

thP

etio

leof

new

est

full

yel

onga

ted

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

500 4

7,00

03,

000 7

Nea

rm

atu

rity

Pet

iole

ofn

ewes

tfu

lly

elon

gate

dle

af

NO

3

PO

4

N,

ppm

P,pp

mK

,%

4,00

02,

000 3

6,00

03,

000 5

Cu

cum

ber,

pick

lin

gE

arly

fru

itse

tP

etio

leof

6th

leaf

from

tip

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

01,

500 3

7,50

02,

500 5

Page 197: HANDBOOK FOR VEGETABLE GROWERS

185

Cu

cum

ber,

slic

ing

Ear

lyh

arve

stpe

riod

Pet

iole

of6t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

01,

500 4

7,50

02,

500 7

Egg

plan

tA

tfi

rst

har

vest

Pet

iole

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

000 4

7,50

03,

000 7

Gar

lic

Ear

lygr

owth

(pre

bulb

ing)

New

est

full

yel

onga

ted

leaf

PO

4P,

ppm

K,

%2,

000 3

3,00

0 4M

idse

ason

(bu

lbin

g)N

ewes

tfu

lly

elon

gate

dle

afP

O4

P,pp

mK

,%

2,00

0 23,

000 3

Lat

ese

ason

(pos

tbu

lbin

g)N

ewes

tfu

lly

elon

gate

dle

afP

O4

P,pp

mK

,%

2,00

0 13,

000 2

Let

tuce

At

hea

din

gM

idri

bof

wra

pper

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

4,00

02,

000 2

6,00

03,

000 4

At

har

vest

Mid

rib

ofw

rapp

erle

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

3,00

01,

500 1.

5

5,00

02,

500 2.

5O

nio

nE

arly

seas

onT

alle

stle

afP

O4

P,pp

mK

,%

1,00

0 32,

000 4.

5M

idse

ason

Tal

lest

leaf

PO

4P,

ppm

K,

%1,

000 2

2,00

0 4L

ate

seas

onT

alle

stle

afP

O4

P,pp

mK

,%

1,00

0 22,

000 3

Pep

per,

chil

eE

arly

grow

thfi

rst

bloo

mP

etio

leof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

000 3

7,00

02,

500 5

Page 198: HANDBOOK FOR VEGETABLE GROWERS

186

TA

BL

E4.

23.

PL

AN

TA

NA

LY

SIS

GU

IDE

FO

RS

AM

PL

ING

TIM

E,P

LA

NT

PA

RT

,AN

DN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

EC

RO

PS

(DR

Y-W

EIG

HT

BA

SIS

)(C

onti

nu

ed)

Cro

pT

ime

ofS

ampl

ing

Pla

nt

Par

tS

ourc

eN

utr

ien

t1

Con

cen

trat

ion

Nu

trie

nt

Lev

el

Defi

cien

tS

uffi

cien

t

Ear

lyfr

uit

set

Pet

iole

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

1,00

01,

500 2

1,50

02,

000 4

Fru

its,

full

size

Pet

iole

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

750

1,50

0 1.5

1,00

02,

000 3

Ear

lygr

owth

firs

tbl

oom

Bla

deof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

1,50

01,

500 3

2,00

02,

000 5

Ear

lyfr

uit

set

Bla

deof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

500

1,50

0 2

800

2,00

0 4P

eppe

r,sw

eet

Ear

lygr

owth

,fi

rst

flow

erP

etio

leof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

8,00

02,

000 4

10,0

003,

000 6

Ear

lyfr

uit

set,

1in

.di

amet

erP

etio

leof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

01,

500 3

7,00

02,

500 5

Page 199: HANDBOOK FOR VEGETABLE GROWERS

187

Fru

it3⁄4

size

Pet

iole

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

3,00

01,

200 2

5,00

02,

000 4

Ear

lygr

owth

,fi

rst

flow

erB

lade

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

2,00

01,

800 3

3,00

02,

500 5

Ear

lyfr

uit

set,

1in

.di

amet

erB

lade

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

1,50

01,

500 2

2,00

02,

000 4

Pot

ato

Ear

lyse

ason

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

8,00

01,

200 9

12,0

002,

000 11

Mid

seas

onP

etio

leof

4th

leaf

from

grow

ing

tip

NO

3

PO

4

N,

ppm

P,pp

mK

,%

6,00

080

0 7

9,00

01,

600 9

Lat

ese

ason

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

3,00

050

0 4

5,00

01,

000 6

Spi

nac

hM

idgr

owth

Pet

iole

ofyo

un

g,m

atu

rele

afN

O3

PO

4

N,

ppm

P,pp

mK

,%

4,00

02,

000 2

6,00

03,

000 4

Su

mm

ersq

uas

h(z

ucc

hin

i)E

arly

bloo

mP

etio

leof

you

ng,

mat

ure

leaf

NO

3

PO

4

N,

ppm

P,pp

mK

,%

12,0

004,

000 6

15,0

006,

000 10

Sw

eet

corn

Tas

seli

ng

Mid

rib

of1s

tle

afab

ove

prim

ary

ear

NO

3

PO

4

N,

ppm

P,pp

mK

,%

500

500 2

1,00

01,

000 4

Page 200: HANDBOOK FOR VEGETABLE GROWERS

188

TA

BL

E4.

23.

PL

AN

TA

NA

LY

SIS

GU

IDE

FO

RS

AM

PL

ING

TIM

E,P

LA

NT

PA

RT

,AN

DN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

EC

RO

PS

(DR

Y-W

EIG

HT

BA

SIS

)(C

onti

nu

ed)

Cro

pT

ime

ofS

ampl

ing

Pla

nt

Par

tS

ourc

eN

utr

ien

t1

Con

cen

trat

ion

Nu

trie

nt

Lev

el

Defi

cien

tS

uffi

cien

t

Sw

eet

pota

toM

idgr

owth

Pet

iole

of6t

hle

affr

omth

egr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

1,50

01,

000 3

2,50

02,

000 5

Tom

ato,

cher

ryE

arly

fru

itse

tP

etio

leof

4th

leaf

from

the

grow

ing

tip

NO

3

PO

4

N,

ppm

P,pp

mK

,%

8,00

02,

000 4

10,0

003,

000 7

Fru

it1⁄2

in.

diam

eter

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

02,

000 3

7,00

03,

000 5

At

firs

th

arve

stP

etio

leof

4th

leaf

from

grow

ing

tip

NO

3

PO

4

N,

ppm

P,pp

mK

,%

1,00

02,

000 2

2,00

03,

000 4

Tom

ato,

proc

essi

ng

and

dete

rmin

ate,

fres

hm

arke

t

Ear

lybl

oom

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

8,00

02,

000 3

12,0

003,

000 6

Page 201: HANDBOOK FOR VEGETABLE GROWERS

189

Fru

it1

in.

diam

eter

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

4,00

01,

500 2

6,00

02,

500 4

Fir

stco

lor

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

2,00

01,

000 1

3,00

02,

000 3

Tom

ato,

fres

hm

arke

tin

dete

rmin

ate

Ear

lybl

oom

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

10,0

002,

500 4

14,0

003,

000 7

Fru

it1

in.

diam

eter

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

8,00

02,

500 3

12,0

003,

000 5

Fu

llri

pefr

uit

Pet

iole

of4t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

4,00

02,

000 2

6,00

02,

500 4

Wat

erm

elon

Ear

lyfr

uit

set

Pet

iole

of6t

hle

affr

omgr

owin

gti

p

NO

3

PO

4

N,

ppm

P,pp

mK

,%

5,00

01,

500 3

7,50

02,

500 5

1 Ada

pted

from

H.

M.

Rei

sen

auer

(ed.

),S

oil

and

Pla

nt

Tis

sue

Tes

tin

gin

Cal

ifor

nia

,Un

iver

sity

ofC

alif

orn

iaD

ivis

ion

ofA

gric

ult

ura

lSci

ence

Bu

llet

in18

79(1

983)

.2 T

wo

perc

ent

acet

icac

id-s

olu

ble

NO

3–N

and

PO

4–P

and

tota

lK

(dry

wei

ght

basi

s).U

pdat

ed19

95,p

erso

nal

com

mu

nic

atio

n,T

.K

.H

artz

,Un

iver

sity

ofC

alif

orn

ia,D

avis

.O.A

.L

oren

zan

dK

.B.

Tyl

er,

Pla

nt

Tis

sue

An

alys

isof

Veg

etab

leC

rops

(Un

iver

sity

ofC

alif

orn

ia—

Dav

isV

eget

able

Res

earc

han

dIn

form

atio

nC

ente

r),h

ttp:

//vr

ic.u

cdav

is.e

du/v

egin

fo/t

opic

s/f

erti

lize

r/t

issu

ean

alys

is.p

df.V

alu

esre

pres

ent

con

ven

tion

ally

fert

iliz

edcr

ops.

Org

anic

ally

man

aged

crop

sm

aysh

owlo

wer

peti

ole-

nit

rate

(NO

3–N

)co

nce

ntr

atio

ns.

Tot

alm

acro

nu

trie

nt

con

cen

trat

ion

sof

wh

ole

leav

esis

the

pref

erre

dm

eth

odof

eval

uat

ing

nu

trie

nt

suffi

cien

cyu

nde

ror

gan

icfe

rtil

ity

man

agem

ent.

Page 202: HANDBOOK FOR VEGETABLE GROWERS

190

TA

BL

E4.

24.

TO

TA

LN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

FO

RD

IAG

NO

SIS

OF

TH

EN

UT

RIE

NT

LE

VE

LO

FV

EG

ET

AB

LE

CR

OP

S

Cro

pT

ime

ofS

ampl

ing

Pla

nt

Par

tN

utr

ien

t

Nu

trie

nt

Lev

el(%

dry

wei

ght)

Defi

cien

tS

uffi

cien

t

Asp

arag

us

Ear

lyfe

rngr

owth

4-in

.ti

pse

ctio

nof

new

fern

bran

chN P K

4.00

0.20

2.00

5.00

0.40

4.00

Mat

ure

fern

4-in

.ti

pse

ctio

nof

new

fern

bran

chN P K

3.00

0.20

1.00

4.00

0.40

3.00

Bea

n,

bush

snap

Fu

llbl

oom

Pet

iole

:re

cen

tfu

lly

expo

sed

trif

olia

tele

af

N P K

1.50

0.15

1.00

2.25

0.30

2.50

Fu

llbl

oom

Bla

de:

rece

nt

full

yex

pose

dtr

ifol

iate

leaf

N P K

1.25

0.25

0.75

2.25

0.40

1.50

Bea

n,

lim

aF

ull

bloo

mO

ldes

ttr

ifol

iate

leaf

N P K

2.50

0.20

1.50

3.50

0.30

2.25

Cel

ery

Mid

grow

thP

etio

leN P K

1.00

0.25

4.00

1.50

0.55

5.00

Page 203: HANDBOOK FOR VEGETABLE GROWERS

191

Can

talo

upe

Ear

lygr

owth

Pet

iole

of6t

hle

affr

omgr

owin

gti

pN P K

2.50

0.30

4.00

3.50

0.60

6.00

Ear

lyfr

uit

Pet

iole

of6t

hle

affr

omgr

owin

gti

pN P K

2.00

0.20

3.00

3.00

0.35

5.00

Fir

stm

atu

refr

uit

Pet

iole

of6t

hle

affr

omgr

owin

gti

pN P K

1.50

0.15

2.00

2.00

0.30

4.00

Gar

lic

Ear

lyse

ason

(pre

bulb

ing)

New

est

full

yel

onga

ted

leaf

N P K

4.00

0.20

3.00

5.00

0.30

4.00

Mid

seas

on(b

ulb

ing)

New

est

full

yel

onga

ted

leaf

N P K

3.00

0.20

2.00

4.00

0.30

3.00

Lat

ese

ason

(pos

tbu

lbin

g)N

ewes

tfu

lly

elon

gate

dle

afN P K

2.00

0.20

1.00

3.00

0.30

2.00

Let

tuce

At

hea

din

gL

eave

sN P K

1.50

0.20

2.50

3.00

0.35

5.00

Nea

rly

mat

ure

Lea

ves

N P K

1.25

0.15

2.50

2.50

0.30

5.00

On

ion

Ear

lyse

ason

Tal

lest

leaf

N P K

3.00

0.10

3.00

4.00

0.20

4.00

Page 204: HANDBOOK FOR VEGETABLE GROWERS

192

TA

BL

E4.

24.

TO

TA

LN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

FO

RD

IAG

NO

SIS

OF

TH

EN

UT

RIE

NT

LE

VE

LO

FV

EG

ET

AB

LE

CR

OP

S(C

onti

nu

ed)

Cro

pT

ime

ofS

ampl

ing

Pla

nt

Par

tN

utr

ien

t

Nu

trie

nt

Lev

el(%

dry

wei

ght)

Defi

cien

tS

uffi

cien

t

Mid

seas

onT

alle

stle

afN P K

2.50

0.10

2.50

3.00

0.20

4.00

Lat

ese

ason

Tal

lest

leaf

N P K

2.00

0.10

2.00

2.50

0.20

3.00

Pep

per,

swee

tF

ull

bloo

mB

lade

and

peti

ole

N P K

3.00

0.15

1.50

4.00

0.25

2.50

Fu

llbl

oom

,fr

uit

3⁄4

size

Bla

dean

dpe

tiol

eN P K

2.50

0.12

1.00

3.50

0.20

2.00

Pot

ato

Ear

ly,

plan

ts12

in.

tall

Pet

iole

of4t

hle

affr

omti

pN P K

2.50

0.20

9.00

3.50

0.30

11.0

0M

idse

ason

Pet

iole

of4t

hle

affr

omti

pN P K

2.25

0.10

7.00

2.75

0.20

9.00

Page 205: HANDBOOK FOR VEGETABLE GROWERS

193

Lat

e,n

earl

ym

atu

reP

etio

leof

4th

leaf

from

tip

N P K

1.50

0.08

4.00

2.25

0.15

6.00

Ear

ly,

plan

ts12

in.

tall

Bla

deof

4th

leaf

from

tip

N P K

4.00

0.30

3.50

6.00

0.60

5.00

Mid

seas

onB

lade

of4t

hle

affr

omti

pN P K

3.00

0.20

2.50

5.00

0.40

3.50

Lat

e,n

earl

ym

atu

reB

lade

of4t

hle

affr

omti

pN P K

2.00

0.10

1.50

4.00

0.20

2.50

Sou

ther

npe

a(c

owpe

a)F

ull

bloo

mB

lade

and

peti

ole

N P K

2.00

0.20

1.00

3.50

0.30

2.00

Spi

nac

hM

idgr

owth

Mat

ure

leaf

blad

ean

dpe

tiol

eN P K

2.00

0.20

3.00

4.00

0.40

6.00

At

har

vest

Mat

ure

leaf

blad

ean

dpe

tiol

eN P K

1.50

0.20

2.00

3.00

0.35

5.00

Sw

eet

corn

Tas

seli

ng

Six

thle

affr

omba

seof

plan

tN P K

2.75

0.18

1.75

3.50

0.28

2.25

Sil

kin

gL

eaf

oppo

site

firs

tea

rN P K

1.50

0.20

1.00

2.00

0.30

2.00

Page 206: HANDBOOK FOR VEGETABLE GROWERS

194

TA

BL

E4.

24.

TO

TA

LN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

FO

RD

IAG

NO

SIS

OF

TH

EN

UT

RIE

NT

LE

VE

LO

FV

EG

ET

AB

LE

CR

OP

S(C

onti

nu

ed)

Cro

pT

ime

ofS

ampl

ing

Pla

nt

Par

tN

utr

ien

t

Nu

trie

nt

Lev

el(%

dry

wei

ght)

Defi

cien

tS

uffi

cien

t

Tom

ato

(det

erm

inat

e)F

low

erin

gL

eaf

blad

ean

dpe

tiol

eN P K

2.50

0.20

1.50

3.50

0.30

2.50

Fir

stri

pefr

uit

Lea

fbl

ade

and

peti

ole

N P K

1.50

0.15

1.00

2.50

0.25

2.00

Ada

pted

from

H.

M.

Rei

sen

auer

(ed.

),S

oil

and

Pla

nt

Tis

sue

Tes

tin

gin

Cal

ifor

nia

,Un

iver

sity

ofC

alif

orn

iaD

ivis

ion

ofA

gric

ult

ura

lS

cien

ceB

ull

etin

1879

(198

3).

Upd

ated

1995

,per

son

alco

mm

un

icat

ion

,T.

K.

Har

tz,U

niv

ersi

tyof

Cal

ifor

nia

—D

avis

.

Page 207: HANDBOOK FOR VEGETABLE GROWERS

195

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

Bea

n,

snap

MR

MB

efor

ebl

oom

Defi

cien

t�

3.0

0.25

2.0

0.8

0.20

0.20

2520

2015

5—

trif

olia

teA

dequ

ate

3.0

0.25

2.0

0.8

0.20

0.40

2520

2015

50.

4le

afra

nge

4.0

0.45

3.0

1.5

0.45

0.40

200

100

4040

101.

0H

igh

�4.

10.

463.

11.

60.

450.

4020

010

040

4010

—T

oxic

(�)

——

——

——

—10

00—

150

——

MR

MF

irst

bloo

mD

efici

ent

�3.

00.

252.

00.

80.

250.

2025

2020

155

—tr

ifol

iate

Ade

quat

e3.

00.

252.

00.

80.

260.

2125

2020

155

0.4

leaf

ran

ge4.

00.

453.

01.

50.

450.

4020

010

040

4010

1.0

Hig

h�

4.1

0.46

3.1

1.6

0.45

0.40

200

100

4040

10—

Tox

ic(�

)—

——

——

——

1000

—15

0—

—M

RM

Fu

llbl

oom

Defi

cien

t�

2.5

0.20

1.5

0.8

0.25

0.20

2520

2015

5—

trif

olia

teA

dequ

ate

2.5

0.20

1.6

0.8

0.26

0.21

2520

2015

50.

4ra

nge

4.0

0.40

2.5

1.5

0.45

0.40

200

100

4040

101.

0H

igh

�4.

10.

412.

51.

60.

450.

4020

010

040

4010

—T

oxic

(�)

——

——

——

—10

00—

150

——

Bee

t,ta

ble

Lea

fbl

ades

5w

eeks

Defi

cien

t�

3.0

0.22

2.0

1.5

0.25

—40

3015

305

0.05

afte

rse

edin

gA

dequ

ate

3.0

0.25

2.0

1.5

0.25

0.60

4030

1530

50.

20ra

nge

5.0

0.40

6.0

2.0

1.00

0.80

200

200

3080

100.

60H

igh

�5.

00.

406.

02.

01.

00—

——

—80

10—

Page 208: HANDBOOK FOR VEGETABLE GROWERS

196

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

Tox

ic(�

)—

——

——

——

——

650

——

Lea

f9

wee

ksD

efici

ent

�2.

50.

201.

71.

50.

30—

——

1530

50.

05bl

ades

afte

rse

edin

gA

dequ

ate

2.6

0.20

1.7

1.5

0.30

0.60

—70

1560

50.

60ra

nge

4.0

0.30

4.0

3.0

1.00

0.80

—20

030

8010

—H

igh

�4.

00.

304.

03.

01.

00—

——

—80

10—

Tox

ic(�

)—

——

——

——

——

650

——

Bro

ccol

iM

RM

Hea

din

gD

efici

ent

�3.

00.

301.

10.

80.

230.

2040

2025

203

0.04

leaf

Ade

quat

e3.

00.

301.

51.

20.

23—

4025

4530

50.

04ra

nge

4.5

0.50

4.0

2.5

0.40

—30

015

095

5010

0.16

Hig

h�

4.5

0.50

4.0

2.5

0.40

—30

015

010

010

010

—B

russ

els

MR

MA

tea

rly

Defi

cien

t�

2.2

0.20

2.4

0.4

0.20

0.20

5020

2020

40.

04sp

rou

tsle

afsp

rou

tsA

dequ

ate

2.2

0.20

2.4

0.4

0.20

0.20

5020

2030

50.

16ra

nge

5.0

0.60

3.5

2.0

0.40

0.80

150

200

8070

100.

16H

igh

�5.

00.

603.

52.

00.

400.

8015

020

080

70—

—C

abba

geM

RM

5w

eeks

Defi

cien

t�

3.2

0.30

2.8

0.5

0.25

—30

2030

203

0.3

leaf

afte

rA

dequ

ate

3.2

0.30

2.8

1.1

0.25

0.30

3020

3020

30.

3tr

ansp

lan

tin

gra

nge

6.0

0.60

5.0

2.0

0.60

—60

4050

407

0.6

Hig

h�

6.0

0.60

5.0

2.0

0.60

—10

040

5040

10—

Page 209: HANDBOOK FOR VEGETABLE GROWERS

197

MR

M8

wee

ksD

efici

ent

�3.

00.

302.

00.

50.

20—

3020

3020

30.

3le

afaf

ter

Ade

quat

e3.

00.

302.

01.

50.

250.

3030

2030

203

0.3

tran

spla

nti

ng

ran

ge6.

00.

604.

02.

00.

60—

6040

5040

70.

6H

igh

�6.

00.

604.

02.

00.

60—

100

4050

4010

—W

rapp

erH

eads

Defi

cien

t�

3.0

0.30

1.7

0.5

0.25

—20

2020

304

0.3

leaf

1⁄2

grow

nA

dequ

ate

3.0

0.30

2.3

1.5

0.25

0.30

2020

2030

40.

3ra

nge

4.0

0.50

4.0

2.0

0.45

—40

4030

508

0.6

Hig

h�

4.0

0.50

4.0

2.0

0.45

—10

040

4050

10—

Wra

pper

At

har

vest

Defi

cien

t�

1.8

0.26

1.2

0.5

0.25

—20

2020

304

0.3

leaf

Ade

quat

e1.

80.

261.

51.

50.

250.

3020

2020

304

0.3

ran

ge3.

00.

403.

02.

00.

45—

4040

3050

80.

6H

igh

�3.

00.

403.

02.

00.

45—

100

4040

5010

—C

anta

lou

peM

RM

12-i

n.

Defi

cien

t�

4.0

0.40

5.0

3.0

0.35

—40

2020

205

0.6

leaf

vin

esA

dequ

ate

4.0

0.40

5.0

3.0

0.35

0.20

4020

2020

50.

6ra

nge

5.0

0.70

7.0

5.0

0.45

0.50

100

100

6080

101.

0H

igh

�5.

00.

707.

05.

00.

45—

100

100

6080

101.

0T

oxic

(�)

——

——

——

—90

0—

150

——

MR

ME

arly

fru

itD

efici

ent

�3.

50.

251.

81.

80.

30—

4020

2020

50.

6le

afse

tA

dequ

ate

3.5

0.25

1.8

1.8

0.30

0.20

4020

2020

50.

6ra

nge

4.5

0.40

4.0

5.0

0.40

0.50

100

100

6080

101.

0H

igh

�4.

50.

404.

05.

00.

40—

100

100

6080

101.

0T

oxic

(�)

——

——

——

—90

0—

150

——

Car

rot

MR

M60

days

Defi

cien

t�

1.8

0.20

2.0

1.0

0.15

—30

3020

204

—le

afaf

ter

seed

ing

Ade

quat

e1.

80.

202.

02.

00.

20—

3030

2020

4—

ran

ge2.

50.

404.

03.

50.

50—

6060

6040

10—

Hig

h�

2.5

0.40

4.0

3.5

0.50

—60

100

6040

10—

MR

MH

arve

stD

efici

ent

�1.

50.

181.

01.

00.

25—

2030

2020

4—

Page 210: HANDBOOK FOR VEGETABLE GROWERS

198

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

leaf

Ade

quat

e1.

50.

181.

41.

00.

40—

2030

2020

4—

ran

ge2.

50.

404.

01.

50.

50—

3060

6040

10—

Hig

h�

2.5

0.40

4.0

1.5

0.50

—60

100

6040

10—

Cau

lifl

ower

MR

MB

utt

onin

gD

efici

ent

�3.

00.

402.

00.

80.

250.

6030

3030

305

—le

afA

dequ

ate

3.0

0.40

2.0

0.8

0.25

0.60

3030

3030

5—

ran

ge5.

00.

704.

02.

00.

601.

0060

8050

5010

—H

igh

�5.

00.

704.

02.

00.

60—

100

100

5050

10—

MR

MH

eadi

ng

Defi

cien

t�

2.2

0.30

1.5

1.0

0.25

—30

5030

305

—le

afA

dequ

ate

2.2

0.30

1.5

1.0

0.25

—30

5030

305

—ra

nge

4.0

0.70

3.0

2.0

0.60

—60

8050

5010

—H

igh

�4.

00.

703.

02.

00.

60—

100

100

5050

10—

Cel

ery

Ou

ter

6w

eeks

Defi

cien

t�

1.5

0.30

6.0

1.3

0.30

—20

520

154

—pe

tiol

eaf

ter

Ade

quat

e1.

50.

306.

01.

30.

30—

205

2015

4—

tran

spla

nti

ng

ran

ge1.

70.

608.

02.

00.

60—

3010

4025

6—

Hig

h�

1.7

0.60

8.0

2.0

0.60

—10

020

6025

——

Ou

ter

At

mat

uri

tyD

efici

ent

�1.

50.

305.

01.

30.

30—

205

2020

1—

peti

ole

Ade

quat

e1.

50.

305.

01.

30.

30—

205

2020

1—

ran

ge1.

70.

607.

02.

00.

60—

3010

4040

3—

Hig

h�

1.7

0.60

7.0

2.0

0.60

—10

020

6040

3—

Page 211: HANDBOOK FOR VEGETABLE GROWERS

199

Ch

ines

eO

ldes

t8-

leaf

Defi

cien

t�

4.5

0.50

7.5

4.5

0.35

——

830

155

—ca

bbag

eu

nda

mag

edst

age

Ade

quat

e4.

50.

507.

54.

50.

35—

—14

3015

5—

(hea

din

g)le

afra

nge

5.0

0.60

8.5

5.0

0.45

——

2050

2510

—H

igh

�5.

00.

608.

55.

00.

45—

—20

5025

10—

Old

est

At

mat

uri

tyD

efici

ent

�3.

50.

303.

0—

0.40

——

720

304

—u

nda

mag

edA

dequ

ate

3.5

0.30

3.0

3.7

0.40

——

1320

304

—le

afra

nge

4.0

0.60

6.5

6.0

0.50

——

1940

506

—H

igh

�4.

00.

606.

56.

00.

50—

—20

4050

6—

Col

lard

sT

ops

You

ng

plan

tsD

efici

ent

�4.

00.

303.

01.

00.

40—

4040

2525

5—

Ade

quat

e4.

00.

303.

01.

00.

40—

4040

2525

5—

ran

ge5.

00.

605.

02.

01.

00—

100

100

5050

10—

Hig

h�

5.0

0.60

5.0

2.0

1.00

—10

010

050

5010

—M

RM

Har

vest

Defi

cien

t�

3.0

0.25

2.5

1.0

0.35

—40

4020

255

—le

afA

dequ

ate

3.0

0.25

2.5

1.0

0.35

—40

4020

255

—ra

nge

5.0

0.50

4.0

2.0

0.10

—10

010

040

5010

—H

igh

�5.

00.

504.

02.

00.

10—

100

100

4050

10—

Cu

cum

ber

MR

MB

efor

ebl

oom

Defi

cien

t�

3.5

0.30

1.6

2.0

0.58

0.30

4030

2020

50.

2le

afA

dequ

ate

3.5

0.30

1.6

2.0

0.58

0.30

4030

2020

50.

3ra

nge

6.0

0.60

3.0

4.0

0.70

0.80

100

100

5060

201.

0H

igh

�6.

00.

603.

04.

00.

700.

8010

010

050

6020

2.0

MR

ME

arly

bloo

mD

efici

ent

�2.

50.

251.

61.

30.

300.

3040

3020

205

0.2

leaf

Ade

quat

e2.

50.

251.

61.

30.

300.

3040

3020

205

0.3

ran

ge5.

00.

603.

03.

50.

600.

8010

010

050

6020

1.0

Hig

h�

5.0

0.60

3.0

3.5

0.60

0.80

100

100

5060

202.

0T

oxic

(�)

——

——

——

—90

095

015

0—

—E

ggpl

ant

MR

ME

arly

fru

itD

efici

ent

�4.

20.

303.

50.

80.

250.

4050

5020

205

0.5

leaf

set

Ade

quat

e4.

20.

303.

50.

80.

250.

4050

5020

205

0.5

ran

ge5.

00.

605.

01.

50.

600.

6010

010

040

4010

0.8

Page 212: HANDBOOK FOR VEGETABLE GROWERS

200

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

Hig

h�

6.0

0.60

5.0

1.5

0.60

0.60

100

100

4040

100.

8E

ndi

veO

ldes

t8-

leaf

Defi

cien

t�

4.5

0.45

4.5

2.0

0.25

——

1530

255

—u

nda

mag

edst

age

Ade

quat

e4.

50.

454.

52.

00.

25—

—15

3025

5—

leaf

ran

ge6.

00.

806.

04.

00.

60—

—25

5035

10—

Hig

h�

6.0

0.80

6.0

4.0

0.60

——

2550

3510

—O

ldes

tM

atu

rity

Defi

cien

t�

3.5

0.40

4.0

1.8

0.30

——

1520

305

—u

nda

mag

edA

dequ

ate

3.5

0.40

4.0

1.8

0.30

——

1520

305

—le

afra

nge

3.5

0.60

6.0

3.0

0.40

——

2040

4010

—H

igh

�4.

20.

606.

03.

00.

40—

—20

4040

10—

Esc

arol

eO

ldes

t8-

leaf

Defi

cien

t�

4.2

0.45

5.7

1.7

0.25

——

1530

204

—u

nda

mag

edst

age

Ade

quat

e4.

20.

455.

71.

70.

25—

—15

3020

4—

leaf

ran

ge5.

00.

606.

52.

20.

35—

—25

5030

6—

Hig

h�

5.0

0.60

6.5

2.2

0.35

——

2550

306

—O

ldes

tM

atu

rity

Defi

cien

t�

3.0

0.35

5.5

2.0

0.25

——

1520

304

—u

nda

mag

edA

dequ

ate

3.0

0.35

5.5

2.0

0.25

——

1520

304

—le

afra

nge

4.5

0.45

6.5

3.0

0.35

——

2550

456

—H

igh

�4.

50.

456.

53.

00.

35—

—25

5045

6—

Let

tuce

,O

ldes

t8-

leaf

Defi

cien

t�

4.0

0.40

5.0

1.0

0.40

—50

1040

155

0.1

Bos

ton

un

dam

aged

stag

eA

dequ

ate

4.0

0.40

5.0

1.7

0.40

—50

1040

155

0.1

Page 213: HANDBOOK FOR VEGETABLE GROWERS

201

leaf

ran

ge6.

00.

606.

02.

00.

60—

100

2060

2510

0.2

Hig

h�

6.0

0.60

6.0

2.0

0.60

—10

020

6025

100.

4T

oxic

(�)

——

——

——

—25

0—

100

——

Old

est

Mat

uri

tyD

efici

ent

�3.

00.

355.

01.

00.

30—

5010

2015

50.

1u

nda

mag

edA

dequ

ate

3.0

0.35

5.0

1.7

0.30

—50

1020

155

0.1

leaf

ran

ge4.

00.

456.

02.

00.

60—

100

2040

2510

0.2

Hig

h�

4.0

0.45

6.0

2.0

0.60

—10

020

4025

100.

4T

oxic

(�)

——

——

——

—25

0—

100

——

Let

tuce

,O

ldes

t8-

leaf

Defi

cien

t�

4.0

0.50

4.0

1.7

0.30

—40

1040

205

—co

su

nda

mag

edst

age

Ade

quat

e4.

00.

504.

01.

70.

30—

4010

4020

5—

leaf

ran

ge5.

00.

606.

02.

01.

70—

100

2060

4010

—H

igh

�5.

00.

606.

02.

01.

70—

100

2060

4010

—O

ldes

tM

atu

rity

Defi

cien

t�

3.0

0.40

4.0

1.7

0.30

—20

1020

205

—u

nda

mag

edA

dequ

ate

3.0

0.40

4.0

1.7

0.30

—20

1020

205

—le

afra

nge

4.0

0.60

6.0

2.0

0.70

—50

2040

4010

—H

igh

�4.

00.

606.

02.

00.

70—

5020

4040

10—

Let

tuce

,M

RM

8-le

afD

efici

ent

�4.

00.

405.

01.

00.

300.

3050

2025

155

—cr

isph

ead

stag

eA

dequ

ate

4.0

0.40

5.0

1.0

0.30

—50

2025

155

—ra

nge

5.0

0.60

7.0

2.0

0.50

0.50

150

4050

3010

—H

igh

�5.

00.

607.

02.

00.

50—

150

4050

3010

—W

rapp

erH

eads

Defi

cien

t�

2.5

0.40

4.5

1.4

0.30

—50

2025

155

—le

af1⁄2

size

Ade

quat

e2.

50.

404.

51.

40.

300.

3050

2025

155

—ra

nge

4.0

0.60

8.0

2.0

0.70

0.50

150

4050

3010

—H

igh

�4.

00.

608.

02.

00.

70—

150

4050

3010

—W

rapp

erM

atu

rity

Defi

cien

t�

2.0

0.25

2.5

1.4

0.30

—50

2025

155

—le

afA

dequ

ate

2.0

0.25

2.5

1.4

0.30

0.30

5020

2515

5—

ran

ge3.

00.

505.

02.

00.

700.

5015

040

5030

10—

Hig

h�

3.0

0.50

5.0

2.0

0.70

—15

040

5030

10—

Page 214: HANDBOOK FOR VEGETABLE GROWERS

202

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

Let

tuce

,O

ldes

t8-

leaf

Defi

cien

t�

5.0

0.35

5.0

2.0

0.25

——

1520

305

—ro

mai

ne

un

dam

aged

stag

eA

dequ

ate

5.0

0.35

5.0

2.0

0.25

——

1520

305

—le

afra

nge

6.0

0.80

6.0

3.0

0.35

——

2550

4510

—H

igh

�6.

00.

806.

03.

00.

35—

—25

5045

10—

Old

est

Mat

uri

tyD

efici

ent

�3.

50.

355.

02.

00.

25—

—15

2030

50.

1u

nda

mag

edA

dequ

ate

3.5

0.35

5.0

2.0

0.25

——

1520

305

0.1

leaf

ran

ge4.

50.

606.

03.

00.

40—

—25

5045

100.

4H

igh

�4.

50.

606.

03.

00.

40—

—25

5045

10—

Okr

aM

RM

30da

ysD

efici

ent

�3.

50.

302.

00.

50.

25—

5030

3025

5—

leaf

afte

rse

edin

gA

dequ

ate

3.5

0.30

2.0

0.5

0.25

—50

3030

255

—ra

nge

5.0

0.60

3.0

0.8

0.50

—10

010

050

5010

—H

igh

�5.

00.

603.

00.

80.

50—

100

100

5050

10—

MR

MP

rior

Defi

cien

t�

2.5

0.30

2.0

1.0

0.25

—50

3030

255

—le

afto

har

vest

Ade

quat

e2.

50.

302.

01.

00.

25—

5030

3025

5—

ran

ge3.

00.

603.

01.

50.

50—

100

100

5050

10—

Hig

h�

3.0

0.60

3.0

1.5

0.50

—10

010

050

5010

—O

nio

n,

MR

MJu

stpr

ior

Defi

cien

t�

2.0

0.20

1.5

0.6

0.15

0.20

—10

1510

5—

swee

tle

afto

bulb

Ade

quat

e2.

00.

201.

50.

60.

150.

20—

1015

105

—in

itia

tion

ran

ge3.

00.

503.

00.

80.

300.

60—

2020

2510

Page 215: HANDBOOK FOR VEGETABLE GROWERS

203

Hig

h�

3.0

0.50

3.0

0.8

0.30

0.60

—20

2025

10—

Tox

ic(�

)—

——

——

——

——

100

——

Pep

per

MR

MP

rior

toD

efici

ent

�4.

00.

305.

00.

90.

350.

3030

3025

205

—le

afbl

osso

min

gA

dequ

ate

4.0

0.30

5.0

0.9

0.35

0.30

3030

2520

5—

ran

ge5.

00.

506.

01.

50.

600.

6015

010

080

5010

—H

igh

�5.

00.

506.

01.

50.

600.

6015

010

080

5010

—T

oxic

(�)

——

——

——

——

—35

0—

—M

RM

Fir

stD

efici

ent

�3.

00.

302.

50.

90.

300.

3030

3025

205

—le

afbl

osso

ms

Ade

quat

e3.

00.

302.

50.

90.

300.

3030

3025

205

—op

enra

nge

5.0

0.50

5.0

1.5

0.50

0.60

150

100

8050

10—

Hig

h�

5.0

0.50

5.0

1.5

0.50

0.60

150

100

8050

10—

Tox

ic(�

)—

——

——

——

1000

—35

0—

—M

RM

Ear

lyfr

uit

Defi

cien

t�

2.9

0.25

2.5

1.0

0.30

0.30

3030

2520

5—

leaf

set

Ade

quat

e2.

90.

252.

51.

00.

300.

3030

3025

205

—ra

nge

4.0

0.40

4.0

1.5

0.40

0.40

150

100

8050

10—

Hig

h�

4.0

0.40

4.0

1.5

0.40

0.40

150

100

8050

10—

Tox

ic(�

)—

——

——

——

——

350

——

MR

ME

arly

Defi

cien

t�

2.5

0.20

2.0

1.0

0.30

0.30

3030

2520

50.

1le

afh

arve

stA

dequ

ate

2.5

0.20

2.0

1.0

0.30

0.30

3030

2520

50.

1ra

nge

3.0

0.40

3.0

1.5

0.40

0.40

150

100

8050

100.

2H

igh

�3.

00.

403.

01.

50.

400.

4015

010

080

5010

—T

oxic

(�)

——

——

——

——

—35

0—

—P

otat

oM

RM

Pla

nts

Defi

cien

t�

3.0

0.20

3.5

0.6

0.30

0.25

4030

3020

50.

1le

af8–

10in

.ta

llA

dequ

ate

3.0

0.20

3.5

0.6

0.30

0.25

4030

3020

50.

1ra

nge

6.0

0.80

6.0

2.0

0.60

0.50

150

6060

6010

0.2

Hig

h�

6.0

0.80

6.0

2.0

0.60

0.50

150

6060

6010

—M

RM

Fir

stD

efici

ent

�3.

00.

203.

00.

60.

250.

2040

3030

205

0.1

Page 216: HANDBOOK FOR VEGETABLE GROWERS

204

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

leaf

blos

som

Ade

quat

e3.

00.

203.

00.

60.

250.

2040

3030

205

0.1

ran

ge4.

00.

505.

02.

00.

600.

5015

010

060

3010

0.2

Hig

h�

4.0

0.50

5.0

2.0

0.60

0.50

150

100

6030

10—

MR

MT

ube

rsD

efici

ent

�2.

00.

202.

50.

60.

250.

2040

2030

205

0.1

leaf

1⁄2

grow

nA

dequ

ate

2.0

0.20

2.5

0.6

0.25

0.20

4020

3020

50.

1ra

nge

4.0

0.40

4.0

2.0

0.60

0.50

150

100

6030

100.

2H

igh

�4.

00.

404.

02.

00.

600.

5015

010

060

3010

—M

RM

At

tops

-dow

nD

efici

ent

�2.

00.

161.

50.

60.

200.

2040

2030

205

0.1

leaf

Ade

quat

e2.

00.

161.

50.

60.

200.

2040

2030

205

0.1

ran

ge3.

00.

403.

02.

00.

500.

5015

010

060

3010

0.2

Hig

h�

3.0

0.40

3.0

2.0

0.50

0.50

150

100

6030

10—

Pu

mpk

inM

RM

5w

eeks

Defi

cien

t�

3.0

0.30

2.3

0.9

0.35

0.20

4040

2025

50.

3le

afaf

ter

seed

ing

Ade

quat

e3.

00.

302.

30.

90.

350.

2040

4020

255

0.3

ran

ge6.

00.

504.

01.

50.

600.

4010

010

050

4010

0.5

Hig

h�

6.0

0.50

4.0

1.5

0.60

0.40

100

100

5040

10—

MR

M8

wee

ksfr

omD

efici

ent

�3.

00.

252.

00.

90.

300.

2040

4020

205

0.3

leaf

seed

ing

Ade

quat

e3.

00.

252.

00.

90.

300.

2040

4020

205

0.3

ran

ge4.

00.

403.

01.

50.

500.

4010

010

050

4010

0.5

Page 217: HANDBOOK FOR VEGETABLE GROWERS

205

Hig

h�

4.0

0.40

3.0

1.5

0.50

0.40

100

100

5040

10—

Rad

ish

MR

MA

th

arve

stD

efici

ent

�3.

00.

251.

51.

00.

30—

3020

3015

30.

1le

afA

dequ

ate

3.0

0.25

1.5

1.0

0.30

—30

2030

153

0.1

ran

ge4.

50.

403.

02.

00.

50—

5040

5030

102.

0H

igh

�4.

50.

403.

02.

00.

50—

5040

5030

102.

0T

oxic

(�)

——

——

——

——

—85

——

Sou

ther

nM

RM

Bef

ore

bloo

mD

efici

ent

�3.

50.

302.

01.

00.

30—

3030

2015

5—

pea

leaf

Ade

quat

e3.

50.

302.

01.

00.

30—

3030

2015

5—

ran

ge5.

00.

804.

01.

50.

50—

100

100

4025

10—

Hig

h�

5.0

0.80

4.0

1.5

0.50

—10

010

040

2510

—M

RM

Fir

stbl

oom

Defi

cien

t�

2.5

0.20

2.0

1.0

0.30

—30

3020

155

4.0

leaf

Ade

quat

e2.

50.

202.

01.

00.

30—

3030

2015

54.

0ra

nge

4.0

0.40

4.0

1.5

0.50

—10

010

040

2510

6.0

Hig

h�

4.0

0.40

4.0

1.5

0.50

—10

010

040

2510

6.0

Spi

nac

hM

RM

30da

ysD

efici

ent

�3.

00.

303.

00.

61.

00—

—50

5020

50.

1le

afaf

ter

seed

ing

Ade

quat

e3.

00.

303.

00.

61.

00—

—50

5020

50.

1ra

nge

4.5

0.50

4.0

1.0

1.60

——

100

7040

71.

0H

igh

�5.

00.

504.

01.

01.

60—

—10

070

407

1.0

MR

MH

arve

stD

efici

ent

�3.

00.

252.

50.

61.

00—

—30

5020

50.

1le

afA

dequ

ate

3.0

0.25

2.5

0.6

1.00

——

3050

205

0.1

ran

ge4.

00.

503.

51.

01.

60—

—50

7040

71.

0H

igh

�4.

00.

504.

01.

01.

60—

—80

7040

71.

0S

quas

hM

RM

Ear

lyfr

uit

Defi

cien

t�

3.0

0.25

2.0

1.0

0.30

0.20

4040

2025

50.

3A

dequ

ate

3.0

0.25

2.0

1.0

0.30

0.20

4040

2025

50.

3ra

nge

5.0

0.50

3.0

2.0

0.50

0.50

100

100

5040

200.

5H

igh

�5.

00.

503.

02.

00.

500.

5010

010

050

4020

0.5

Str

awbe

rry

MR

MT

ran

spla

nts

Defi

cien

t�

2.8

0.25

1.5

0.3

0.30

—50

3025

255

—le

afA

dequ

ate

2.8

0.25

1.5

0.3

0.30

—50

3025

255

—ra

nge

3.5

0.40

3.0

1.5

0.60

—10

010

040

4010

Page 218: HANDBOOK FOR VEGETABLE GROWERS

206

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

Hig

h�

3.5

0.40

3.0

1.5

0.60

—10

010

040

4010

—M

RM

Init

ial

Defi

cien

t�

3.0

0.20

1.5

0.4

0.25

—50

3020

205

—le

affl

ower

Ade

quat

e3.

00.

201.

50.

40.

25—

5030

2020

5—

ran

ge4.

00.

403.

01.

50.

50—

100

100

4040

10—

Hig

h�

4.0

0.40

3.0

1.5

0.50

—10

010

040

2010

—M

RM

Init

ial

Defi

cien

t�

3.0

0.20

1.5

0.4

0.25

—50

3020

205

—le

afh

arve

stA

dequ

ate

3.0

0.20

1.5

0.4

0.25

—50

3020

205

—ra

nge

3.5

0.40

2.5

1.5

0.50

—10

010

040

4010

—H

igh

�3.

50.

402.

51.

50.

50—

100

100

4040

10—

Tox

ic(�

)—

——

——

——

800

——

——

MR

MM

idse

ason

Defi

cien

t�

2.8

0.20

1.1

0.4

0.20

0.8

5025

2020

50.

5le

afA

dequ

ate

2.8

0.20

1.1

0.4

0.20

0.8

5025

2020

50.

5ra

nge

3.0

0.40

2.5

1.5

0.40

1.0

100

100

4040

100.

8H

igh

�3.

00.

402.

51.

50.

401.

010

010

040

4010

0.8

Tox

ic(�

)—

——

——

——

800

——

——

MR

ME

nd

ofD

efici

ent

�2.

50.

201.

10.

40.

20—

5025

2020

5—

leaf

seas

onA

dequ

ate

2.5

0.20

1.1

0.4

0.20

—50

2520

205

—ra

nge

3.0

0.30

2.0

1.5

0.40

—10

010

040

4010

—H

igh

�3.

00.

302.

01.

50.

40—

100

100

4040

10—

Page 219: HANDBOOK FOR VEGETABLE GROWERS

207

Sw

eet

corn

Wh

ole

3-le

afD

efici

ent

�3.

00.

352.

50.

60.

250.

450

4030

105

0.1

seed

lin

gsst

age

Ade

quat

e3.

00.

352.

50.

60.

250.

450

4030

105

0.1

ran

ge4.

00.

504.

00.

80.

500.

610

010

040

3010

0.2

Hig

h�

4.0

0.50

4.0

0.8

0.50

0.6

100

100

4030

100.

2T

oxic

(�)

——

——

——

——

—10

0—

—W

hol

e6-

leaf

stag

eD

efici

ent

�3.

00.

252.

50.

50.

250.

450

4030

105

0.1

seed

lin

gsA

dequ

ate

3.0

0.25

2.5

0.5

0.25

0.4

5040

3010

50.

1ra

nge

4.0

0.50

4.0

0.8

0.50

0.6

100

100

4030

100.

2H

igh

�4.

00.

504.

00.

80.

500.

610

010

040

3010

0.2

Tox

ic(�

)—

——

——

——

——

100

——

MR

M30

in.

tall

Defi

cien

t�

2.5

0.20

2.5

0.5

0.20

0.2

4040

2510

40.

1le

afA

dequ

ate

2.5

0.20

2.5

0.5

0.20

0.2

4040

2510

40.

1ra

nge

4.0

0.40

4.0

0.8

0.40

0.4

100

100

4030

100.

2H

igh

�4.

00.

404.

00.

80.

400.

410

010

040

3010

0.2

Tox

ic(�

)—

——

——

——

——

100

——

MR

MJu

stpr

ior

Defi

cien

t�

2.5

0.20

2.0

0.3

0.15

0.2

3030

2010

40.

1le

afto

tass

elA

dequ

ate

2.5

0.20

2.0

0.3

0.15

0.2

3030

2010

40.

1ra

nge

4.0

0.40

3.5

0.6

0.40

0.4

100

100

4020

100.

2H

igh

�4.

00.

403.

50.

60.

400.

410

010

040

2010

0.2

Tox

ic(�

)—

——

——

——

——

100

——

Ear

leaf

Tas

seli

ng

Defi

cien

t�

1.5

0.20

1.2

0.3

0.15

0.20

3020

2010

40.

1A

dequ

ate

1.5

0.20

1.2

0.3

0.15

0.20

3020

2010

40.

1ra

nge

2.5

0.40

2.0

0.6

0.40

0.40

100

100

4020

100.

2H

igh

�2.

50.

402.

00.

60.

400.

4010

010

040

2010

0.2

Sw

eet

MR

ME

arly

Defi

cien

t�

4.0

0.30

2.5

0.8

0.40

0.20

4040

2520

5—

pota

tole

afvi

nin

gA

dequ

ate

4.0

0.30

2.5

0.8

0.40

0.20

4040

2520

5—

ran

ge5.

00.

504.

01.

60.

800.

6010

010

050

5010

Page 220: HANDBOOK FOR VEGETABLE GROWERS

208

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

Hig

h�

5.0

0.50

4.0

1.6

0.80

0.60

100

100

5050

10—

MR

MM

idse

ason

Defi

cien

t�

3.0

0.20

2.0

0.8

0.25

0.20

4040

2525

5—

leaf

befo

rero

otA

dequ

ate

3.0

0.20

2.0

0.8

0.25

0.20

4040

2525

5—

enla

rgem

ent

ran

ge4.

00.

304.

01.

80.

500.

4010

010

040

4010

—H

igh

�4.

00.

304.

01.

80.

500.

4010

010

040

4010

—M

RM

Roo

tD

efici

ent

�3.

00.

202.

00.

80.

250.

2040

4025

205

—le

afen

larg

emen

tA

dequ

ate

3.0

0.20

2.0

0.8

0.25

0.20

4040

2520

5—

ran

ge4.

00.

304.

01.

60.

500.

6010

010

050

5010

—H

igh

�4.

00.

304.

01.

60.

500.

6010

010

050

5010

—M

RM

Just

befo

reD

efici

ent

�2.

80.

202.

00.

80.

250.

2040

4025

205

—le

afh

arve

stA

dequ

ate

2.8

0.20

2.0

0.8

0.25

0.20

4040

2520

5—

ran

ge3.

50.

304.

01.

60.

500.

6010

010

050

5010

—H

igh

�3.

50.

304.

01.

60.

500.

6010

010

050

5010

—T

omat

oM

RM

5-le

afD

efici

ent

�3.

00.

303.

01.

00.

300.

3040

3025

205

0.2

leaf

stag

eA

dequ

ate

3.0

0.30

3.0

1.0

0.30

0.30

4030

2520

50.

2ra

nge

5.0

0.60

5.0

2.0

0.50

0.80

100

100

4040

150.

6H

igh

�5.

00.

605.

02.

00.

500.

8010

010

040

4015

0.6

MR

MF

irst

Defi

cien

t�

2.8

0.20

2.5

1.00

0.30

0.30

4030

2520

50.

2le

affl

ower

Ade

quat

e2.

80.

202.

51.

000.

300.

3040

3025

205

0.2

Page 221: HANDBOOK FOR VEGETABLE GROWERS

209

ran

ge4.

00.

404.

02.

000.

500.

8010

010

040

4015

0.6

Hig

h�

4.0

0.40

4.0

2.00

0.50

0.80

100

100

4040

150.

6T

oxic

(�)

——

——

——

—15

0030

025

0—

—M

RM

Ear

lyD

efici

ent

�2.

50.

202.

51.

00.

250.

3040

3020

205

0.2

leaf

fru

itse

tA

dequ

ate

2.5

0.20

2.5

1.0

0.25

0.30

4030

2020

50.

2ra

nge

4.0

0.40

4.0

2.0

0.50

0.60

100

100

4040

100.

6H

igh

�4.

00.

404.

02.

00.

500.

6010

010

040

4010

0.6

Tox

ic(�

)—

——

——

——

——

250

——

MR

MF

irst

ripe

Defi

cien

t�

2.0

0.20

2.0

1.0

0.25

0.30

4030

2020

50.

2le

affr

uit

Ade

quat

e2.

00.

202.

01.

00.

250.

3040

3020

205

0.2

ran

ge3.

50.

404.

02.

00.

500.

6010

010

040

4010

0.6

Hig

h�

3.5

0.40

4.0

2.0

0.50

0.60

100

100

4040

100.

6M

RM

Du

rin

gD

efici

ent

�2.

00.

201.

51.

00.

250.

3040

3020

205

0.2

leaf

har

vest

Ade

quat

e2.

00.

201.

51.

00.

250.

3040

3020

205

0.2

peri

odra

nge

3.0

0.40

2.5

2.0

0.50

0.60

100

100

4040

100.

6H

igh

�3.

00.

402.

52.

00.

500.

6010

010

040

4010

0.6

Tu

rnip

MR

MH

ypoc

otyl

Defi

cien

t�

3.0

0.25

2.5

0.8

0.25

0.20

3030

2020

5—

gree

ns

leaf

1-in

.A

dequ

ate

3.0

0.25

2.5

0.8

0.25

0.20

3030

2020

5—

diam

eter

ran

ge5.

00.

804.

01.

50.

600.

6010

010

040

4010

—H

igh

�5.

00.

804.

01.

50.

600.

6010

010

040

4010

—W

ater

mel

onM

RM

Lay

byD

efici

ent

�3.

00.

253.

01.

00.

250.

2030

2020

205

—le

af(l

ast

Ade

quat

e3.

00.

253.

01.

00.

250.

2030

2020

205

—cu

ltiv

atio

n)

ran

ge4.

00.

504.

02.

00.

500.

4010

010

040

4010

—H

igh

�4.

00.

504.

02.

00.

500.

4010

010

040

4010

—T

oxic

(�)

——

——

——

—80

0—

——

—M

RM

Fir

stD

efici

ent

�2.

50.

252.

71.

00.

250.

2030

2020

205

—le

affl

ower

Ade

quat

e2.

50.

252.

71.

00.

250.

2030

2020

205

Page 222: HANDBOOK FOR VEGETABLE GROWERS

210

TA

BL

E4.

25.

CR

ITIC

AL

(DE

FIC

IEN

CY

)V

AL

UE

S,A

DE

QU

AT

ER

AN

GE

S,H

IGH

VA

LU

ES

,AN

DT

OX

ICIT

YV

AL

UE

SF

OR

PL

AN

TN

UT

RIE

NT

CO

NC

EN

TR

AT

ION

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pP

lan

tP

art1

Tim

eof

Sam

plin

gS

tatu

s

%

NP

KC

aM

gS

ppm

Fe

Mn

Zn

BC

uM

o

ran

ge3.

50.

503.

52.

00.

500.

4010

010

040

4010

—H

igh

�3.

50.

503.

52.

00.

500.

4010

010

040

4010

—M

RM

Fir

stD

efici

ent

�2.

00.

252.

31.

00.

250.

2030

2020

205

—le

affr

uit

Ade

quat

e2.

00.

252.

31.

00.

250.

2030

2020

205

—ra

nge

3.0

0.50

3.5

2.0

0.50

0.40

100

100

4040

10—

Hig

h�

3.0

0.50

3.5

2.0

0.50

0.40

100

100

4040

10—

MR

MH

arve

stD

efici

ent

�2.

00.

252.

01.

00.

250.

2030

2020

203

—le

afpe

riod

Ade

quat

e2.

00.

252.

01.

00.

250.

2030

2020

203

—ra

nge

3.0

0.50

3.0

2.0

0.50

0.40

100

100

4040

10—

Hig

h�

3.0

0.50

3.0

2.0

0.50

0.40

100

100

4040

10—

Ada

pted

from

G.

Hoc

hm

uth

,D.

May

nar

d,C

.V

avri

na,

E.

Han

lon

,an

dE

.S

imon

ne,

Pla

nt

Tis

sue

An

alys

isan

dIn

terp

reta

tion

for

Veg

etab

leC

rops

inF

lori

da

(Flo

rida

Coo

pera

tive

Ext

ensi

onS

ervi

ce),

htt

p://

edis

.ifas

.ufl

.edu

/hs1

62.

1M

RM

leaf

isth

em

ost

rece

ntl

ym

atu

red

wh

ole

leaf

blad

epl

us

peti

ole.

Page 223: HANDBOOK FOR VEGETABLE GROWERS

211

TABLE 4.26. UNIVERSITY OF FLORIDA GUIDELINES FOR LEAFPETIOLE FRESH SAP NITRATE–NITROGEN ANDPOTASSIUM TESTING

Crop Development Stage /Time

Fresh Petiole SapConcentration (ppm)

NO3–N K

Eggplant First fruit (2 in. long) 1,200–1,600 4,500–5,000First harvest 1,000–1,200 4,000–4,500Midharvest 800–1,000 3,500–4,000

Pepper First flower buds 1,400–1,600 3,200–3,500First open flowers 1,400–1,600 3,000–3,200Fruits half-grown 1,200–1,400 3,000–3,200First harvest 800–1,000 2,400–3,000Second harvest 500–800 2,000–2,400

Potato Plants 8 in. tall 1,200–1,400 4,500–5,000First open flowers 1,000–1,400 4,500–5,00050% flowers open 1,000–1,200 4,000–4,500100% flowers open 900–1,200 3,500–4,000Tops falling over 600–900 2,500–3,000

Strawberry1 November 800–900 3,000–3,500December 600–800 3,000–3,500January 600–800 2,500–3,000February 300–500 2,000–2,500March 200–500 1,800–2,500April 200–500 1,500–2,000

Tomato First buds 1,000–1,200 3,500–4,000First open flowers 600–800 3,500–4,000Fruits 1-in. diameter 400–600 3,000–3,500Fruits 2-in. diameter 400–600 3,000–3,500First harvest 300–400 2,500–3,000Second harvest 200–400 2,000–2,500

Watermelon Vines 6 in. long 1,200–1,500 4,000–5,000Fruit 2 in. long 1,000–1,200 4,000–5,000Fruits one-half mature 800–1,000 3,500–4,000At first harvest 600–800 3,000–3,500

Adapted from G. Hochmuth, ‘‘Plant Petiole Sap-testing Guide for Vegetable Crops,’’ FloridaCooperative Extension Service Circular 1144 (2003), http: / / edis.ifas.ufl.edu / pdffiles / cv / cv00400.pdf.1 Annual hill production system

Page 224: HANDBOOK FOR VEGETABLE GROWERS

212

12SOIL TESTS

Analyses for total amounts of nutrients in the soil are of limited value inpredicting fertilizer needs. Consequently, various methods and extractantshave been developed to estimate available soil nutrients and to serve as abasis for predicting fertilizer needs. Proper interpretation of the results ofsoil analysis is essential in recommending fertilizer needs. Soil testingprocedure and extractants must be correlated with crop response to be ofvalue for predicting crop need for fertilizer. One soil test proceduredeveloped for one soil and crop condition in one area of the country may notapply in another area. Growers should consult their crop and soils expertsabout soil testing procedures appropriate for their growing area.

DETERMINING THE KIND AND QUANTITY OF FERTILIZER TOUSE

Many states issue suggested rates of application of fertilizers for specificvegetables. These recommendations are sometimes made according to thetype of soil—that is, light or heavy, sands, loams, clays, peats, and mucks.Other factors often used in establishing these rates are whether manure orsoil-improving crops are employed and whether an optimum moisturesupply can be maintained. The nutrient requirements of each crop must beconsidered, as must the past fertilizer and cropping history. The season ofthe year affects nutrient availability. Broad recommendations are at bestonly a point from which to make adjustments to suit individual conditions.Each field may require a different fertilizer program for the same vegetable.

Calibrated soil testing can provide an estimate of the concentration ofessential elements that will be available to the crop during the season andpredict the amount of fertilizer needed to produce a crop. Various extractionsolutions are used by soil testing labs around the country to estimate thenutrient-supplying capacity of the soil, and not all solutions are calibratedfor all soils. Therefore, growers must exercise care in selecting a lab toanalyze soil samples, using only those labs that employ analyticalprocedures calibrated with yield response in specific soil types and growingregions. Even though several labs might differ in lab procedures, if allprocedures are calibrated, then fertilizer recommendations should besimilar. If unclear about specific soil testing practices, growers shouldconsult their Cooperative Extension Service and the specific analytical lab.

Phosphorus. This element is not very mobile in most agricultural soils.Phosphorus is fixed in soils with basic reactions and large quantities of

Page 225: HANDBOOK FOR VEGETABLE GROWERS

213

calcium, or in acidic soils containing aluminum or iron. Even thoughphosphorus can be fixed, if a calibrated soil test predicts no response tophosphorus fertilization, then growers need not add large amounts ofphosphorus because enough phosphorus will be made available to thecrop during the growing season, even though the soil has a highphosphorus-fixing capacity. Sometimes crops might respond to smallamounts of starter phosphorus supplied to high phosphorus testing soilsin cold planting seasons.

Potassium. Although not generally considered a mobile element in soils,potassium can leach in coarse, sandy soils. Clay soils and loamy soilsoften contain adequate amounts of available potassium and may notneed fertilization with potassium. Coarse, sandy soils usually testmedium or low in extractable potassium, and crops growing on thesesoils respond to potassium fertilization.

Nitrogen. Most soil testing labs have no calibrated soil test for nitrogenbecause nitrogen is highly mobile in most soils and predicting a crop’sresponse to nitrogen fertilization from a soil test is risky. However, somelabs do predict the nitrogen-supplying capacity of a soil from adetermination of soil organic matter. Estimates vary from 20 to 40 lbnitrogen made available during the season for each percent soil organicmatter. Another soil nitrogen estimation procedure used by some labs isthe pre-sidedress soil nitrate test. This test predicts the likelihood ofneed for sidedressed nitrogen during the season but is relativelyinsensitive for predicting exact amounts of sidedress nitrogen.

Page 226: HANDBOOK FOR VEGETABLE GROWERS

214

TABLE 4.27. PREDICTED RESPONSES OF CROPS TO RELATIVEAMOUNTS OF EXTRACTED PLANT NUTRIENTS BYSOIL TEST

Soil Test Interpretation Predicted Crop Response

Very high No crop response predicted to fertilizationwith a particular element.

High No crop response predicted to fertilizationwith a particular element.

Medium 75–100% maximum expected yield predictedwithout fertilization.

Low 50–75% maximum expected yield predictedwithout fertilization.

Very low 25–50% maximum expected yield predictedwithout fertilization.

Page 227: HANDBOOK FOR VEGETABLE GROWERS

215

TA

BL

E4.

28.

INT

ER

PR

ET

AT

ION

OF

SO

ILT

ES

TR

ES

UL

TS

FO

RP

HO

SP

HO

RU

SB

YT

HE

OL

SE

NB

ICA

RB

ON

AT

EE

XT

RA

CT

ION

ME

TH

OD

,FO

RP

OT

AS

SIU

MA

ND

MA

GN

ES

IUM

BY

TH

EA

MM

ON

IUM

AC

ET

AT

EE

XT

RA

CT

ION

ME

TH

OD

,AN

DF

OR

ZIN

CB

YT

HE

DP

TA

EX

TR

AC

TIO

NM

ET

HO

D

Nu

trie

nt

Nee

d

Am

oun

tin

Soi

l(p

pm)

Ph

osph

oru

s1

(PO

4–P

)P

otas

siu

m2

(K)

Mag

nes

ium

2

(Mg)

Zin

c3

(Zn

)

Defi

cien

tle

vels

for

mos

tve

geta

bles

0–10

0–60

0–25

0–0.

3D

efici

ent

for

susc

epti

ble

vege

tabl

es10

–20

60–1

2025

–50

0.3–

0.6

Afe

wsu

scep

tibl

ecr

ops

may

resp

ond

20–4

012

0–20

050

–100

0.6–

1.0

No

crop

resp

onse

Abo

ve40

Abo

ve20

0A

bove

100

Abo

ve1.

0L

evel

sar

eex

cess

ive

and

cou

ldca

use

prob

lem

sA

bove

150

Abo

ve20

00A

bove

1000

Abo

ve3.

0

Ada

pted

from

H.

M.

Rei

sen

auer

(ed.

),S

oil

and

Pla

nt

Tis

sue

Tes

tin

gin

Cal

ifor

nia

,Un

iver

sity

ofC

alif

orn

iaD

ivis

ion

ofA

gric

ult

ura

lS

cien

ceB

ull

etin

1879

(197

8).

1O

lsen

(0.5

M,p

H8.

5)so

diu

mbi

carb

onat

eex

trac

tan

t2E

xch

ange

able

wit

h1N

amm

oniu

mac

etat

eex

trac

tan

t3D

TP

Aex

trac

tabl

eZ

n

Page 228: HANDBOOK FOR VEGETABLE GROWERS

216

TA

BL

E4.

29.

INT

ER

PR

ET

AT

ION

OF

SO

ILT

ES

TR

ES

UL

TS

OB

TA

INE

DB

YT

HE

ME

HL

ICH

-1D

OU

BL

EA

CID

(0.0

5NH

Cl,

0.02

5NH

2SO

4)A

ND

ME

HL

ICH

-3S

OIL

EX

TR

AC

TA

NT

S

Rel

ativ

eL

evel

inS

oil

Soi

lA

mou

nt

(lb

/acr

e)

Ph

osph

oru

s(P

)M

ehli

ch-1

Meh

lich

-3P

otas

siu

m(K

)M

ehli

ch-1

Meh

lich

-3M

agn

esiu

m(M

g)M

ehli

ch-1

Meh

lich

-3C

alci

um

(Ca)

Meh

lich

-1M

ehli

ch-3

Ver

ylo

w0–

130–

240–

290–

400–

350–

450–

400

0–61

5L

ow14

–27

25–4

530

–70

41–8

136

–70

46–8

340

1–80

061

6–1,

007

Med

ium

28–4

546

–71

71–1

3482

–145

71–1

2584

–143

801–

1,20

01,

008–

1,40

0H

igh

46–8

972

–137

135–

267

146–

277

126–

265

144–

295

1,20

1–1,

600

1,40

1–1,

790

Ver

yh

igh

90�

138�

268�

278�

266�

1,60

1�29

6�1,

791�

Ada

pted

from

Com

mer

cial

Veg

etab

leP

rod

uct

ion

Rec

omm

end

atio

ns,

Del

awar

eC

oope

rati

veE

xten

sion

Ser

vice

Bu

llet

in13

7(2

005)

.

Page 229: HANDBOOK FOR VEGETABLE GROWERS

217

TABLE 4.30. INTERPRETATION OF THE MEHLICH-1 (DOUBLE-ACID) EXTRACTANT USED BY THE UNIVERSITY OFFLORIDA

Element

ppm (soil)

Very Low Low Medium High Very High

P �10 10–15 16–30 31–60 �60K �20 20–35 36–60 61–125 �125

Mg �15 15–30 �30

Micronutrients

Soil pH (mineral soils only)

5.5–5.9 6.0–6.4 6.5–7.0ppm (soil)

Test level below which there maybe a crop response to appliedcopper

0.1–0.3 0.3–0.5 0.5

Test level above which coppertoxicity may occur

2.0–3.0 3.0–5.0 5.0

Test level below which there maybe a crop response to appliedmanganese

3.0–5.0 5.0–7.0 7.0–9.0

Test level below which there maybe a crop response to appliedzinc

0.5 0.5–1.0 1.0–3.0

Adapted from G. Hochmuth and E. Hanlon, ‘‘IFAS Standardized Fertilization Recommendations forVegetable Crops’’ (Florida Cooperative Extension Service Circular 1152, 2000), http: / / edis.ifas.ufl.edu /CV002.

Page 230: HANDBOOK FOR VEGETABLE GROWERS

218

TABLE 4.31. GUIDE FOR DIAGNOSING NUTRIENT STATUS OFCALIFORNIA SOILS FOR VEGETABLE CROPS1

Vegetable

Vegetable Yield Response to Fertilizer Application

Nutrient1Likely (soil ppm

less than)Not Likely (soil ppm

more than)

Lettuce P 15 25K 50 80Zn 0.5 1.0

Cantaloupe P 8 12K 80 100Zn 0.4 0.6

Onion P 8 12K 80 100Zn 0.5 1.0

Potato (mineral P 12 25soils) K 100 150

Zn 0.3 0.7Tomato P 8 12

K 100 150Zn 0.3 0.7

Warm-seasonvegetables

P 8 12

K 50 70Zn 0.2 0.5

Cool-seasonvegetables

P 20 30

K 50 80Zn 0.5 1.0

Adapted from Soil and Plant Tissue Testing in California, University of California DivisionAgricultural Science Bulletin 1879 (1983). Updated 1996, personal communication, T. K. Hartz,University of California—Davis.1 Soil extracts:

PO4–P: 0.5M pH 8.5 sodium bicarbonate (NaHCO3)K: 1.0M ammonium acetate (NH4OAc)

Zn: 0.005M diethyienetriaminepentaacetic acid (DTPA)

Page 231: HANDBOOK FOR VEGETABLE GROWERS

219

PRE-SIDEDRESS NITROGEN TEST FOR SWEET CORN

The Pre-sidedress Nitrate Test was developed to aid farmers in theprediction of nitrogen needs by corn at the time when sidedress applicationsare normally made. This test takes into consideration nitrogen releasedfrom organic nutrient sources (such as manure, compost, cover crops, andsoil organic matter) in addition to nitrogen fertilizer.

Sampling Procedure for Nitrogen Soil Test

1. Sample soil when corn is 8–12 in. tall.

2. Collect 15–20 soil cores per field to a depth of 12 in., if possible. Ifnot, sample as deeply as possible. Avoid areas where starter fertilizerbands were applied, areas where manure was stacked, and areaswhere starter fertilizer applications were unusually heavy or light.

3. Combine the cores for each field and mix completely. Take asubsample of approximately 1 cup and dry it immediately. Soil can bedried in an oven at about 200�F. Samples can also be air dried ifspread out thinly on a nonabsorbent material in a dry, well-ventilatedarea. A fan reduces drying time. Do not put wet samples on absorbentmaterial because it will absorb some nitrate. The longer the delay indrying the sample, the less accurate the results will be.

TABLE 4.32. SWEET CORN NITROGEN TEST

Soil Test Results(ppm NO3–N)

Recommended Nitrogen Sidedressing(lbs actual N/acre)

0–10 13011–20 10021–25 5025� 0

Adapted from Vern Grubinger, University of Vermont Cooperative Extension Service, http: / /www.uvm.edu / vtvegandberry / factsheets / PSNT.html. Similar research results were obtained withpumpkin by T. F. Morris et al. (University of Connecticut, 1999), http: / / www.hort.uconn.edu / ipm / veg/ htms / presidrs.htm.

Page 232: HANDBOOK FOR VEGETABLE GROWERS

220

Additional references for soil testing for vegetable fertilizerrecommendations:

● E. A. Hanlon, Procedures Used by State Soil Testing Laboratories inthe Southern Region of the United States, (Southern CooperativeSeries Bulletin 190-B, 1998), http: / /www.imok.ufl.edu/hanlon /bull190.pdf.

● H. M. Reisenauer, J. Quick, R. E. Voss, and A. L. Brown, ChemicalSoil Tests for Soil Fertility Evaluation (University of CaliforniaVegetable Research and Information Center), http: / /vric.ucdavis.edu.

Page 233: HANDBOOK FOR VEGETABLE GROWERS

221

TA

BL

E4.

33.

CO

NV

ER

SIO

NO

FF

ER

TIL

IZE

RR

AT

ES

FR

OM

AP

PL

ICA

TIO

NO

NA

PE

R-A

CR

EB

AS

IST

OR

AT

ES

BA

SE

DO

NL

INE

AR

BE

DF

EE

TF

OR

FU

LL

-BE

DM

UL

CH

ED

CR

OP

S

Typ

ical

bed

spac

ing

for

mu

lch

edve

geta

bles

grow

nin

Flo

rida

:

Veg

etab

leT

ypic

alS

paci

ng

(ft)

1R

ows

ofP

lan

tspe

rB

edV

eget

able

Typ

ical

Spa

cin

g(f

t)R

ows

ofP

lan

tspe

rB

ed

Bro

ccol

i6

2L

ettu

ce4

2C

abba

ge6

2P

eppe

r6

2C

anta

lou

pe5

1S

um

mer

squ

ash

62

Cau

lifl

ower

62

Str

awbe

rry

42

Cu

cum

ber

62

Tom

ato

61

Egg

plan

t6

1W

ater

mel

on8

11S

paci

ng

betw

een

the

cen

ters

oftw

oad

jace

nt

beds

.

Page 234: HANDBOOK FOR VEGETABLE GROWERS

222

TA

BL

E4.

33.

CO

NV

ER

SIO

NO

FF

ER

TIL

IZE

RR

AT

ES

FR

OM

AP

PL

ICA

TIO

NO

NA

PE

R-A

CR

EB

AS

IST

OR

AT

ES

BA

SE

DO

NL

INE

AR

BE

DF

EE

TF

OR

FU

LL

-BE

DM

UL

CH

ED

CR

OP

S(C

onti

nu

ed)

Typ

ical

Bed

Spa

cin

g(f

t)

Rec

omm

ende

dF

erti

lize

r(N

,P

2O5,

orK

2O)

(lb

/A)

2040

6080

100

120

140

160

180

Res

ult

ing

Fer

tili

zer

Rat

e(N

,P

2O5,

orK

2O)

(lb

/100

LB

F)

30.

140.

280.

410.

550.

690.

830.

961.

101.

244

0.18

0.37

0.55

0.73

0.92

1.10

1.29

1.47

1.65

50.

230.

460.

690.

921.

151.

381.

611.

842.

076

0.28

0.55

0.83

1.10

1.38

1.65

1.93

2.20

2.48

80.

370.

731.

101.

471.

842.

202.

572.

943.

31

To

dete

rmin

eth

eco

rrec

tfe

rtil

izat

ion

rate

inlb

nu

trie

nt

per

100

lin

ear

bed

feet

(LB

F),

choo

seth

ecr

opan

dit

sty

pica

lbe

dsp

acin

g,L

ocat

eth

atty

pica

lbe

dsp

acin

gva

lue

inth

ebo

ttom

part

ofth

eta

ble.

Th

enlo

cate

the

desi

red

valu

efo

rre

com

men

ded

fert

iliz

erra

te.

Rea

ddo

wn

the

colu

mn

un

der

reco

mm

ende

dfe

rtil

izer

rate

un

til

you

reac

hth

eva

lue

inth

ero

wfo

ryo

ur

typi

cal

bed

spac

ing.

Ada

pted

from

G.

J.H

och

mu

th,‘

‘Soi

lan

dF

erti

lize

rM

anag

emen

tfo

rV

eget

able

Pro

duct

ion

inF

lori

da,’’

inD

.N

.M

ayn

ard

and

G.

J.H

och

mu

th(e

ds.)

,Veg

etab

leP

rod

uct

ion

Gu

ide

for

Flo

rid

a(F

lori

daC

oope

rati

veE

xten

sion

Ser

vice

Cir

cula

rS

P-1

70,1

995)

,2–1

7.

Page 235: HANDBOOK FOR VEGETABLE GROWERS

223

TA

BL

E4.

34.

RA

TE

SO

FF

ER

TIL

IZE

RS

RE

CO

MM

EN

DE

DF

OR

VE

GE

TA

BL

EC

RO

PS

INM

ID-A

TL

AN

TIC

(DE

LA

WA

RE

,MA

RY

LA

ND

,NE

WJ

ER

SE

Y,P

EN

NS

YL

VA

NIA

,AN

DV

IRG

INIA

)S

TA

TE

SB

AS

ED

ON

SO

ILA

NA

LY

SE

S1

Veg

etab

leA

mou

nt

N(l

b/a

cre)

Am

oun

tP

2O5

(lb

/acr

e)

Low

Soi

lP

Med

ium

Soi

lP

Opt

imu

mS

oil

P

Am

oun

tK

2O(l

b/a

cre)

Low

Soi

lK

Med

ium

Soi

lK

Opt

imu

mS

oil

K

Asp

arag

us

(cu

ttin

gbe

ds)

5020

010

050

200

100

50

Bea

n,

snap

40–8

080

6040

8060

40B

eet

75–1

0015

010

050

150

100

50B

rocc

oli

150–

200

200

100

5020

010

050

Cab

bage

100–

150

200

100

5020

010

050

Can

talo

upe

75–1

0015

010

050

200

150

100

Car

rot

50–8

015

010

050

150

100

50C

auli

flow

er10

0–15

020

010

050

200

100

50C

eler

y15

0–17

525

015

010

025

015

010

0C

ucu

mbe

r10

0–12

515

010

050

200

150

100

Egg

plan

t12

5–15

025

015

010

025

015

010

0L

ettu

ce,

iceb

erg

60–8

020

015

010

020

015

010

0L

eek

100–

125

200

150

100

200

150

100

On

ion

,bu

lbs

75–1

0020

010

050

200

100

50

Page 236: HANDBOOK FOR VEGETABLE GROWERS

224

TA

BL

E4.

34.

RA

TE

SO

FF

ER

TIL

IZE

RS

RE

CO

MM

EN

DE

DF

OR

VE

GE

TA

BL

EC

RO

PS

INM

ID-A

TL

AN

TIC

(DE

LA

WA

RE

,MA

RY

LA

ND

,NE

WJ

ER

SE

Y,P

EN

NS

YL

VA

NIA

,AN

DV

IRG

INIA

)S

TA

TE

SB

AS

ED

ON

SO

ILA

NA

LY

SE

S1

(Con

tin

ued

)

Veg

etab

leA

mou

nt

N(l

b/a

cre)

Am

oun

tP

2O5

(lb

/acr

e)

Low

Soi

lP

Med

ium

Soi

lP

Opt

imu

mS

oil

P

Am

oun

tK

2O(l

b/a

cre)

Low

Soi

lK

Med

ium

Soi

lK

Opt

imu

mS

oil

K

Pea

40–8

012

080

4012

080

40P

eppe

r10

0–13

020

015

010

020

015

010

0P

otat

o12

5–15

020

015

010

030

020

010

0P

um

pkin

50–1

0015

010

050

200

150

100

Spi

nac

h10

0–19

520

015

010

020

015

010

0S

quas

h,s

um

mer

75–1

0015

010

050

200

150

100

Str

awbe

rry

(est

abli

shed

)60

–110

165

115

6516

511

565

Sw

eet

corn

(fre

sh)

125–

150

160

120

8016

012

080

Sw

eet

pota

to50

–75

200

100

5030

020

010

0T

omat

o(f

resh

)80

–90

200

150

100

300

200

100

Wat

erm

elon

125–

150

150

100

5020

015

010

0

Ada

pted

from

Com

mer

cial

Veg

etab

leP

rod

uct

ion

Rec

omm

end

atio

ns,

Del

awar

eC

oope

rati

veE

xten

sion

Ser

vice

Bu

llet

in13

7(2

005)

.1A

com

mon

reco

mm

enda

tion

isto

broa

dcas

tan

dw

ork

deep

lyin

toth

eso

ilon

e-th

ird

toon

e-h

alf

ofth

efe

rtil

izer

atpl

anti

ng

and

toap

ply

the

bala

nce

asa

side

dres

sin

gin

one

ortw

oap

plic

atio

ns

afte

rth

ecr

opis

full

yes

tabl

ish

ed.

Page 237: HANDBOOK FOR VEGETABLE GROWERS

225

TA

BL

E4.

35.

RA

TE

SO

FF

ER

TIL

IZE

RS

RE

CO

MM

EN

DE

DF

OR

VE

GE

TA

BL

EC

RO

PS

INF

LO

RID

AO

NS

AN

DY

SO

ILS

BA

SE

DO

NM

EH

LIC

H-I

SO

ILT

ES

TR

ES

UL

TS

Veg

etab

leN

(lb

/acr

e)

P2O

5(l

b/a

cre)

1S

oil-

test

P

Ver

yL

owL

owM

ediu

m

K2O

(lb

/acr

e)1

Soi

l-te

stK

Ver

yL

owL

owM

ediu

m

Bea

n10

012

010

080

120

100

80B

eet

120

120

100

8012

010

080

Bro

ccol

i17

515

012

010

015

012

010

0C

abba

ge17

515

012

080

150

120

80C

anta

lou

pe15

015

012

080

150

120

80C

arro

t17

515

012

010

015

012

010

0C

auli

flow

er17

515

012

010

015

012

010

0C

eler

y20

020

015

010

025

015

010

0C

hin

ese

cabb

age

150

150

120

8015

012

080

Col

lard

s15

015

012

080

150

120

80C

ucu

mbe

r15

012

010

080

120

100

80E

ggpl

ant

200

150

120

100

160

130

100

Let

tuce

200

150

120

8015

012

080

Mu

star

d12

015

012

010

015

012

010

0O

kra

120

150

120

100

150

120

100

On

ion

150

150

120

8015

012

080

Page 238: HANDBOOK FOR VEGETABLE GROWERS

226

TA

BL

E4.

35.

RA

TE

SO

FF

ER

TIL

IZE

RS

RE

CO

MM

EN

DE

DF

OR

VE

GE

TA

BL

EC

RO

PS

INF

LO

RID

AO

NS

AN

DY

SO

ILS

BA

SE

DO

NM

EH

LIC

H-I

SO

ILT

ES

TR

ES

UL

TS

(Con

tin

ued

)

Veg

etab

leN

(lb

/acr

e)

P2O

5(l

b/a

cre)

1S

oil-

test

P

Ver

yL

owL

owM

ediu

m

K2O

(lb

/acr

e)1

Soi

l-te

stK

Ver

yL

owL

owM

ediu

m

Par

sley

120

150

120

100

150

120

100

Pea

,so

uth

ern

6080

8060

8080

60P

eppe

r20

015

012

010

016

013

010

0P

otat

o20

012

012

060

140

140

140

Rad

ish

9012

010

080

120

100

80S

pin

ach

9012

010

080

120

100

80S

quas

h15

012

010

080

120

100

80S

traw

berr

y15

015

012

010

015

012

010

0S

wee

tco

rn20

015

012

010

012

010

080

Sw

eet

pota

to60

120

100

8012

010

080

Tom

ato

200

150

120

100

225

150

100

Wat

erm

elon

150

150

120

8015

012

080

Ada

pted

from

G.

Hoc

hm

uth

and

E.

Han

lon

,‘‘I

FA

SS

tan

dard

ized

Fer

tili

zati

onR

ecom

men

dati

ons

for

Veg

etab

leC

rops

,’’F

lori

daC

oope

rati

veE

xten

sion

Ser

vice

Cir

cula

r11

52(2

000)

,htt

p://

edis

.ifas

.ufl

.edu

/CV

002.

1N

oP

orK

reco

mm

ende

dfo

rso

ils

test

ing

hig

hex

cept

for

pota

to,w

hic

hre

ceiv

esn

oP

but

rece

ives

140

lbK

2O/a

cre.

Page 239: HANDBOOK FOR VEGETABLE GROWERS

227

TA

BL

E4.

36.

FE

RT

ILIZ

AT

ION

RE

CO

MM

EN

DA

TIO

NS

FO

RN

EW

EN

GL

AN

DV

EG

ET

AB

LE

S

Cro

pN

itro

gen

Soi

lP

hos

phor

us

Ver

yL

owL

owM

ediu

mH

igh

Ver

yH

igh

Soi

lP

otas

siu

m

Ver

yL

owL

owM

ediu

mH

igh

Ver

yH

igh

(lb

/acr

e)P

2O5

(lb

/acr

e)K

2O(l

b/a

cre)

Asp

arag

us,

esta

blis

hed

7520

017

515

010

050

300

250

200

150

75

Bea

n50

100

7550

2525

100

7550

5025

Bee

t,S

wis

sch

ard

100–

130

150

125

100

500

300

200

100

5025

Car

rot,

Par

snip

110–

150

150

100

7550

040

035

025

015

00–

75C

anta

lou

pe13

015

012

010

080

020

015

010

080

0C

eler

y18

020

015

010

050

030

024

018

012

00–

60C

ole

crop

s16

020

017

013

010

020

175

150

125

500

Sw

eet

Cor

n,

earl

y10

0–13

011

080

4020

020

016

013

030

0

Sw

eet

Cor

n,

mai

n10

0–16

011

080

4020

020

016

013

030

0

Cu

cum

ber

130

150

120

100

800

200

150

100

800

Egg

plan

t80

–110

200

150

100

500

200

150

100

500

Gou

rd90

125

100

7550

015

012

510

075

0

Page 240: HANDBOOK FOR VEGETABLE GROWERS

228

TA

BL

E4.

36.

FE

RT

ILIZ

AT

ION

RE

CO

MM

EN

DA

TIO

NS

FO

RN

EW

EN

GL

AN

DV

EG

ET

AB

LE

S(C

onti

nu

ed)

Cro

pN

itro

gen

Soi

lP

hos

phor

us

Ver

yL

owL

owM

ediu

mH

igh

Ver

yH

igh

Soi

lP

otas

siu

m

Ver

yL

owL

owM

ediu

mH

igh

Ver

yH

igh

(lb

/acr

e)P

2O5

(lb

/acr

e)K

2O(l

b/a

cre)

Let

tuce

,E

ndi

ve,

Esc

arol

e

80–1

2519

016

514

090

019

016

514

090

0

On

ion

130

175

150

100

500

175

150

100

500

Pea

7515

010

075

5025

150

100

7550

0P

eppe

r14

020

015

010

050

020

015

010

050

0P

otat

o12

0–18

030

025

020

018

015

025

022

520

018

015

0P

um

pkin

,S

quas

h70

–90

150

125

100

0–70

020

015

010

070

0

Rad

ish

5012

510

075

500–

2512

510

075

5025

Ru

taba

ga,

Tu

rnip

5010

075

5025

010

075

5025

0

Spi

nac

h90

–110

150

120

100

6030

200

150

100

500

Tom

ato

140–

160

200

150

100

500

250

200

150

100

0W

ater

mel

on13

015

012

010

080

020

015

010

080

0

Ada

pted

from

J.C

.H

owel

l(e

d.),

New

En

glan

dV

eget

able

Man

agem

ent

Gu

ide

(Coo

pera

tive

Ext

ensi

onS

ervi

ces

ofN

ewE

ngl

and

Sta

tes,

2004

–200

5).

Page 241: HANDBOOK FOR VEGETABLE GROWERS

229

TABLE 4.37. FERTILIZER RATES RECOMMENDED FORVEGETABLE CROPS IN NEW YORK

Vegetable

Amount (lb /acre)1

N P2O5 K2O

Asparagus 50 25–75 40–80Bean 40 40–80 20–60Beet 150–175 50–150 100–300Broccoli 100–120 40–120 60–160Brussels sprouts 100–120 40–120 60–160Cabbage 100–120 40–120 60–160Carrot 80–90 40–120 60–160Cantaloupe 100–120 40–120 40–120Cauliflower 100–120 40–120 60–160Celery 130–150 50–150 120–240Cucumber 100–120 40–120 40–120Eggplant 120 60–150 60–150Endive 100 30–120 50–150Lettuce 100 30–120 50–150Onion (mineral soil) 90–120 50–150 50–150Pea 40–50 50–100 40–120Pepper 125 75–150 75–150Potato 120–175 120–240 75–240Pumpkin 100–120 40–120 40–120Radish 50 50–110 50–150Spinach 100–125 80–140 50–150Squash, summer 100–120 40–120 40–120Squash, winter 100–120 40–120 40–120Sweet corn 120–140 40–120 40–120Tomato 100 60–150 60–150Turnip 50 50–110 50–150Watermelon 100–120 40–120 40–120

Adapted from S. Reiners and C. Petzuldt (eds.), Integrated Crop and Pest Management Guidelines forCommercial Vegetable Production (Cornell Cooperative Extension Service, 2005), http: / /www.nysaes.cornell.edu / recommends /.1 Total amounts are listed; application may be broadcast and plow down, broadcast and disk in, band,or sidedress. Actual rate of fertilization depends on soil type, previous cropping history, and soil testresults. Ranges reflect recommendations made for high to low soil test situations. See above documentfor details.

Page 242: HANDBOOK FOR VEGETABLE GROWERS

230

ADDITIONAL VEGETABLE PRODUCTION GUIDES CONTAININGFERTILIZER RECOMMENDATIONS

New England Vegetable Management Guide, http: / /www.nevegetable.orgOregon Vegetable Production Guides, http: / / oregonstate.edu/Dept /NWREC/

vegindex.htmlTexas Vegetable Grower’s Handbook, http: / /aggie-horticulture.tamu.edu/

extension /veghandbook / index.htmlOhio Vegetable Production Guide, http: / / ohioline.osu.edu/b672 / index.htmlCornell (New York) Integrated Crop and Pest Management Guidelines for

Commercial Vegetable Production, http: / /www.nysaes.cornell.edu /recommends /

Page 243: HANDBOOK FOR VEGETABLE GROWERS

231

13NUTRIENT DEFICIENCIES

TABLE 4.38. A KEY TO NUTRIENT DEFICIENCY SYMPTOMS

Nutrient Plant Symptoms Occurrence

Primary

Nitrogen Stems are thin, erect, andhard. Leaves are smallerthan normal, pale greenor yellow; lower leavesare affected first, but allleaves may be deficient insevere cases. Plants growslowly.

Excessive leaching onlight soils

Phosphorus Stems are thin andshortened. Leaves developpurple coloration, first onundersides and laterthroughout. Plants growslowly, and maturity isdelayed.

On acid soils; temporarydeficiencies on cold, wetsoils

Potassium Older leaves develop grayor tan areas near themargins. Eventually ascorch around the entireleaf margin may occur.Chlorotic areas maydevelop throughout leaf.

Excessive leaching onlight soils

Secondary Nutrients and Micronutrients

Boron Growing points die; stemsare shortened and hard;leaves are distorted.Specific deficienciesinclude browning ofcauliflower, cracked stemof celery, blackheart ofbeet, and internalbrowning of turnip.

On soils with a pH above6.8 or on crops with ahigh boron requirement

Page 244: HANDBOOK FOR VEGETABLE GROWERS

232

TABLE 4.38. A KEY TO NUTRIENT–DEFICIENCY SYMPTOMS(Continued )

Nutrient Plant Symptoms Occurrence

Calcium Stem elongation restrictedby death of the growingpoint. Root tips die, androot growth is restricted.Specific deficienciesinclude blossom-end rotof tomato, brownheart ofescarole, celeryblackheart, and carrotcavity spot.

On acid soils, followingleaching rains, on soilswith very highpotassium levels, or onvery dry soils

Copper Yellowing of leaves. Leavesmay become elongated.Onion bulbs are soft, withthin, pale-yellow scales.

Most cases of copperdeficiency occur onmuck or peat soils.

Iron Distinct yellow or whiteareas appear between theveins on the youngestleaves.

On soils with a pH above6.8

Magnesium Initially, older leaves showyellowing between theveins; continueddeficiency causes youngerleaves to become affected.Older leaves may fallwith prolonged deficiency.

On acid soils, on soils withvery high potassiumlevels, or on very lightsoils subject to leaching

Manganese Yellow mottled areas, not asintense as with irondeficiency, appear on theyoungest leaves. Thisfinally results in anoverall pale appearance.In beet, foliage becomesdensely red. Onion andcorn show narrowstriping of yellow.

On soils with a pH above6.7

Page 245: HANDBOOK FOR VEGETABLE GROWERS

233

TABLE 4.38. A KEY TO NUTRIENT–DEFICIENCY SYMPTOMS(Continued )

Nutrient Plant Symptoms Occurrence

Molybdenum Pale, distorted, very narrowleaves with someinterveinal yellowing onolder leaves. Whiptail ofcauliflower; small, open,loose curds.

On very acid soils

Zinc Small reddish-brown spotson cotyledon leaves ofbean. Green and yellowbroad striping at base ofleaves of corn. Interveinalyellowing with marginalburning on beet.

On wet soils in earlyspring; often related toheavy phosphorusfertilization

Page 246: HANDBOOK FOR VEGETABLE GROWERS

234

14MICRONUTRIENTS

TABLE 4.39. INTERPRETATION OF MICRONUTRIENT SOILTESTS

Element Method

Range inCritical Level

(ppm)1

Boron (B) Hot H2O 0.1–0.7Copper (Cu) NH4C2H3O2 (pH 4.8) 0.2

0.5M EDTA 0.1–0.70.43N HNO3 3–4Biological assay 2–3

Iron (Fe) NH4C2H3O2 (pH 4.8) 2DTPA � CaCl2 (pH 7.3) 2.5–4.5

Manganese (Mn) 0.05N HCl � 0.025N H2SO4 5–90.1N H3PO4 and 3N NH4H2PO4 15–20Hydroquinone � NH4C2H3O2 25–65H2O 2

Molybdenum (Mo) (NH4)2C2O4 (pH 3.3) 0.04–0.2Zinc (Zn) 0.1N HCl 1.0–7.5

Dithizone � NH4C2H3O2 0.3–2.3EDTA � (NH4)2CO3 1.4–3.0DTPA � CaCl2 (pH 7.3) 0.5–1.0

Reprinted with permission from S. S. Mortvedt, P. M. Giordano, and W. L. Lindsay (eds.),Micronutrients in Agriculture (Madison, Wis.: Soil Science Society of America, 1972).1 Deficiencies are likely to occur when concentrations are below the critical level. Consult the state’sExtension Service for the latest interpretations.

Page 247: HANDBOOK FOR VEGETABLE GROWERS

235

TABLE 4.40. MANGANESE RECOMMENDATIONS FORRESPONSIVE CROPS GROWN ON MINERAL SOILSIN MICHIGAN

Soil Testppm1

Soil pH

5.8 6.0 6.2 6.4 6.6 6.8 7.0

Band-applied Mn (lb /acre)

2 2 4 5 7 9 10 124 1 2 3 5 6 7 88 0 1 2 3 5 6 7

12 0 0 1 2 3 4 616 0 0 0 1 2 3 420 0 0 0 0 0 2 324 0 0 0 0 0 0 1

Adapted from D. D. Warncke, D. R. Christenson, L. W. Jacobs, M. L. Vitosh, and B. H. Zandstra,Fertilizer Recommendations for Vegetable Crops in Michigan (Michigan Cooperative Extension ServiceBulletin E550B, 1994), http: / / web1.msue.msu.edu / msue / imp / modaf / 55092001.html.1 0.1N HCl extractant

Page 248: HANDBOOK FOR VEGETABLE GROWERS

236

TABLE 4.41. MANGANESE RECOMMENDATIONS FORRESPONSIVE CROPS GROWN ON ORGANIC SOILSIN MICHIGAN

Soil Testppm1

Soil pH

5.8 6.0 6.2 6.4 6.6 6.8 7.0

Band-applied Mn (lb /acre)

2 2 4 5 7 9 10 124 1 3 5 6 8 10 118 0 1 3 5 7 8 10

12 0 0 2 4 6 7 916 0 0 1 3 4 6 820 0 0 0 1 3 5 624 0 0 0 0 2 4 528 0 0 0 0 1 2 432 0 0 0 0 0 1 336 0 0 0 0 0 0 1

Adapted from D. D. Warncke, D. R. Christenson, L. W. Jacobs, M. L. Vitosh, and B. H. Zandstra,Fertilizer Recommendations for Vegetable Crops in Michigan (Michigan Cooperative Extension ServiceBulletin E550B, 1994).1 0.1N HCl extractant

Page 249: HANDBOOK FOR VEGETABLE GROWERS

237

TABLE 4.42. ZINC RECOMMENDATIONS FOR RESPONSIVECROPS GROWN ON MINERAL AND ORGANIC SOILSIN MICHIGAN

Soil Testppm1

Soil pH

6.7 7.0 7.3 7.6

Band-applied Zn (lb /acre)2

2 1 2 4 54 0 1 3 46 0 0 2 48 0 0 1 3

10 0 0 0 212 0 0 0 1

Adapted from D. D. Warncke, D. R. Christenson, L. W. Jacobs, M. L. Vitosh, and B. H. Zandstra,Fertilizer Recommendations for Vegetable Crops in Michigan (Michigan Cooperative Extension ServiceBulletin E550B, 1994).1 0.1N HCl extractant2 Rates may be divided by 5 when chelates are used.

Page 250: HANDBOOK FOR VEGETABLE GROWERS

238

TABLE 4.43. COPPER RECOMMENDATIONS FOR CROPS GROWNON ORGANIC SOILS IN MICHIGAN

Soil Testppm1

Crop Response

Low Medium High

Cu (lb /acre)

1 3 4 64 3 4 58 2 3 4

12 1 2 316 1 2 220 1 1 224 0 1 1

Adapted from D. D. Warncke, D. R. Christenson, L. W. Jacobs, M. L. Vitosh, and B. H. Zandstra,Fertilizer Recommendations for Vegetable Crops in Michigan (Michigan Cooperative Extension ServiceBulletin E550B, 1994), http: / / web1.msue.msu.edu / msue / imp / modaf / 55092001.html.1 0.1N HCl extractant

Page 251: HANDBOOK FOR VEGETABLE GROWERS

239

TA

BL

E4.

44.

RE

LA

TIV

ER

ES

PO

NS

EO

FV

EG

ET

AB

LE

ST

OM

ICR

ON

UT

RIE

NT

S1

Veg

etab

le

Res

pon

seto

Mic

ron

utr

ien

t

Man

gan

ese

Bor

onC

oppe

rZ

inc

Mol

ybde

nu

mIr

on

Asp

arag

us

Low

Low

Low

Low

Low

Med

ium

Bea

nH

igh

Low

Low

Hig

hM

ediu

mH

igh

Bee

tH

igh

Hig

hH

igh

Med

ium

Hig

hH

igh

Bro

ccol

iM

ediu

mH

igh

Med

ium

—H

igh

Hig

hC

abba

geM

ediu

mM

ediu

mM

ediu

mL

owM

ediu

mM

ediu

mC

arro

tM

ediu

mM

ediu

mM

ediu

mL

owL

ow—

Cau

lifl

ower

Med

ium

Hig

hM

ediu

m—

Hig

hH

igh

Cel

ery

Med

ium

Hig

hM

ediu

m—

Low

—C

ucu

mbe

rH

igh

Low

Med

ium

——

—L

ettu

ceH

igh

Med

ium

Hig

hM

ediu

mH

igh

—O

nio

nH

igh

Low

Hig

hH

igh

Hig

h—

Pea

Hig

hL

owL

owL

owM

ediu

m—

Pot

ato

Hig

hL

owL

owM

ediu

mL

ow—

Rad

ish

Hig

hM

ediu

mM

ediu

mM

ediu

mM

ediu

m—

Spi

nac

hH

igh

Med

ium

Hig

hH

igh

Hig

hH

igh

Sw

eet

corn

Hig

hM

ediu

mM

ediu

mH

igh

Low

Med

ium

Tom

ato

Med

ium

Med

ium

Hig

hM

ediu

mM

ediu

mH

igh

Tu

rnip

Med

ium

Hig

hM

ediu

m—

Med

ium

Ada

pted

from

M.

L.

Vit

osh

,D.

D.

War

nck

e,an

dR

.E

.L

uca

s,S

econ

dar

yan

dM

icro

nu

trie

nts

for

Veg

etab

les

and

Fie

ldC

rops

(Mic

hig

anE

xten

sion

Bu

llet

inE

-486

,19

94),

htt

p://

web

1.m

sue.

msu

.edu

/msu

e/i

mp

/mod

f1/0

5209

701.

htm

l.1T

he

crop

sli

sted

resp

ond

asin

dica

ted

toap

plic

atio

ns

ofth

ere

spec

tive

mic

ron

utr

ien

tw

hen

that

mic

ron

utr

ien

tco

nce

ntr

atio

nin

the

soil

islo

w.

Page 252: HANDBOOK FOR VEGETABLE GROWERS

240

TABLE 4.45. BORON REQUIREMENTS OF VEGETABLESARRANGED IN APPROXIMATE ORDER OFDECREASING REQUIREMENTS

High Requirement (morethan 0.5 ppm in soil)

MediumRequirement (0.1–

0.5 ppm in soil)Low Requirement (lessthan 0.1 ppm in soil)

Beet Tomato CornTurnip Lettuce PeaCabbage Sweet potato BeanBroccoli Carrot Lima beanCauliflower Onion PotatoAsparagusRadishBrussels sproutsCeleryRutabaga

Adapted from K. C. Berger, ‘‘Boron in Soils and Crops,’’ Advances in Agronomy, vol. 1, (New York:Academic Press, 1949), 321–351.

Page 253: HANDBOOK FOR VEGETABLE GROWERS

241

TABLE 4.46. RELATIVE TOLERANCE OF VEGETABLES TOBORON, ARRANGED IN ORDER OF INCREASINGSENSITIVITY

Tolerant Semitolerant Sensitive

Asparagus Celery Jerusalem artichokeArtichoke Potato BeanBeet TomatoCantaloupe RadishBroad bean CornOnion PumpkinTurnip Bell pepperCabbage Sweet potatoLettuce Lima beanCarrot

Adapted from L. V. Wilcox, Determining the Quality of Irrigation Water, USDA AgriculturalInformation Bulletin 197 (1958).

Page 254: HANDBOOK FOR VEGETABLE GROWERS

242

TABLE 4.47. SOIL AND FOLIAR APPLICATION OF SECONDARYAND TRACE ELEMENTS

Vegetables differ in their requirements for these secondary nutrients.Availability in the soil is influenced by soil reaction and soil type. Usehigher rates on muck and peat soils than on mineral soils and lower ratesfor band application than for broadcast. Foliar application is one means ofcorrecting an evident deficiency that appears while the crop is growing.

ElementApplication Rate(per acre basis) Source Composition

Boron 0.5–3.5 lb (soil) Borax (Na2B4O7 � 10H2O) 11% BBoric acid (H3BO3) 17% BSodium pentaborate

(Na2B10O16 � 10H2O)18% B

Sodium tetraborate(Na2B4O7)

21% B

Calcium 2–5 lb (foliar) Calcium chloride (CaCl2) 36% CaCalcium nitrate (CaNO3 �

2H2O)20% Ca

Liming materials andgypsum supply calciumwhen used as soilamendments

Copper 2–6 lb (soil) Cupric chloride (CuCl2) 47% CuCopper sulfate (CuSO4 � H2O) 35% CuCopper sulfate (CuSO4 �

5H2O)25% Cu

Cupric oxide (CuO) 80% CuCuprous oxide (Cu2O) 89% CuCopper chelates 8–13% Cu

Iron 2–4 lb (soil) Ferrous sulfate (FeSO4 �

7H2O)20% Fe

0.5–1 lb (foliar) Ferric sulfate [Fe2(SO4)3 �

9H2O]20% Fe

Ferrous carbonate (FeCO3 �

H2O)42% Fe

Iron chelates 5–12% FeMagnesium 25–30 lb (soil) Magnesium sulfate (MgSO4 �

7H2O)10% Mg

Page 255: HANDBOOK FOR VEGETABLE GROWERS

243

TABLE 4.47. SOIL AND FOLIAR APPLICATION OF SECONDARYAND TRACE ELEMENTS (Continued )

ElementApplication Rate(per acre basis) Source Composition

2–4 lb (foliar) Magnesium oxide (MgO) 55% MgDolomitic limestone 11% MgMagnesium chelates 2–4% Mg

Manganese 20–100 lb (soil) Manganese sulfate (MnSO4 �

3H2O)27% Mn

2–5 lb (foliar) Manganous oxide (MnO) 41–68% MnManganese chelates (Mn

EDTA)12% Mn

Molybdenum 25–400 g (soil) Ammonium molybdate[(NH4)6MO7O24 � 4H2O]

54% Mo

25 g (foliar) Sodium molybdate (Na2MoO4

� 2H2O)39% Mo

Sulfur 20–50 lb (soil) Sulfur (S) 100% SAmmonium sulfate

[(NH4)2SO4]24% S

Potassium sulfate (K2SO4) 18% SCalcium sulfate (CaSO4) 16–18% SFerric sulfate [Fe2(SO4)3] 18–19% S

Zinc 2–10 lb (soil) Zinc oxide (ZnO) 80% Zn0.25 lb (foliar) Zinc sulfate (ZnSO4 � 7H2O) 23% Zn

Zinc chelates (Na2Zn EDTA) 14% Zn

Page 256: HANDBOOK FOR VEGETABLE GROWERS

244

TA

BL

E4.

48.

BO

RO

NR

EC

OM

ME

ND

AT

ION

SB

AS

ED

ON

SO

ILT

ES

TS

FO

RV

EG

ET

AB

LE

CR

OP

S

Inte

rpre

tati

onof

Bor

onS

oil

Tes

ts

ppm

lb/a

cre

Rel

ativ

eL

evel

Cro

psT

hat

Oft

enN

eed

Add

itio

nal

Bor

on

Bor

onR

ecom

men

dati

on(l

b/a

cre)

0.0–

0.35

0.0–

0.70

Low

Bee

t,br

occo

li,

Bru

ssel

ssp

rou

ts,

cabb

age,

cau

lifl

ower

,ce

lery

,ru

taba

ga,t

urn

ip3

Asp

arag

us,

carr

ot,

eggp

lan

t,h

orse

radi

sh,l

eek,

onio

n,

pars

nip

,rad

ish

,sq

uas

h,

2

Str

awbe

rry,

swee

tco

rn,

tom

ato

Pep

per,

swee

tpo

tato

10.

36–0

.70

0.71

–1.4

0M

ediu

mB

eet,

broc

coli

,B

russ

els

spro

uts

,ca

bbag

e,ca

uli

flow

er,

cele

ry,

ruta

baga

,tu

rnip

11⁄2

Asp

arag

us,

carr

ot,

eggp

lan

t,h

orse

radi

sh,l

eek,

onio

n,

pars

nip

,rad

ish

,sq

uas

h,

1

Str

awbe

rry,

swee

tco

rn,

tom

ato

�0.

70�

1.40

Hig

hA

llcr

ops

0

Ada

pted

from

Com

mer

cial

Veg

etab

leP

rod

uct

ion

Rec

omm

end

atio

ns,

Del

awar

eC

oope

rati

veE

xten

sion

Ser

vice

Bu

llet

in13

7(2

005)

.

Page 257: HANDBOOK FOR VEGETABLE GROWERS

245

TABLE 4.49. TOLERANCE OF VEGETABLES TO A DEFICIENCYOF SOIL MAGNESIUM

Tolerant Not Tolerant

Bean CabbageBeet CantaloupeChard CornLettuce CucumberPea EggplantRadish PepperSweet potato Potato

PumpkinRutabagaTomatoWatermelon

Adapted from W. S. Ritchie and E. B. Holland, Minerals in Nutrition, Massachusetts AgriculturalExperiment Station Bulletin 374 (1940).

Page 258: HANDBOOK FOR VEGETABLE GROWERS

246

15FERTILIZER DISTRIBUTORS

ADJUSTMENT OF FERTILIZER DISTRIBUTORS

Each time a distributor is used, it is important to ensure that the properquantity of fertilizer is being supplied. Fertilizers vary greatly in the waythey flow through the equipment. Movement is influenced by the humidityof the atmosphere as well as the degree of granulation of the material.

TABLE 4.50. ADJUSTMENT OF ROW CROP DISTRIBUTOR

1. Disconnect from one hopper the downspout or tube to the furrowopener for a row.

2. Attach a can just below the fertilizer hopper.3. Fill the hopper under which the can is placed.4. Engage the fertilizer attachment and drive the tractor the suggested

distance according to the number of inches between rows.

Distance BetweenRows (in.)

Distance to Pullthe Distributor (ft)

20 26124 21830 17436 14538 13840 13142 124

5. Weigh the fertilizer in the can. Each pound in it equals 100 lb /acre.Each tenth of a pound equals 10 lb /acre.

6. Adjust the distributor for the rate of application desired, and then ad-just the other distributor or distributors to the same setting.

Page 259: HANDBOOK FOR VEGETABLE GROWERS

247

TABLE 4.51. ADJUSTMENT OF GRAIN-DRILL-TYPEDISTRIBUTOR

1. Remove four downspouts or tubes.2. Attach a paper bag to each of the four outlets.3. Fill the part of the drill over the bagged outlets.4. Engage the distributor and drive the tractor the suggested distance

according to the inches between the drill rows.

Distance BetweenDrill Rows (in.)

Distance to Pullthe Drill (ft)

7 1878 164

10 13112 10914 94

5. Weigh total fertilizer in the four bags. Each pound equals 100 lb /acre.Each tenth of a pound equals 10 lb /acre.

Page 260: HANDBOOK FOR VEGETABLE GROWERS

248

TABLE 4.52. CALIBRATION OF FERTILIZER DRILLS

Set drill at opening estimated to give the desired rate of application. Marklevel of fertilizer in the hopper. Operate the drill for 100 ft. Weigh a pail fullof fertilizer. Refill hopper to marked level and again weigh pail. Thedifference is the pounds of fertilizer used in 100 ft. Consult the columnunder the row spacing being used. The left-hand column opposite theamount used shows the rate in pounds per acre at which the fertilizer hasbeen applied. Adjust setting of the drill, if necessary, and recheck.

Rate(lb /acre)

Distance Between Rows (in.)

18 20 24 36 48

Approximate Amount of Fertilizer (lb /100 ft of row)

250 0.9 1.1 1.4 1.7 2.3500 1.7 2.3 2.9 3.5 4.6750 2.6 3.4 4.3 5.2 6.9

1000 3.5 4.6 5.8 6.9 9.21500 5.2 6.8 8.6 10.4 13.82000 6.8 9.2 11.6 13.0 18.43000 10.5 14.0 17.5 21.0 28.0

Page 261: HANDBOOK FOR VEGETABLE GROWERS

PART 6VEGETABLE PESTS AND PROBLEMS

01 AIR POLLUTION

02 INTEGRATED PEST MANAGEMENT

03 SOIL SOLARIZATION

04 PESTICIDE USE PRECAUTIONS

05 PESTICIDE APPLICATION AND EQUIPMENT

06 VEGETABLE SEED TREATMENT

07 NEMATODES

08 DISEASES

09 INSECTS

10 PEST MANAGEMENT IN ORGANIC PRODUCTION SYSTEMS

11 WILDLIFE CONTROL

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 262: HANDBOOK FOR VEGETABLE GROWERS

310

01AIR POLLUTION

AIR POLLUTION DAMAGE TO VEGETABLE CROPS

Plant damage by pollutants depends on meteorological factors leading to airstagnation, the presence of a pollution source, and the susceptibility of theplants. Among the pollutants that affect vegetable crops are sulfur dioxide(SO2), ozone (O3), peroxyacetyl nitrate (PAN), chlorine (Cl2), and ammonia(NH3). The following symptoms are most likely to be observed on vegetablesproduced near heavily urbanized areas or industrialized areas, particularlywhere weather conditions frequently lead to air stagnation.

Sulfur dioxide: SO2 causes acute and chronic plant injury. Acute injury ischaracterized by dead tissue between the veins or on leaf margins. Thedead tissue may be bleached, ivory, tan, orange, red, reddish brown, orbrown, depending on the plant species, time of year, and weather.Chronic injury is marked by brownish red, turgid, or bleached whiteareas on the leaf blade. Young leaves rarely display damage, whereasfully expanded leaves are very sensitive.

Ozone: Common symptoms of O3 injury are very small, irregularly shapedspots that are dark brown to black (stipple-like) or light tan to white(fleck-like) on the upper leaf surface. Very young and old leaves arenormally resistant to ozone. Recently matured leaves are mostsusceptible. Injury is usually more pronounced at the leaf tip and alongthe margins. With severe damage, symptoms may extend to the lowerleaf surface.

Peroxyacetyl nitrate: Typically, PAN affects the under-leaf surface of newlymatured leaves and causes bronzing, glazing, or silvering on the lowersurface of sensitive leaf areas. The leaf apex of broad-leaved plantsbecomes sensitive to PAN approximately five days after leaf emergence.About four leaves on a shoot are sensitive at any one time. PAN toxicityis specific for tissue in a particular stage of development. Only withsuccessive exposure to PAN will the entire leaf develop injury. Injurymay consist of bronzing or glazing with little or no tissue collapse on theupper leaf surface. Pale green to white stipple-like areas may appear onupper and lower leaf surfaces. Complete tissue collapse in a diffuse bandacross the leaf is helpful in identifying PAN injury.

Chlorine: Injury from chlorine is usually of an acute type and is similar inpattern to sulfur dioxide injury. Foliar necrosis and bleaching arecommon. Necrosis is marginal in some species but scattered in others,

Page 263: HANDBOOK FOR VEGETABLE GROWERS

311

either between or along veins. Lettuce plants exhibit necrotic injury onthe margins of outer leaves, which often extends in solid areas towardthe center and base of the leaf. Inner leaves remain unmarked.

Ammonia: Field injury from NH3 is primarily due to accidental spillage.Slight amounts of the gas produce color changes in the pigments ofvegetable skin. The dry outer scales of red onion may become greenish orblack, whereas scales of yellow or brown onion may turn dark brown.

Hydrochloric acid gas: HCl causes an acid-type burn. The usual acuteresponse is a bleaching of tissue. Leaves of lettuce, endive, and escaroleexhibit a tip burn that progresses toward the center of the leaf and soondries out. Tomato plants develop interveinal bronzing.

Original material from Commercial Vegetable Production Recommendations, Maryland AgriculturalExtension Service EB-236 (1986) and Bulletin 137 (2005).

Additional Resource H. Griffiths, Effects of Air Pollution on Agricultural Crops (Ontario Ministry ofAgriculture, Food, and Rural Affairs, 2003), http: / / www.omafra.gov.on.ca / english / crops / facts / 01-015.htm.

REACTION OF VEGETABLE CROPS TO AIR POLLUTANTS

Vegetable crops may be injured following exposure to high concentrations ofatmospheric pollutants. Prolonged exposure to lower concentrations mayalso result in plant damage. Injury appears progressively as leaf chlorosis(yellowing), necrosis (death), and perhaps restricted growth and yields. Onoccasion, plants may be killed, but usually not until they have sufferedpersistent injury. Symptoms of air pollution damage vary with theindividual crops and plant age, specific pollutant, concentration, durationof exposure, and environmental conditions.

Page 264: HANDBOOK FOR VEGETABLE GROWERS

312

RELATIVE SENSITIVTY OF VEGETABLE CROPS TO AIRPOLLUTANTS

TABLE 6.1. SENSITIVITY OF VEGETABLES TO SELECTED AIRPOLLUTANTS

Pollutant Sensitive Intermediate Tolerant

Ozone Bean Carrot BeetBroccoli Endive CucumberOnion Parsley LettucePotato ParsnipRadish TurnipSpinachSweet cornTomato

Sulfur dioxide Bean Cabbage CucumberBeet Pea OnionBroccoli Tomato Sweet cornBrussels sproutsCarrotEndiveLettuceOkraPepperPumpkinRadishRhubarbSpinachSquashSweet potatoSwiss chardTurnip

Fluoride Sweet corn AsparagusSquashTomato

Nitrogen dioxide Lettuce AsparagusBean

PAN Bean Carrot BroccoliBeet Cabbage

Page 265: HANDBOOK FOR VEGETABLE GROWERS

313

TABLE 6.1. SENSITIVITY OF VEGETABLES TO SELECTED AIRPOLLUTANTS (Continued )

Pollutant Sensitive Intermediate Tolerant

Celery CauliflowerEndive CucumberLettuce OnionMustard RadishPepper SquashSpinachSweet cornSwiss chardTomato

Ethylene Bean Carrot BeetCucumber Squash CabbagePea EndiveSouthern pea OnionSweet potato RadishTomato

2,4-D Tomato Potato BeanCabbageEggplantRhubarb

Chlorine Mustard Bean EggplantOnion Cucumber PepperRadish Southern peaSweet corn Squash

TomatoAmmonia Mustard TomatoMercury vapor Bean TomatoHydrogen

sulfideCucumberRadish

Pepper Mustard

Tomato

Adapted from J. S. Jacobson and A. C. Hill (eds.), Recognition of Air Pollution Injury to Vegetation(Pittsburgh: Air Pollution Control Association, 1970); M. Treshow, Environment and Plant Response(New York: McGraw-Hill, 1970); R.G. Pearson et al., Air Pollution and Horticultural Crops, OntarioMinistry of Agriculture and Food AGDEX 200 / 691 (1973); and H. Griffiths, Effects of Air Pollution onAgricultural Crops (Ontario Ministry of Agriculture, Food, and Rural Affairs, 2003), http: / /www.omafra.gov.on.ca / english / crops / facts / 01-015.htm.

Page 266: HANDBOOK FOR VEGETABLE GROWERS

314

02INTEGRATED PEST MANAGEMENT

BASICS OF INTEGRATED PEST MANAGEMENT

Integrated Pest Management (IPM) attempts to make the most efficient useof the strategies available to control pest populations by taking action toprevent problems, suppress damage levels, and use chemical pesticides onlywhere needed. Rather than seeking to eradicate all pests entirely, IPMstrives to prevent their development or to suppress their populationnumbers below levels that would be economically damaging.

Integrated means that a broad, interdisciplinary approach is taken usingscientific principles of crop protection in order to fuse into a singlesystem a variety of methods and tactics.

Pest includes insects, mites, nematodes, plant pathogens, weeds, andvertebrates that adversely affect crop quality and yield.

Management refers to the attempt to control pest populations in a planned,systematic way by keeping their numbers or damage within acceptablelevels.

Effective IPM consists of four basic principles:

1. Exclusion seeks to prevent pests from entering the field in the firstplace.

2. Suppression refers to the attempt to suppress pests below the level atwhich they would be economically damaging.

3. Eradication strives to eliminate entirely certain pests.4. Plant resistance stresses the effort to develop healthy, vigorous

varieties that are resistant to certain pests.

In order to carry out these four basic principles, the following steps arerecommended:

1. The identification of key pests and beneficial organisms is a necessaryfirst step.

2. Preventive cultural practices are selected to minimize pest populationdevelopment.

3. Pest populations must be monitored by trained scouts who routinelysample fields.

Page 267: HANDBOOK FOR VEGETABLE GROWERS

315

4. A prediction of loss and risks involved is made by setting an economicthreshold. Pests are controlled only when the pest populationthreatens acceptable levels of quality and yield. The level at which thepest population or its damage endangers quality and yield is oftencalled the economic threshold. The economic threshold is set bypredicting potential loss and risks at a given pest population density.

5. An action decision must be made. In some cases, pesticide applicationis necessary to reduce the crop threat, whereas in other cases, adecision is made to wait and rely on closer monitoring.

6. Evaluation and follow-up must occur throughout all stages in order tomake corrections, assess levels of success, and project futurepossibilities for improvement.

To be effective, IPM must make use of the following tools:

● Pesticides. Some pesticides are applied preventively—for example,herbicides, fungicides, and nematicides. In an effective IPM program,pesticides are applied on a prescription basis tailored to the particularpest and chosen for minimum impact on people and the environment.Pesticides are applied only when a pest population is diagnosed aslarge enough to threaten acceptable levels of yield and quality and noother economic control measure is available.

● Resistant crop varieties are bred and selected when available in orderto protect against key pests.

● Natural enemies are used to regulate the pest population wheneverpossible.

● Pheromone (sex lure) traps are used to lure and destroy male insectsto help monitor populations.

● Preventive measures such as soil fumigation for nematodes andassurance of good soil fertility help provide a healthy, vigorous plant.

● Avoidance of peak pest populations can be brought about by a changein planting times or pest-controlling crop rotation.

● Improved application is achieved by keeping equipment up to dateand in excellent shape.

● Other assorted cultural practices such as flooding and row and plantspacing can influence pest populations.

Resources for Integrated Pest Management:

● Pest Management (IPM), http: / /attra.ncat.org /attra-pub / ipm.html(2001)

Page 268: HANDBOOK FOR VEGETABLE GROWERS

316

● UC IPM Online—Statewide Integrated Pest Management Program,http: / /www.ipm.ucdavis.edu/

● The Pennsylvania Integrated Pest Management Program, http: / /paipm.cas.psu.edu/

● North Central Region—National IPM Network, http: / /www.ipm.iastate.edu/ ipm/nipmn/

● Northeastern IPM Center, http: / /northeastipm.org /● Integrated Pest Management in the Southern Region, http: / / ipm-

www.ento.vt.edu/nipmn/● New York State Integrated Pest Management Program at Cornell

University, http: / /www.nysipm.cornell.edu /● IPM Florida, http: / / ipm.ifas.ufl.edu/

Page 269: HANDBOOK FOR VEGETABLE GROWERS

317

03SOIL SOLARIZATION

BASICS OF SOIL SOLARIZATION

Soil solarization is a nonchemical pest control method that is particularlyeffective in areas that have high temperatures and long days for therequired 4–6 weeks. In the northern hemisphere, this generally means thatsolarization is done during the summer months in preparation for a fall cropor for a crop in the following spring.

Soil solarization captures radiant heat energy from the sun, therebycausing physical, chemical, and biological changes in the soil. Transparentpolyethylene plastic placed on moist soil during the hot summer monthsincreases soil temperatures to levels lethal to many soil borne plantpathogens, weed seeds, and seedlings (including parasitic seed plants),nematodes, and some soil-residing mites. Soil solarization also improvesplant nutrition by increasing the availability of nitrogen and other essentialnutrients.

Time of Year

Highest soil temperatures are obtained when the days are long, airtemperatures are high, the sky is clear, and there is no wind.

Plastic Color

Clear polyethylene should be used, not black plastic. Transparent plasticresults in greater transmission of solar energy to the soil. Polyethyleneshould be UV stabilized so the tarp does not degrade during the solarizationperiod.

Plastic Thickness

Polyethylene 1 mil thick is the most efficient and economical for soilheating. However, it is easier to rip or puncture and is less able towithstand high winds than thicker plastic. Users in windy areas may preferto use plastic 11⁄2–2 mil thick. Thick transparent plastic (4–6 mil) reflectsmore solar energy than does thinner plastic (1–2 mil) and results in slightlylower temperatures.

Page 270: HANDBOOK FOR VEGETABLE GROWERS

318

Preparation of the Soil

It is important that the area to be treated is level and free of weeds, plants,debris, and large clods that would raise the plastic off the ground.Maximum soil heating occurs when the plastic is close to the soil; therefore,air pockets caused by large clods or deep furrows should be avoided. Soilshould be tilled as deep as possible and have moisture at field capacity.

Partial Versus Complete Soil Coverage

Polyethylene tarps may be applied in strips (a minimum of 2–3 ft wide) overthe planting bed or as continuous sheeting glued, heat-fused, or held inplace by soil. In some cases, strip coverage may be more practical andeconomical than full soil coverage, because less plastic is needed and plasticconnection costs are avoided.

Soil Moisture

Soil must be moist (field capacity) for maximum effect because moisture notonly makes organisms more sensitive to heat but also conducts heat fasterand deeper into the soil.

Duration of Soil Coverage

Killing of pathogens and pests is related to time and temperature exposure.The longer the soil is heated, the deeper the control. Although some pestorganisms are killed within days, 4–6 weeks of treatment in full sun duringthe summer is usually best. The upper limit for temperature is about 115�Ffor vascular plants, 130�F for nematodes, 140�F for fungi, and 160–212�F forbacteria.

Original material adapted from G. S. Pullman, J. E. DeVay, C. L Elmore, and W. H. Hart, ‘‘SoilSolarization,’’ California Cooperative Extension Leaflet 21377 (1984), and from D. O. Chellemi, ‘‘SoilSolarization for Management of Soilborne Pests,’’ Florida Cooperative Extension Fact Sheet PPP51(1995).

Additional Resources on Soil Solarization:

● International Workgroup on Soil Solarization and IntegratedManagement of Soilborne Pests, http: / /www.uckac.edu/ iwgss / /

● C. Strausbaugh Soil Solarization for Control of Soilborne PestProblems (University of Idaho, 1996), http: / /www.uidaho.edu/ag /plantdisease /soilsol.htm

Page 271: HANDBOOK FOR VEGETABLE GROWERS

319

● The Soil Solarization Home (Hebrew University of Jerusalem, 1998),http: / /agri3.huji.ac.il /�katan/

● Soil Solarization (University of California), http: / /ucce.ucdavis.edu/files /filelibrary /40 /942.pdf

● A. Hagan and W. Gazaway, Soil Solarization for the Control ofNematodes and Soilborne Diseases (Auburn University, 2002), http: / /www.aces.edu/pubs /docs /A /ANR-0713 /

Page 272: HANDBOOK FOR VEGETABLE GROWERS

320

04PESTICIDE USE PRECAUTIONS

GENERAL SUGGESTIONS FOR PESTICIDE SAFETY

All chemicals are potentially hazardous and should be used carefully. Followexactly the directions, precautions, and limitations given on the containerlabel. Store all chemicals in a safe place where children, pets, and livestockcannot reach them. Do not reuse pesticide containers. Avoid inhaling fumesand dust from pesticides. Avoid spilling chemicals; if they are accidentallyspilled, remove contaminated clothing and thoroughly wash the skin withsoap and water immediately.

Observe the following rules:

1. Avoid drift from the application area to adjacent areas occupied byother crops, humans, livestock, or bodies of water.

2. Wear goggles, an approved respirator, and neoprene gloves whenloading or mixing pesticides. Aerial applicators should be loaded by aground crew.

3. Pour chemicals at a level well below the face to avoid splashing orspilling onto the face or eyes.

4. Have plenty of soap and water on hand to wash contaminated skin inthe event of spilling.

5. Change clothing and bathe after the job is completed.6. Know the insecticide, the symptoms of overexposure to it, and a

physician who can be called quickly. In case symptoms appear(contracted pupils, blurred vision, nausea, severe headache, dizziness),stop operations at once and contact a physician.

THE WORKER PROTECTION STANDARD (WPS)

Glossary of terms for WPS:

Agricultural employer: Any person who:● employs or contracts for the services of agricultural workers (including

themselves and family members) for any type of compensation toperform tasks relating to the production of agricultural plants;

● owns or operates an agricultural establishment that uses suchworkers;

Page 273: HANDBOOK FOR VEGETABLE GROWERS

321

● employs pesticide handlers (including family members) for any type ofcompensation; or

● is self-employed as a pesticide handler.

Agricultural establishment: Any farm, greenhouse, nursery, or forest thatproduces agricultural plants.

Agricultural establishment owner: Any person who owns, leases, or rents anagricultural establishment covered by the Worker Protection Standard(WPS).

Agricultural worker: Any person employed by an agricultural employer to dotasks such as harvesting, weeding, or watering related to the productionof agricultural plants on a farm, forest, nursery, or greenhouse. Bydefinition, agricultural workers do not apply pesticides or handlepesticide containers or equipment. Any employee can be an agriculturalworker while performing one task and a pesticide handler whileperforming a different task.

Immediate family: The spouse, children, stepchildren, foster children,parents, stepparents, foster parents, brothers and sisters of anagricultural employer.

Personal protective equipment (PPE): Clothing and equipment, such asgoggles, gloves, boots, aprons, coveralls and respirators, that provideprotection from exposure to pesticides.

Pesticide handler: Any person employed by an agricultural establishment tomix, load, transfer, or apply pesticides or do other tasks that involvedirect contact with pesticides.

Restricted entry interval (REI): The time immediately after a pesticideapplication when entry into the treated area is limited. Lengths ofrestricted entry intervals range between 4 and 72 hours. The exactamount of time is product specific and indicated on the pesticide label.

Adapted from O. N. Nesheim and T. W. Dean, ‘‘The Worker Protection Standard,’’ in S. M. Olson andE. H. Simonne (eds.), Vegetable Production Handbook for Florida (Florida Cooperative ExtensionService, 2005–2006), http: / / edis.ifas.ufl.edu / CV138.

DESCRIPTION OF THE WORKER PROTECTION STANDARD

The worker protection standard (WPS) is a set of regulations issued by theU.S. Environmental Protection Agency (EPA) designed to protectagricultural workers and pesticide handlers from exposure to pesticides.

http: / /www.epa.gov /pesticides /safety /workers /PART170.htm

Page 274: HANDBOOK FOR VEGETABLE GROWERS

322

The WPS applies to all agricultural employers whose employees areinvolved in the production of agricultural plants on a farm, forest, nursery,or greenhouse. The employers include owners or managers of farms, forests,nurseries, or greenhouses as well as commercial (custom) applicators andcrop advisors who provide services for the production of agricultural plantson these sites. The WPS requires that specific protections be provided toworkers and pesticide handlers to prevent pesticide exposure. Theagricultural employer is responsible for providing those protections toemployees.

Information at a Central Location

An information display at a central location must be provided and contain:

1. An approved EPA safety poster showing how to keep pesticides froma person’s body and how to clean up any contact with a pesticide

2. Name, address, and telephone number of the nearest emergencymedical facility

3. Information about each pesticide application, including description oftreated area, product name, EPA registration number of product,active ingredient of pesticide, time and date of application, and therestricted entry interval (REI) for the pesticide

Pesticide Safety Training

Employers must provide pesticide safety training for pesticide handlers andagricultural workers unless the handler or worker is a certified pesticideapplicator. Workers must receive training within 5 days of beginning work.

Decontamination Areas Must Provide:

1. Water for washing and eye flushing2. Soap3. Single-use towels4. Water for whole-body wash (pesticide handler sites only)5. Clean coveralls (pesticide handler sites only)6. Provide each handler at least 1 pt clean water for flushing eyes

Restricted Entry Interval

Pesticides have restricted entry intervals, a period after a pesticideapplication during which employers must keep everyone, except

Page 275: HANDBOOK FOR VEGETABLE GROWERS

323

appropriately trained and equipped handlers, out of treated areas.Employers must orally inform all of their agricultural workers who will bewithin a quarter-mile of a treated area. For certain pesticides, treated fieldsmust also be posted with a WPS poster.

Personal Protective Equipment

Personal protective equipment (PPE) must be provided by the employer toall pesticide handlers.

1. All PPE must be clean, in operating condition, used correctly,inspected each day before use, and repaired or replaced as needed.

2. Respirators must fit correctly and filters or canisters replaced atrecommended intervals.

3. Handlers must be warned about symptoms of heat illness whenwearing PPE.

4. Handlers must be provided clean, pesticide-free areas to store PPE.5. Contaminated PPE must not be worn or taken home and must be

cleaned separate from other laundry.6. Employers are responsible for providing clean PPE for each day.7. Coveralls contaminated with undiluted Danger or Warning category

pesticide must be discarded.

Adapted from O. N. Nesheim and T. W. Dean, ‘‘The Worker Protection Standard,’’ http: / / edis.ifas.ufl.edu / CV138, and O. N. Nesheim, ‘‘Interpreting PPE Statements on Pesticide Labels,’’ in S. M.Olson and E. H. Simonne (eds.), Vegetable Production Handbook for Florida (Florida CooperativeExtension Service, 2005–2006), http: / / edis.ifas.ufl.edu / CV285.

Additional resource on the Worker Protection Standard:

http: / /www.epa.gov /pesticides /safety /workers /PART170.htm

ADDITIONAL INFORMATION ON SAFETY AND RULESAFFECTING PESTICIDE USE

Recordkeeping

Growers are required to keep records on applications of restricted-usepesticides.

http: / /www.environment.nsw.gov.au /envirom/recordkeeping.htm

Page 276: HANDBOOK FOR VEGETABLE GROWERS

324

Sample recordkeeping forms can be found at:

http: / /www.epa.nsw.gov.au /resources /pesticidesrkform.pdf

SARA Title III Emergency Planning and Community Right-to-Know Act

This law sets rules for farmers to inform the proper authorities aboutstorage of extremely hazardous materials. Each state has related SARATitle III statutes.

Lists of chemicals are available at:

http: / /www.epa.gov /ceppo /pubs / title3.pdf

Right-to-Know

Employees have a right to know about chemical use on the farm. Right-to-know training is typically provided through the County Extension Office.

Endangered Species Act

The EPA has determined threshold pesticide application rates that mayaffect listed species. This information is presented on the pesticide label.

http: / /www.fws.gov /endangered /esa.html

http: / /www.epa.gov /region5 /defs /html /esa.htm

Invasive Species

An invasive species is defined as a species that is non-native (or alien) to theecosystem under consideration and whose introduction causes or is likely tocause economic or environmental harm, or harm to human health. Somewebsites:

http: / /www.fws.gov /contaminants / Issues / InvasiveSpecies.cfm

http: / / invasivespeciesinfo.gov

http: / /aquat1.ifas.ufl.edu

http: / /plants.nrcs.usda.gov /cgi bin / topics.cgi?earl�noxious.cgi

http: / /www.invasive.org /

Page 277: HANDBOOK FOR VEGETABLE GROWERS

325

PESTICIDE HAZARDS TO HONEYBEES

Honeybees and other bees are necessary for pollination of vegetables in thegourd family—cantaloupe and other melons, cucumber, pumpkin, squash,and watermelon. Bees and other pollinating insects are necessary for all theinsect-pollinated vegetables grown for seed production. Some pesticides areextremely toxic to bees and other pollinating insects, so certain precautionsare necessary to avoid injury to them.

Recommendations for Vegetable Growers and Pesticide Applicators to ProtectBees

1. Participate actively in areawide integrated crop managementprograms.

2. Follow pesticide label directions and recommendations.

3. Apply hazardous chemicals in late afternoon, night, or early morning(generally 6 P.M. to 7 A.M.) when honeybees are not actively foraging.Evening applications are generally somewhat safer than morningapplications.

4. Use pesticides that are relatively nonhazardous to bees whenever thisis consistent with other pest-management strategies. Choose the leasthazardous pesticide formulations or tank mixes.

5. Become familiar with bee foraging behavior and types of pesticideapplications that are hazardous to bees.

6. Know the location of all apiaries in the vicinity of fields to be sprayed.

7. Avoid drift, overspray, and dumping of toxic materials innoncultivated areas.

8. Survey pest populations and be aware of current treatment thresholdsin order to avoid unnecessary pesticide use.

9. Determine if bees are foraging in target areas so protective measurescan be taken.

TOXICITY OF CHEMICALS USED IN PEST CONTROL

The danger in handling pesticides does not depend exclusively on toxicityvalues. Hazard is a function of both toxicity and the amount and type ofexposure. Some chemicals are very hazardous from dermal (skin) exposureas well as oral (ingestion). Although inhalation values are not given, this

Page 278: HANDBOOK FOR VEGETABLE GROWERS

326

type of exposure is similar to ingestion. A compound may be highly toxic butpresent little hazard to the applicator if the precautions are followedcarefully.

Toxicity values are expressed as acute oral LD50 in terms of milligramsof the substance per kilogram (mg/kg) of test animal body weight requiredto kill 50% of the population. The acute dermal LD50 is also expressed inmg/kg. These acute values are for a single exposure and not for repeatedexposures such as may occur in the field. Rats are used to obtain the oralLD50, and the test animals used to obtain the dermal values are usuallyrabbits.

TABLE 6.2. CATEGORIES OF PESTICIDE TOXICITY1

Categories Signal Word

LD50 Value (mg/kg)

Oral Dermal

I Danger–Poison 0–50 0–200II Warning 50–500 200–2,000III Caution 500–5,000 2,000–20,000IV None2 5,000 20,000

1 EPA-accepted categories.2 No signal word required based on acute toxicity; however, products in this category usually display‘‘Caution.’’

Resources on Toxicity of Pesticides

● Commercial Vegetable Production Recommendations, MarylandAgricultural Extension Service Bulletin 137 (2005).

● L. Moses, R. Meister, and C. Sine, Farm Chemicals Handbook ’99(Willoughby, Ohio: Meister, 1999).

PESTICIDE FORMULATIONS

Several formulations of many pesticides are available commercially. Someare emulsifiable concentrates, flowables, wettable powders, dusts, andgranules. After any pesticide recommendation, one of these formulations issuggested; however, unless stated to the contrary, equivalent rates of

Page 279: HANDBOOK FOR VEGETABLE GROWERS

327

another formulation or concentration of that pesticide can be used. In mostcases, pesticide experts suggest that sprays rather than dusts be applied tocontrol pests of vegetables. This is because sprays allow better control andresult in less drift.

PREVENTING SPRAY DRIFT

Pesticides sprayed onto soil or crops may be subject to movement or driftaway from the target, due mostly to wind. Drift may lead to risks to nearbypeople and wildlife, damage to nontarget plants, and pollution of surfacewater or groundwater.

Factors That Affect Drift

1. Droplet size. Smaller droplets can drift longer distances. Droplet sizecan be managed by selecting the proper nozzle type and size,adjusting the spray pressure, and increasing the viscosity of the spraymixture.

2. Equipment adjustments. Routine calibration of spraying equipmentand general maintenance should be practiced. Equipment can be fittedwith hoods or shields to reduce drift away from the sprayed area.

3. Weather conditions. Spray applicators must be aware of wind speedand direction, relative humidity, temperature, and atmosphericstability at time of spraying.

Spraying Checklist to Minimize Drift

1. Do not spray on windy days (�12 mph).2. Avoid spraying on extremely hot and dry days.3. Use minimum required pressure.4. Select correct nozzle size and spray pattern.5. Keep the boom as close as possible to the target.6. Install hoods or shields on the spray boom.7. Leave an unsprayed border of 50–100 ft near water supplies,

wetlands, neighbors, and non-target crops.8. Spray when wind direction is favorable for keeping drift off of non-

target areas.

Page 280: HANDBOOK FOR VEGETABLE GROWERS

328

05PESTICIDE APPLICATION AND EQUIPMENT

ESTIMATION OF CROP AREA

To calculate approximately the acreage of a crop in the field, multiply thelength of the field by the number of rows or beds. Divide by the factor forspacing of beds.

Examples: Field 726 ft long with 75 rows 48 in. apart.

726 � 75� 5 acres

10890

Field 500 ft long with 150 beds on 40-in. centers.

500 � 150� 5.74 acres

13068

TABLE 6.3. FACTORS USED IN CALCULATING TREATED CROPAREA

Row or BedSpacing (in.) Factor

12 43,56018 29,04024 21,78030 17,42436 14,52040 13,06842 12,44548 10,89060 8,71272 7,26084 6,223

Page 281: HANDBOOK FOR VEGETABLE GROWERS

329

TABLE 6.4. DISTANCE TRAVELED AT VARIOUS TRACTORSPEEDS

mph ft /min mph ft /min

1.0 88 3.1 2731.1 97 3.2 2821.2 106 3.3 2911.3 114 3.4 2991.4 123 3.5 3081.5 132 3.6 3171.6 141 3.7 3251.7 150 3.8 3341.8 158 3.9 3431.9 167 4.0 3522.0 176 4.1 3612.1 185 4.2 3702.2 194 4.3 3782.3 202 4.4 3872.4 211 4.5 3962.5 220 4.6 4052.6 229 4.7 4142.7 237 4.8 4222.8 246 4.9 4312.9 255 5.0 4403.0 264

CALCULATIONS OF SPEED OF EQUIPMENT AND AREA WORKED

To review the actual performance of a tractor, determine the number ofseconds required to travel a certain distance. Then use the formula

distance traveled (ft) � 0.682speed (mph) �

time to cover distance (sec)

or the formula

Page 282: HANDBOOK FOR VEGETABLE GROWERS

330

distance traveled (ft)speed (mph) �

time to cover distance (sec) � 1.47

Another method is to walk beside the machine counting the number ofnormal paces (2.93 ft) covered in 20 seconds. Move decimal point 1 place.Result equals tractor speed (mph).

Example: 15 paces /20 sec � 1.5 mph.

The working width of an implement multiplied by mph equals thenumber of acres covered in 10 hr. This includes an allowance of 17.5% forturning at the ends of the field. By moving the decimal point 1 place, whichis equivalent to dividing by 10, the result is the acreage covered in 1 hr.

Example: A sprayer with a 20-ft boom is operating at 3.5 mph. Thus, 20� 3.5 � 70 acres /10 hr or 7 acres /hr.

Page 283: HANDBOOK FOR VEGETABLE GROWERS

331

TABLE 6.5. APPROXIMATE TIME REQUIRED TO WORK AN ACRE1

Rate (mph): 1 2 3 4 5 10Rate (ft /min): 88 176 264 352 440 880

Effective WorkingWidth of

Equipment (in.) Approximate Time Required (min /acre)

18 440 220 147 110 88 4424 330 165 110 83 66 3336 220 110 73 55 44 2240 198 99 66 50 40 2042 189 95 63 47 38 1948 165 83 55 41 33 1760 132 66 44 33 26 1372 110 55 37 28 22 1180 99 50 33 25 20 1084 94 47 31 24 19 996 83 42 28 21 17 8

108 73 37 24 19 15 7120 66 33 22 17 13 6240 33 17 11 8 7 3360 22 11 7 6 4 2

1 These figures are calculated on the basis of 75% field efficiency to allow for turning and other losttime.

USE OF PESTICIDE APPLICATION EQUIPMENT

Ground Application

Boom-type SprayersHigh-pressure, high-volume sprayers have been used for row-crop pestcontrol for many years. Now a trend exists toward the use of sprayers thatutilize lower volumes and pressures.

Airblast-type SprayersAirblast sprayers are used in the vegetable industry to control insects anddiseases. Correct operation of an airblast sprayer is more critical than for a

Page 284: HANDBOOK FOR VEGETABLE GROWERS

332

boom-type sprayer. Do not operate an airblast sprayer under high windconditions. Wind speed below 5 mph is preferable unless it becomesnecessary to apply the pesticide for timely control measures, but drift andnearby crops must be considered. Do not overextend the coverage of themachine.

Considerable visible mist from the machine moves into the atmosphereand does not deposit on the plant. If in doubt, use black plastic indicatorsheets in the rows to determine deposit and coverage before a pest problemappears as evidence. Use correct gallonage and pressures to obtain properdroplet size and ensure uniform coverage across the effective swath width.Adjust the vanes and nozzles on the sprayer unit to give best coverage.Vane adjustment must occur in the field, depending on terrain, wind, andcrop. Cross-drives in the field allow the material to be blown down the rowsinstead of across them and help give better coverage in some crops, such asstaked or trellised tomato.

Air-boom SprayersThese sprayers combine the airblast spray with the boom spray deliverycharacteristics. Air-boom sprayers are becoming popular with vegetableproducers in an effort to achieve high levels of spray coverage with minimalquantities of pesticide.

Electrostatic SprayersThese sprayers create an electrical field through which the spray dropletsmove. Charged spray droplets are deposited more effectively onto plantsurfaces, and less drift results.

Aerial Application

Spraying should not be done when wind is more than 6 mph. A slightcrosswind during spraying is advantageous in equalizing the distribution ofthe spray within the swath and between swaths. Proper nozzle angle andarrangements along the boom are critical and necessary to obtain properdistribution at ground level. Use black plastic indicator sheets in the rowsto determine deposit and coverage patterns. Cover a swath no wider than isreasonable for the aircraft and boom being used. Fields of irregular shape ortopography and ones bounded by woods, power lines, or other flight hazardsshould not be sprayed by aircraft.

Page 285: HANDBOOK FOR VEGETABLE GROWERS

333

CALIBRATION OF FIELD SPRAYERS

Width of Boom

The boom coverage is equal to the number of nozzles multiplied by thespace between two nozzles.

Ground Speed (mph)

Careful control of ground speed is important for accurate spray application.Select a gear and throttle setting to maintain constant speed. A speed of2–3 mph is desirable. From a running start, mark off the beginning andending of a 30-sec run. The distance traveled in this 30-sec period dividedby 44 equals the speed in mph.

Sprayer Discharge (gpm)

Run the sprayer at a certain pressure, and catch the discharge from eachnozzle for a known length of time. Collect all the discharge and measure thetotal volume. Divide this volume by the time in minutes to determinedischarge in gallons per minute.

Before Calibrating

1. Thoroughly clean all nozzles, screens, etc., to ensure proper operation.

2. Check that all nozzles are the same.

3. Check the spray patterns of all nozzles for uniformity. Check thevolume of delivery by placing similar containers under each nozzle.Replace nozzles that do not have uniform patterns or do not fillcontainers at the same rate.

4. Select an operating speed. Note the tachometer reading or mark thethrottle setting. When spraying, be sure to use the same speed asused for calibrating.

5. Select an operating pressure. Adjust to desired pressure (pounds persquare in. [psi]) while the pump is operating at normal speed andwater is actually flowing through the nozzles. This pressure should bethe same during calibration and field spraying.

Calibration (Jar Method)

Either a special calibration jar or a homemade one can be used. If you buyone, carefully follow the manufacturer’s instructions.

Page 286: HANDBOOK FOR VEGETABLE GROWERS

334

Make accurate speed and pressure readings and jar measurements.Make several checks.

Any 1-qt or larger container, such as a jar or measuring cup, if calibratedin fl oz, can easily be used in the following manner:

1. Measure a course on the same type of surface (sod, plowed, etc.) andsame type of terrain (hilly, level, etc.) as that to be sprayed, accordingto nozzle spacing as follows:

TABLE 6.6. COURSE LENGTH SELECTED BASED ON NOZZLESPACING

Nozzle spacing (in.) 16 20 24 28 32 36 40Course length (ft) 255 204 170 146 127 113 102

2. Time the seconds it takes the sprayer to cover the measured distanceat the desired speed.

3. With the sprayer standing still, operate at selected pressure andpump speed. Catch the water from several nozzles for the number ofseconds measured in step 2.

4. Determine the average output per nozzle in ounces. The ounces pernozzle equal the gal /acre applied for one nozzle per spacing.

Calibration (Boom or Airblast Sprayer)

1. Fill sprayer with water.2. Spray a measured area (width of area covered � distance traveled) at

constant speed and pressure selected from manufacturer’sinformation.

3. Measure amount of water necessary to refill tank (gal used).4. Multiply gallons used by 43,560 and divide by the number of sq ft in

area sprayed. This gives gal /acre.

gal used � 43,560gal /acre �

area sprayed (sq ft)

5. Add correct amount of spray material to tank to give therecommended rate per acre.

Page 287: HANDBOOK FOR VEGETABLE GROWERS

335

EXAMPLE

Assume: 10 gal water used to spray an area 660 ft long and 20 ft wideTank size: 100 galSpray material: 2 lb (actual) /acreCalculation:

gal used � 43,560 10 � 43,560� � 33 gal /acre

area sprayed (sq ft) 660 � 20

tank capacity 100 (tank size)� 3.03 acres sprayed per tank

gal /acre 33

3.03 � 2 (lb /acre) � 6.06 lb material per tank

If 80% material is used:

6.06� 7.57 lb material needed per tank to give 2 lb /acre rate

0.8

Adapted from Commercial Vegetable Production Recommendations (Maryland Agricultural ExtensionService Bulletin 137, 2005), http: / / / hortweb.cas.psu.edu / extension / images /PA%2005%20commercial%20veg%20Recommends.pdf.

CALIBRATION OF GRANULAR APPLICATORS

Sales of granular fertilizer, herbicides, insecticides, etc., for applicationthrough granular application equipment have been on the increase.

Application rates of granular application equipment are affected byseveral factors: gate openings or settings, ground speed of the applicator,shape and size of granular material, and roughness of the ground.

Broadcast Application

1. From the label, determine the application rate.2. From the operator’s manual, set the dial or feed gate to apply desired

rate.3. On a level surface, fill the hopper to a given level and mark this level.4. Measure the test area—length of run depends on size of equipment. It

need not be one long run but can be multiple runs at shorterdistances.

Page 288: HANDBOOK FOR VEGETABLE GROWERS

336

5. Apply material to measured area, operating at the speed applicatorwill travel during application.

6. Weigh the amount of material required to refill the hopper to themarked level.

7. Determine the application rate:

area covered �

number of runs � length of run � width of application43,560

application rate �

amount applied (pounds to refill hopper)area covered

Note: Width of application is width of the spreader for drop or gravityspreaders. For spinner applicators, it is the working width (distancebetween runs). Check operator’s manual for recommendations,generally one-half to three-fourths of overall width spread.

Example:Assume: 50 lb /acre rate

Test run: 200 ftFour runs madeApplication width: 12 ft11.5 lb to refill hopper

Calculation:

4 � 200 � 12area covered � � 0.22 acre

43,560

11.5application rate � � 52.27 lb

0.22

8. If application rate is not correct, adjust feed gate opening andrecheck.

Band Application

1. From the label, determine the application rate.2. From the operator’s manual, determine the applicator setting and

adjust accordingly.

Page 289: HANDBOOK FOR VEGETABLE GROWERS

337

3. Fill the hopper half full.4. Operate the applicator until all units are feeding.5. Stop the applicator; remove the feed tubes at the hopper.6. Attach paper or plastic bags over the hopper openings.7. Operate the applicator over a measured distance at the speed

equipment will be operated.8. Weigh and record the amount delivered from each hopper. (Compare

to check that all hoppers deliver the same amount.)9. Calculate the application rate:

length of run � band width � number of bandsarea covered in bands �

43,560

Application Rate

amount applied in bands � total amount collectedarea covered in bands

Changing from Broadcast to Band Application

broadcastband width in in.� rate � amount needed per acre

row spacing in in. per acre

Adapted from Commercial Vegetable Production Recommendations (Maryland Agricultural ExtensionService Bulletin 137, 2005), http: / / / hortweb.cas.psu.edu / extension / images /PA%2005%20commercial%20veg%20Recommends.pdf.

CALIBRATION OF AERIAL SPRAY EQUIPMENT

Calibration

length of swath (miles) � width (ft)acres covered �

8.25

2 � swath width � mphacres /min �

1000

2 � swath width � mph � gal /acreGPM �

1000

Page 290: HANDBOOK FOR VEGETABLE GROWERS

338

Adapted from O. C. Turnquist et al., Weed, Insect, and Disease Control Guide for CommercialVegetable Growers, Minnesota Agricultural Extension Service Special Report 5 (1978).

Resources on Calibration of Aerial Sprayers

● D. Overhults, Applicator Training Manual for Aerial Application ofPesticides (University of Kentucky), http: / /www.uky.edu/Agriculture /PAT/Cat11 /Cat11.htm.

● Agricultural Aircraft Calibration and Setup for Spraying (KansasState University Publication MF-1059, 1992), http: / /www.oznet.ksu.edu/ library /ageng2 /mf1059.pdf.

CALIBRATION OF DUSTERS

Select a convenient distance that multiplied by the width covered by theduster, both expressed in feet, equals a convenient fraction of an acre. Withthe hopper filled to a marked level, operate the duster at this distance. Takea known weight of dust in a bag or other container and refill hopper to themarked level. Weigh the dust remaining in the container. The difference isthe quantity of dust applied to the fraction of an acre covered.

Example:

Distance duster is operated � width covered by duster � area dusted

1089 sq ft 1� 108.9 ft � 10 ft � 1089 sq ft � acre

43,560 40

If it takes 1 lb dust to refill the hopper, the rate of application is 40 lb /acre.

MORE INFORMATION ON CALIBRATION OF SPRAYERS

Florida

http: / / edis.ifas.ufl.edu/WG013http: / / edis.ifas.ufl.edu/TOPIC Herbicide Calibration and Applicationhttp: / / edis.ifas.ufl.edu/TOPIC Calibration

Page 291: HANDBOOK FOR VEGETABLE GROWERS

339

Minnesota

http: / /www.extension.umn.edu/distribution /cropsystems/DC3885.html

North Dakota

http: / /www.ext.nodak.edu/extpubs /ageng /machine /ae73-5.htm

Other

http: / /www.dupont.com/ag /vm/ literature /K-04271.pdf

HAND SPRAYER CALIBRATION

Ohio

http: / / ohioline.osu.edu/ for-fact /0020.html

Colorado

http: / /www.co.larimer.co.us /publicworks /weeds /calibration.htm

SPRAY EQUIVALENTS AND CONVERSIONS

Pesticide containers give directions usually in terms of pounds or gallons ofmaterial in 100 gal water. The following tables make the conversion forsmaller quantities of spray solution easy.

Page 292: HANDBOOK FOR VEGETABLE GROWERS

340

TABLE 6.7. SOLID EQUIVALENT TABLE

100 gal 25 gal 5 gal 1 gal

4 oz 1 oz 3⁄16 oz 1⁄2 oz8 oz 2 oz 3⁄8 oz 1 tsp1 lb 4 oz 7⁄8 oz 2 tsp2 lb 8 oz 13⁄4 oz 4 tsp3 lb 12 oz 23⁄8 oz 2 tbsp4 lb 1 lb 31⁄4 oz 2 tbsp � 2 tsp

TABLE 6.8. LIQUID EQUIVALENT TABLE

100 gal 25 gal 5 gal 1 gal

1 gal 1 qt 61⁄2 oz 11⁄4 oz2 qt 1 pt 31⁄4 oz 5⁄8 oz1 qt 1⁄2 pt 19⁄16 oz 5⁄16 oz11⁄2 pt 6 oz 11⁄4 oz 1⁄4 oz1 pt 4 oz 7⁄8 oz 3⁄16 oz8 oz 2 oz 7⁄16 oz 1⁄2 tsp4 oz 1 oz 1⁄4 oz 1⁄4 tsp

TABLE 6.9. DILUTION OF LIQUID PESTICIDES TO VARIOUSCONCENTRATIONS

Dilution 1 gal 3 gal 5 gal

1�100 2 tbsp � 2 tsp 1⁄2 cup 3⁄4 cup � 5 tsp1�200 4 tsp 1⁄4 cup 61⁄2 tbsp1�800 1 tsp 1 tbsp 1 tbsp � 2 tsp1�1000 3⁄4 tsp 21⁄2 tsp 1 tbsp � 1 tsp

Page 293: HANDBOOK FOR VEGETABLE GROWERS

341

TABLE 6.10. PESTICIDE DILUTION CHART

Amount of formulation necessary to obtain various amounts of activeingredients.

InsecticideFormulation

Amount of formulation (at left) needed toobtain the following amounts of active

ingredients

1⁄4 lb 1⁄2 lb 3⁄4 lb 1 lb

1% dust 25 50 75 1002% dust 121⁄2 25 371⁄2 505% dust 5 10 15 2010% dust 21⁄2 5 71⁄2 1015% wettable powder 12⁄3 lb 31⁄3 lb 5 lb 62⁄3 lb25% wettable powder 1 lb 2 lb 3 lb 4 lb40% wettable powder 5⁄8 lb 11⁄4 lb 17⁄8 lb 21⁄2 lb50% wettable powder 1⁄2 lb 1 lb 11⁄2 lb 2 lb73% wettable powder 1⁄3 lb 2⁄3 lb 1 lb 11⁄3 lb23–25% liquid 1 pt 1 qt 3 pt 2 qt

concentrate (2 lbsactive ingredient /gal)

42–46% liquid 1⁄2 pt 1 pt 11⁄2 pt 1 qtconcentrate (4 lbsactive ingredient /gal)

60–65% liquid 1⁄3 pt 2⁄3 pt 1 pt 11⁄3 ptconcentrate (6 lbsactive ingredient /gal)

72–78% liquid 1⁄4 pt 1⁄2 pt 3⁄4 pt 1 ptconcentrate (8 lbsactive ingredient /gal)

Page 294: HANDBOOK FOR VEGETABLE GROWERS

342

TABLE 6.11. PESTICIDE APPLICATION RATES FOR SMALL CROPPLANTINGS

Distance BetweenRows (ft)

Amount(gal /acre)

Amount(per 100 ft of row)

Length ofRow Covered

(ft /gal)

1 75 22 oz 581100 30 oz 435125 1 qt 5 oz 348150 1 qt 12 oz 290175 1 qt 20 oz 249200 1 qt 27 oz 218

2 75 1 qt 12 oz 290100 1 qt 27 oz 218125 2 qt 10 oz 174150 2 qt 24 oz 145175 3 qt 7 oz 124200 3 qt 21 oz 109

3 75 2 qt 2 oz 194100 2 qt 24 oz 145125 3 qt 14 oz 116150 4 qt 4 oz 97175 4 qt 26 oz 83200 5 qt 16 oz 73

GUIDELINES FOR EFFECTIVE PEST CONTROL

Often, failure to control a pest is blamed on the pesticide when the causelies elsewhere. Some common reasons for failure follow:

1. Delaying applications until pests are already well established.

2. Making applications with insufficient gallonage or clogged or poorlyarranged nozzles.

3. Selecting the wrong pesticide.

The following points are suggested for more effective pest control:

Page 295: HANDBOOK FOR VEGETABLE GROWERS

343

1. Inspect fields regularly. Frequent examinations (at least twice perweek) help determine the proper timing of the next pesticideapplication.

2. Control insects and mites according to economic thresholds orschedule. Economic thresholds assist in determining whether pesticideapplications or other management actions are needed to avoideconomic loss from pest damage. Thresholds for insect pests aregenerally expressed as a numerical count of a given life stage or as adamage level based on certain sampling techniques. They areintended to reflect the population size that would cause economicdamage and thus warrant the cost of treatment. Guidelines for otherpests are usually based on the field history, crop development, variety,weather conditions, and other factors.

Rather than using economic thresholds, many pest problems canbe predicted to occur at approximately the same time year after year.One application before buildup often eliminates the need for severalapplications later in the season. Often, less toxic and safer-to-handlechemicals are effective when pests are small in size and population.

3. Take weather conditions into account. Spray only when wind velocityis less than 10 mph. Dust only when it is perfectly calm. Do not spraywhen sensitive plants are wilted during the heat of the day. Ifpossible, make applications when ideal weather conditions prevail.

Biological insecticides are ineffective in cool weather. Somepyrethroid insecticides (permethrin) do not perform well when fieldtemperatures reach 85�F and above. Best control results from theseinsecticides are achieved when the temperature is in the 70s or low80s (evening or early morning).

Sprinkler irrigation washes pesticide deposits from foliage. Wait atleast 48 hr after pesticide application before sprinkler irrigating. Morefrequent pesticide applications may be needed during and afterperiods of heavy rainfall.

4. Strive for adequate coverage of plants. The principal reason aphids,mites, cabbage loopers, and diseases are serious pests is that theyoccur beneath leaves, where they are protected from spray deposit ordust particles. Improved control can be achieved by adding andarranging nozzles so the application is directed toward the plantsfrom the sides as well as from the top. In some cases, nozzles shouldbe arranged so the application is directed beneath the leaves. As theseason progresses, plant size increases, and so does the need forincreased spray gallonage to ensure adequate coverage. Applyingsprays with sufficient spray volume and pressure is important. Spraysfrom high-volume, high-pressure rigs (airblast) should be applied at

Page 296: HANDBOOK FOR VEGETABLE GROWERS

344

40–100 gal /acre at approximately 400 psi pressure. Sprays from low-volume, low-pressure rigs (boom type) should be applied at 50–100gal /acre at approximately 100–300 psi pressure.

5. Select the proper pesticide. Know the pests to be controlled and choosethe recommended pesticide and rate of application.

For certain pests that are extremely difficult to control or areresistant, it may be important to alternate labeled insecticides,especially with different classes of insecticides; for example, alternatea pyrethroid insecticide with either a carbamate or anorganophosphate insecticide.

6. Assess pesticide compatibility. To determine if two pesticides arecompatible, use the following jar test before tank-mixing pesticides orpesticides and fluid fertilizers:a. Add 1 pt water or fertilizer solution to a clean quart jar. Then add

the pesticide to the water or fertilizer solution in the sameproportion as used in the field.

b. To a second clean quart jar, add 1 pt water or fertilizer solution.Then add 1⁄2 tsp of an adjuvant to keep the mixture emulsified.Finally, add the pesticide to the water-adjuvant or fertilizer-adjuvant in the same proportion as to be used in the field.

c. Close both jars tightly and mix thoroughly by inverting 10 times.Inspect the mixtures immediately and again after standing for 30min. If the mix in either jar remains uniform for 30 min, thecombination can be used. If either mixture separates but readilyremixes, constant agitation is required. If nondispersible oil,sludge, or clumps of solids form, do not use the mixture.

7. Calibrate application equipment. Periodic calibration of sprayers,dusters, and granule distributors is necessary to ensure accuratedelivery rates of pesticides per acre. See pages 333–338.

8. Select correct sprayer tips. The selection of proper sprayer tips for usewith various pesticides is very important. Flat fan-spray tips aredesigned for preemergence and postemergence application ofherbicides. They can also be used with insecticides, fertilizers, andother pesticides. Flat fan-spray tips produce a tapered-edge spraypattern for uniform coverage where patterns overlap. Some flat fan-spray tips (SP) are designed to operate at low pressure (15–40 psi)and are usually used for preemergence herbicide applications. Theselower pressures result in large spray particles than those fromstandard flat tips operating at higher pressures (30–60 psi). Spraynozzles with even flat-spray tips (often designated E) are designed forband spraying where uniform distribution is desired over a zone 8–14

Page 297: HANDBOOK FOR VEGETABLE GROWERS

345

in. wide; they are generally used for herbicides.Flood-type nozzle tips are generally used for complete fertilizer,

liquid nitrogen, and so on, and sometimes for spraying herbicides ontothe soil surface prior to incorporation. They are less suited forspraying postemergence herbicides or for applying fungicides orinsecticides to plant foliage. Coverage of the target is often lessuniform and complete when flood-type nozzles are used, comparedwith the coverage obtained with other types of nozzles. Place flood-type nozzles a maximum of 20 in. apart, rather than the standard 40-in. spacing, for better coverage. This results in an overlapping spraypattern. Spray at the maximum pressure recommended for the nozzle.

Wide-spray angle tips with full or hollow cone patterns are usuallyused for fungicides and insecticides. They are used at higher watervolume and spray pressures than are commonly recommended forherbicide application with flat fan or flood-type nozzle tips.

9. Consider the relationship of pH and pesticides. Unsatisfactory resultswith some pesticides may be related to the pH of the mixing water.Some materials carry a label cautioning the user against mixing thepesticide with alkaline materials because they undergo a chemicalreaction known as alkaline hydrolysis. This reaction occurs when thepesticide is mixed in water with a pH greater than 7. Manymanufacturers provide information on the rate at which their producthydrolyzes. The rate is expressed as half-life, meaning the time ittakes for 50% hydrolysis or breakdown to occur. Check the pH of thewater. If acidification is necessary, use one of the several commercialnutrient buffer materials available on the market.

Adapted from Commercial Vegetable Production Recommendations, Pennsylvania, Delaware,Maryland, Virginia, and New Jersey (2005), http: / / hortweb.cas.psu.edu / extension / images /PA%2005%20Commercial%20Veg%20Recommends.pdf.

SPRAY ADJUVANTS OR ADDITIVES

Adjuvants are chemicals that, when added to a liquid spray, make it mix,wet, spread, stick, or penetrate better. Water is almost a universal diluentfor pesticide sprays. However, water is not compatible with oily pesticides,and an emulsifier may be needed in order to obtain good mixing.Furthermore, water from sprays often remains as large droplets on leafsurfaces. A wetting agent lowers the interfacial tension between the spraydroplet and the leaf surface and thus moistens the leaf. Spreaders areclosely related to wetters and help build a deposit on the leaf and improve

Page 298: HANDBOOK FOR VEGETABLE GROWERS

346

weatherability. Stickers cause pesticides to adhere to the sprayed surfaceand are often called spray-stickers. They are oily and serve to increase theamounts of suspended solids held on the leaves or fruits by holding theparticles in a resin-like film. Extenders form a sticky, elastic film that holdsthe pesticide on the leaves and thus reduces the rate of loss caused bysunlight and rainfall.

There are a number of adjuvants on the market. Read the label not onlyfor dosages but also for crop uses and compatibilities, because someadjuvants must not be used with certain pesticides. Although manyformulations of pesticides contain adequate adjuvants, some do requireadditions on certain crops, especially cabbage, cauliflower, onion, and pepper.

Spray adjuvants for use with herbicides often serve a function distinctfrom that of adjuvants used with insecticides and fungicides. For example,adjuvants such as oils used with atrazine greatly improve penetration of thechemical into crop and weed leaves, rather than just give more uniformcoverage. Do not use any adjuvant with herbicides unless there are specificrecommendations for its use. Plant damage or even crop residues can resultfrom using an adjuvant that is not recommended.

Resources

● J. Witt, Agricultural Spray Adjuvants (Cornell University PestManagement Educational Program), http: / /pmep.cce.cornell.edu / facts-slides-self / facts /gen-peapp-adjuvants.html

● B. Young, Compendium of Herbicide Adjuvants, 7th ed. (SouthernIllinois University, 2004), http: / /www.herbicide-adjuvants.com/ index-7th-edition.html.

Page 299: HANDBOOK FOR VEGETABLE GROWERS

347

06VEGETABLE SEED TREATMENTS

Various vegetable seed treatments prevent early infection by seedbornediseases, protect the seed from infection by soil microorganisms, and guardagainst a poor crop stand or crop failure caused by attacks on seeds by soilinsects. Commercial seed is often supplied with the appropriate treatment.

Two general categories of vegetable seed treatments are used.Eradication treatments kill disease-causing agents on or within the seed,whereas protective treatments are applied to the surface of the seed toprotect against seed decay, damping off, and soil insects. Hot-watertreatment is the principal means of eradication, and chemical treatmentsusually serve as protectants. Follow time-temperature directions preciselyfor hot-water treatment and label directions for chemical treatment. Wheninsecticides are used, seeds should also be treated with a fungicide.

HOT-WATER TREATMENT

To treat seeds with hot water, fill cheesecloth bags half full, wet seed andbag with warm water, and treat at exact time and temperature whilestirring to maintain a uniform temperature. Use an accurate thermometer.

TABLE 6.12. HOT-WATER TREATMENT OF SEEDS

SeedTemperature

(�F)Time(min) Diseases Controlled

Broccoli, cauliflower,collards, kale,kohlrabi, turnip

122 20 Alternaria, blackleg, black rot

Brussels sprouts,cabbage

122 25 Alternaria, blackleg, black rot

Celery 118 30 Early blight, late blightEggplant 122 30 Phomopsis blight, anthracnosePepper 122 25 Bacterial spot, rhizoctoniaTomato 122 25 Bacterial canker, bacterial

spot, bacterial speck132 30 Anthracnose

Page 300: HANDBOOK FOR VEGETABLE GROWERS

348

CHEMICAL SEED TREATMENTS

Several fungicides are commonly used for treating vegetable seed. Theyprotect against fungal attack during the germination process, resulting inmore uniform plant stands. Seed protectants are most effective under coolgermination conditions in a greenhouse or field, when germination is likelyto be slow, and where germinating seeds might be exposed to disease-causing organisms. Seed treatments are applied as a dust or slurry and,when dry, can be dusty. To reduce dust, the fungicide-treated seed can becovered by a thin polymer film; many seed companies offer film-coatedseeds. Large-seeded vegetables may require treatment with a labeledinsecticide as well as a fungicide. Always follow label directions whenpesticides are used.

Certain bacterial diseases on the seed surface can be controlled by otherchemical treatments:

1. Tomato bacterial canker. Soak seeds in 1.05% sodium hypochloritesolution for 20–40 min or 5% hydrochloric acid for 5–10 hr. Rinse anddry.

2. Tomato bacterial spot. Soak seeds in 1.3% sodium hypochlorite for 1min. Rinse and dry.

3. Pepper bacterial spot. Soak seeds in 1.3% sodium hypochlorite for 1min. Rinse and dry.

DO NOT USE CHEMICALLY TREATED SEED FOR FOOD OR FEED.

Adapted from A. F. Sherf and A. A. MacNab, Vegetable Diseases and Their Control, Wiley, New York(1986).

Additional References for Seed Treatment

● M. McGrath, Treatments for Managing Bacterial Pathogens inVegetable Seed (2005), http: / /vegetablemdonline.ppath.cornell.edu /NewsArticles /All BactSeed.htm

● J. Boucher and J. Nixon, Preventing Bacterial Diseases of Vegetableswith Hot-water Seed Treatment, University of Connecticut CooperativeExtension Service; and R. Hazard and R. Wick (University ofMassachusetts Cooperative Extension Service), http: / /www.hort.uconn.edu/ ipm/homegrnd/htms/54sedtrt.htm

● S. Miller and M. Lewis Ivey, Hot Water and Chlorine Treatment ofVegetable Seeds to Eradicate Bacterial Plant Pathogens (CooperativeExtension Service, Ohio State University), http: / / ohioline.osu.edu/hyg-fact /3000 /3085.html

Page 301: HANDBOOK FOR VEGETABLE GROWERS

349

ORGANIC SEED TREATMENTS

With the increasing interest in organic vegetables, the need for informationabout organic seed production, sources, and treatment is greater. Seedquality and vigor are important aspects for high-quality organic seeds. Theseed industry is working to provide vegetable seeds that meet therequirements for organic crop production. Likewise, the seed treatmenttechnology for organic seeds is increasing in scope—for example, seedcoating and treatment to increase germination uniformity and adaptationto mechanized seeding, among other needs. The following lists a fewpublications that address organic seed quality and seed treatment:

● J. Bonina and D. J. Cantliffe, Seed Production and Seed Sources ofOrganic Vegetables (University of Florida Cooperative ExtensionService), http: / / edis.ifas.ufl.edu/hs227

● S. Koike, R. Smith, and E. Brennan, Investigation of Organic SeedTreatments for Spinach Disease Control, http: / /vric.ucdavis.edu/scrp /sum-koike.html

Page 302: HANDBOOK FOR VEGETABLE GROWERS

350

07NEMATODES

PLANT PARASITIC NEMATODES

Nematodes are unsegmented round worms that range in size frommicroscopic to many inches long. Some nematodes, usually those that aremicroscopic or barely visible without magnification, attack vegetable cropsand cause maladies, restrict yields, or, in severe cases, lead to total cropfailure. Many kinds of nematode are known to infest the roots and above-ground plant parts of vegetable crops. Their common names are usuallydescriptive of the affected plant part and the resulting injury.

TABLE 6.13. COMMONLY OBSERVED NEMATODES INVEGETABLE CROPS

Common Name Scientific Name

Awl nematode Dolichodorus spp.Bud and leaf nematode Aphelenchoides spp.Cyst nematode Heterodera spp.Dagger nematode Xiphinema spp.Lance nematode Hopolaimus spp.Root-lesion nematode Pratylenchus spp.Root-knot nematode Meloidogyne spp.Spiral nematode Helicotylenchus spp. and Scutellonema spp.Sting nematode Belonolaimus spp.Stubby-root nematode Trichodorus spp.Stunt nematode Tylenchorhynchus spp.

Nematodes are most troublesome in areas with mild winters where soilsare not subject to freezing and thawing. Management practices andchemical control are both required to keep nematode numbers low enoughto permit normal plant growth where populations are not kept in checknaturally by severe winters.

Page 303: HANDBOOK FOR VEGETABLE GROWERS

351

The first and most obvious control for nematodes is avoiding theirintroduction into uninfected fields or areas. This may be done by quarantineover large geographical areas or by means of good sanitation in smallerareas. A soil sample for a nematode assay through the County ExtensionService can provide information on which nematodes are present and theirpopulation levels. This information is valuable for planning a nematodemanagement program.

Once nematodes have been introduced into a field, several managementpractices help control them: rotating with crops that a particular species ofnematode does not attack, frequent disking during hot weather, andalternating flooding and drying cycles.

If soil management practices are not possible or are ineffective,chemicals (nematicides) may have to be used to control nematodes. Somefumigants are effective against soilborne disease, insects, and weed seeds;these are termed multipurpose soil fumigants. Growers should select achemical for use against the primary problem to be controlled and use itaccording to label directions.

Page 304: HANDBOOK FOR VEGETABLE GROWERS

352

TA

BL

E6.

14.

PL

AN

TP

AR

AS

ITIC

NE

MA

TO

DE

SK

NO

WN

TO

BE

OF

EC

ON

OM

ICIM

PO

RT

AN

CE

TO

VE

GE

TA

BL

ES

Nem

atod

e

Bea

nan

dP

eas

Car

rot

Cel

ery

Cru

cife

rsC

ucu

rbit

sL

eaf

Cro

psO

kra

On

ion

Pot

ato

Sw

eet

Cor

nS

wee

tP

otat

oT

omat

oP

eppe

rE

ggpl

ant

Roo

tkn

otX

XX

XX

XX

XX

XX

XX

Sti

ng

XX

XX

XX

XX

XX

XX

XS

tubb

yro

otX

XX

XX

XX

XX

XR

oot

lesi

onX

Cys

tX

Aw

lX

XX

Stu

nt

XL

ance

XS

pira

lR

ing

Dag

ger

Bu

dan

dle

afR

enif

orm

XX

Fro

mJ.

Nol

ing,

‘‘Nem

atod

esan

dT

hei

rM

anag

emen

t,’’

inS

.M

.O

lson

and

E.

H.

Sim

onn

e(e

ds.)

,Veg

etab

leP

rod

uct

ion

Han

dbo

okfo

rF

lori

da

(Flo

rida

Coo

pera

tive

Ext

ensi

onS

ervi

ce,

2005

–200

6),h

ttp:

//ed

is.if

as.u

fl.e

du/C

V11

2.

Page 305: HANDBOOK FOR VEGETABLE GROWERS

353

MANAGEMENT TECHNIQUES FOR CONTROLLING NEMATODES

1. Crop rotation. Exposing a nematode population to an unsuitable hostcrop is an effective means of reducing nematodes in a field. Covercrops should be established rapidly and kept weed free. There aremany cover crop options, but growers must consider the species ofnematode in question and how long the alternate crop is needed. Also,certain cover crops may be effective as non-hosts for nematodes butmay not fit into a particular cropping sequence.

2. Fallowing. Practicing clean fallowing in the intercropping season isprobably the single most effective nonchemical means to reducingnematode populations. Clean disking of the field must be practicedfrequently to keep weeds controlled because certain nematodes cansurvive on weeds.

3. Plant resistance. Certain varieties have genetic resistance tonematode damage. Where possible, these varieties should be selectedwhen their other horticultural traits are acceptable. There arenematode-resistant varieties in tomato and pepper.

4. Soil amendments. Certain soil amendments, such as compost,manures, cover crops, chitin, and other materials, have been shown toreduce nematode populations. The age of the material, amountapplied, and level of incorporation affect performance.

5. Flooding. Extended periods of flooding can reduce nematodepopulations. This technique should be practiced only where flooding isapproved by environmental agencies. Alternating periods of floodingand drying seems to be more effective than a single flooding event.

6. Soil solarization. Nematodes can be killed by elevated heat created inthe soil by covering it with clear polyethylene film for extendedperiods. Solarization works best in clear, hot, and dry climates. Moreinformation on solarization can be found on pages 317–319.

7. Crop management. Growers should rapidly destroy and till crops thatare infested with nematodes. Irrigation water should not drain frominfested fields to noninfested fields, and equipment should be cleanedbetween infested and clean fields.

8. Chemical control. Some fumigant and nonfumigant nematicides areapproved for use against nematodes, but not all vegetable crops havenematicides recommended for use. Effectiveness of the treatmentdepends on many factors, including timing, placement in the soil, soilmoisture, soil temperature, soil type, and presence of plastic mulch.Growers should refer to their state Extension recommendations forthe approved chemicals for particular crops.

Adapted from J. Noling, ‘‘Nematodes and Their Management,’’ in S. M. Olson and E. H. Simonne(eds.), Vegetable Production Handbook for Florida (Florida Cooperative Extension Service, 2005–2006),http: / / edis.ifas.ufl.edu / CV112.

Page 306: HANDBOOK FOR VEGETABLE GROWERS

354

08DISEASES

GENERAL DISEASE CONTROL PROGRAM

Diseases of vegetable crops are caused by fungi, bacteria, viruses, andmycoplasms. For a disease to occur, organisms must be transported to asusceptible host plant. This may be done by infected seeds or plantmaterial, contaminated soil, wind, water, animals (including humans), orinsects. Suitable environmental conditions must be present for the organismto infect and thrive on the crop plant. Effective disease control requiresknowledge of the disease life cycle, time of likely infection, agent ofdistribution, plant part affected, and the symptoms produced by the disease.

Crop rotation: Root-infecting diseases are the usual targets of crop rotation,although rotation can help reduce innocula of leaf- and stem-infectingorganisms. Land availability and costs are making rotation challenging,but a well-planned rotation program is still an important part of aneffective disease control program.

Site selection: Consider using fields that are free of volunteer crops andperimeter weeds that may harbor disease organisms. If aerialapplications of fungicides are to be used, try to select fields that aregeometrically adapted to serial spraying (long and wide), are away fromhomes, and have no bordering trees or power lines.

Deep plowing: Use tillage equipment such as plows to completely bury plantdebris in order to fully decompose plant material and kill diseaseorganisms.

Weed control: Certain weeds, particularly those botanically related to thecrop, may harbor disease agents, especially viruses, that could move tothe crop. Also, weeds within the crop could harbor diseases and by theirphysical presence interfere with deposition of fungicides on the crop.Volunteer plants from previous crops should be carefully controlled innearby fallow fields.

Resistant varieties: Where possible, growers should choose varieties thatcarry genetic resistance to disease. Varieties with disease resistancerequire less pesticide application.

Seed protection: Seeds can be treated with fungicides to offer some degree ofprotection of the young seedling against disease attack. Seeds planted inwarm soil germinate fast and possibly can outgrow disease development.

Page 307: HANDBOOK FOR VEGETABLE GROWERS

355

Healthy transplants: Growers should always purchase or grow disease-freetransplants. Growers should contract with good transplant growers andshould inspect their transplants before having them shipped to the farm.Paying a little extra to a reputable transplant producer is goodinsurance.

Field observation: Check fields periodically for disease development bywalking the field and inspecting the plants up close, not from behind thewindshield. Have any suspicious situations diagnosed by a competentdisease diagnosis laboratory.

Foliar fungicides: Plant disease outbreaks sometimes can be prevented orminimized by timely use of fungicides. For some diseases, it is essentialto have a preventative protectant fungicide program in place. Forsuccessful fungicide control, growers should consider proper chemicalselection, use well-calibrated sprayers, use correct application rate, andfollow all safety recommendations for spray application.

Integrated approach: Successful vegetable growers use a combination ofthese strategies or the entire set of strategies listed above. Routineimplementation of combinations of strategies is needed where a growerdesires to reduce the use of fungicides on vegetable crops.

COMMON VEGETABLE DISEASES

Some of the more common vegetable diseases are described below. Consultyour local County Extension Service for recommendations for specificfungicide information, as products and use recommendations changefrequently. When using fungicides, read the label and carefully follow theinstructions. Do not exceed maximum rates given, observe the intervalbetween application and harvest, and apply only to those crops for whichuse is approved. Make a record of the product used, trade name,concentration of the fungicide, dilution, rate applied per acre, and dates ofapplication. Follow local recommendations for efficacy and read thedirections on the label for proper use.

Page 308: HANDBOOK FOR VEGETABLE GROWERS

356

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

Asp

arag

us

Fu

sari

um

root

rot

Dam

pin

gof

fof

seed

lin

gs.Y

ello

win

g,st

un

tin

g,or

wil

tin

gof

the

grow

ing

stal

ks;

vasc

ula

rbu

ndl

edi

scol

orat

ion

.Cro

wn

deat

hgi

ves

fiel

dsa

spot

tyap

pear

ance

.

Use

dise

ase-

free

crow

ns.

Sel

ect

fiel

dsw

her

eas

para

gus

has

not

grow

nfo

r8

year

s.U

sea

fun

gici

decr

own

dip

befo

repl

anti

ng.

Ru

stR

eddi

shor

blac

kpu

stu

les

onst

ems

and

foli

age.

Cu

tan

dbu

rndi

seas

edto

ps.

Use

resi

stan

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Bea

nA

nth

racn

ose

Bro

wn

orbl

ack

sun

ken

spot

sw

ith

pin

kce

nte

rson

pods

,da

rkre

dor

blac

kca

nke

rson

stem

san

dle

afve

ins.

Use

dise

ase-

free

seed

and

rota

tecr

ops

ever

y2

year

s.P

low

stu

bble

.Do

not

cult

ivat

ew

hen

plan

tsar

ew

et.

Use

appr

oved

fun

gici

des.

Bac

teri

albl

igh

tL

arge

,dr

y,br

own

spot

son

leav

es,

ofte

nen

circ

led

byye

llow

bord

er;

wat

er-s

oake

dsp

ots

onpo

ds;

redd

ish

can

kers

onst

ems.

Pla

nts

may

begi

rdle

d.

Use

dise

ase-

free

seed

.D

on

otcu

ltiv

ate

wh

enpl

ants

are

wet

.U

se3-

year

rota

tion

.U

seap

prov

edfu

ngi

cide

s.

Mos

aic

(sev

eral

)M

ottl

ed(l

igh

tan

dda

rkgr

een

)an

dcu

rled

leav

es;

stu

nti

ng,

redu

ced

yiel

ds.

Use

mos

aic-

resi

stan

tva

riet

ies.

Con

trol

wee

dsin

area

sad

jace

nt

tofi

eld.

Con

trol

inse

ct(a

phid

,wh

ite

fly)

carr

ier

wit

hin

sect

icid

es.

Pow

dery

mil

dew

Fain

t,sl

igh

tly

disc

olor

edsp

ots

appe

arfi

rst

onle

aves

,la

ter

onst

ems

and

pods

,fr

omw

hic

hw

hit

epo

wde

rysp

ots

deve

lop

and

may

cove

rth

een

tire

plan

t.

Use

appr

oved

fun

gici

des.

Page 309: HANDBOOK FOR VEGETABLE GROWERS

357

Ru

stR

edto

blac

kpu

stu

les

onle

aves

;le

aves

yell

owan

ddr

op.

Use

appr

oved

fun

gici

des.

See

dro

tS

eed

orse

edli

ng

deca

y,w

hic

hre

sult

sin

poor

stan

ds.O

ccu

rsm

ost

com

mon

lyin

cold

,w

etso

ils.

Cro

pro

tati

on.

Tre

atse

edw

ith

appr

oved

fun

gici

des.

Wh

ite

mol

dW

ater

-soa

ked

spot

son

plan

ts.W

hit

e,co

tton

ym

asse

son

pods

.U

seap

prov

edfu

ngi

cide

s.

Bee

tC

erco

spor

aN

um

erou

sli

ght

tan

tobr

own

spot

sw

ith

redd

ish

toda

rkbr

own

bord

ers

onle

aves

.L

ong

rota

tion

.U

seap

prov

edfu

ngi

cide

s.

Dam

pin

gof

fS

eed

deca

yin

soil

;yo

un

gse

edli

ngs

coll

apse

and

die.

Avo

idw

etso

ils,

rota

tecr

ops.

Tre

atse

edw

ith

appr

oved

fun

gici

des.

Dow

ny

mil

dew

Lig

hte

rth

ann

orm

alle

afsp

ots

onu

pper

surf

ace

and

wh

ite

mil

dew

area

son

low

ersi

de.

Roo

ts,

leav

es,

flow

ers,

and

seed

ball

sdi

stor

ted

onst

eckl

ings

.

Use

appr

oved

fun

gici

des.

Bro

ccol

i,B

russ

els

spro

uts

,ca

bbag

e,ca

uli

flow

er,

kale

,ko

hlr

abi

Alt

ern

aria

leaf

spot

Dam

pin

gof

fof

seed

lin

gs.S

mal

l,ci

rcu

lar

yell

owar

eas

that

enla

rge

inco

nce

ntr

icci

rcle

san

dbe

com

ebl

ack

and

soot

y.

Use

appr

oved

fun

gici

des.

Bla

ckle

gS

un

ken

area

son

stem

nea

rgr

oun

dli

ne

resu

ltin

gin

gird

lin

g;gr

aysp

ots

spec

kled

wit

hbl

ack

dots

onle

aves

and

stem

s.

Use

hot

-wat

er-t

reat

edse

edan

dlo

ng

rota

tion

.S

anit

atio

n.

Page 310: HANDBOOK FOR VEGETABLE GROWERS

358

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

Bla

ckro

tYe

llow

ing

and

brow

nin

gof

the

foli

age;

blac

ken

edve

ins;

stem

ssh

owbl

acke

ned

rin

gw

hen

cros

s-se

ctio

ned

.

Use

hot

-wat

er-t

reat

edse

edan

dlo

ng

rota

tion

.D

on

otw

ork

wet

fiel

ds.

San

itat

ion

.C

lub

root

Yell

owle

aves

orgr

een

leav

esth

atw

ilt

onh

otda

ys;

larg

e,ir

regu

lar

swel

lin

gsor

clu

bson

root

s.

Sta

rtpl

ants

inn

ew,

stea

med

,or

fum

igat

edpl

ant

beds

.A

dju

stso

ilpH

to7.

2w

ith

hyd

rate

dli

me

befo

repl

anti

ng.

Use

appr

oved

fun

gici

des.

Dow

ny

mil

dew

Beg

ins

assl

igh

tye

llow

ing

onu

pper

side

ofle

aves

;w

hit

em

ilde

won

low

ersi

de;

spot

sen

larg

eu

nti

lpl

ant

dies

.

Use

appr

oved

fun

gici

des.

Fu

sari

um

yell

ows

Yell

owis

hgr

een

leav

es;

stu

nte

dpl

ants

;lo

wer

leav

esdr

op.

Use

yell

ows-

resi

stan

tva

riet

ies.

Can

talo

upe

(See

Vin

eC

rops

)C

arro

tA

lter

nar

iale

afbl

igh

t

Cer

cosp

ora

leaf

blig

ht

Sm

all,

brow

nto

blac

k,ir

regu

lar

spot

sw

ith

yell

owm

argi

ns

may

enla

rge

toin

fect

the

enti

reto

p.S

mal

l,n

ecro

tic

spot

sth

atm

ayen

larg

ean

din

fect

the

enti

reto

p.

Use

appr

oved

fun

gici

des.

Use

appr

oved

fun

gici

des.

Ast

erYe

llow

sP

urp

lin

gof

tops

;ye

llow

edyo

un

gle

aves

atce

nte

rof

crow

nfo

llow

edby

bush

ines

sdu

eto

exce

ssiv

epe

tiol

efo

rmat

ion

.R

oots

beco

me

woo

dyan

dfo

rmn

um

erou

sad

ven

titi

ous

root

s.

Con

trol

leaf

hop

per

carr

ier

wit

hin

sect

icid

es.

Page 311: HANDBOOK FOR VEGETABLE GROWERS

359

Cel

ery

Ast

erye

llow

sYe

llow

edle

aves

;st

un

tin

g;ti

ssu

esbr

ittl

ean

dbi

tter

inta

ste.

Use

resi

stan

tva

riet

ies.

Con

trol

leaf

hop

per

carr

ier

wit

hin

sect

icid

es.

Con

trol

wee

dsin

adja

cen

tar

eas.

Bac

teri

albl

igh

tB

righ

tye

llow

leaf

spot

s,ce

nte

rtu

rns

brow

n,

and

aye

llow

hal

oap

pear

sw

ith

enla

rgem

ent.

See

dbed

san

itat

ion

.Cop

per

com

pou

nds

.

Ear

lybl

igh

tD

ead,

ash

gray

,ve

lvet

yar

eas

onle

aves

.U

seap

prov

edfu

ngi

cide

s.L

ate

blig

ht

Yell

owsp

ots

onol

dle

aves

and

stal

ksth

attu

rnda

rkgr

aysp

eckl

edw

ith

blac

kdo

ts.

Use

appr

oved

fun

gici

des.

Mos

aic

Dw

arfe

dpl

ants

wit

hn

arro

w,

gray

,or

mot

tled

leav

es.

Con

trol

wee

dsin

adja

cen

tar

eas.

Con

trol

aph

idca

rrie

rw

ith

inse

ctic

ides

.P

ink

rot

Wat

er-s

oake

dsp

ots;

wh

ite-

topi

nk-

colo

red

cott

ony

grow

that

base

ofst

alk

lead

sto

rott

ing.

Cro

pro

tati

on.

Flo

odin

gfo

r4–

8w

eeks

.U

seap

prov

edfu

ngi

cide

s.

Cu

cum

ber

(See

Vin

eC

rops

)E

ggpl

ant

An

thra

cnos

eS

un

ken

,tan

fru

itle

sion

s.U

sedi

seas

e-fr

eese

ed.

Use

appr

oved

fun

gici

des.

Ph

omop

sis

blig

ht

You

ng

plan

tsbl

acke

nan

ddi

e;ol

der

plan

tsh

ave

brow

nsp

ots

onle

aves

and

fru

itco

vere

dw

ith

brow

nis

hbl

ack

pust

ule

s.

Use

resi

stan

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Ver

tici

lliu

mw

ilt

Slo

ww

ilti

ng;

brow

nin

gbe

twee

nle

afve

ins;

stu

nti

ng.

Fu

mig

ate

soil

wit

hap

prov

edfu

mig

ants

.U

seve

rtic

illi

um

-tol

eran

tva

riet

ies.

Use

lon

gro

tati

on.

En

dive

,es

caro

le,

lett

uce

Ast

erye

llow

sC

ente

rle

aves

blea

ched

,dw

arfe

d,cu

rled

,or

twis

ted.

Hea

dsdo

not

form

;yo

un

gpl

ants

part

icu

larl

yaf

fect

ed.

Con

trol

leaf

hop

per

carr

ier

wit

hin

sect

icid

es.

Page 312: HANDBOOK FOR VEGETABLE GROWERS

360

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

Big

vein

Lea

ves

wit

hli

ght

gree

n,

enla

rged

vein

sde

velo

pin

gin

toye

llow

,cr

inkl

edle

aves

;st

un

tin

g;de

laye

dm

atu

rity

.

Avo

idco

ld,

wet

soil

s.U

seto

lera

nt

vari

etie

s.C

rop

rota

tion

.

Bot

tom

rot

Dam

age

begi

ns

atba

seof

plan

ts;

blad

esof

leav

esro

tfi

rst,

then

the

mid

rib,

but

the

mai

nst

emis

har

dly

affe

cted

.

Avo

idw

et,

poor

lydr

ain

edar

eas.

Pla

nt

onra

ised

beds

.P

ract

ice

3-ye

arro

tati

on.

Use

appr

oved

fun

gici

des.

Dow

ny

mil

dew

Lig

ht

gree

nsp

ots

onu

pper

side

ofle

aves

;le

sion

sen

larg

ean

dw

hit

em

ycel

ium

appe

ars

onop

posi

tesi

deof

spot

s;br

own

ing

and

dwar

fin

gof

plan

t.

Use

appr

oved

fun

gici

des.

Dro

pW

ilti

ng

ofou

ter

leav

es;

wat

ery

deca

yon

stem

san

dol

dle

aves

.C

rop

rota

tion

.D

eep

plow

ing.

Rai

sed

beds

.U

seap

prov

edfu

ngi

cide

s.M

osai

cM

ottl

ing

(yel

low

and

gree

n),

ruffl

ing,

ordi

stor

tion

ofle

aves

;pl

ants

hav

eu

nth

rift

yap

pear

ance

.

Use

viru

s-fr

eeM

TO

seed

.P

lan

taw

ayfr

omol

dle

ttu

cebe

ds.

Con

trol

wee

ds.

Con

trol

aph

idca

rrie

rw

ith

inse

ctic

ide.

Tip

burn

Edg

esof

ten

der

leav

esbr

own

and

die;

may

inte

rfer

ew

ith

grow

th;

mos

tse

vere

onh

ead

lett

uce

.

Use

tole

ran

tva

riet

ies.

Pre

ven

tst

ress

bypr

ovid

ing

good

grow

ing

con

diti

ons.

Lim

abe

anD

own

ym

ilde

wP

urp

lin

gan

ddi

stor

tion

ofle

afve

ins;

wh

ite

dow

ny

mol

don

pods

;bl

acke

ned

bean

s.U

sere

sist

ant

vari

etie

san

ddi

seas

e-fr

eese

ed.

Use

appr

oved

fun

gici

des.

Okr

aS

outh

ern

blig

ht

Mas

sof

pin

kish

fun

gus

bodi

esar

oun

dba

seof

plan

t;su

dden

loss

ofle

aves

.C

rop

rota

tion

.D

eep

plow

ing

ofpl

ant

stu

bble

.V

erti

cill

ium

wil

tS

tun

tin

g;ch

loro

sis;

shed

din

gof

leav

es.

Cro

pro

tati

on.

Avo

idpl

anti

ng

wh

ere

dise

ase

was

prev

iou

sly

pres

ent.

Page 313: HANDBOOK FOR VEGETABLE GROWERS

361

On

ion

Bli

ght

(bla

st)

Pap

ery

spot

son

leav

es;

brow

nin

gan

dde

ath

ofu

pper

port

ion

ofle

aves

;de

laye

dm

atu

rity

.

Use

appr

oved

fun

gici

des.

Dow

ny

mil

dew

Beg

ins

aspa

legr

een

spot

nea

rti

pof

leaf

;pu

rple

mol

dfo

un

dw

hen

moi

stu

repr

esen

t;in

fect

edle

aves

oliv

e-gr

een

tobl

ack.

Use

appr

oved

fun

gici

des.

Nec

kro

tS

oft,

brow

nis

hti

ssu

ear

oun

dn

eck;

scal

esar

oun

dn

eck

are

dry,

and

blac

ksc

lero

tia

may

form

.E

ssen

tial

lya

dry

rot

ifso

ftro

tba

cter

ian

otpr

esen

t.

Un

derc

ut

and

win

drow

plan

tsu

nti

lin

side

nec

kti

ssu

esar

edr

ybe

fore

stor

age.

Cu

reat

93–9

5�F

for

5da

ys.

Pin

kro

tP

lan

tsar

eaf

fect

edfr

omse

edli

ng

stag

eon

war

dth

rou

ghou

tli

fecy

cle.

Aff

ecte

dro

ots

turn

pin

k,sh

rive

l,an

ddi

e.

Avo

idin

fect

edso

ils.

Use

tole

ran

tva

riet

ies.

Pu

rple

blot

chS

mal

l,w

hit

esu

nke

nle

sion

sw

ith

purp

lece

nte

rsen

larg

eto

gird

lele

afor

seed

stem

.L

eave

san

dst

ems

fall

over

3–4

wee

ksaf

ter

infe

ctio

nin

seve

reca

ses.

Bu

lbro

tat

and

afte

rh

arve

st.

Use

appr

oved

fun

gici

des.

Sm

ut

Bla

cksp

ots

onle

aves

;cr

acks

deve

lop

onsi

deof

spot

reve

alin

gbl

ack,

soot

ypo

wde

rw

ith

in.

Cro

pro

tati

on.

Use

appr

oved

fun

gici

des.

Par

snip

Can

ker

Bro

wn

disc

olor

atio

nn

ear

shou

lder

orcr

own

ofro

ot.

Rid

geso

ilov

ersh

ould

ers.

Lea

fbl

igh

tL

eave

san

dpe

tiol

estu

rnye

llow

and

then

brow

n.

En

tire

plan

tm

aybe

kill

ed.

Pra

ctic

e2-

year

rota

tion

;u

sew

ell-

drai

ned

soil

wit

hpH

7.0.

Pea

Pow

dery

mil

dew

Wh

ite,

pow

dery

mol

don

leav

es,

stem

s,an

dpo

ds;

affe

cted

area

sbe

com

ebr

own

and

nec

roti

c.

Use

dise

ase-

free

seed

and

resi

stan

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Page 314: HANDBOOK FOR VEGETABLE GROWERS

362

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

Roo

tro

tR

otte

dan

dye

llow

ish

brow

nor

blac

kst

ems

(bel

owgr

oun

d)an

dro

ots;

oute

rla

yers

ofro

otsl

ough

off,

leav

ing

ace

ntr

alco

re.

Ear

lypl

anti

ng

and

3-ye

arro

tati

on.

Do

not

dou

ble-

crop

wit

hbe

an.

See

dtr

eatm

ent.

Vir

us

Sev

eral

viru

ses

affe

ctpe

a,ca

usi

ng

mot

tlin

g,di

stor

tion

ofle

aves

,ro

sett

ing,

chlo

rosi

s,or

nec

rosi

s.

Use

resi

stan

tva

riet

ies.

Con

trol

aph

idca

rrie

rw

ith

inse

ctic

ides

.

Wil

tYe

llow

ing

leav

es;

dwar

fin

g,br

own

ing

ofxy

lem

;w

ilti

ng.

Ear

lypl

anti

ng

and

3-ye

arro

tati

on.

Use

resi

stan

tva

riet

ies.

Pep

per

An

thra

cnos

eD

ark,

rou

nd

spot

sw

ith

blac

ksp

ecks

onfr

uit

s.U

seap

prov

edfu

ngi

cide

s.

Bac

teri

alle

afsp

otYe

llow

ish

gree

nsp

ots

onyo

un

gle

aves

;ra

ised

,br

own

spot

son

un

ders

ides

ofol

der

leav

es;

brow

n,

crac

ked,

rou

ghsp

ots

onfr

uit

;ol

dle

aves

turn

yell

ow.

Use

dise

ase-

free

seed

,h

ot-w

ater

-tre

ated

seed

.U

seap

prov

edba

cter

icid

es.U

sere

sist

ant

vari

etie

s.

Mos

aic

Mot

tled

(yel

low

edan

dgr

een

)an

dcu

rled

leav

es;

fru

its

yell

owor

show

gree

nri

ng

spot

s;st

un

ted;

redu

ced

yiel

ds.

Use

resi

stan

tva

riet

ies.

Con

trol

inse

ctca

rrie

rs(p

arti

cula

rly

aph

ids)

and

wee

dh

osts

.U

sest

ylet

oil.

Pot

ato

Ear

lybl

igh

tD

ark

brow

nsp

ots

onle

aves

;fo

liag

ein

jure

d;re

duce

dyi

elds

.B

ury

all

cull

pota

toes

.U

seap

prov

edfu

ngi

cide

s.L

ate

blig

ht

Dar

k,th

enn

ecro

tic

area

onle

aves

and

stem

;in

fect

edtu

bers

rot

inst

orag

e.D

isea

seis

favo

red

bym

oist

con

diti

ons.

Bu

rycu

llpi

les.

Use

appr

oved

fun

gici

des.

Page 315: HANDBOOK FOR VEGETABLE GROWERS

363

Rh

izoc

ton

iaN

ecro

tic

spot

s,gi

rdli

ng

and

deat

hof

spro

uts

befo

reor

shor

tly

afte

rem

erge

nce

.B

row

nto

blac

kra

ised

spot

son

mat

ure

tube

rs.

Avo

idde

eppl

anti

ng

toen

cou

rage

earl

yem

erge

nce

.U

sedi

seas

e-fr

eese

ed.

Use

appr

oved

fun

gici

des.

Sca

bR

ough

,sc

abby

,rai

sed,

orpi

tted

lesi

ons

ontu

bers

.C

rop

rota

tion

.U

sere

sist

ant

vari

etie

s.M

ain

tain

soil

pHab

out

5.3.

Vir

us

Ala

rge

nu

mbe

rof

viru

ses

infe

ctpo

tato

,ca

usi

ng

leaf

mot

tlin

g,di

stor

tion

,an

ddw

arfi

ng.

Som

evi

ruse

sca

use

irre

gula

rly

shap

edor

nec

roti

car

eain

tube

rs.

Use

cert

ified

seed

.C

ontr

olap

hid

and

leaf

hop

per

carr

iers

wit

hin

sect

icid

es.

Rad

ish

Dow

ny

mil

dew

Inte

rnal

disc

olor

atio

nof

root

crow

nti

ssu

e.O

ute

rsu

rfac

em

aybe

com

eda

rkan

dro

ugh

atth

eso

illi

ne.

Sel

ect

clea

n,

wel

l-dr

ain

edso

ils.

Use

appr

oved

fun

gici

des.

Fu

sari

um

wil

tYo

un

gpl

ants

yell

owan

ddi

era

pidl

yin

war

mw

eath

er.

Stu

nti

ng,

un

ilat

eral

leaf

yell

owin

g;va

scu

lar

disc

olor

atio

nof

fles

hy

root

s.

Use

tole

ran

tva

riet

ies.

Avo

idin

fest

edso

il.

Rh

uba

rbC

row

nro

tW

ilti

ng

ofle

afbl

ades

;br

own

ing

atba

seof

leaf

stal

kle

adin

gto

deca

y.P

lan

tin

wel

l-dr

ain

edso

il.

Lea

fsp

otT

iny,

gree

nis

hye

llow

spot

s(r

esem

blin

gm

osai

c)on

upp

ersi

deof

leaf

,ev

entu

ally

brow

nin

gan

dfo

rmin

ga

wh

ite

spot

surr

oun

ded

bya

red

ban

d;th

ese

spot

sm

aydr

opou

tto

give

ash

ot-h

ole

appe

aran

ce.

Use

appr

oved

fun

gici

des.

Ru

taba

ga,

turn

ipA

lter

nar

iaS

mal

l,ci

rcu

lar,

yell

owar

eas

that

enla

rge

inco

nce

ntr

icci

rcle

san

dbe

com

ea

blac

kso

oty

colo

r.R

oots

may

beco

me

infe

sted

inst

orag

e.

Use

hot

-wat

er-t

reat

edse

ed.

Use

appr

oved

fun

gici

des.

Page 316: HANDBOOK FOR VEGETABLE GROWERS

364

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

An

thra

cnos

eS

mal

l,w

ater

-soa

ked

spot

son

all

abov

e-gr

oun

dpa

rts,

wh

ich

beco

me

ligh

t-co

lore

dan

dm

aydr

opou

t.S

mal

l,su

nke

n,

dry

spot

son

turn

ipro

ots,

wh

ich

are

subj

ect

tose

con

dary

deca

y.

Use

appr

oved

fun

gici

des.

Clu

bro

otT

um

or-l

ike

swel

lin

gson

tap

root

.M

ain

root

may

bedi

stor

ted.

Dis

ease

dro

ots

deca

ypr

emat

ure

ly.

Avo

idso

ilpr

evio

usl

yin

fest

edw

ith

clu

bro

ot.

Adj

ust

acid

soil

topH

7.3

byli

min

g.D

own

ym

ilde

wS

mal

l,pu

rpli

sh,i

rreg

ula

rsp

ots

onle

aves

,st

ems,

and

seed

pods

that

prod

uce

flu

ffy

wh

ite

grow

th.

Des

icca

tion

ofro

ots

inst

orag

e.

Use

appr

oved

fun

gici

des.

Mos

aic

viru

sS

tun

ted

plan

tsh

avin

gru

ffled

leav

es.

Infe

cted

root

sst

ore

poor

ly.

Des

troy

volu

nte

erpl

ants

.Con

trol

aph

idca

rrie

rw

ith

inse

ctic

ides

.S

outh

ern

pea

Fu

sari

um

wil

tYe

llow

edle

aves

;w

ilte

dpl

ants

;in

teri

orof

stem

sle

mon

yell

ow.

Avo

idin

fest

edso

il.

Spi

nac

hB

ligh

t(C

MV

)Ye

llow

edan

dcu

rled

leav

es;

stu

nte

dpl

ants

;re

duce

dyi

elds

.U

seto

lera

nt

vari

etie

s.C

ontr

olap

hid

carr

ier

wit

hin

sect

icid

es.

Dow

ny

mil

dew

Yell

owsp

ots

onu

pper

surf

ace

ofle

aves

;do

wn

yor

viol

et-g

ray

mol

don

un

ders

ides

.U

sere

sist

ant

vari

etie

s.U

seap

prov

edfu

ngi

cide

s.S

quas

h(S

eeV

ine

Cro

ps)

Page 317: HANDBOOK FOR VEGETABLE GROWERS

365

Str

awbe

rry

An

thra

cnos

eS

pott

ing

and

gird

lin

gof

stol

ens

and

peti

oles

,cr

own

rot,

fru

itro

t,an

da

blac

kle

afsp

ot;

com

mon

lyoc

curs

inso

uth

east

ern

Un

ited

Sta

tes.

Use

dise

ase-

free

plan

tsan

dre

sist

ant

vari

etie

s.U

seap

prov

edfu

ngi

cide

s.

Gra

ym

old

Rot

ongr

een

orri

pefr

uit

,be

gin

nin

gat

caly

xor

con

tact

wit

hin

fect

edfr

uit

;af

fect

edar

easu

ppor

tsw

hit

eor

gray

myc

eliu

m.

Use

less

susc

epti

ble

vari

etie

s.U

seap

prov

edfu

ngi

cide

s.

Lea

fsc

orch

Nu

mer

ous

irre

gula

r,pu

rpli

shbl

otch

esw

ith

brow

nce

nte

rs;

enti

rele

aves

dry

up

and

appe

arsc

orch

ed.

Use

dise

ase-

free

plan

tsan

dre

sist

ant

vari

etie

s.R

enew

pere

nn

ial

plan

tin

gsfr

equ

entl

y.U

seap

prov

edfu

ngi

cide

s.L

eaf

spot

Inde

fin

ite-

shap

edsp

ots

wit

hbr

own

,gr

ay,

orw

hit

ece

nte

rsan

dpu

rple

bord

ers.

Use

dise

ase-

free

plan

tsan

dre

sist

ant

vari

etie

s.U

seap

prov

edfu

ngi

cide

s.P

owde

rym

ilde

wC

har

acte

rist

icw

hit

em

ycel

ium

onle

aves

,fl

ower

,an

dfr

uit

.U

sere

sist

ant

vari

etie

s.U

seap

prov

edfu

ngi

cide

s.R

edst

ele

Stu

nte

dpl

ants

hav

ing

root

sw

ith

red

stel

ese

enw

hen

root

iscu

tle

ngt

hw

ise.

Impr

ove

drai

nag

ean

dav

oid

com

pact

ion

ofso

il.

Use

dise

ase-

free

plan

tsan

dre

sist

ant

vari

etie

s.V

erti

cill

ium

Mar

gin

alan

din

terv

ein

aln

ecro

sis

ofou

ter

leav

es;

inn

erle

aves

rem

ain

gree

n.

Pre

plan

tso

ilfu

mig

atio

n.U

sere

sist

ant

vari

etie

s.S

wee

tco

rnB

acte

rial

blig

ht

Dw

arfi

ng;

prem

atu

reta

ssel

sdi

e;ye

llow

bact

eria

lsl

ime

ooze

sfr

omw

etst

alks

;st

emdr

ies

and

dies

.

Use

resi

stan

tva

riet

ies.

Con

trol

corn

flea

beet

lew

ith

inse

ctic

ides

.

Lea

fbl

igh

tC

anoe

-sh

aped

spot

son

leav

es.

Use

resi

stan

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Mai

zedw

arf

mos

aic

Stu

nti

ng;

mot

tlin

gof

new

leav

esin

wh

orl

and

poor

ear

fill

atth

eba

se.

Use

tole

ran

tva

riet

ies.

Pla

nt

tole

ran

tva

riet

ies

arou

nd

susc

epti

ble

ones

.C

ontr

olap

hid

carr

ier

wit

hin

sect

icid

es.

See

dro

tS

eed

deca

ysin

soil

s.U

sese

edtr

eate

dw

ith

appr

oved

fun

gici

des.

Page 318: HANDBOOK FOR VEGETABLE GROWERS

366

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

Sm

ut

Lar

ge,

smoo

th,

wh

ite

gall

s,or

outg

row

ths

onea

rs,

tass

els,

and

nod

es;

cove

rin

gdr

ies

and

brea

ksop

ento

rele

ase

blac

k,po

wde

ry,

orgr

easy

spor

es.

Use

tole

ran

tva

riet

ies.

Con

trol

corn

bore

rsw

ith

inse

ctic

ides

.

Sw

eet

pota

toB

lack

rot

Bla

ckde

pres

sion

son

swee

tpo

tato

;bl

ack

can

kers

onu

nde

rgro

un

dst

empa

rts.

Sel

ect

dise

ase-

free

pota

tose

ed.

Rot

ate

crop

san

dpl

anti

ng

beds

.U

sevi

ne

cutt

ings

for

prop

agat

ion

rath

erth

ansl

ips.

Inte

rnal

cork

Dar

kbr

own

tobl

ack,

har

d,co

rky

lesi

ons

infl

esh

deve

lopi

ng

inst

orag

eat

hig

hte

mpe

ratu

re.

Yell

owsp

ots

wit

hpu

rple

bord

ers

onn

ewgr

owth

ofle

aves

.

Sel

ect

dise

ase-

free

seed

pota

toes

.

Pox

Pla

nts

dwar

fed;

only

one

ortw

ovi

nes

prod

uce

d;le

aves

thin

and

pale

gree

n;

soil

rot

pits

onro

ots.

Use

dise

ase-

free

stoc

kan

dcl

ean

plan

tin

gbe

ds.

Su

lfu

rto

low

erso

ilpH

to5.

2.

Scu

rfB

row

nto

blac

kdi

scol

orat

ion

ofro

ot;

un

ifor

mru

stin

gof

root

surf

ace.

Rot

atio

nof

crop

san

dbe

ds.

Use

dise

ase-

free

stoc

k.U

sevi

ne

cutt

ings

rath

erth

ansl

ips.

Ste

mro

tYe

llow

ing

betw

een

vein

s;vi

nes

wil

t;st

ems

dark

enin

side

and

may

spli

t.S

elec

tdi

seas

e-fr

eese

edpo

tato

es.

Rot

ate

fiel

dsan

dpl

ant

beds

.T

omat

oA

nth

racn

ose

Beg

ins

wit

hci

rcu

lar,

sun

ken

spot

son

fru

it;

assp

ots

enla

rge,

cen

ter

beco

mes

dark

and

fru

itro

ts.

Use

appr

oved

fun

gici

des.

Page 319: HANDBOOK FOR VEGETABLE GROWERS

367

Bac

teri

alca

nke

rW

ilti

ng;

roll

ing,

and

brow

nin

gof

leav

es;

pith

may

disc

olor

ordi

sapp

ear;

fru

itdi

spla

ysbi

rd’s

-eye

spot

s.

Use

hot

-wat

er-t

reat

edse

ed.

Avo

idpl

anti

ng

inin

fest

edfi

elds

for

3ye

ars.

Bac

teri

alsp

otYo

un

gle

sion

son

fru

itap

pear

asda

rk,

rais

edsp

ots;

olde

rle

sion

sbl

acke

nan

dap

pear

sun

ken

wit

hbr

own

cen

ters

;le

aves

brow

nan

ddr

y.

Use

hot

-wat

er-t

reat

edse

ed.

Use

appr

oved

bact

eric

ides

.

Ear

lybl

igh

tD

ark

brow

nsp

ots

onle

aves

;br

own

can

kers

onst

ems;

gird

lin

g;da

rk,

leat

her

y,de

caye

dar

eas

atst

emen

dof

fru

it.

Use

appr

oved

fun

gici

des.

Lat

ebl

igh

tD

ark,

wat

er-s

oake

dsp

ots

onle

aves

;w

hit

efu

ngu

son

un

ders

ides

ofle

aves

;w

ith

erin

gof

leav

es;

wat

er-s

oake

dsp

ots

onfr

uit

turn

brow

n.

Dis

ease

isfa

vore

dby

moi

stco

ndi

tion

s.

Use

appr

oved

fun

gici

des.

Fu

sari

um

wil

tYe

llow

ing

and

wil

tin

gof

low

er,

olde

rle

aves

;di

seas

eev

entu

ally

affe

cts

wh

ole

plan

t.U

sere

sist

ant

vari

etie

s.

Gra

yle

afsp

otS

ympt

oms

appe

arfi

rst

inse

edli

ngs

.Sm

all

brow

nto

blac

ksp

ots

onle

aves

,w

hic

hen

larg

ean

dh

ave

shin

ygr

ayce

nte

rs.

Th

ece

nte

rsm

aydr

opou

tto

give

shot

gun

appe

aran

ce.O

ldes

tle

aves

affe

cted

firs

t.

Use

resi

stan

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Lea

fm

old

Ch

loro

tic

spot

son

upp

ersi

deof

olde

stle

aves

appe

arin

hu

mid

wea

ther

.U

nde

rsid

eof

leaf

spot

may

hav

egr

een

mol

d.S

pots

may

mer

geu

nti

len

tire

leaf

isaf

fect

ed.

Dis

ease

adva

nce

sto

you

nge

rle

aves

.

Use

resi

stan

tva

riet

ies.

Sta

kean

dpr

un

eto

prov

ide

air

mov

emen

t.U

seap

prov

edfu

ngi

cide

s.

Page 320: HANDBOOK FOR VEGETABLE GROWERS

368

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

Mos

aic

Mot

tlin

g(y

ello

wan

dgr

een

)an

dro

ugh

enin

gof

leav

es;

dwar

fin

g;re

duce

dyi

elds

;ru

sset

ing

offr

uit

.

Avo

idco

nta

ctby

smok

ers.

Con

trol

aph

idca

rrie

rw

ith

inse

ctic

ides

.Sty

let

oil

may

beef

fect

ive.

Tom

ato

spot

ted

wil

tvi

rus

Bro

wn

spot

s,so

me

circ

ula

ron

you

nge

stle

aves

,st

un

ted

plan

t.F

ruit

sm

issh

apen

ofte

nw

ith

circ

ula

rbr

own

rin

gs,

adi

agn

osti

cch

arac

teri

stic

ofth

isdi

seas

e.

Use

aco

mbi

nat

ion

ofre

sist

ant

vari

etie

s,h

igh

lyre

flec

tive

mu

lch

tore

pel

the

silv

erle

afw

hit

efl

y,an

dpl

ant

acti

vato

rs.

Ver

tici

lliu

mw

ilt

Dif

fers

from

fusa

riu

mw

ilt

byap

pear

ance

ofdi

seas

eon

all

bran

ches

atth

esa

me

tim

e;ye

llow

area

son

leav

esbe

com

ebr

own

;m

idda

yw

ilti

ng;

drop

pin

gof

leav

esbe

gin

nin

gat

bott

om.

Use

resi

stan

tva

riet

ies.

Vin

eC

rops

:ca

nta

lou

pe,

cucu

mbe

r,pu

mpk

in,

squ

ash

,w

ater

mel

on

Alt

ern

aria

leaf

spot

An

gula

rle

afsp

ot

Cir

cula

rsp

ots

show

ing

con

cen

tric

rin

gsas

they

enla

rge,

appe

arfi

rst

onol

dest

leav

es.

Irre

gula

r,an

gula

r,w

ater

-soa

ked

spot

son

leav

esth

atla

ter

turn

gray

and

die.

Dea

dti

ssu

em

ayte

araw

ay,l

eavi

ng

hol

es.

Nea

rly

circ

ula

rfr

uit

spot

s,w

hic

hbe

com

ew

hit

e.

Fie

ldsa

nit

atio

n.U

sedi

seas

e-fr

eese

ed.

Use

appr

oved

fun

gici

des.

Use

tole

ran

tva

riet

ies.

Use

appr

oved

bact

eric

ides

.

Page 321: HANDBOOK FOR VEGETABLE GROWERS

369

An

thra

cnos

eR

eddi

shbl

ack

spot

son

leav

es;

elon

gate

dta

nca

nke

rson

stem

s;fr

uit

sh

ave

sun

ken

spot

sw

ith

fles

h-c

olor

edoo

zein

cen

ter,

late

rtu

rnin

gbl

ack.

Use

tole

ran

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Bac

teri

alw

ilt

Vin

esw

ilt

and

die;

stem

sap

prod

uce

sst

rin

gs;

no

yell

owin

goc

curs

.C

ontr

olst

ripe

dcu

cum

ber

beet

les

wit

hin

sect

icid

es.

Rem

ove

wil

tin

gpl

ants

from

fiel

d.B

lack

rot

(squ

ash

and

pum

pkin

only

)

Wat

er-s

oake

dar

eas

appe

aron

rin

dsof

fru

itin

stor

age.

Bro

wn

orbl

ack

infe

cted

tiss

ue

rapi

dly

inva

des

enti

repl

ant.

Use

dise

ase-

free

seed

.C

rop

rota

tion

.C

ure

fru

itfo

rst

orag

eat

85�F

for

2w

eeks

,st

ore

at50

–55�

F.U

seap

prov

edfu

ngi

cide

s.D

own

ym

ilde

wA

ngu

lar,

yell

owsp

ots

onol

der

leav

es;

purp

lefu

ngu

son

un

ders

ides

ofle

aves

wh

enm

oist

ure

pres

ent;

leav

esw

ith

er,

die;

fru

itm

aybe

dwar

fed,

wit

hpo

orfl

avor

.

Use

tole

ran

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Fu

sari

um

wil

tS

tun

tin

gan

dye

llow

ing

ofvi

ne;

wat

er-

soak

edst

reak

onon

esi

deof

vin

eev

entu

ally

turn

sye

llow

,cr

acks

,an

doo

zes

sap.

Use

resi

stan

tva

riet

ies.

Avo

idin

fest

edso

ils.

Gu

mm

yst

embl

igh

tL

esio

ns

may

occu

ron

stem

s,le

aves

,an

dfr

uit

from

wh

ich

are

ddis

hgu

mm

yex

uda

tem

ayoo

ze.

Use

dise

ase-

free

seed

.R

otat

ecr

ops.

Use

appr

oved

fun

gici

des.

Mos

aic

(sev

eral

)M

ottl

ing

(yel

low

and

gree

n)

and

curl

ing

ofle

aves

;m

ottl

edan

dw

arty

fru

it;

redu

ced

yiel

ds;

burn

ing

and

dwar

fin

gof

enti

repl

ant.

Con

trol

stri

ped

cucu

mbe

rbe

etle

orap

hid

wit

hin

sect

icid

es.U

sere

sist

ant

vari

etie

s.D

estr

oysu

rrou

ndi

ng

pere

nn

ial

wee

ds.

Page 322: HANDBOOK FOR VEGETABLE GROWERS

370

TA

BL

E6.

15.

DIS

EA

SE

CO

NT

RO

LF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Cro

pD

isea

seD

escr

ipti

onC

ontr

ol

Pow

dery

mil

dew

Wh

ite,

pow

dery

grow

thon

upp

erle

afsu

rfac

ean

dpe

tiol

es;

wil

tin

gof

foli

age.

Use

tole

ran

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Cu

cum

ber

scab

Wat

er-s

oake

dsp

ots

onle

aves

turn

ing

wh

ite;

sun

ken

cavi

tyon

fru

itla

ter

cove

red

bygr

ayis

hol

ive

fun

gus;

fru

itde

stro

yed

byso

ftro

t.

Use

resi

stan

tva

riet

ies.

Use

appr

oved

fun

gici

des.

Squ

ash

silv

erle

afS

ilve

rin

gor

wh

ite

colo

rati

onto

leav

es.

Ass

ocia

ted

wit

hsi

lver

leaf

wh

itefl

yfe

edin

g,di

sord

eris

wor

sein

fall

crop

sin

sou

ther

nU

nit

edS

tate

s.

Lit

tle

con

trol

,ex

cept

toav

oid

plan

tin

gu

nde

rh

igh

wh

itefl

ypo

pula

tion

san

du

seto

lera

nt

vari

etie

s.

Page 323: HANDBOOK FOR VEGETABLE GROWERS

371

DISEASE IDENTIFICATION WEBSITES WITH DISEASEPHOTOGRAPHS AND DIAGNOSTIC INFORMATION

Plant disease control begins with an accurate diagnosis and identification ofthe disease-causing organism or agent. Although photos are helpful inidentifying plant diseases, we encourage the grower to consult aknowledgeable disease expert to provide confirmation of the identificationbefore any control strategy is implemented. Here are a few websitescontaining photographs and helpful diagnostic information:

Arkansas, http: / /www.aragriculture.org /pestmanagement /diseases / imagelibrary /default.htm

Florida, http: / / edis.ifas.ufl.edu/VH045Maryland, http: / /www.agnr.umd.edu/users /hgic /diagn/home.htmlMinnesota, http: / /www.extension.umn.edu/projects /yardandgarden/

diagnostics /mainvegetables.htmlNew York, http: / /plantclinic.cornell.edu /vegetable / index.htm; http: / /

vegetablemdonline.ppath.cornell.edu /PhotoPages /PhotoGallery.htmPennsylvania, http: / /vegdis.cas.psu.edu/ Identification.htmlUtah, http: / / extension.usu.edu/plantpath /vegetables /vegetables.htmWashington, http: / /mtvernon.wsu.edu/path team/diseasegallery.htmOther, http: / /www.gardeners.com/gardening /content.asp?copy id�5366

Page 324: HANDBOOK FOR VEGETABLE GROWERS

372

09INSECTS

SOME INSECTS THAT ATTACK VEGETABLES

Most vegetable crops are attacked by insects at one time or another in thecrop growth cycle. Growers should strive to minimize insect problems byemploying cultural methods aimed at reducing insect populations. Thesetactics include using resistant varieties, reflective mulches, crop rotation forsoilborne insects, destruction of weed hosts, stylet oils, insect repellants,trap crops, floating row covers, or other tactics. Sometimes insecticides mustbe used in an integrated approach to insect control when the economicthreshold insect population is reached. When using insecticides, read thelabel and carefully follow the instructions. Do not exceed maximum ratesgiven, observe the interval between application and harvest, and apply onlyto crops for which use is approved. Make a record of the product used, tradename, formulation, dilution, rate applied per acre, and dates of application.Read and follow all label precautions to protect the applicator and workersfrom insecticide injury and the environment from contamination. Followlocal recommendations for efficacy and read the label for proper use.

Page 325: HANDBOOK FOR VEGETABLE GROWERS

373

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES

Crop Insect Description

Artichoke Aphid Small, green, pink, or blacksoft-bodied insects thatrapidly reproduce to largepopulations. Damage resultsfrom sucking plant sap;indirectly from virustransmission to crop plants.

Plume moth Small wormlike larvae blemishbracts and may destroy thebase of the bract.

Asparagus Beetle and twelve-spotted beetle

Metallic blue or black beetles(1⁄4 in.) with yellowish wingmarkings and reddish,narrow head. Larvae arehumpbacked, slate gray. Bothfeed on shoots and foliage.

Cutworm Dull-colored moths lay eggs inthe soil. The produce dark-colored, smooth worms, 1–2in. long, thatcharacteristically curl upwhen disturbed. May feedbelow ground or above-ground at night.

Bean Aphid See Artichoke.Corn earworm Gray-brown moth (11⁄2 in.) with

dark wing tips deposits eggs,especially on fresh corn silk.Brown, green, or pink larvae(2 in.) feed on silk, kernels,and foliage.

Page 326: HANDBOOK FOR VEGETABLE GROWERS

374

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Leafhopper Green, wedge-shaped, softbodies (1⁄8 in.). When presentin large numbers, sucking ofplant sap causes plantdistortion or burnedappearance. Secondarydamage results fromtransmission of yellowsdisease.

Mexican bean beetle Copper-colored beetle (1⁄4 in.)with 16 black spots on itsback. Orange to yellow spinylarva (1⁄3 in.). Beetle andlarvae feeding on leafundersides cause a laceworkappearance.

Seed corn maggot Grayish brown flies (1⁄5 in.)deposit eggs in the soil nearplants. Cream-colored,wedge-shaped maggots (1⁄4in.) tunnel into seeds, potatoseed pieces, and sprouts.

Spider mite Reddish, yellow, or greenishtiny eight-legged spiders suckplant sap from leafundersides, causingdistortion. Fine webs may bevisible when mites arepresent in large numbers.Mites are not true insects.

Spotted cucumberbeetle

Yellowish, elongated beetle (1⁄4in.) with 11 or 12 black spotson its back. Leaf-feeding maydestroy young plants whenpresent in large numbers.Transmits bacterial wilt ofcurcurbits.

Page 327: HANDBOOK FOR VEGETABLE GROWERS

375

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Striped cucumberbeetle

Yellow (1⁄5 in.) with three blackstripes on its back; feeds onleaves. White larvae (1⁄3 in.)feed on roots and stems.Transmits bacterial wilt ofcurcurbits.

Tarnish plant bug Brownish, flattened, oval bugs(1⁄4 in.) with a cleartriangular marking at therear. Bugs damage plants bysucking plant sap.

Beet Aphid See Artichoke.Flea beetle Small (1⁄6 in.), variable-colored,

usually dark beetles, oftenpresent in large numbers inthe early part of the growingseason. Feeding results innumerous small holes, givinga shotgun appearance.Indirect damage results fromdiseases transmitted.

Leaf miner Tiny black and yellow adults.Yellowish white maggot-likelarvae tunnel within leavesand cause white ortranslucent irregularlydamaged areas.

Webworm Yellow to green worm (11⁄4 in.)with a black stripe andnumerous black spots on itsback.

Broccoli, Brusselssprouts,cabbage,cauliflower, kale,kohlrabi

AphidFlea beetleHarlequin cabbage

bug

See Artichoke.See Beet.Black, shield-shaped bug (3⁄8

in.) with red or yellowmarkings.

Page 328: HANDBOOK FOR VEGETABLE GROWERS

376

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Cabbage maggot Housefly-like adult lays eggs inthe soil at the base of plants.Yellowish, legless maggot(1⁄4–1⁄3 in.) tunnels into rootsand lower stem.

Cabbage looper A brownish moth (11⁄2 in.) thatlays eggs on upper leafsurfaces. Resulting worms(11⁄2 in.) are green with thinwhite lines. Easily identifiedby their looping movement.

Diamondback moth Small, slender gray or brownmoths. The folded wings ofmale moths show threediamond markings. Small (1⁄3in.) larvae with distinctive Vat rear, wiggle whendisturbed.

Imported cabbageworm

White butterflies with blackwing spots lay eggs onundersides of leaves.Resulting worms (11⁄4 in.) aresleek, velvety, green.

Cantaloupe (SeeVine Crops)

Carrot Leafhopper See Bean.Rust fly Shiny, dark fly with a yellow

head; lays eggs in the soil atthe base of plants. Yellowishwhite, legless maggots tunnelinto roots.

Celery Aphid See Beet.Leaf miner Adults are small, shiny, black

flies with a bright yellow spoton upper thorax. Eggs arelaid within the leaf. Larvaemine between upper andlower leaf surfaces.

Page 329: HANDBOOK FOR VEGETABLE GROWERS

377

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Spider mite See Bean.Tarnished plant bug See Bean.Loopers and worms See Broccoli, etc.

Cucumber (SeeVine Crops)

Eggplant Aphid See Artichoke.Colorado potato

beetleOval beetle (3⁄8 in.) with 10

yellow and 10 black stripes,lays yellow eggs onundersides of leaves. Brickred, humpbacked larvae (1⁄2in.) have black spots. Beetlesand larvae are destructiveleaf feeders.

Flea beetle See Beet.Leaf miner See Beet.Spider mite See Bean.

Endive, escarole,lettuce

Aphid See Artichoke.

Flea beetle See Beet.Leafhopper See Bean.Leaf miner See Beet.Looper See Broccoli.

Mustard greens Aphid See Artichoke.Worms See Broccoli, etc.

Okra Aphid See Artichoke.Green stinkbug Large, flattened, shield-shaped,

bright green bugs; various-sized nymphs with reddishmarkings.

Onion Maggot Slender, gray flies (1⁄4 in.) layeggs in soil. Small (1⁄3 in.)maggots bore into stems andbulbs.

Thrips Yellow or brown, winged orwingless, tiny (1⁄25 in.).Damages plant by suckingplant sap, causing whiteareas or brown leaf tips.

Page 330: HANDBOOK FOR VEGETABLE GROWERS

378

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Parsnip Carrot rust fly See Carrot.Pea Aphid See Artichoke.

Seed maggot Housefly-like gray adults layeggs that develop intomaggots (1⁄4 in.) with sharplypointed heads.

Weevil Brown-colored adults, markedby white, black, or gray (1⁄5in.), lay eggs on young pods.Larvae are small andwhitish, with a brown headand mouth. Adults feed onblossoms. May infect seedbefore harvest and remain inhibernation during storage.

Pepper Aphid See Artichoke.Corn borer See Sweet corn.Flea beetle See Beet.Leaf miner See Beet.Maggot Housefly-sized adults have

yellow stripes on body andbrown stripes on wings.Larvae are typical maggotswith pointed heads.

Weevil Black-colored, gray- or yellow-marked snout beetle, withthe snout about half thelength of the body. Grayishwhite larvae are legless andhave a pale brown head.Both adults and larvae feedon buds and pods; adults alsofeed on foliage.

Potato Aphid See Artichoke.Colorado potato

beetleSee Eggplant.

Page 331: HANDBOOK FOR VEGETABLE GROWERS

379

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Cutworm See Asparagus.Flea beetle See Beet.Leafhopper See Bean.Leaf miner See Beet.Tuberworm Small, narrow-winged, grayish

brown moths (1⁄2 in.) lay eggson foliage and exposed tubersin evening. Purplish or greencaterpillars (3⁄4 in.) withbrown heads burrow intoexposed tubers in the field orin storage.

Wireworm Adults are dark-colored,elongated beetles (clickbeetles). Yellowish, tough-bodied, segmented larvaefeed on roots and tunnelthrough fleshy roots andtubers.

Radish Maggot See Broccoli, etc.Rhubarb Curculio Yellow-dusted snout beetle that

damages plants bypuncturing stems.

Rutabaga, turnip Flea beetle See Beet.Maggot See Broccoli, etc.

Squash (See VineCrops)

Southern pea Curculio Black, humpbacked snoutbeetle. Eats small holes inpods and peas. Larvae arewhite with yellowish headand no legs.

Leafhopper See Bean.Leaf miner See Beet.

Spinach Aphid See Artichoke.Leaf miner See Beet.

Page 332: HANDBOOK FOR VEGETABLE GROWERS

380

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Strawberry Aphid See Artichoke.Mites Several mite species attack

strawberry. See Bean.Tarnished plant bug See Bean.Thrips See Onion.Weevils Several weevil species attack

strawberry.Worms Several worm species attack

strawberry.Sweet corn Armyworms Moths (11⁄2 in.) with dark gray

front wings and light-coloredhind wings lay eggs on leafundersides. Tan, green, orblack worms (11⁄4 in.) feed onplant leaves and corn ears.

Earworm See Bean.European corn borer Pale, yellowish moths (1 in.)

with dark bands lay eggs onundersides of leaves.Caterpillars hatch, feed onleaves briefly, and tunnel intostalk and to the ear.

Flea beetle See Beet.Japanese beetle Shiny, metallic green with

coppery brown wing covers,oval beetles (1⁄2 in.). Severeleaf feeding results in alacework appearance. Larvaeare grubs that feed on grassroots.

Seed corn maggot See Bean.

Page 333: HANDBOOK FOR VEGETABLE GROWERS

381

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Stalk borer Grayish moths (1 in.) lay eggson weeds. Small, white,brown-striped caterpillarshatch and tunnel into weedand crop stalks. Mostdamage is usually at edges offields.

Sweet potato Flea beetle See Beet.Weevil Blue-black and red adult (1⁄4

in.) feeds on leaves andstems; grub-like larvatunnels into roots in the fieldand storage.

Wireworm See Potato.Tomato Aphid See Artichoke.

Colorado potatobeetle

See Eggplant.

Corn earworm(tomato fruitworm)

See Bean.

Flea beetle See Beet.Fruit fly Small, dark-colored flies

usually associated withoverripe or decayingvegetables.

Hornworm Large (4–5 in.) moths lay eggsthat develop into large (3–4in.) green fleshy worms withprominent white lines onsides and a distinct horn atthe rear. Voracious leaffeeders.

Leaf miner See Beet.

Page 334: HANDBOOK FOR VEGETABLE GROWERS

382

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Pinworm Tiny yellow, gray, or greenpurple-spotted, brown-headedcaterpillars cause small fruitlesions, mostly near calyx.Presence detected by largewhite blotches near foldedleaves.

Mite See Bean.Stink bug See Okra.White fly Small, white flies that move

when disturbed.Vine Crops:

cantaloupe,cucumber,pumpkinsquash,watermelon

AphidCucumber beetle

(spotted or striped)

See Artichoke.

Leafhopper See Bean.Leaf miner See Beet.Mite See Bean.Pickleworm White moths (1 in.), later

become greenish with blackspots, with brown heads andbrown-tipped wings withwhite centers and aconspicuous brush at the tipof the body, lay eggs onfoliage. Brown-headed, white,later becoming greenish withblack spots. Larvae (3⁄4 in.)feed on blossoms, leaves, andfruit.

Squash bug Brownish, flat stinkbug (5⁄8 in.).Nymphs (3⁄8 in.) are gray togreen. Plant damage is dueto sucking of plant sap.

Page 335: HANDBOOK FOR VEGETABLE GROWERS

383

TABLE 6.16. INSECTS THAT ATTACK VEGETABLES (Continued )

Crop Insect Description

Squash vine borer Black, metallic moth (11⁄2 in.)with transparent hind wingsand abdomen ringed with redand black; lays eggs at thebase of the plant. Whitecaterpillars bore into thestem and tunnel throughout.

White fly See Tomato.

IDENTIFICATION OF VEGETABLE INSECTS

Effective insect management requires accurate identification and a thoroughknowledge of the insect’s habits and life cycle. Previous editions ofHandbook for Vegetable Growers contained drawings of selected insect pestsof vegetables. Today, many fine websites that contain photographs of insectpests are available. Some Extension Services also have available CD-ROMscontaining insect photographs. We have chosen to direct the reader to someof these websites to assist in the identification of insect pests. Although thephotos are helpful in identifying pests, we encourage the grower to consult aknowledgeable insect expert to confirm the identification before any controlstrategy is implemented.

SOME USEFUL WEBSITES FOR INSECT IDENTIFICATION

California, http: / /www.ipm.ucdavis.edu/PMG/crops-agriculture.html; http: / /www.ipm.ucdavis.edu/PCA/pcapath.html#SPECIFIC

Colorado, http: / / lamar.colostate.edu/�gec /vg.htm

Florida, http: / /pests.ifas.ufl.edu (for a listing of web sites on insects, mites,and other topics and information regarding vegetable pest images andCDs)

Georgia, http: / /www.ent.uga.edu/veg /veg crops.htm

Indiana, http: //www.entm.purdue.edu/entomology/vegisite/

Page 336: HANDBOOK FOR VEGETABLE GROWERS

384

Iowa, http: / /www.ent.iastate.edu/ imagegallery /Kentucky, http: / /www.uky.edu/Agriculture /Entomology /entfacts /efveg.htmMississippi, http: / /msucares.com/ insects /vegetable /North Carolina, http: / /www.ces.ncsu.edu/depts /hort / consumer /

hortinternet /vegetable.html; http: / /www.ces.ncsu.edu/chatham/ag /SustAg/ insectlinks.html

South Carolina, http: / / entweb.clemson.edu/cuentres / cesheets /veg /Texas, http: / /vegipm.tamu.edu/ imageindex.html; http: / / insects.tamu.edu/

images / insects / color /veindex.html

Page 337: HANDBOOK FOR VEGETABLE GROWERS

385

10PEST MANAGEMENT IN ORGANIC PRODUCTION SYSTEMS

Diseases, insects, and nematodes can be controlled in organic vegetableproduction systems by combinations of tactics, including certain approvedcontrol materials. Pest management practices useful in organic vegetableproduction include:

Understanding the biology and ecology of pestsEncouraging natural enemies, predators, and parasitesCrop rotationTrap cropsCrop diversificationResistant varietiesScouting for early detectionOptimal timing of planting (avoidance)Controlling weed hostsControlling alternate host plantsSanitation of fieldPest-free transplantsTilling crop refuseExclusion, e.g., row coversTraps, sticky tape, pheromone traps, etc.Maintaining healthy cropsMaintaining optimum plant nutritionOptimal pH controlMulchesSpatial separation of crop and pestAvoiding splashing water (drip irrigation instead of sprinklers)Destroying cull pilesProviding for good air movement (proper plant and row spacing)Using raised beds for water drainageFlaming for weeds and Colorado potato beetleTrellising or staking for air movement and to keep fruits from contact with

the groundHand removalCompost use (may contain antagonistic organism)Using approved control materials

Page 338: HANDBOOK FOR VEGETABLE GROWERS

386

SELECTED RESOURCES FOR PEST CONTROL IN ORGANICFARMING SYSTEMS

We located a variety of websites with information on organic pestmanagement, many of which also contain links to other helpful sources ofinformation. Some of these websites are listed below:

● B. Caldwell, E. Rosen, E. Sideman, A. Shelton, and C. Smart,Resource Guide for Organic Insect and Disease Management (CornellUniversity, 2005), http: / /www.nysaes.cornell.edu /pp /resourceguide /index.php.

● C. Weeden, A. Shelton, Y. Li, and M. Hoffman, Biological Control: AGuide to Natural Enemies in North America (Cornell University,2005), http: / /www.nysaes.cornell.edu /ent /biocontrol /.

● R. Hazzard and P. Westgate, Organic Insect Management in SweetCorn (University of Massachusetts, 2004), http: / /www.umassvegetable.org /soil crop pest mgt /pdf files /organic insectmanagement in sweet corn.pdf.

● Organic Farming—National Sustainable Agriculture InformationService, http: / /attra.ncat.org /organic.html 2005). This site has manylinks to other organic farming publications by NCAT (National Centerfor Appropriate Technology).

● S. Koike, M. Gaskell, C. Fouche, R. Smith, and J. Mitchell, PlantDisease Management for Organic Crops (University of California—Davis, 2000), http: / /anrcatalog.ucdavis.edu/pdf7252.pdf.

● Insect and Disease Management in Organic Crop Systems (ManitobaAgriculture, Food, and Rural Initiatives, 2004), http: / /www.gov.mb.ca /agriculture / crops / insects / fad64s00.html.

● Alternative Disease, Pest, and Weed Control (Alternative FarmingSystems Information Center, 2003), http: / /www.nal.usda.gov /afsic /sbjdpwc.htm.

● Sustainable Agriculture Research and Education, http: / /www.sare.org /publications /organic /organic03.htm.

● Organic Gardening: A Guide to Resources, 1989–September 2003,http: / /www.nal.usda.gov /afsic /AFSIC pubs /org gar.htm#toc2c.

● Organic Trade Association, http: / /www.ota.com/ index.html.● Organic /Sustainable Farming: Idaho OnePlan (The Idaho Association

of Soil Conservation Districts, 2004), http: / /www.oneplan.org /index.shtml.

Page 339: HANDBOOK FOR VEGETABLE GROWERS

387

11WILDLIFE CONTROL

DEER

Repellants. May be effective for low-density deer populations. Apply beforedamage is expected, when no precipitation is expected, and whentemperatures are 40–80�F.

Fencing. Woven wire fences are the most effective and should be 8–10 fttall. Electric fences may act as a deterrent. Some growers have successwith 5- or 6-ft high-tensile electric fences, even though deer may be ableto jump them.

RACCOONS

Many states have laws controlling the manner in which raccoons can beremoved. Usually trapping is the only means of ridding a field of raccoons.Crops can be protected with a double-strand electric fence with wires at 5and 10 in. above the ground.

BIRDS

Exclusion. Bird proof netting can be used to protect vegetables of highvalue.

Sound devices. Some success has been reported with recorded distress calls.Other sound devices such as propane guns may be effective for shortperiods. Use of these devices should be random and with a range ofsound frequency and intervals.

Visual devices. Eye-spot balloons have been used with some success againstgrackles, blue jays, crows, and starlings and might be the control methodof choice for urban farms. Reflective tape has been used with variablesuccess and is labor intensive to install.

MICE

Habitat control. Remove any possible hiding or nesting sites near the field.Sometimes mice nest underneath polyethylene mulch not applied tightlyto the ground, or in thick windbreaks.

Page 340: HANDBOOK FOR VEGETABLE GROWERS

388

Traps and baits. Strategically placed traps and bait stations can be used toreduce mouse populations.

Transplanting. The seed of some particularly attractive crops, such ascurcurbits, is a favorite mouse food, and the seed is often removed fromthe ground soon after planting. One option to reduce stand losses istransplanting instead of direct seeding.

Page 341: HANDBOOK FOR VEGETABLE GROWERS

PART 5WATER AND IRRIGATION

01 SUGGESTIONS FOR SUPPLYING WATER TO VEGETABLES

02 ROOTING OF VEGETABLES

03 SOIL MOISTURE

04 SURFACE IRRIGATION

05 OVERHEAD IRRIGATION

06 DRIP OR TRICKLE IRRIGATION

07 WATER QUALITY

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 342: HANDBOOK FOR VEGETABLE GROWERS

250

01SUGGESTIONS ON SUPPLYING WATER TO VEGETABLES

Plants in hot, dry areas lose more moisture into the air than those in cooler,more humid areas. Vegetables utilize and evaporate more water in the laterstages of growth when size and leaf area are greater. The root systembecomes deeper and more widespread as the plant ages.

Some vegetables, especially lettuce and sweet corn, have sparse rootsystems that do not come into contact with all the soil moisture in theirroot-depth zone. Cool-season vegetables normally root to a shallower depththan do warm-season vegetables and perennials.

When applying water, use enough to bring the soil moisture content ofthe effective rooting zone of the crop up to field capacity. This is thequantity of water that the soil holds against the pull of gravity.

The frequency of irrigation depends on the total supply of availablemoisture reached by the roots and the rate of water use. The first is affectedby soil type, depth of wetted soil, and the depth and dispersion of roots. Thelatter is influenced by weather conditions and the age of the crops. Addwater when the moisture in the root zone has been used to about thehalfway point in the range of available moisture. Do not wait untilvegetables show signs of wilting or develop color or texture changes thatindicate they are not growing rapidly. A general rule is that vegetables needan average of 1 in. water per week from rain or supplemental irrigation inorder to grow vigorously. In arid regions, about 2 in. /week is required.These amounts of water may vary from 0.5 in. /week early in the season tomore than 1 in. later in the season.

IRRIGATION MANAGEMENT AND NUTRIENT LEACHING

Irrigation management is critical to success in nutrient management formobile nutrients such as nitrogen. Irrigation management is particularlyimportant in vegetable production in sandy soils where nitrogen is highlyprone to leaching from the root zone with heavy rainfall or excessiveirrigation. Leaching can occur with all irrigation systems if more water isapplied than the soil can hold at one time. If the water-holding capacity ofthe soil is exceeded with any irrigation event, nutrient leaching can occur.Information is provided here to assist growers in understanding the rootingzone for crops and water-holding capacity of soils as well as applicationrates for various irrigation systems. Optimum irrigation managementinvolves attention to these factors, knowing crop water needs, and keeping

Page 343: HANDBOOK FOR VEGETABLE GROWERS

251

an eye on soil moisture levels during the season. These factors vary for thecrop being grown, the soil used, the season, and the climate, among otherfactors. Please consult your local Extension Service for specific informationfor your production area.

Page 344: HANDBOOK FOR VEGETABLE GROWERS

252

02ROOTING OF VEGETABLES

ROOTING DEPTH OF VEGETABLES

The depth of rooting of vegetables is influenced by the soil profile. If it is aclay pan, hard pan, compacted layer, or other dense formation, the normaldepth of rooting is not possible. Also, some transplanted vegetables may notdevelop root systems as deep as those of seeded crops. Although vegetablesmay root as deep as 18–24 in., most of the active root system for wateruptake may be between 8 and 12 in.

TABLE 5.1. CHARACTERISTIC MAXIMUM ROOTING DEPTHS OFVARIOUS VEGETABLES

Shallow(18–24 in.)

Moderately Deep(36–48 in.)

Deep(More than 48 in.)

Broccoli Bean, bush ArtichokeBrussels sprouts Bean, pole AsparagusCabbage Beet Bean, limaCauliflower Cantaloupe ParsnipCelery Carrot PumpkinChinese cabbage Chard Squash, winterCorn Cucumber Sweet potatoEndive Eggplant TomatoGarlic Mustard WatermelonLeek PeaLettuce PepperOnion RutabagaParsley Squash, summerPotato TurnipRadishSpinachStrawberry

Page 345: HANDBOOK FOR VEGETABLE GROWERS

253

03SOIL MOISTURE

DETERMINING MOISTURE IN SOIL BY APPEARANCE OR FEEL

A shovel serves to obtain a soil sample from a shallow soil or when ashallow-rooted crop is being grown. A soil auger or soil tube is necessary todraw samples from greater depths in the root zone.

Squeeze the soil sample in the hand and compare its behavior with thoseof the soils listed in the Practical Soil-Moisture Interpretation Chart to geta rough idea of its moisture content.

Page 346: HANDBOOK FOR VEGETABLE GROWERS

254

TA

BL

E5.

2.P

RA

CT

ICA

LS

OIL

-MO

IST

UR

EIN

TE

RP

RE

TA

TIO

NC

HA

RT

Am

oun

tof

Rea

dily

Ava

ilab

leM

oist

ure

Rem

ain

ing

for

the

Pla

nt

Soi

lT

ype

San

d(g

ritt

yw

hen

moi

st,

alm

ost

like

beac

hsa

nd)

San

dyL

oam

(gri

tty

wh

enm

oist

;di

rtie

sfi

nge

rs;

con

tain

sso

me

silt

and

clay

)

Cla

yL

oam

(sti

cky

and

plas

tic

wh

enm

oist

)

Cla

y(v

ery

stic

kyw

hen

moi

st;

beh

aves

like

mod

elin

gcl

ay)

Clo

seto

0%.

Lit

tle

orn

om

oist

ure

avai

labl

e

Dry

,lo

ose,

sin

gle-

grai

ned

;flow

sth

rou

ghfi

nge

rs.

Dry

,lo

ose,

flow

sth

rou

ghfi

nge

rs.

Dry

clod

sth

atbr

eak

dow

nin

topo

wde

ryco

ndi

tion

.

Har

d,ba

ked,

crac

ked

surf

ace.

Har

dcl

ods

diffi

cult

tobr

eak,

som

etim

esh

ave

loos

ecr

um

bson

surf

ace.

50%

orle

ss.

App

roac

hin

gti

me

toir

riga

te

Sti

llap

pear

sto

bedr

y;w

ill

not

form

aba

llw

ith

pres

sure

.

Sti

llap

pear

sto

bedr

y;w

ill

not

form

aba

ll.

Som

ewh

atcr

um

bly,

but

wil

lh

old

toge

ther

wit

hpr

essu

re.

Som

ewh

atpl

iabl

e;w

ill

ball

un

der

pres

sure

.

50–7

5%.E

nou

ghav

aila

ble

moi

stu

re

Sam

eas

san

du

nde

r50

%.

Ten

dsto

ball

un

der

pres

sure

but

seld

omh

olds

toge

ther

.

For

ms

aba

ll,

som

ewh

atpl

asti

c;so

met

imes

stic

kssl

igh

tly

wit

hpr

essu

re.

For

ms

aba

ll;

ribb

ons

out

betw

een

thu

mb

and

fore

fin

ger.

Page 347: HANDBOOK FOR VEGETABLE GROWERS

255

75%

tofi

eld

capa

city

.P

len

tyof

avai

labl

em

oist

ure

Ten

dsto

stic

kto

geth

ersl

igh

tly,

som

etim

esfo

rms

ave

ryw

eak

ball

un

der

pres

sure

.

For

ms

wea

kba

ll,

brea

ksea

sily

,doe

sn

otbe

com

esl

ick.

For

ms

aba

llan

dis

very

plia

ble;

beco

mes

slic

kre

adil

yif

hig

hin

clay

.

Eas

ily

ribb

ons

out

betw

een

fin

gers

;fe

els

slic

k.

At

fiel

dca

paci

ty.

Soi

lw

ill

not

hol

dan

ym

ore

wat

er(a

fter

drai

nin

g)

Upo

nsq

uee

zin

g,n

ofr

eew

ater

appe

ars;

moi

stu

reis

left

onh

and.

Sam

eas

san

d.S

ame

assa

nd.

Sam

eas

san

d.

Abo

vefi

eld

capa

city

.U

nle

ssw

ater

drai

ns

out,

soil

wil

lbe

wat

er-

logg

ed

Fre

ew

ater

appe

ars

wh

enso

ilis

bou

nce

din

han

d.

Fre

ew

ater

isre

leas

edw

ith

knea

din

g.C

ansq

uee

zeou

tfr

eew

ater

.P

udd

les

and

free

wat

erfo

rmon

surf

ace.

Ada

pted

from

R.

W.

Har

ris

and

R.

H.

Cop

pock

(eds

.),‘

‘Sav

ing

Wat

erin

Lan

dsca

peIr

riga

tion

,’’U

niv

ersi

tyof

Cal

ifor

nia

Div

isio

nof

Agr

icu

ltu

ral

Sci

ence

Lea

flet

2976

(197

8).A

lso

from

N.

Klo

cke

and

P.F

isch

bach

,Est

imat

ion

,Soi

lM

oist

ure

byA

ppea

ran

cean

dF

eel

(Un

iver

sity

ofN

ebra

ska

Coo

pera

tive

Ext

ensi

onS

ervi

ce,

1998

),h

ttp:

//ia

nrp

ubs

.un

l.edu

/irr

igat

ion

/g69

0.h

tm.

Page 348: HANDBOOK FOR VEGETABLE GROWERS

256

TABLE 5.3. FIELD DEVICES FOR MONITORING SOIL MOISTURE

Method Advantages Disadvantages

Neutronmoderation

inexpensive per locationlarge sensing volumenot affected by salinitystabile

safety hazardcumbersomeexpensiveslow

Time DomainReflectometry(TDR)

accurateeasily expandedinsensitive to normal

salinitysoil-specific calibration not

needed

expensiveproblems under high

salinitysmall sensing volume

Frequency Domain(FD)

Capacitance andFDR

accurate after specific-soilcalibration

better than TDR in salinesoils

more flexible in probes thanTDR

less expensive than TDR(some devices)

small sensing sphereneeds careful

installationneeds specific soil

calibration

Tensiometer direct readingminimal skillinexpensivenot affected by salinity

limited suction rangeslow response timefrequent maintenancerequires intimate contact

with soilResistance blocks no maintenance

simple, inexpensivelow resolutionslow reaction timenot suited for claysblock properties change

with timeGranular matrix

sensorsno maintenancesimple, inexpensivereduced problems compared

to gypsum blocks

low resolutionslow reaction timenot suited for claysneed to resaturate in dry

soils

Adapted from R. Munoz-Carpena, Field Devices for Monitoring Soil Water Content (University ofFlorida Extension Service Bulletin 343, 2004), http: / / edis.ifas.ufl.edu / ae266.

Page 349: HANDBOOK FOR VEGETABLE GROWERS

257

TABLE 5.4. APPROXIMATE SOIL WATER CHARACTERISTICS FORTYPICAL SOIL CLASSES

Characteristic Sandy Soil Loamy Soil Clay Soil

Dry weight 1 cu ft 90 lb 80 lb 75 lbField capacity—% of dry weight 10% 20% 35%Permanent wilting percentage 5% 10% 19%Percent available water 5% 10% 16%Water available to plants

lb / cu ft 4 lb 8 lb 12 lbin. / ft depth 3⁄4 in. 11⁄2 in. 21⁄4 in.gal / cu ft 1⁄2 gal 1 gal 11⁄2 gal

Approximate depth of soil that willbe wetted by each 1 in. waterapplied if half the availablewater has been used

24 in. 16 in. 11 in.

Suggested lengths of irrigationruns

330 ft 660 ft 1,320 ft

Page 350: HANDBOOK FOR VEGETABLE GROWERS

258

Figure 5.1. Arrangement of beds for furrow irrigation. Beds intended fortwo rows are usually on 36-, 40-, or 42-in. centers, with the surface 4–6 in.above the bottom of the furrow. The depth of penetration of an equal quantityof water varies with the class of soil as indicated.

Page 351: HANDBOOK FOR VEGETABLE GROWERS

259

04SURFACE IRRIGATION

RATES OF WATER APPLICATION FOR VARIOUS IRRIGATIONMETHODS

The infiltration rate has an important bearing on the intensity andfrequency with which water should be applied by any method of irrigation.

Normally, sandy soils have a high infiltration rate and clay soils have alow one. The rate is affected by soil texture, structure, dispersion, and thedepth of the water table. The longer the water is allowed to run, the morethe infiltration rate decreases.

With furrows, use a flow of water initially 2–3 times that indicated to fillthe run as quickly as possible. Then cut back the flow to the indicatedamount. This prevents excessive penetration at the head and equalizes theapplication of water throughout the whole furrow.

TABLE 5.5. APPROXIMATE FLOW OF WATER PER FURROWAFTER WATER REACHES THE END OF THE FURROW

Slope of Land (%)

0–0.2 0.2–0.5 0.5–1

Infiltration Rate of Soil(in. /hr)

Length of Furrow(ft)

Flow of Water per Furrow(gal /min)

High (1.5 or more) 330 9 4 3660 20 9 7

1,320 45 20 15Medium (0.5–1.5) 330 4 3 1.5

660 10 7 3.51,320 25 15 7.5

Low (0.1–0.5) 330 2 1.5 1660 4 3.5 2

1,320 9 7.5 4

Page 352: HANDBOOK FOR VEGETABLE GROWERS

260

TABLE 5.6. APPROXIMATE MAXIMUM WATER INFILTRATIONRATES FOR VARIOUS SOIL TYPES

Soil TypeInfiltration

Rate1 (in. /hr)

Sand 2.0Loamy sand 1.8Sandy loam 1.5Loam 1.0Silt and clay loam 0.5Clay 0.2

1 Assumes a full crop cover. For bare soil, reduce the rate by half.

TABLE 5.7. PERCENT OF AVAILABLE WATER DEPLETED FROMSOILS AT VARIOUS TENSIONS

Tension—less than—

(bars)1LoamySand

SandyLoam Loam Clay

0.3 55 35 15 70.5 70 55 30 130.8 77 63 45 201.0 82 68 55 272.0 90 78 72 455.0 95 88 80 75

15.0 100 100 100 100

Adapted from Cooperative Extension, University of California Soil and Water Newsletter No. 26(1975).1 1 bar � 100 kilopascals

Page 353: HANDBOOK FOR VEGETABLE GROWERS

261

TABLE 5.8. SPRINKLER IRRIGATION: APPROXIMATEAPPLICATION OF WATER

Slope of Land (%)

0–5 5–12

Infiltration Rate of Soil(in. /hr)

ApproximateApplication (in. /hr)

High (1.5 or more) 1.0 0.75Medium (0.5–1.5) 0.5 0.40Low (0.1–0.5) 0.2 0.15

TABLE 5.9. BASIN IRRIGATION: APPROXIMATE AREA

Quantity of Water to be Supplied

450 gal /min or1 cu ft / sec

900 gal /min or2 cu ft / sec

Infiltration Rate of Soil(in. /hr)

Approximate Area(acre /basin)

High (1.5 or more) 0.1 0.2Medium (0.5–1.5) 0.2 0.4Low (0.1–0.5) 0.5 1.0

Page 354: HANDBOOK FOR VEGETABLE GROWERS

262

TABLE 5.10. VOLUME OF WATER APPLIED FOR VARIOUS FLOWRATES AND TIME PERIODS

Flow Rate (gpm)

Volume (acre-in.) Applied

1 hr 8 hr 12 hr 24 hr

25 0.06 0.44 0.66 1.3350 0.11 0.88 1.33 2.65

100 0.22 1.77 2.65 5.30200 0.44 3.54 5.30 10.60300 0.66 5.30 7.96 15.90400 0.88 7.07 10.60 21.20500 1.10 8.84 13.30 26.50

1,000 2.21 17.70 26.50 53.001,500 3.32 26.50 39.80 79.602,000 4.42 35.40 53.00 106.00

Adapted from A. Smajstrla and D. S. Harrison, Florida Cooperative Extension, AgriculturalEngineering Fact Sheet AE18 (1982).

Page 355: HANDBOOK FOR VEGETABLE GROWERS

263

TA

BL

E5.

11.

AP

PR

OX

IMA

TE

TIM

ER

EQ

UIR

ED

TO

AP

PL

YV

AR

IOU

SD

EP

TH

SO

FW

AT

ER

PE

RA

CR

EW

ITH

DIF

FE

RE

NT

FL

OW

S1

Flo

wof

Wat

erA

ppro

xim

ate

Tim

eR

equ

ired

per

Acr

efo

ra

Dep

thof

:

1in

.2

in.

3in

.4

in.

gpm

sec-

ftA

ppro

xim

ate

acre

-in

./h

rh

rm

inh

rm

inh

rm

inh

rm

in

500.

111⁄8

903

1806

2709

3612

100

0.22

1⁄4

432

903

1335

1806

150

0.33

5⁄16

301

602

903

1204

200

0.45

7⁄16

216

432

647

903

250

0.56

9⁄16

149

337

526

714

300

0.67

11⁄16

131

301

432

602

350

0.78

3⁄4

118

235

353

510

400

0.89

7⁄8

108

216

324

432

450

1.00

11

002

013

014

0150

01.

1111

⁄854

149

243

337

550

1.23

13⁄16

491

392

283

1860

01.

3415

⁄1645

131

216

301

650

1.45

17⁄16

421

242

052

4870

01.

5619

⁄1639

118

156

235

750

1.67

121⁄32

361

121

492

24

Page 356: HANDBOOK FOR VEGETABLE GROWERS

264

TA

BL

E5.

11.

AP

PR

OX

IMA

TE

TIM

ER

EQ

UIR

ED

TO

AP

PL

YV

AR

IOU

SD

EP

TH

SO

FW

AT

ER

PE

RA

CR

EW

ITH

DIF

FE

RE

NT

FL

OW

S1

(Con

tin

ued

)

Flo

wof

Wat

erA

ppro

xim

ate

Tim

eR

equ

ired

per

Acr

efo

ra

Dep

thof

:

1in

.2

in.

3in

.4

in.

gpm

sec-

ftA

ppro

xim

ate

acre

-in

./h

rh

rm

inh

rm

inh

rm

inh

rm

in

800

1.78

13⁄4

341

081

422

1685

01.

8917

⁄832

104

136

208

900

2.01

230

100

131

201

950

2.12

23⁄32

2957

126

154

1,00

02.

2323

⁄1627

541

211

491,

050

2.34

25⁄16

2652

118

144

1,10

02.

4527

⁄1625

491

141

381,

150

2.56

21⁄2

2447

111

134

1,20

02.

6725

⁄823

451

081

311,

300

2.90

27⁄8

2142

103

124

1,40

03.

1231

⁄1620

3958

118

1,50

03.

3435

⁄1618

3654

112

1 If

asp

rin

kler

syst

emis

use

d,th

eti

me

requ

ired

shou

ldbe

incr

ease

dby

2–10

%to

com

pen

sate

for

the

wat

erth

atw

ill

evap

orat

ebe

fore

reac

hin

gth

eso

il.

Page 357: HANDBOOK FOR VEGETABLE GROWERS

265

TO DETERMINE THE WATER NEEDED TO WET VARIOUS DEPTHSOF SOIL

Example: You wish to wet a loam soil to a 12-in. depth when half theavailable water in that zone is gone. Move across the chartfrom the left on the 12-in. line. Stop when you reach thediagonal line marked ‘‘loams.’’ Move upward from that point tothe scale at the top of the chart. You will see that about 3⁄4 in.water is needed.

Depth of water required, inches, based on depletion of about half the availablewater in the effective root zone.

Figure 5.2. Chart for determining the amount of water needed to wet var-ious depths of soil.

Page 358: HANDBOOK FOR VEGETABLE GROWERS

266

USE OF SIPHONS

Siphons of metal, plastic, or rubber can be used to carry water from a ditchto the area or furrow to be irrigated.

The inside diameter of the pipe and the head—the vertical distance fromthe surface of the water in the ditch to the surface of the water on theoutlet side—determine the rate of flow.

When the outlet is not submerged, the head is measured to the center ofthe siphon outlet. You can determine how many gallons per minute areflowing through each siphon from the chart below.

Example: You have a head of 4 in. and are using 2-in. siphons. Followthe 4-in. line across the chart until you reach the curve for 2-in. siphons. Move straight down to the scale at the bottom.You will find that you are putting on about 28 gal /min.

Figure 5.3. Method of measuring the head for water carried from a supplyditch to a furrow by means of a siphon. Adapted from University of CaliforniaDivision of Agricultural Science Leaflet 2956 (1977).

Page 359: HANDBOOK FOR VEGETABLE GROWERS

267

Figure 5.4. Chart for determining the flow of water through small siphons.Adapted from University of California Division of Agricultural Science Leaflet2956 (1977). Also: E. C. Martin, Measuring Water Flow in Surface Irrigationand Gated Pipe (University of Arizona College Agriculture and Life Scien-ces, Arizona Water Series 31, 2004), http: / / cals.arizona.edu/pubs /water /az1329.pdf.

APPLICATION OF FERTILIZER IN WATER FOR FURROWIRRIGATION

There are certain limitations to the method of applying fertilizer solutionsor soluble fertilizers in water supplied by furrow irrigation. You do not getuniform distribution of the fertilizer over the whole irrigated area. More ofthe dissolved material may enter the soil near the head than at the end ofthe furrow. You must know how long it will be necessary to run water inorder to irrigate a certain area so as to meter the fertilizer solutionproperly. Soils vary considerably in their ability to absorb water.

Fertilizer solutions can be dripped from containers into the water.Devices are available that meter dry fertilizer materials into the irrigationwater where they dissolve.

Page 360: HANDBOOK FOR VEGETABLE GROWERS

268

The rate of flow of dry soluble fertilizer or of fertilizer solutions into anirrigation head ditch can be calculated as follows:

area to be amount of nutrientflow rate ofirrigated (acres /hr) � wanted (lb /acre)

� fertilizer solutionnutrients in solution (lb /gal) (gal /hr)

area to be amount of solubleflow rate ofirrigated (acres) � fertilizer (lb /acre or gal /acre)

� fertilizer solutiontime of irrigation (hr) (lb /hr or gal /hr)

Knowing the gallons of solution per hour to be added to the irrigationwater, you can adjust the flow from the tank as directed by the followingtable.

Page 361: HANDBOOK FOR VEGETABLE GROWERS

269

TABLE 5.12. RATE OF FLOW OF FERTILIZER SOLUTIONS

Amount ofSolution Desired

(gal /hr)

ApproximateTime (sec) to

Fill a 4-ozContainer

ApproximateTime (sec) toFill an 8-ozContainer

1⁄2 225 4501 112 2242 56 1123 38 764 28 565 22 446 18 367 16 328 14 289 12 24

10 11 2212 9 1814 8 1616 7 1418 6 1220 5.5 11

Page 362: HANDBOOK FOR VEGETABLE GROWERS

270

05OVERHEAD IRRIGATION

LAYOUT OF A SPRINKLER SYSTEM

Each irrigation system presents a separate engineering problem. The adviceof a competent engineer is essential. Many factors must be taken intoconsideration in developing a plan for the equipment:

Water supply available at period of greatest useDistance from source of water to field to be irrigatedHeight of field above water source and topography of the landType of soil (rate at which it absorbs water and its water-holding capacity)Area to be irrigatedDesired frequency of irrigationQuantity of water to be appliedTime on which application is to be madeType of power availableNormal wind velocity and directionPossible future expansion of the installation

Specific details of the plan must then include the following:

Size of power unit and pump to do the particular jobPipe sizes and lengths for mains and lateralsOperating pressures of sprinklersSize and spacing of sprinklersFriction losses in the system

Page 363: HANDBOOK FOR VEGETABLE GROWERS

271

Figure 5.5. The diagram shows the approximate depth of penetration ofavailable water from a 3-in. irrigation on various classes of soil. To avoid un-even water distribution, there should be enough distance between sprinklersto allow a 40% overlap in diameter of the area they are to cover.

Page 364: HANDBOOK FOR VEGETABLE GROWERS

272

TABLE 5.13. ACREAGE COVERED BY MOVES OF PIPE OFVARIOUS LENGTHS

Lateral Moveof Pipe (ft)

Length of SprinklerPipe (ft)

Area Coveredper Move (acres)

20 2,640 1.2120 1,320 0.6120 660 0.3020 330 0.1530 2,640 1.8230 1,320 0.9130 660 0.4630 330 0.2340 2,640 2.4240 1,320 1.2140 660 0.6140 330 0.3050 2,640 3.0350 1,320 1.5250 660 0.7650 330 0.3860 2,640 3.6460 1,320 1.8260 660 0.9160 330 0.4680 2,640 4.8580 1,320 2.4280 660 1.2180 330 0.61

100 2,640 6.06100 1,320 3.03100 660 1.52100 330 0.76

Page 365: HANDBOOK FOR VEGETABLE GROWERS

273

CALCULATION OF RATES OF SPRINKLER APPLICATIONS

To determine the output per sprinkler needed to put on the desired rate ofapplication:

distance between distance between precipitation� �

sprinklers (ft) line settings (ft) rate (in. /hr)96.3

� sprinkler rate (gal /minute)

Example: � 6.23 gal /minute per sprinkler30 � 50 � 0.4

96.3

To determine the rate at which water is being applied:

sprinkler rate� 96.3

(gal /minute)� precipitation rate (in. /hr)

distance between distance between�sprinklers (ft) line settings (ft)

Manufacturer’s specifications give the gallons per minute for each type ofsprinkler at various pressures.

Example: � 0.481 in. /hr10 � 96.340 � 50

Page 366: HANDBOOK FOR VEGETABLE GROWERS

274

TA

BL

E5.

14.

PR

EC

IPIT

AT

ION

RA

TE

SF

OR

VA

RIO

US

NO

ZZ

LE

SIZ

ES

,PR

ES

SU

RE

,AN

DS

PA

CIN

GS

Noz

zle

Siz

e(i

n.)

Pre

ssu

re(p

si)

Dis

char

ge1

(gpm

)D

iam

eter

ofS

pray

2

(ft)

Pre

cipi

tati

onR

ate

atS

paci

ngs

(in

./h

r)1

30�

40ft

30�

45ft

40�

40ft

1⁄16

450.

7660

–72

0.06

11⁄16

500.

8061

–73

0.06

41⁄16

550.

8562

–74

0.06

81⁄16

600.

8863

–75

0.07

11⁄16

650.

9364

–76

0.07

55⁄64

451.

1959

–73

0.09

50.

085

5⁄64

501.

2562

–72

0.10

00.

089

5⁄64

551.

3064

–74

0.10

40.

094

0.07

95⁄64

601.

3667

–76

0.11

00.

097

0.08

25⁄64

651.

4568

–77

0.11

60.

103

0.08

73⁄32

451.

7268

–76

0.13

80.

123

0.10

33⁄32

501.

8069

–77

0.14

50.

128

0.10

83⁄32

551.

8870

–78

0.15

10.

134

0.11

33⁄32

601.

9871

–79

0.15

90.

141

0.11

93⁄32

652.

0872

–80

0.16

70.

148

0.12

57⁄64

452.

3271

–78

0.18

60.

165

0.14

07⁄64

502.

4472

–80

0.19

60.

174

0.14

77⁄64

552.

5674

–81

0.20

50.

182

0.15

4

Page 367: HANDBOOK FOR VEGETABLE GROWERS

275

7⁄64

602.

6976

–82

0.21

60.

192

0.16

17⁄64

652.

7977

–83

0.22

40.

199

0.16

81⁄8

453.

0476

–82

0.24

40.

217

0.18

31⁄8

503.

2278

–82

0.23

00.

193

1⁄8

553.

3979

–83

0.24

20.

204

1⁄8

603.

5580

–84

0.25

30.

213

1⁄8

653.

7081

–85

0.22

2

Ada

pted

from

A.

W.

Mar

shet

al.,

‘‘Sol

idS

etS

prin

kler

sfo

rS

tart

ing

Veg

etab

leC

rops

,’’U

niv

ersi

tyof

Cal

ifor

nia

Div

isio

nof

Agr

icu

ltu

ral

Sci

ence

Lea

flet

2265

(197

7).A

lso,

H.

W.

Ott

oan

dJ.

Mey

er,

‘‘Tip

son

Irri

gati

ng

Veg

etab

les,

’’F

amil

yF

arm

Ser

ies

Pu

blic

atio

ns:

Veg

etab

leC

rop

Pro

du

ctio

n(U

niv

ersi

tyof

Cal

ifor

nia

),h

ttp:

//w

ww

.sfc

.ucd

avis

.edu

/pu

bs/f

amil

yfa

rmse

ries

/veg

/irr

igat

ing

/irr

igat

ing.

htm

l.1T

hre

e-di

git

nu

mbe

rsar

esh

own

her

eon

lyto

indi

cate

the

prog

ress

ion

asn

ozzl

esi

zean

dpr

essu

rein

crea

se.

2R

ange

ofdi

amet

ers

ofsp

ray

for

diff

eren

tm

akes

and

mod

els

ofsp

rin

kler

s.

Page 368: HANDBOOK FOR VEGETABLE GROWERS

276

TABLE 5.15. GUIDE FOR SELECTING SIZE OF ALUMINUM PIPEFOR SPRINKLER LATERAL LINES

SprinklerDischarge

(gpm)

Maximum Number of Sprinklersto Use on Single Lateral Line

30-ft Sprinkler Spacingfor Pipe Diameter (in.):2 3 4

40-ft Sprinkler Spacingfor Pipe Diameter (in.):2 3 4

0.75 47 95 200 43 85 1801.00 40 80 150 36 72 1251.25 34 69 118 31 62 1041.50 30 62 100 28 56 921.75 27 56 92 25 50 832.00 25 51 84 23 46 762.25 23 47 78 21 43 712.50 21 44 73 19 40 662.75 20 42 68 18 38 623.00 19 40 65 17 36 583.25 18 38 62 16 34 563.50 17 36 59 15 32 533.75 16 34 56 14 31 514.00 16 33 54 14 30 48

Adapted from A. W. Marsh et al., ‘‘Solid Set Sprinklers for Starting Vegetable Crops,’’ University ofCalifornia Division of Agricultural Science Leaflet 2265 (1977). Also, H. W. Otto and J. Meyer, ‘‘Tipson Irrigating Vegetables,’’ Family Farm Series Publications: Vegetable Crop Production (University ofCalifornia), http: / / www.sfc.ucdavis.edu / pubs / family farm series / veg / irrigating / irrigating.html.

Page 369: HANDBOOK FOR VEGETABLE GROWERS

277

TABLE 5.16. GUIDE TO MAIN-LINE PIPE SIZES1

Distance(ft)

Water Flow (gpm) for Pipe Diameter (in.):

200 400 600 800 1,000 1,200 1,400 1,600 1,800

200 3 4 5 5 6 6 6 7 7400 4 5 5 6 6 7 7 8 8600 4 5 6 7 7 7 8 8 8800 4 5 6 7 7 8 8 8 10

1,000 5 6 6 7 8 8 8 10 101,200 5 6 7 7 8 8 10 10 10

Adapted from A. W. Marsh et al., ‘‘Solid Set Sprinklers for Starting Vegetable Crops,’’ University ofCalifornia Division of Agricultural Science Leaflet 2265 (1977). Also, H. W. Otto and J. Meyer, ‘‘Tipson Irrigating Vegetables,’’ Family Farm Series Publications: Vegetable Crop Production (University ofCalifornia), http: / / www.sfc.ucdavis.edu / pubs / family farm series / veg / irrigating / irrigating.html.1 Using aluminum pipe (C � 120) with pressure losses ranging from 5 to 15 psi, average about 10.

Page 370: HANDBOOK FOR VEGETABLE GROWERS

278

TABLE 5.17. CONTINUOUS POWER OUTPUT REQUIRED ATTRACTOR POWER TAKEOFF TO PUMP WATER

Flow (gpm)

100 200 300 400 500 600 700 800 1,000

Pressure1

(psi)Head1

(ft) Horsepower Required2

50 116 3.9 7.8 11.7 16 20 23 27 31 3955 128 4.3 8.7 13 17 22 26 30 35 4360 140 4.7 9.5 14 19 24 28 33 38 4765 151 5.1 10 15 20 25 30 36 41 5170 162 5.5 11 16 22 27 33 38 44 5575 173 5.8 12 17 23 29 35 41 47 5880 185 6.2 12 19 25 31 37 44 50 62

Adapted from A. W. Marsh et al., ‘‘Solid Set Sprinklers for Starting Vegetable Crops,’’ University ofCalifornia Division of Agricultural Science Leaflet 2265 (1977). Also, H. W. Otto and J. Meyer, ‘‘Tipson Irrigating Vegetables,’’ Family Farm Series Publications: Vegetable Crop Production (University ofCalifornia), http: / / www.sfc.ucdavis.edu / pubs / family farm series / veg / irrigating / irrigating.html.1 Including nozzle pressure, friction loss, and elevation lift.2 Pump assumed to operate at 75% efficiency.

Page 371: HANDBOOK FOR VEGETABLE GROWERS

279

TABLE 5.18. FLOW OF WATER REQUIRED TO OPERATE SOLIDSET SPRINKLER SYSTEMS

Irrigationrate

(in. /hr)

Area Irrigated per Set (acres)

4

gpm1 cfs2

8

gpm cfs

12

gpm cfs

16

gpm cfs

20

gpm cfs

0.06 108 0.5 217 0.5 326 1.0 435 1.0 543 1.50.08 145 0.5 290 1.0 435 1.0 580 1.5 725 2.00.10 181 0.5 362 1.0 543 1.5 724 2.0 905 2.50.12 217 0.5 435 1.0 652 1.5 870 2.0 1,086 2.50.15 271 1.0 543 1.5 815 2.0 1,086 2.5 1,360 3.50.20 362 1.0 724 2.0 1,086 2.5 1,448 2.5 1,810 4.5

Adapted from A. W. Marsh et al., ‘‘Solid Set Sprinklers for Starting Vegetable Crops,’’ University ofCalifornia Division of Agricultural Science Leaflet 2265 (1977). Also, H. W. Otto and J. Meyer, ‘‘Tipson Irrigating Vegetables,’’ Family Farm Series Publications: Vegetable Crop Production (University ofCalifornia), http: / / www.sfc.ucdavis.edu / pubs / family farm series / veg / irrigating / irrigating.html.1 Gallons per minute pumped into the sprinkler system to provide an average precipitation rate asshown. Pump must have this much or slightly greater capacity.2 Cubic feet per second—the flow of water to the next larger 1⁄2 cfs that must be ordered from thewater district, assuming that the district accepts orders only in increments of 1⁄2 cfs. Actually, 1⁄2 cfs �

225 gpm.

Page 372: HANDBOOK FOR VEGETABLE GROWERS

280

APPLYING FERTILIZER THROUGH A SPRINKLER SYSTEM

Anhydrous ammonia, aqua ammonia, and nitrogen solutions containing freeammonia should not be applied by sprinkler irrigation because of theexcessive loss of the volatile ammonia. Ammonium nitrate, ammoniumsulfate, calcium nitrate, sodium nitrate, and urea are all suitable materialsfor use through a sprinkler system. The water containing the ammonia saltsshould not have a reaction on the alkaline side of neutrality, or the loss ofammonia will be considerable.

It is best to put phosphorus fertilizers directly in the soil by a bandapplication. Potash fertilizers can be used in sprinkler lines. However, a soilapplication ahead of or at planting time usually proves adequate and can bemade efficiently at that time.

Manganese, boron, and copper can be applied through the sprinklersystem. See pages 242–243 for possible rates of application.

The fertilizing material is dissolved in a tank of water. Calcium nitrate,ammonium sulfate, and ammonium nitrate dissolve completely. The solutioncan then be introduced into the water line, either by suction or by pressurefrom a pump. See page 172 for relative solubility of fertilizer materials.

Introduce the fertilizer into the line slowly, taking 10–20 min to completethe operation.

After enough of the fertilizer solution has passed into the pipelines, shutthe valve if suction by pump is used. This prevents unpriming the pump.Then run the system for 10–15 min to wash the fertilizer off the leaves.This also flushes out the lines, valves, and pump, if one has been used toforce or suck the solution into the main line.

Page 373: HANDBOOK FOR VEGETABLE GROWERS

281

TABLE 5.19. AMOUNT OF FERTILIZER TO USE FOR EACHSETTING OF THE SPRINKLER LINE

Nutrient per Setting of Sprinkler Line (lb):

10 20 30 40 50 60 70 80 90 100Lengthof Line

(ft)

LateralMove

of Line(ft) Nutrient Application Desired (lb /acre)

330 40 3 6 9 12 15 18 21 24 27 3060 4 9 12 18 22 27 31 36 40 4580 6 12 18 24 30 36 42 48 54 60

660 40 6 12 18 24 30 36 42 48 54 6060 9 18 24 36 45 54 63 72 81 9080 12 24 36 48 60 72 84 96 108 120

990 40 9 18 24 36 45 54 63 72 81 9060 13 27 40 54 67 81 94 108 121 13580 18 36 54 72 90 108 126 144 162 180

1,320 40 12 24 36 48 60 72 84 96 108 12060 18 36 54 72 90 108 126 144 162 18080 24 48 72 96 120 144 168 192 216 240

It is necessary to calculate the actual pounds of a fertilizing materialthat must be dissolved in the mixing tank in order to supply a certainnumber of pounds of the nutrient to the acre at each setting of the sprinklerline. This is done as follows. To apply 40 lb nitrogen to the acre when thesprinkler line is 660 ft long and will be moved 80 ft, if sodium nitrate isused, divide 48 (as shown in the table) by 0.16 (the percentage of nitrogenin sodium nitrate). This equals 300 lb, which must be dissolved in the tankand applied at each setting of the pipe. Do the same with ammoniumnitrate: Divide 48 by 0.33, which equals about 145 lbs.

Page 374: HANDBOOK FOR VEGETABLE GROWERS

282

SPRINKLER IRRIGATION FOR COLD PROTECTION

Sprinklers are often used to protect vegetables from freezing. Sprinklingprovides cold protection because the latent heat of fusion is released whenwater changes from liquid to ice. When water is freezing, its temperature isnear 32�F. The heat liberated as the water freezes maintains thetemperature of the vegetable near 32�F even though the surroundings maybe colder. As long as there is a mixture of both water and ice present, thetemperature remains near 32�F. For all of the plant to be protected, it mustbe covered or encased in the freezing ice-water mixture. Enough water mustbe applied so that the latent heat released compensates for the heat losses.

References

● R. Evans and R. Sneed, Selection and Management of Efficient Hand-move, Solid-set, and Permanent Sprinkler Irrigation Systems (NorthCarolina State University. Publication EBAE 91-152, 1996), http: / /www.bae.ncsu.edu/programs/extension /evans /ebae-91-152.html.

● R. Snyder, Principles of Frost Protection (University of CaliforniaFP005, 2001), http: / /biomet.ucdavis.edu/ frostprotection /Principles%20of%20Frost%20Protection /FP005.html.

Page 375: HANDBOOK FOR VEGETABLE GROWERS

283

TABLE 5.20. APPLICATION RATE RECOMMENDED FOR COLDPROTECTION UNDER DIFFERENT WIND ANDTEMPERATURE CONDITIONS

Wind Speed (mph)

0–1 2–4 5–8

Minimum TemperatureExpected (�F) (in. /hr)

27 0.10 0.10 0.1026 0.10 0.10 0.1424 0.10 0.16 0.3022 0.12 0.24 0.5020 0.16 0.30 0.60

Adapted from D. S. Harrison, J. F. Gerber, and R. E. Choate, Sprinkler Irrigation for Cold Protection,Florida Cooperative Extension Circular 348 (1974).

Page 376: HANDBOOK FOR VEGETABLE GROWERS

284

06DRIP OR TRICKLE IRRIGATION

Drip or trickle irrigation refers to the frequent slow application of waterdirectly to the base of plants. Vegetables are usually irrigated by double-wall, thin-wall, or heavy-wall tubing to supply a uniform rate along theentire row.

Pressure in the drip lines typically varies from 8 to 10 psi and about 12psi in the submains. Length of the drip lines may be as long as 600 ft, but200–250 ft is more common. Rate of water application is about 1⁄4–1⁄2 gpm/100 ft of row. One acre of plants in rows 100 ft long and 4 ft apart use about30 gpm water. Unless clear, sediment-free water is available, it is necessaryto install a filter in the main line in order to prevent clogging of the smallpores in the drip lines.

Drip irrigation provides for considerable saving in water application,particularly during early plant growth. The aisles between rows remain drybecause water is applied only next to plants in the row.

Figure 5.6. Drip or trickle irrigation system components.

Page 377: HANDBOOK FOR VEGETABLE GROWERS

285

TABLE 5.21. VOLUME OF WATER TO APPLY (GAL) BY DRIPIRRIGATION PER 100 LINEAR FT BED FOR A GIVENWETTED SOIL VOLUME, AVAILABLE WATER-HOLDING CAPACITY, AND AN ALLOWABLEDEPLETION OF 1/21

Wetted SoilVolume per

100 ft(cubic ft)

Available Water-holding Capacity(in. water per ft soil)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

(gal per 100 linear bed feet)

25 2.2 4.3 6.5 8.7 10.8 13.0 15.2 17.350 4.3 8.7 13.0 17.3 21.6 26.0 30.3 34.675 6.5 13.0 19.5 26.0 32.5 39.0 45.5 51.9

100 8.7 17.3 26.0 34.6 43.3 51.9 60.6 69.3125 10.8 21.6 32.5 43.3 54.1 64.9 75.8 86.6150 13.0 26.0 39.0 51.9 64.9 77.9 90.9 103.9175 15.2 30.3 45.5 60.6 75.8 90.9 106.1 121.2200 17.3 34.6 51.9 69.3 86.6 103.9 121.2 138.5225 19.5 39.0 58.4 77.9 97.4 116.9 136.4 155.8250 21.6 43.3 64.9 86.6 108.2 129.9 151.5 173.1275 23.8 47.6 71.4 95.2 119.0 142.8 166.7 190.5300 26.0 51.9 77.9 103.9 129.9 155.8 181.8 207.8350 30.3 60.6 90.9 121.2 151.5 181.8 212.1 242.4400 34.6 69.3 103.9 138.5 173.1 207.8 242.4 277.0450 39.0 77.9 116.9 155.8 194.8 233.8 272.7 311.7500 43.3 86.6 129.9 173.1 216.4 259.7 303.0 346.3550 47.6 95.2 142.8 190.5 238.1 285.7 333.3 380.9600 51.9 103.9 155.8 207.8 259.7 311.7 363.6 415.6700 60.6 121.2 181.8 242.4 303.0 363.6 424.2 484.8800 69.3 138.5 207.8 277.0 346.3 415.6 484.8 554.1900 77.9 155.8 233.8 311.7 389.6 467.5 545.4 623.3

Adapted from G. A. Clark, C. D. Stanley, and A. G. Smajstrla, Micro-irrigation on Mulched BedSystems: Components, System Capacities, and Management (Florida Cooperative Extension ServiceBulletin 245, 2002), http: / / edis.ifas.ufl.edu / ae042.1 An irrigation application efficiency of 90% is assumed.

Page 378: HANDBOOK FOR VEGETABLE GROWERS

286

TABLE 5.22. DISCHARGE PER GROSS ACRE (GPM/ACRE) FORDRIP IRRIGATION BASED ON IRRIGATED LINEARBED FEET AND EMITTER DISCHARGE

LinearBedFeet

per Acre

Emitter Discharge (gpm/100 ft)

0.25 0.30 0.40 0.50 0.75 1.00 1.50

(gal per min /acre)

3,000 7.5 9.0 12.0 15.0 22.5 30.0 45.03,500 8.8 10.5 14.0 17.5 26.3 35.0 52.54,000 10.0 12.0 16.0 20.0 30.0 40.0 60.04,500 11.3 13.5 18.0 22.5 33.8 45.0 67.55,000 12.5 15.0 20.0 25.0 37.5 50.0 75.05,500 13.8 16.5 22.0 27.5 41.3 55.0 82.56,000 15.0 18.0 24.0 30.0 45.0 60.0 90.06,500 16.3 19.5 26.0 32.5 48.8 65.0 97.57,000 17.5 21.0 28.0 35.0 52.5 70.0 105.07,500 18.8 22.5 30.0 37.5 56.3 75.0 112.58,000 20.0 24.0 32.0 40.0 60.0 80.0 120.08,500 21.3 25.5 34.0 42.5 63.8 85.0 127.59,000 22.5 27.0 36.0 45.0 67.5 90.0 135.09,500 23.8 28.5 38.0 47.5 71.3 95.0 142.5

10,000 25.0 30.0 40.0 50.0 75.0 100.0 150.0

Adapted from G. A. Clark, C. D. Stanley, and A. G. Smajstrla, Micro-irrigation on Mulched BedSystems: Components, System Capacities, and Management (Florida Cooperative Extension ServiceBulletin 245, 2002), http: / / edis.ifas.ufl.edu / ae042.

Page 379: HANDBOOK FOR VEGETABLE GROWERS

287

TABLE 5.23. VOLUME OF WATER (GAL WATER PER ACRE PERMINUTE) DELIVERED UNDER VARIOUS BEDSPACINGS WITH ONE TAPE LATERAL PER BEDAND FOR SEVERAL EMITTER FLOW RATES

Bed Spacing(in.)

Drip Tapeper Acre

(ft)

Emitter Flow Rate(gal per min per 100 ft)

0.50 0.40 0.30 0.25

(gal per acre /min)

24 21,780 108.9 87.1 65.3 54.530 17,420 87.1 69.7 52.3 43.636 14,520 72.6 58.1 43.6 36.642 12,450 62.2 49.8 37.3 31.148 10,890 54.5 43.6 32.7 27.254 9,680 48.4 38.7 29.0 24.260 8,710 43.6 34.9 26.1 21.872 7,260 36.3 29.0 21.8 18.284 6,220 31.1 24.9 18.7 15.696 5,450 27.2 21.8 16.3 13.6

108 4,840 24.2 19.4 14.5 12.1120 4,360 21.8 17.4 13.1 10.0

Page 380: HANDBOOK FOR VEGETABLE GROWERS

288

TABLE 5.24. VOLUME OF AVAILABLE WATER IN THE WETTEDCYLINDRICAL DISTRIBUTION PATTERN UNDER ADRIP IRRIGATION LINE BASED ON THE AVAILABLEWATER-HOLDING CAPACITY OF THE SOIL

AvailableWater (%)

Wetted Radius (in.)1

6 9 12 15 18

(gal available water per 100 emitters)

3 9 20 35 55 794 12 26 47 74 1065 15 33 59 92 1326 18 40 71 110 1597 21 46 82 129 1858 24 53 94 147 2129 26 60 106 165 238

10 29 66 118 184 26511 32 73 129 202 29112 35 79 141 221 31813 38 86 153 239 34414 41 93 165 257 37115 44 99 176 276 397

Adapted from G. A. Clark and A. G. Smajstrla, Application Volumes and Wetted Patterns forScheduling Drip Irrigation in Florida Vegetable Production, Florida Cooperative Extension ServiceCircular 1041 (1993).1 For a 1-ft depth of wetting.

Page 381: HANDBOOK FOR VEGETABLE GROWERS

289

TABLE 5.25. MAXIMUM APPLICATION TIMES FOR DRIP-IRRIGATED VEGETABLE PRODUCTION ON SANDYSOILS WITH VARIOUS WATER-HOLDINGCAPACITIES

Available Water-holding Capacity(in. water per in.

soil)

Tubing Flow Rate (gpm per 100 ft)

0.2 0.3 0.4 0.5 0.6

(maximum min per application)1

0.02 41 27 20 16 140.03 61 41 31 24 200.04 82 54 41 33 270.05 102 68 51 41 340.06 122 82 61 49 410.07 143 95 71 57 480.08 163 109 82 65 540.09 184 122 92 73 610.10 204 136 102 82 680.11 224 150 112 90 750.12 245 163 122 98 82

Adapted from C. D. Stanley and G. A. Clark, ‘‘Maximum Application Times for Drip-irrigatedVegetable Production as Influenced by Soil Type or Tubing Emission Characteristics,’’ FloridaCooperative Extension Service Drip Tip No. 9305 (1993).1 Assumes 10-in.-deep root zone and irrigation at 50% soil moisture depletion.

Page 382: HANDBOOK FOR VEGETABLE GROWERS

290

TREATING IRRIGATION SYSTEMS WITH CHLORINE

Chlorine can be used in irrigation systems to control the growth of algaeand other microorganisms such as bacteria and fungi. These organisms arefound in surface and ground water and can proliferate with the nutrientspresent in the water inside the drip tube. Filtration alone cannot remove allof these contaminants. Hypochlorous acid, the agent responsible forcontrolling microorganisms in drip tubes, is more active under slightlyacidic water conditions. Chlorine gas, solid (calcium hypochlorite), or liquid(sodium hypochlorite) are sources of chlorine; however, all forms might notbe legal for injecting into irrigation systems. For example, only sodiumhypochlorite is legal for use in Florida.

When sodium hypochlorite is injected, the pH of the water rises. Theresulting chloride and sodium ions are not detrimental to crops at typicalinjection rates. Chlorine materials should be injected at a rate to provide1–2 ppm free residual chlorine at the most distant part of the irrigationsystem.

In addition to controlling microorganisms, hypochlorous acid also reactswith iron in solution to oxidize the ferrous form to the ferric form, whichprecipitates as ferric hydroxide. If irrigation water contains iron, thisreaction with injected chlorine should occur before the filter system so theprecipitate can be removed.

Adapted from G. A. Clark and A. G. Smajstrla, Treating Irrigation Systems with Chlorine (FloridaCooperative Extension Service Circular 1039, 2002), http: / / edis.ifas.ufl.edu / ae080.

Page 383: HANDBOOK FOR VEGETABLE GROWERS

291

TABLE 5.26. LIQUID CHLORINE (SODIUM HYPOCHLORITE)INJECTION

Treatmentlevel (ppm)

% Concentration of chlorine in stock

1 3 5.25 10

gal /hr injection per 100 gal /min irrigation flow rate

1 0.54 0.18 0.10 0.052 1.1 0.36 0.21 0.143 1.6 0.54 0.31 0.164 2.2 0.72 0.41 0.225 2.7 0.90 0.51 0.276 3.3 1.1 0.62 0.328 4.4 1.5 0.82 0.43

10 5.5 1.8 1.0 0.5415 8.3 2.8 1.5 0.8120 11.0 3.7 2.1 1.130 16.5 5.5 3.1 1.6

Adapted from G. Clark and A. Smajstrla, Treating Irrigation Systems with Chlorine (FloridaCooperative Extension Service Circular 1039, 2002), http: / / edis.ifas.ufl.edu / ae080.

METHODS OF INJECTING FERTILIZER AND OTHER CHEMICALSOLUTIONS INTO IRRIGATION PIPELINE

Four principal methods are used to inject fertilizers and other solutions intodrip irrigation systems: (1) pressure differential; (2) the venturi (vacuum);(3) centrifugal pumps; and (4) positive displacement pumps. It is essentialthat irrigation systems equipped with a chemical injection system have avacuum breaker (anti-siphon device) and a backflow preventer (check valve)installed upstream from the injection point. The vacuum-breaking valve andbackflow preventer prevent chemical contamination of the water source incase of a water pressure loss or power failure. Operators may need a licenseto chemigate in some states. Local backflow regulations should be consultedprior to chemigation to insure compliance.

Page 384: HANDBOOK FOR VEGETABLE GROWERS

292

TABLE 5.27. REQUIRED VOLUME (GAL) OF CHEMICAL MIXTURETO PROVIDE A DESIRED LEVEL OF AN ACTIVECHEMICAL FOR DIFFERENT CONCENTRATIONS(LB/GAL) OF THE CHEMICAL IN THE STOCKSOLUTION

Weight of ChemicalDesired (lb)

Smx

Mass of Chemical (lb) Per Gal Stock Solution

0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0

(gal stock solution)

20 100 50 33 25 20 10 7 540 200 100 67 50 40 20 13 1060 300 150 100 75 60 30 20 1580 400 200 133 100 80 40 27 20

100 500 250 167 125 100 50 33 25150 750 375 250 188 150 75 50 38200 1,000 500 333 250 200 100 67 50250 1,250 625 417 313 250 125 83 63300 1,500 750 500 375 300 150 100 75350 1,750 875 583 438 350 175 117 88400 2,000 1,000 667 500 400 200 133 100450 2,250 1,125 750 563 450 225 150 113500 2,500 1,250 833 625 500 250 167 125

Adapted from G. A. Clark, D. Z. Haman, and F. S. Zazueta, Injection of Chemicals into IrrigationSystems: Rates, Volumes, and Injection Periods (Florida Cooperative Extension Service Bulletin 250,2002), http: / / edis.ifas.ufl.edu / ae116.

Page 385: HANDBOOK FOR VEGETABLE GROWERS

293

Figure 5.7. Classification of chemical injection methods for irrigationsystems.

Adapted from D. Z. Haman, A. G. Smajstrla, and F. S. Zazueta, Chemical Injection Methods forIrrigation (Florida Cooperative Extension Service Circular 864, 2003). http: / / edis.ifas.ufl.edu / wi004.

Page 386: HANDBOOK FOR VEGETABLE GROWERS

294

TA

BL

E5.

28.

CO

MP

AR

ISO

NO

FV

AR

IOU

SC

HE

MIC

AL

INJ

EC

TIO

NM

ET

HO

DS

Inje

ctor

Adv

anta

ges

Dis

adva

nta

ges

Cen

trif

uga

lP

um

ps

Cen

trif

uga

lpu

mp

inje

ctor

Low

cost

.C

anbe

adju

sted

wh

ile

run

nin

g.C

alib

rati

onde

pen

dson

syst

empr

essu

re.

Can

not

accu

rate

lyco

ntr

ollo

win

ject

ion

rate

s.

Pos

itiv

eD

ispl

acem

ent

Pu

mps

Pis

ton

pum

psH

igh

prec

isio

n.

Lin

ear

cali

brat

ion

.Ver

yh

igh

pres

sure

.C

alib

rati

onin

depe

nde

nt

ofpr

essu

re.

Hig

hco

st.

May

nee

dto

stop

toad

just

cali

brat

ion

.Ch

emic

alfl

own

otco

nti

nu

ous.

Dia

phra

gmpu

mps

Adj

ust

cali

brat

ion

wh

ile

inje

ctin

g.H

igh

chem

ical

resi

stan

ce.

Non

lin

ear

cali

brat

ion

.Cal

ibra

tion

depe

nds

onsy

stem

pres

sure

.M

ediu

mto

hig

hco

st.

Ch

emic

alfl

own

otco

nti

nu

ous.

Pis

ton

/dia

phra

gmH

igh

prec

isio

n.

Lin

ear

cali

brat

ion

.Hig

hch

emic

alre

sist

ance

.V

ery

hig

hpr

essu

re.

Cal

ibra

tion

inde

pen

den

tof

pres

sure

.

Hig

hco

st.

May

nee

dto

stop

toad

just

cali

brat

ion

.

Page 387: HANDBOOK FOR VEGETABLE GROWERS

295

Rot

ary

Pu

mps

Gea

rpu

mps

Lob

epu

mps

Inje

ctio

nra

teca

nbe

adju

sted

wh

enru

nn

ing.

Flu

idpu

mpe

dca

nn

otbe

abra

sive

.In

ject

ion

rate

isde

pen

den

ton

syst

empr

essu

re.

Con

tin

uit

yof

chem

ical

flow

depe

nds

onn

um

ber

oflo

bes

ina

lobe

pum

p.

Mis

cell

aneo

us

Per

ista

ltic

pum

psH

igh

chem

ical

resi

stan

ce.

Maj

orad

just

men

tca

nbe

mad

eby

chan

gin

gtu

bin

gsi

ze.

Inje

ctio

nra

teca

nbe

adju

sted

wh

enru

nn

ing.

Sh

ort

tubi

ng

life

expe

ctan

cy.I

nje

ctio

nra

tede

pen

den

ton

syst

empr

essu

re.

Low

tom

ediu

min

ject

ion

pres

sure

.

Pre

ssu

reD

iffe

ren

tial

Met

hod

s

Su

ctio

nli

ne

inje

ctio

nV

ery

low

cost

.In

ject

ion

can

bead

just

edw

hil

eru

nn

ing.

Per

mit

ted

only

for

surf

ace

wat

erso

urc

ean

din

ject

ion

offe

rtil

izer

.In

ject

ion

rate

depe

nds

onm

ain

pum

pop

erat

ion

.

Dis

char

geL

ine

Inje

ctio

n

Pre

ssu

rize

dm

ixin

gta

nks

Low

tom

ediu

mco

st.

Eas

yop

erat

ion

.T

otal

chem

ical

volu

me

con

trol

led.

Var

iabl

ech

emic

alco

nce

ntr

atio

n.C

ann

otbe

cali

brat

edac

cura

tely

for

con

stan

tin

ject

ion

rate

.P

ropo

rtio

nal

mix

ers

Low

tom

ediu

mco

st.

Cal

ibra

tew

hil

eop

erat

ing.

Inje

ctio

nra

tes

accu

rate

lyco

ntr

olle

d.

Pre

ssu

redi

ffer

enti

alre

quir

ed.

Vol

um

eto

bein

ject

edis

lim

ited

byth

esi

zeof

the

inje

ctor

.F

requ

ent

refi

lls

requ

ired

.

Page 388: HANDBOOK FOR VEGETABLE GROWERS

296

TA

BL

E5.

28.

CO

MP

AR

ISO

NO

FV

AR

IOU

SC

HE

MIC

AL

INJ

EC

TIO

NM

ET

HO

DS

(Con

tin

ued

)

Inje

ctor

Adv

anta

ges

Dis

adva

nta

ges

Ven

turi

Inje

ctor

s

Ven

turi

inje

ctor

Low

cost

.W

ater

pow

ered

.S

impl

eto

use

.C

alib

rate

wh

ile

oper

atin

g.N

om

ovin

gpa

rts.

Pre

ssu

redr

opcr

eate

din

the

syst

em.

Cal

ibra

tion

depe

nds

onch

emic

alle

vel

inth

eta

nk.

Com

bin

atio

nM

eth

ods

Pro

port

ion

alm

ixer

s/ve

ntu

riG

reat

erpr

ecis

ion

than

prop

orti

onal

mix

eror

ven

turi

alon

e.H

igh

erco

stth

anpr

opor

tion

alm

ixer

orve

ntu

rial

one.

Ada

pted

from

D.

Ham

an,A

.S

maj

strl

a,an

dF.

Zaz

uet

a,C

hem

ical

Inje

ctio

nM

eth

ods

for

Irri

gati

on(F

lori

daC

oope

rati

veE

xten

sion

Ser

vice

Cir

cula

r86

4,20

03),

htt

p://

edis

.ifas

.ufl

.edu

/wi0

04.

Page 389: HANDBOOK FOR VEGETABLE GROWERS

297

Figure 5.8. Single antisyphon device assembly.

Figure 5.9. Double antisyphon device assembly.

Adapted from A. G. Smajstrla, D. S. Harrison, W. J. Becker, F. S. Zazueta, and D. Z. Haman, BackflowPrevention Requirements for Florida Irrigation Systems, Florida Cooperative Extension ServiceBulletin 217 (1985).

Page 390: HANDBOOK FOR VEGETABLE GROWERS

298

Figure 5.10. Centrifugal pump chemical injector.

Adapted from D. Z. Haman, A. G. Smajstrla, and F. S. Zazueta, Chemical Injection Methods forIrrigation (Florida Cooperative Extension Service Circular 864, 2003), http: / / edis.ifas.ufl.edu / wi004.

Page 391: HANDBOOK FOR VEGETABLE GROWERS

299

Figure 5.11. Diaphragm pump—suction stroke.

Page 392: HANDBOOK FOR VEGETABLE GROWERS

300

Figure 5.12. Diaphragm pump—discharge stroke.

Adapted from D. Z. Haman, A. G. Smajstrla, and F. S. Zazueta, Chemical Injection Methods forIrrigation (Florida Cooperative Extension Service Circular 864, 2003), http: / / edis.ifas.ufl.edu / wi004.

Page 393: HANDBOOK FOR VEGETABLE GROWERS

301

Figure 5.13. Venturi injector.

Page 394: HANDBOOK FOR VEGETABLE GROWERS

302

Figure 5.14. Proportional mixer /venturi.

Adapted from D. Z. Haman, A. G. Smajstrla, and F. S. Zazueta, Chemical Injection Methods forIrrigation (Florida Cooperative Extension Service Bulletin 864, 2003), http: / / edis.ifas.ufl.edu / wi004.

Page 395: HANDBOOK FOR VEGETABLE GROWERS

303

07W

AT

ER

QU

AL

ITY

TA

BL

E5.

29.

WA

TE

RQ

UA

LIT

YG

UID

EL

INE

SF

OR

IRR

IGA

TIO

N1

Sit

uat

ion

Deg

ree

ofP

robl

em

Non

eIn

crea

sin

gS

ever

e

Sal

init

y

EC

(dS

/m)

orL

ess

than

0.75

0.75

–3.0

Mor

eth

an3.

0T

DS

(mg

/L)

Les

sth

an48

048

0–1,

920

Mor

eth

an19

20

Per

mea

bili

ty

Low

EC

(dS

/m)

orM

ore

than

0.5

0.5–

0—

Low

TD

S(m

g/L

)M

ore

than

320

320–

0—

SA

RL

ess

than

6.0

6.0–

9.0

Mor

eth

an9.

0

Tox

icit

yof

Spe

cifi

cIo

ns

toS

ensi

tive

Cro

psR

OO

TA

BS

OR

PT

ION

Sod

ium

(eva

luat

edby

SA

R)

SA

Rle

ssth

an3

3–9

Mor

eth

an9

Ch

lori

dem

eq/L

Les

sth

an2

2–10

Mor

eth

an10

.0m

g/L

Les

sth

an70

70–3

45M

ore

than

345

Bor

on(m

g/L

)1.

01.

0–2.

02.

0–10

.0

Page 396: HANDBOOK FOR VEGETABLE GROWERS

304

TA

BL

E5.

29.

WA

TE

RQ

UA

LIT

YG

UID

EL

INE

SF

OR

IRR

IGA

TIO

N1

(Con

tin

ued

)

Sit

uat

ion

Deg

ree

ofP

robl

em

Non

eIn

crea

sin

gS

ever

e

RE

LA

TE

DT

OF

OL

IAR

AB

SO

RP

TIO

N(S

PR

INK

LE

RIR

RIG

AT

ED

)

Sod

ium

meq

/LL

ess

than

3.0

Mor

eth

an3

—m

g/L

Les

sth

an70

70—

Ch

lori

dem

eq/L

Les

sth

an3.

0M

ore

than

3—

mg

/LL

ess

than

100

100

MIS

CE

LL

AN

EO

US

NH

4an

dN

O3-

N(m

g/L

)L

ess

than

55–

30M

ore

than

30H

CO

3—

meq

/LL

ess

than

1.0

1.5–

8.5

Mor

eth

an8.

5m

g/L

Les

sth

an40

40–5

20M

ore

than

520

pHN

orm

alra

nge

:6.

5–8.

3M

ore

than

8.3

Ada

pted

from

D.

S.

Far

nh

am,R

.F.

Has

ek,

and

J.L

.P

aul,

‘‘Wat

erQ

ual

ity,

’’U

niv

ersi

tyof

Cal

ifor

nia

Div

isio

nof

Agr

icu

ltu

ral

Sci

ence

Lea

flet

2995

(198

5);a

nd

B.

Han

son

,S.

Gra

tham

,an

dA

.F

ult

on,

Agr

icu

ltu

ralS

alin

ity

and

Dra

inag

e,U

niv

ersi

tyof

Cal

ifor

nia

Div

isio

nof

Agr

icu

ltu

rean

dN

atu

ral

Res

ourc

esP

ubl

icat

ion

3375

(199

9).

1In

terp

reta

tion

isre

late

dto

type

ofpr

oble

man

dit

sse

veri

tybu

tis

mod

ified

byci

rcu

mst

ance

sof

soil

,cr

op,

and

loca

lity

.

Page 397: HANDBOOK FOR VEGETABLE GROWERS

305

TABLE 5.30. MAXIMUM CONCENTRATIONS OF TRACEELEMENTS IN IRRIGATION WATERS

Element

For WatersUsed Continuously

on All Soils(mg/L)

For Use Up to 20Years on Fine-

textured Soils ofpH 6.0–8.5

(mg/L)

Aluminum 5.0 20.0Arsenic 0.10 2.0Beryllium 0.10 0.50Boron 0.75 2.0–10.0Cadmium 0.01 0.05Chromium 0.10 1.0Cobalt 0.05 5.0Copper 0.20 5.0Fluoride 1.0 15.0Iron 5.0 20.0Lead 5.0 10.0Lithium 2.5 2.5Manganese 0.20 10.0Molybdenum 0.01 0.051

Nickel 0.20 2.0Selenium 0.02 0.02Vanadium 0.10 1.0Zinc 2.00 10.0

Adapted from D. S. Farnham, R. F. Hasek, and J. L. Paul, ‘‘Water Quality,’’ University of CaliforniaDivision of Agricultural Science Leaflet 2995 (1985).1 Only for acid, fine-textured soils or acid soils with relatively high iron oxide contents.

Page 398: HANDBOOK FOR VEGETABLE GROWERS

306

TABLE 5.31. ESTIMATED YIELD LOSS TO SALINITY OFIRRIGATION WATER

Crop

Electrical Conductivity of Water(mmho/cm or dS/m) for Following % Yield Loss

0 10 25 50

Bean 0.7 1.0 1.5 2.4Carrot 0.7 1.1 1.9 3.1Strawberry 0.7 0.9 1.2 1.7Onion 0.8 1.2 1.8 2.9Radish 0.8 1.3 2.1 3.4Lettuce 0.9 1.4 2.1 3.4Pepper 1.0 1.5 2.2 3.4Sweet potato 1.0 1.6 2.5 4.0Sweet corn 1.1 1.7 2.5 3.9Potato 1.1 1.7 2.5 3.9Cabbage 1.2 1.9 2.9 4.6Spinach 1.3 2.2 3.5 5.7Cantaloupe 1.5 2.4 3.8 6.1Cucumber 1.7 2.2 2.9 4.2Tomato 1.7 2.3 3.4 5.0Broccoli 1.9 2.6 3.7 5.5Beet 2.7 3.4 4.5 6.4

Adapted from R. S. Ayers, Journal of the Irrigation and Drainage Division 103 (1977): 135–154.

Page 399: HANDBOOK FOR VEGETABLE GROWERS

307

TABLE 5.32. RELATIVE TOLERANCE OF VEGETABLE CROPS TOBORON IN IRRIGATION WATER1

10–15 ppm 4–6 ppm 2–4 ppm 1–2 ppm 0.5–1 ppm

Asparagus Beet Artichoke Broccoli BeanParsley Cabbage Carrot GarlicTomato Cantaloupe Cucumber Lima bean

Cauliflower Pea OnionCelery PepperCorn PotatoLettuce RadishTurnip

Adapted from E. V. Mass, ‘‘Salt Tolerance of Plants,’’ Applied Agricultural Research 1(1):12–26 (1986).1 Maximum concentrations of boron in soil water without yield reduction

Page 400: HANDBOOK FOR VEGETABLE GROWERS

PART 7WEED MANAGEMENT

01 WEED MANAGEMENT STRATEGIES

02 WEED IDENTIFICATION

03 NOXIOUS WEEDS

04 WEED CONTROL IN ORGANIC FARMING

05 COVER CROPS AND ROTATION IN WEED MANAGEMENT

06 HERBICIDES

07 WEED CONTROL RECOMMENDATIONS

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 401: HANDBOOK FOR VEGETABLE GROWERS

390

01WEED MANAGEMENT STRATEGIES

Weeds reduce yield and quality of vegetables through direct competition forlight, moisture, and nutrients as well as by interference with harvestoperations. Early season competition is most critical, and a major emphasison control should be made during this period. Common amaranth reducesyields of lettuce, watermelon, and muskmelon at least 20% if allowed tocompete with these crops for only the first 3 weeks of growth. Weeds can becontrolled, but this requires good management practices in all phases ofproduction. Because there are many kinds of weeds, with much variation ingrowth habit, they obviously cannot be managed by a single method. Theincorporation of several of the following management practices intovegetable strategies increases the effectiveness for controlling weeds.

Crop Competition

An often overlooked tool in reducing weed competition is to establish a goodcrop stand in which plants emerge and rapidly shade the ground. The plantthat emerges first and grows the most rapidly is the plant with thecompetitive advantage. Utilization of good production management practicessuch as fertility, well-adapted varieties, proper water control (irrigation anddrainage), and establishment of adequate plant populations is very helpfulin reducing weed competition. Everything possible should be done to ensurethat vegetables, not weeds, have the competitive advantage.

Crop Rotation

If the same crop is planted in the same field year after year, usually someweed or weeds are favored by the cultural practices and herbicides used onthat crop. By rotating to other crops, the cultural practices and herbicideprogram are changed. This often reduces the population of specific weedstolerant in the previous cropping rotation. Care should be taken, however, tonot replant vegetables in soil treated with a nonregistered herbicide. Cropinjury as well as vegetables containing illegal residues may result. Checkthe labels for plant-back limitations before application and plantingrotational crops.

Mechanical Control

Mechanical control includes field preparation by plowing or disking,cultivation, mowing, hoeing, and hand pulling of weeds. Mechanical control

Page 402: HANDBOOK FOR VEGETABLE GROWERS

391

practices are among the oldest weed management techniques. Weed controlis a primary reason for preparing land for crops planted in rows. Seedbedpreparation by plowing or disking exposes many weed seeds to variations inlight, temperature, and moisture. For some weeds, this process breaks weedseed dormancy, leading to early season control with herbicides or additionalcultivation. Cultivate only deep enough in the row to achieve weed control;deep cultivation may prune roots, bring weed seeds to the surface, anddisturb the soil previously treated with a herbicide. Follow the sameprecautions between rows. When weeds can be controlled withoutcultivation, there is no advantage to the practice. In fact, there may bedisadvantages, such as drying out the soil surface, bringing weed seeds tothe surface, and disturbing the root system of the crop.

Mulching

The use of polyethylene mulch increases yield and earliness of vegetables.The proper injection of fumigants under the mulch controls nematodes, soilinsects, soil borne diseases, and weed seeds. Mulches act as a barrier to thegrowth of many weeds. Nutsedge, however, is one weed that can and willgrow through the mulch.

Prevention

Preventing weeds from infesting or reinfesting a field should always beconsidered. Weed seed may enter a field in a number of ways. It may bedistributed by wind, water, machinery, in cover crop seed, and other means.Fence rows and ditch banks are often neglected when controlling weeds inthe crop. Seed produced in these areas may move into the field. Weeds inthese areas can also harbor insects and diseases (especially viruses) thatmay move onto the crop. It is also important to clean equipment beforeentering fields or when moving from a field with a high weed infestation toa relatively clean field. Nutsedge tubers especially are moved easily ondisks, cultivators, and other equipment.

Herbicides

Properly selected herbicides are effective tools for weed control. Herbicidesmay be classified several ways depending on how they are applied and theirmode of action in or on the plant. Generally, herbicides are either soilapplied or foliage applied. They may be selective or nonselective, and theymay be either contact or translocated through the plant. For example,paraquat is a foliage-applied, contact, nonselective herbicide, whereas

Page 403: HANDBOOK FOR VEGETABLE GROWERS

392

atrazine usually is described as a soil-applied, translocated, selectiveherbicide.

Foliage-applied herbicides may be applied to leaves, stems, and shoots ofplants. Herbicides that kill only those parts of the plants they touch arecontact herbicides. Those herbicides that are taken into the plant and movedthroughout it are translocated herbicides. Paraquat is a contact herbicide,whereas glyphosate (Roundup) or Sethoxydim (Poast) are translocatedherbicides. For foliage-applied herbicides to be effective, they must enter theplant. Good coverage is very important. Most foliage-applied herbicidesrequire either the addition of a specified surfactant or a specifiedformulation to be used for best control.

Soil-applied herbicides are either applied to the surface or incorporated.Surface-applied herbicides require rainfall or irrigation shortly afterapplication for best results. Lack of moisture often results in poor weedcontrol. Incorporated herbicides are not dependent on rainfall or irrigationand generally give more consistent and wider-spectrum control. They do,however, require more time and equipment for incorporation. Herbicidesthat specify incorporation into the soil improve the contact of the herbicidewith the weed seed and/or minimize the loss of the herbicide byvolatilization or photodecomposition. Some herbicides, if not incorporated,may be lost from the soil surface. Although most soil-applied herbicidesmust be moved into the soil to be effective, the depth of incorporation intothe soil can be used to achieve selectivity. For example, if a crop seed isplanted 2 in. deep in the soil and the herbicide is incorporated by irrigationonly in the top 1 in., where most of the problem weed seeds are found, thecrop roots will not come in contact with the herbicide. If too much irrigationor rain moves the herbicide down into the crop seed zone or if the herbicideis incorporated mechanically too deep, crop injury may result.

Adapted from W. M. Stall, ‘‘Weed Management,’’ in S. M. Olson and E. H. Simone (eds.), CommercialVegetable Production Handbook for Florida (Florida Cooperative Extension Service, Serv. SP-170,2004), http: / / edis.ifas.ufl.edu / cv113.

Page 404: HANDBOOK FOR VEGETABLE GROWERS

393

02WEED IDENTIFICATION

Accurate identification of the particular weed species is the first step tocontrolling the problem. Several university and cooperative extensionwebsites offer information about and assistance with identifying weeds.Some sources offer information across crops and commodities, and manyhave very good photos of weed species. As good as these websites are forassisting in weed identification, the grower is encouraged to obtainconfirmation of identification from a knowledgeable weed expert beforeimplementing a weed control strategy. The following websites, among manyothers, offer photos and guides to the identification of weeds.

California, www.ipm.ucdavis.edu/PMG/weeds common.htmlIllinois, http: / /web.aces.uiuc.edu/weedidIowa, http: / /www.weeds.iastate.edu/weed-id /weedid.htmMinnesota, http: / /www.extension.umn.edu/distribution /cropsystems/

DC1352.htmlMissouri, http: / /www.plantsci.missouri.edu /fishel /field crops.htmNew Jersey, http: / /www.rce.rutgers.edu/weedsVirginia, http: / /www.ppws.vt.edu/weedindex.htm

03NOXIOUS WEEDS

Noxious weeds are plant species so injurious to agricultural crop intereststhat they are regulated or controlled by federal and/or state laws.Propagation, growing, or sales of these plants may be controlled. Somestates divide noxious weeds into ‘‘prohibited’’ species, which may not begrown or sold, and ‘‘restricted’’ species, which may occur in the state andare considered nuisances or of economic concern for agriculture. States havedifferent lists of plants considered noxious. The federal website below leadsto state-based information about noxious weeds.

http: / /www.ars-grin.gov /cgi-bin /npgs /html / taxweed.pl (2005)

Page 405: HANDBOOK FOR VEGETABLE GROWERS

394

04WEED CONTROL IN ORGANIC FARMING

Weeds can be a serious threat to vegetable production in organic systems.Weed control is one of the most costly activities in successful organicvegetable production. Some of the recommended main organic weed controlstrategies include:

Rotate crops.Cover crops to compete with weeds in the non-crop season.Be knowledgeable about potential weed contamination of manures,

composts, and organic soil amendments.Employ mechanical and manual control through cultivation, hoeing,

mowing, hand weeding, etc.Clean equipment to minimize transfer of weed propagules from one field to

another.Control weeds at the crop perimeter.Completely till crop and weeds after final harvest.Plan for fallow periods with mechanical destruction of weeds.Use the stale seedbed technique when appropriate.Use approved weed control materials selected from the Standards lists

below.Encourage crop competition due to optimum crop vigor, correct plant

spacing, or shading of weeds.Use approved soil mulching practices to smother weed seedlings around

crops or in crop alleys.Practice precise placement of fertilizers and irrigation water to minimize

availability to weeds in walkways and row middles.

Websites offering information on weed control practices in organic vegetableproduction include:

● Organic Materials Review Institute (OMRI), http: / /www.omri.org● National Organic Standards Board (NOSB), http: / /www.ams.usda.gov /

nosb / index.htm● National Organic Program (NOP), http: / /www.ams.usda.gov /nop /nop /

nophome.html● Weed Management Menu—Sustainable Farming Connection, http: / /

www.ibiblio.org / farming-connection /weeds /home.htm

Page 406: HANDBOOK FOR VEGETABLE GROWERS

395

● National Sustainable Agriculture Information Service, http: / /www.attra.org

● G. Boyhan, D. Granberry, W. T. Kelley, and W. McLaurin, GrowingVegetables Organically (University of Georgia, 1999), http: / /pubs.caes.uga.edu/caespubs /pubcd /b1011-w.html.

05COVER CROPS AND ROTATION IN WEED MANAGEMENT

Vegetable growers can take advantage of certain cover crops to help controlweeds in vegetable production systems and crop rotation systems. Covercrops compete with weeds, reducing the growth and weed seed productioncapacity of weeds. Cover crops help build soil organic matter and can lead tomore vigorous vegetable crops that compete more effectively with weeds.Rotation introduces weed populations to different crops with different weedcontrol options and helps keep herbicide-resistant weed populations frombecoming established.

Some websites for cover crops and rotation in vegetable production:

Michigan, www.kbs.msu.edu/extension /covercrops /home.htmNew York, http: / /www.nysaes.cornell.edu /recommends /4frameset.html

Page 407: HANDBOOK FOR VEGETABLE GROWERS

396

06HERBICIDES

WEED CONTROL WITH HERBICIDES

Chemical weed control minimizes labor and is effective if used with care.The following precautions should be observed:

1. Do not use a herbicide unless the label states that it is registered forthat particular crop. Be sure to use as directed by the manufacturer.

2. Use herbicides so that no excessive residues remain on the harvestedproduct, which may otherwise be confiscated. Residue tolerances areestablished by the U.S. Environmental Protection Agency (EPA).

3. Note that some herbicides kill only certain weeds.

4. Make certain the soil is sufficiently moist for effective action ofpreemergence sprays. Do not expect good results in dry soil.

5. Keep in mind that postemergence herbicides are most effective whenconditions favor rapid weed germination and growth.

6. Avoid using too much herbicide. Overdoses can injure the vegetablecrop. Few crops, if any, are entirely resistant.

7. Use less herbicide on light sandy soils than on heavy clay soils.Muck soils require somewhat greater rates than do heavy mineralsoils.

8. When using wettable powders, be certain the liquid in the tank isagitated constantly as spraying proceeds.

9. Use a boom and nozzle arrangement that fans out the material closeto the ground in order to avoid drift.

10. Thoroughly clean spray tank after use.

CLEANING SPRAYERS AFTER APPLYING HERBICIDES

Sprayers must be kept clean to avoid injury to the crop on which they are tobe used for applying insecticides or fungicides as well as to prevent possibledeterioration of the sprayers after use of certain materials.

1. Rinse all parts of sprayer with water before and after any specialcleaning operation is undertaken.

Page 408: HANDBOOK FOR VEGETABLE GROWERS

397

2. If in doubt about the effectiveness of water alone to clean theherbicide from the tank, pump, boom, hoses, and nozzles, use acleaner. In some cases, it is desirable to use activated carbon toreduce contamination.

3. Fill the tank with water. Use one of the following materials for each100 gal water: 5 lb paint cleaner (trisodium phosphate), 1 galhousehold ammonia, or 5 lb sal soda.

4. If hot water is used, let the solution stand in the tank for 18 hr. Ifcold water is used, leave it for 36 hr. Pump the solution through thesprayer.

5. Rinse the tank and parts several times with clear water.6. If copper has been used in the sprayer before a weed control operation

is performed, put 1 gal vinegar in 100 gal water and let the solutionstay in the sprayer for 2 hr. Drain the solution and rinse thoroughly.Copper interferes with the effectiveness of some herbicides.

DETERMINING RATES OF APPLICATION OF WEED CONTROLMATERIALS

Commercially available herbicide formulations differ in their content of theactive ingredient. The label indicates the amount of the active ingredient(lb /gal). Refer to this amount in the table to determine how much of theformulation you need in order to supply the recommended amount of theactive ingredient per acre. For calibration of herbicide applicationequipment, see pages 328–339.

Page 409: HANDBOOK FOR VEGETABLE GROWERS

398

TABLE 7.1. HERBICIIDE DILUTION TABLE: QUANTITY OFLIQUID CONCENTRATES TO USE TO GIVE DESIREDDOSAGE OF ACTIVE CHEMICAL

Active IngredientContent of Liquid

Concentrate(lb /gal)

Active Ingredient Needed(lb /acre):

0.125 0.25 0.50 1 2 3 4

Liquid Concentrate to Use (pint /acre)

1 1.0 2.0 4.0 8.0 16.0 24.0 32.011⁄2 0.67 1.3 2.6 5.3 10.6 16.0 21.32 0.50 1.0 2.0 4.0 8.0 12.0 16.03 0.34 0.67 1.3 2.7 5.3 8.0 10.74 0.25 0.50 1.0 2.0 4.0 6.0 8.05 0.20 0.40 0.80 1.6 3.2 4.8 6.46 0.17 0.34 0.67 1.3 2.6 4.0 5.37 0.14 0.30 0.60 1.1 2.3 3.4 4.68 0.125 0.25 0.50 1.0 2.0 3.0 4.09 0.11 0.22 0.45 0.9 1.8 2.7 3.6

10 0.10 0.20 0.40 0.8 1.6 2.4 3.2

Adapted from Spraying Systems Co., Catalog 36, Wheaton, Ill. (1978).

Additional Conversion Tables

http: / /pmep.cce.cornell.edu / facts-slides-self / facts /gen-peapp-conv-table.htmlhttp: / /pubs.caes.uga.edu/caespubs /pubcd /b931.htm

SUGGESTED CHEMICAL WEED CONTROL PRACTICES

State recommendations for herbicides vary because the effect of herbicidesis influenced by growing area, soil type, temperature, and soil moisture.Growers should consult local authorities for specific recommendations. TheEPA has established residue tolerances for those herbicides that may leaveinjurious residues in or on a harvested vegetable and has approved certainmaterials, rates, and methods of application. Laws regarding vegetation andherbicides are constantly changing. Growers and commercial applicatorsshould not use a chemical on a crop for which the compound is notregistered. Herbicides should be used exactly as stated on the labelregardless of information presented here. Growers are advised to givespecial attention to plant-back restrictions.

Page 410: HANDBOOK FOR VEGETABLE GROWERS

399

07WEED CONTROL RECOMMENDATIONS

The Cooperative Extension Service in each state publishes recommendationsfor weed control practices. We present below some websites containingrecommendations for weed control in vegetable crops. The list is notexhaustive, and these websites are presented for information purposes.Because weed control recommendations, especially recommended herbicides,may differ from state to state and year to year, growers are encouraged toconsult the proper experts in their state for the latest information aboutweed control.

SELECTED WEBSITES FOR VEGETABLE WEED CONTROLRECOMMENDATIONS

● A. S. Culpepper, ‘‘Commercial Vegetables: Weed Control,’’ in 2005Georgia Pest Management Handbook, Commercial Edition, http: / /pubs.caes.uga /caespubs /PMH/PMH-com-veggie-weed.pdf.

● D. W. Monks and W. E. Mitchem, ‘‘Chemical Weed Control inVegetable Crops,’’ in 2005 North Carolina Agricultural ChemicalsManual, http: / / ipm.ncsu.edu/agchem/chptr8 /817.pdf.

● R. D. William, ‘‘Weed Management in Vegetable Crops,’’ in PacificNorthwest Weed Management Handbook. (2005), http: / /pnwpest.org /pnw/weeds.

● B. H. Zandstra, 2005 Weed Control Guide for Vegetable CropsMichigan State University Extension Bulletin E-433 (Nov. 2004),http: / /web4.msue.msu.edu/veginfo /bulletins /E433 2005.pdf.

● Commercial Vegetables Disease, Nematode, and Weed ControlRecommendations for 2005 (Alabama), http: / /www.aces.edu/pubs /docs /A /ANR-0500-A/veg.pdf.

● Weed Management, (New York) Integrated Crop and PestManagement Guidelines for Commercial Vegetable Production, (2005),http: / /www.nysaes.cornell.edu /recommends /4frameset.html.

● S. Post, F. Hale, D. Robinson, R. Straw, and J. Wills, The 2005Tennessee Commercial Vegetable Disease, Insect, and Weed ControlGuide, http: / /www.utextension.utk.edu/publications /pbfiles /PB1282.pdf.

● Florida weed control information can be found at http: / /edis.ifas.ufl.edu/ and search for ‘‘weed control’’ and author � ‘‘W. M.Stall.’’ This brings up weed control documents for individualvegetables.

● Ontario, Canada, http: / /www.omafra.gov.on.ca /english /environment /hort / references.htm (2005).

Page 411: HANDBOOK FOR VEGETABLE GROWERS

PART 8HARVESTING, HANDLING, AND STORAGE

01 FOOD SAFETY

02 GENERAL POSTHARVEST HANDLING PROCEDURES

03 PREDICTING HARVEST DATES AND YIELDS

04 COOLING VEGETABLES

05 VEGETABLE STORAGE

06 CHILLING AND ETHYLENE INJURY

07 POSTHARVEST DISEASES

08 VEGETABLE QUALITY

09 U.S. STANDARDS FOR VEGETABLES

10 MINIMALLY PROCESSED VEGETABLES

11 CONTAINERS FOR VEGETABLES

12 VEGETABLE MARKETING

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 412: HANDBOOK FOR VEGETABLE GROWERS

402

01FOOD SAFETY

Additional information on food safety can be found on these websites:

http: / /www.jifsan.umd.edu/gaps.htmlhttp: / /www.cfsan.fda.gov.htmlhttp: / /www.cals.ncsu.edu/hort sci /hsfoodsafety.htmlhttp: / /www.ces.ncsu.edu/depts / foodsci /agentinfo /http: / / foodsafe.msu.edu/http: / /ucgaps.ucdavis.edu/http: / /www.gaps.cornell.edu /http: / /www.foodriskclearinghouse.umd.edu/http: / /www.foodsafety.gov /http: / /www.extension.iastate.edu/ foodsafety /http: / /www.cdc.gov / foodsafety /edu.htm

FOOD SAFETY ON THE FARM

Potential On-Farm Contamination Sources

● Soil● Irrigation water● Animal manure● Inadequately composted manure● Wild and domestic animals● Inadequate field worker hygiene● Harvesting equipment● Transport containers (field to packing facility)● Wash and rinse water● Unsanitary handling during sorting and packaging, in packing

facilities, in wholesale or retail operations, and at home● Equipment used to soak, pack, or cut produce● Ice● Cooling units (hydrocoolers)● Transport vehicles

Page 413: HANDBOOK FOR VEGETABLE GROWERS

403

● Improper storage conditions (temperatures)● Improper packaging● Cross-contamination in storage, display, and preparation

From Food Safety Begins on the Farm: A Grower’s Guide (Ithaca, N.Y.: Cornell University),www.hort.cornell.edu / commercialvegetables / issues / foodsafe.html.

FOOD SAFETY IN VEGETABLE PRODUCTION

Plan Before Planting

● Select site for produce based on land history and location.● Use careful manure handling.● Keep good records.

Field Management Considerations

● Optimize irrigation water quality and methods.● Avoid manure sidedressing.● Practice good field sanitation.● Exclude animals and wildlife.● Emphasize worker training and hygiene.● Keep records of the above activities.

From Food Safety Begins on the Farm: A Grower’s Guide (Ithaca, N.Y.: Cornell University),www.hort.cornell.edu / commercialvegetables / issues / foodsafe.html.

FOOD SAFETY IN VEGETABLE HARVEST AND POSTHARVESTPRACTICES

Harvest Considerations

● Clean and sanitize storage facilities and produce contact surfacesprior to harvest.

● Clean harvesting aids each day.● Emphasize worker hygiene and training.● Emphasize hygiene to U-Pick customers.● Keep animals out of the fields.

Page 414: HANDBOOK FOR VEGETABLE GROWERS

404

Postharvest Considerations

● Enforce good worker hygiene.● Clean and sanitize packing area and lines daily.● Maintain clean and fresh water.● Cool produce quickly and maintain cold chain.● Sanitize trucks before loading.● Keep animals out of packinghouse and storage facilities.

From Food Safety Begins on the Farm: A Grower’s Guide (Ithaca, N.Y.: Cornell University),www.hort.cornell.edu / commercialvegetables / issues / foodsafe.html.

Human Pathogens That May Be Associated with Fresh Vegetables

● Soil-associated pathogenic bacteria (Clostridium botulinum, Listeriamoncytogenes)

● Fecal-associated pathogenic bacteria (Salmonella spp., Shigella spp.,E. coli O157:H7, and others)

● Pathogenic parasites (Cryptosporidium, Cyclospora)● Pathogenic viruses (Hepatitis, Norwalk virus, and others)

Basic Principles of Good Agricultural Practices (GAPs)

● Prevention of microbial contamination of fresh produce is favored overreliance on corrective actions once contamination has occurred.

● To minimize microbial food safety hazards in fresh produce, growersor packers should use GAPs in those areas over which they have adegree of control while not increasing other risks to the food supply orthe environment.

● Anything that comes in contact with fresh produce has the potentialto contaminate it. For most foodborne pathogens associated withproduce, the major source of contamination is human or animal feces.

● Whenever water comes in contact with fresh produce, its source andquality dictate the potential for contamination.

● Practices using manure or municipal biosolid wastes should be closelymanaged to minimize the potential for microbial contamination offresh produce.

● Worker hygiene and sanitation practices during production,harvesting, sorting, packing, and transport play a critical role inminimizing the potential for microbial contamination of fresh produce.

Page 415: HANDBOOK FOR VEGETABLE GROWERS

405

● Follow all applicable local, state, and federal laws and regulations, orcorresponding or similar laws. regulations, or standards for operatorsoutside the United States for agricultural practices.

● Accountability at all levels of the agricultural environment (farms,packing facility, distribution center, and transport operation) isimportant to a successful food safety program. There must bequalified personnel and effective monitoring to ensure that allelements of the program function correctly and to help track produceback through the distribution channels to the producer.

Adapted from James R. Gorny and Devon Zagory, ‘‘Food Safety,’’ in The Commercial Storage of Fruits,Vegetables, and Florist and Nursery Stocks (USDA Agriculture Handbook 66, 2004), http: / /www.ba.ars.usda.gov / hb66 / contents.html.

Page 416: HANDBOOK FOR VEGETABLE GROWERS

406

TABLE 8.1. SANITIZING CHEMICALS FOR PACKINGHOUSES

Compound Advantages Disadvantages

Chlorine(most widelyused sanitizerinpackinghousewater systems)

Relatively inexpensive.Broad spectrum—

effective on manymicrobes.

Practically no residueleft on the commodity.

Corrosive to equipment.Sensitive to pH. Below

6.5 or above 7.5reduces activity orincreases noxiousodors.

Can irritate skin anddamage mucousmembranes.

Chlorine Dioxide Activity is much less pHdependent thanchlorine.

Must be generated on-site.

Greater human exposurerisk than chlorine. Offgassing of noxiousgases is common.

Concentrated gases canbe explosive.

Peroxyacetic Acid No known toxic residuesor byproducts.

Produces very little offgassing.

Less affected by organicmatter than chlorine.

Low corrosiveness toequipment.

Activity is reduced in thepresence of metal ions.

Concentrated product istoxic to humans.

Sensitive to pH. Greatlyreduced activity at pHabove 7–8.

Page 417: HANDBOOK FOR VEGETABLE GROWERS

407

TABLE 8.1. SANITIZING CHEMICALS FOR PACKINGHOUSES(Continued )

Compound Advantages Disadvantages

Ozone Very strong oxidizer /sanitizer.

Can reduce pesticideresidues in the water.

Less sensitive to pHthan chlorine (butbreaks down muchfaster above �pH 8.5).

No known toxic residuesor byproducts.

Must be generated on-site.

Ozone gas is toxic tohumans. Off gassingcan be a problem.

Treated water should befiltered to removeparticulates andorganic matter.

Corrosive to equipment(including rubber andsome plastics).

Highly unstable inwater—half-life �15min; may be less than1 min in water withorganic matter or soil.

Note: Although quaternary ammonia is an effective sanitizer with useful properties and can be usedto sanitize equipment, it is not registered for contact with food.

Adapted from S. A. Sargent, M. A. Ritenour, and J. K. Brecht, ‘‘Handling, Cooling, and SanitationTechniques for Maintaining Postharvest Quality,’’ in Vegetable Production Handbook (University ofFlorida, 2005–2006).

TRACEABILITY OF PRODUCE IN THE UNITED STATES

Traceability has been a critical component of the produce industry for manyyears. Historically, the perishability of produce and the potential fordeterioration during cross-country shipment demanded better recordkeepingto ensure correct payment to growers. Because produce must be packed inrelatively small boxes to minimize damage, implementation of traceabilityhas also been relatively low in cost. The industry is in a much betterposition to adapt to new concerns than industries where bulk sales are thenorm and segregation and traceability involves new costs. Currently, two

Page 418: HANDBOOK FOR VEGETABLE GROWERS

408

Consumers

Shippers

Growers Processors

Food service Retailers

Exports Imports

Intermediaries:wholesalers/brokers/repackers/exporters/importers

Farmers’ markets/roadside stands

Figure 8.1. Tracing fresh produce through the food marketing system.

systems of information are involved in produce. First, there are physicallabels on boxes and sometimes on pallets. For general business purposes, itis important to be able to identify the product in the boxes. Various statelaws require box information, and marketing orders also often requireadditional box information. Pallet tags are completely voluntary. Second, apaper or electronic trail allows traceback between links in the marketingchain, though each link may use a different traceability system. U.S. andCanadian produce organizations are looking at ways to promote a universaltraceability system. They recommend that shipper name, pallet tag number(if available), and lot number be part of the paperwork at each link. Thiswould effectively combine information on boxes and the paper or electronictrail. Such a system would require developing a standardized system ofbarcodes or other machine-readable information as well as shipper andbuyer investment in machines to apply and read codes. One of thechallenges to developing a compelling technical solution that all marketparticipants would use voluntarily is to ensure that all segments of theindustry can afford the costs of the new system.

Perishable Agricultural Commodities Act

Key Legislation and Dates: Perishable Agricultural Commodities Act (PACA)was enacted in 1930.

Page 419: HANDBOOK FOR VEGETABLE GROWERS

409

Objective: PACA was enacted to promote fair trading practices in the fruitand vegetable industry. The objective of the recordkeeping is to facilitatethe marketing of fruit and vegetables, to verify claims, and to minimizemisrepresentation of the condition of the item, particularly when longdistances separate the traders.

Coverage: Fruit and vegetables.Recordkeeping Required: PACA calls for complete and accurate

recordkeeping and disclosure for shippers, brokers, and other firsthandlers of produce selling on behalf of growers. PACA has extensiverecordkeeping requirements with respect to who buyers and sellers are,what quantities and kinds of produce is transacted, and when and howthe transaction takes place. PACA regulations recognize that the variedfruit and vegetable industries have different recordkeeping needs, andthe regulations allow for this variance. Records must be kept for 2 yearsfrom the closing date of the transaction.

Elise Golan et al., Traceability in the U.S. Food Supply: Economic Theory and Industry Studies(USDA ERS AER830, 2004), http: / / www.ers.usda.gov / publications / aer830.

Page 420: HANDBOOK FOR VEGETABLE GROWERS

410

02GENERAL POSTHARVEST HANDLING PROCEDURES

Additional information on postharvest handling can be found on thesewebsites:

Agriculture and Agri-Food Canada, www.agr.gc.caCalifornia Department of Food and Agriculture, www.cdfa.ca.govEnvironmental Protection Agency (EPA), Office of Pesticide Programs,

www.epa.govFood and Agriculture Organization (FAO), Information Network on

Postharvest Operations (InPhO), www.fao.org / inphoHawaii Agriculture Food Quality and Safety, http: / /www.hawaiiag.org /

foodsaf.htmInformation Network on Postharvest Operations, www.fao.org / inphoNorth Carolina State University Cooling and Handling Publications, http: / /

www.bae.ncsu.edu/programs/extension /publicat /postharv / index.htmlUC Davis Postharvest Technology Research and Information Center, http: / /

postharvest.ucdavis.eduUSDA/Agricultural Marketing Service /Fruit and Vegetable Division,

www.usda.gov /ams/ fruitveg.htmUSDA/Economic Research Service, http: / /www.ers.usda.gov /USDA Food Safety and Inspection Service, www.fsis.usda.govUSDA National Agricultural Statistics Service, http: / /www.nass.usda.gov /University of Florida Market Information System, http: / /

marketing.ifas.ufl.edu/University of Florida Postharvest Programs, http: / /postharvest.ifas.ufl.edu

Page 421: HANDBOOK FOR VEGETABLE GROWERS

411

TABLE 8.2. LEAFY, FLORAL, AND SUCCULENT VEGETABLES

Step Function

1. Harvesting mostly by hand; some harvesting aids are in use.2. Transport to packinghouse and unloading if not field packed.3. Cutting and trimming (by harvester or by different worker on mobile

packing line or in packinghouse).4. Sorting and manual sizing (as above).5. Washing or rinsing.6. Wrapping (e.g., cauliflower, head lettuce) or bagging (e.g., celery).7. Packing in shipping containers (waxed fiberboard or plastic to

withstand water or ice exposure for cooling).8. Palletization of shipping containers.9. Cooling methods.

● Vacuum cooling: lettuce● Hydrovacuum cooling: cauliflower, celery● Hydrocooling: artichoke, celery, green onion, leaf lettuce, leek,

spinach● Package ice: broccoli, parsley, spinach● Room cooling: artichoke, cabbage

10. Transport, destination handling, retail handling.

Page 422: HANDBOOK FOR VEGETABLE GROWERS

412

TABLE 8.3. UNDERGROUND STORAGE ORGAN VEGETABLES

Step Function

1. Mechanical harvest (digging, lifting), except hand harvesting of sweetpotato.

2. Curing (in field) of potato, onion, garlic, and tropical crops.3. Field storage of potatoes and tropical storage organ vegetables in pits,

trenches, or clamps.4. Collection into containers or into bulk trailers.5. Transport to packinghouse and unloading.6. Cleaning by dry brushing or with water.7. Sorting to eliminate defects.8. Sizing.9. Packing in bags or cartons; consumer packs placed within master

containers.10. Palletization of shipping containers.11. Cooling methods.

a. Hydrocooling of temperate storage roots and tubers.b. Room cooling of potato, onion, garlic, and tropical storage organs.

12. Curing.a. Forced-air drying (onion and garlic).b. High temperature and relative humidity (potato and tropical storage

organs).13. Storage.

a. Ventilated storage of potato, onion, garlic, and sweet potato incellars and warehouses.

b. Temporary storage of temperate storage organ vegetables.c. Long-term storage of potato, onion, garlic, and tropical crops

following curing.14. Fungicide treatment (sweet potato); sprout inhibitor (potato).15. Transport, destination handling, retail handling.

Page 423: HANDBOOK FOR VEGETABLE GROWERS

413

TABLE 8.4. IMMATURE FRUIT VEGETABLES

Step Function

1. Harvesting mostly by hand into buckets or trays; some harvesting aidsare in use.a. Sweet corn, snap bean, and pea are also harvested mechanically.b. Field-packed vegetables are usually not washed, but they may be

wiped with a moist cloth or spray-washed on a mobile packing line.2. For packinghouse operations, stacking buckets or trays on trailers or

transferring to shallow pallet bins.3. Transporting harvested vegetables to packinghouse.4. Unloading by dry or wet dump.5. Washing or rinsing.6. Sorting to eliminate defects.7. Waxing cucumber and pepper.8. Sizing.9. Packing in shipping containers by weight or count.

10. Palletizing shipping containers.11. Cooling methods:

a. Hydrocooling: bean, pea, sweet corn.b. Forced-air cooling: chayote, cucumber, eggplant, okra, summer

squash.c. Slush-ice cooling and vacuum cooling: sweet corn.

12. Temporary storage.13. Transporting, destination handling, retail handling.

Page 424: HANDBOOK FOR VEGETABLE GROWERS

414

TABLE 8.5. MATURE FRUIT VEGETABLES

Step Function

1. Harvesting.2. Hauling to the packinghouse or processing plant.3. Cleaning.4. Sorting to eliminate defects.5. Waxing (tomato, pepper).6. Sizing and sorting into grades.7. Packing—shipping containers.8. Palletization and unitization.

9a. Curing of winter squash and pumpkin.9b. Ripening of melon and tomato with ethylene.10. Cooling (hydrocooling, room cooling, forced-air cooling).11. Temporary storage.12. Loading into transport vehicles.13. Destination handling (distribution centers, wholesale markets, etc.).14. Delivery to retail.15. Retail handling.

Copyright 2003 from Postharvest Physiology and Pathology of Vegetables, 2nd ed., by J. R. Bartz andJ. K. Brecht (eds.). Reproduced by permission of Routledge / Taylor & Francis Group, LLC.

Page 425: HANDBOOK FOR VEGETABLE GROWERS

415

03PREDICTING HARVEST DATES AND YIELDS

TABLE 8.6. APPROXIMATE TIME FROM VEGETABLE PLANTINGTO MARKET MATURITY UNDER OPTIMUM GROWINGCONDITIONS

Vegetable

Time to Market Maturity1 (days)

EarlyVariety

LateVariety

CommonVariety

Bean, broad — — 120Bean, bush 48 60 —Bean, edible soy 84 115 —Bean, pole 58 70 —Bean, lima, bush 65 80 —Bean, lima, pole 80 88 —Beet 50 65 —Broccoli2 60 85 —Broccoli raab — — 70Brussels sprouts2 90 120 —Cabbage 70 120 —Cardoon — — 120Carrot 50 95 —Cauliflower2 55 90 —Celeriac — — 110Celery2 90 125 —Chard, Swiss 50 60 —Chervil — — 60Chicory 65 150 —Chinese cabbage 50 80 —Chive — — 90Collards 70 85 —Corn, sweet 60 95 —Corn salad — — 60Cress — — 45Cucumber, pickling 48 58 —Cucumber, slicing 55 70 —Dandelion — — 85

Page 426: HANDBOOK FOR VEGETABLE GROWERS

416

TABLE 8.6. APPROXIMATE TIME FROM VEGETABLE PLANTINGTO MARKET MATURITY UNDER OPTIMUM GROWINGCONDITIONS (Continued )

Vegetable

Time to Market Maturity1 (days)

EarlyVariety

LateVariety

CommonVariety

Eggplant2 60 80 —Endive 80 100 —Florence fennel — — 100Kale — — 55Kohlrabi 50 60 —Leek — — 120Lettuce, butterhead 55 70 —Lettuce, cos 65 75 —Lettuce, head 70 85 —Lettuce, leaf 40 50 —Melon, cantaloupe 75 105Melon, casaba — — 110Melon, honeydew 90 110 —Melon, Persian — — 110Okra 50 60 —Onion, dry 90 150 —Onion, green 45 70 —Parsley 65 75 —Parsley root — — 90Parsnip — — 120Pea 56 75 —Pea, edible-podded 60 75 —Pepper, hot2 60 95 —Pepper, sweet2 65 80 —Potato 90 120 —Pumpkin 85 120 —Radicchio 90 95 —Radish 22 30 —Radish, winter 50 65 —Roselle — — 175Rutabaga — — 90

Page 427: HANDBOOK FOR VEGETABLE GROWERS

417

TABLE 8.6. APPROXIMATE TIME FROM VEGETABLE PLANTINGTO MARKET MATURITY UNDER OPTIMUM GROWINGCONDITIONS (Continued )

Vegetable

Time to Market Maturity1 (days)

EarlyVariety

LateVariety

CommonVariety

Salsify — — 150Scolymus — — 150Scorzonera — — 150Sorrel — — 60Southern pea 65 85 —Spinach 37 45 —Squash, summer 40 50 —Squash, winter 80 120 —Sweet potato 120 150 —Tomatillo — — 80Tomato2 60 85 —Tomato, processing 118 130 —Turnip 35 50 —Watercress — — 180Watermelon 75 95 —

1 Maturity may vary depending on season, latitude, production practices, variety, and other factors.2 Time from transplanting. See page 63–64.

Page 428: HANDBOOK FOR VEGETABLE GROWERS

418

TABLE 8.7. APPROXIMATE TIME FROM POLLINATION OFVEGETABLES TO MARKET MATURITY UNDER WARMGROWING CONDITIONS

VegetableTime to Market Maturity1

(days)

Bean 7–10Cantaloupe 42–46Corn,2 market 18–23Corn,2 processing 21–27Cucumber, pickling (3⁄4–11⁄8 in. in diameter) 4–5Cucumber, slicing 15–18Eggplant (2⁄3 maximum size) 25–40Okra 4–6Pepper, green stage (about maximum size) 45–55Pepper, red stage 60–70Pumpkin, Connecticut Field 80–90Pumpkin, Dickinson 90–110Pumpkin, Small Sugar 65–75Squash, summer, crookneck 6–73

Squash, summer, straightneck 5–63

Squash, summer, scallop 4–53

Squash, summer, zucchini 3–43

Squash, winter, banana 70–80Squash, winter, Boston Marrow 60–70Squash, winter, buttercup 60–70Squash, winter, butternut 60–70Squash, winter, Golden Delicious 60–70Squash, winter, hubbard 80–90Squash, winter, Table Queen or acorn 55–60Strawberry 25–42Tomato, mature green stage 35–45Tomato, red ripe stage 45–60Watermelon 42–45

1 Maturity may vary depending on season, latitude, production practices, variety, and other factors.2 Days from 50% silking.3 For a weight of 1⁄4–1⁄2 lb.

Page 429: HANDBOOK FOR VEGETABLE GROWERS

419

TABLE 8.8. ESTIMATING YIELDS OF CROPSPredicting crop yields before the harvest aids in scheduling the harvests ofvarious fields for total yields and allows harvesting to obtain highest yieldsof a particular grade or stage of maturity. To estimate yields, follow thesesteps:

1. Select and measure a typical 10-ft section of a row. If the field isvariable or large, you may want to select several 10-ft sections.

2. Harvest the crop from the measured section or sections.3. Weigh the entire sample for total yields, or grade the sample and

weigh the graded sample for yield of a particular grade.4. If you have harvested more than one 10-ft section, divide the yield by

the number of sections harvested.5. Multiply the sample weight by the conversion factor in the table for

your row spacing. The value obtained will equal hundredweight (cwt)per acre.

Conversion Factors for Estimating Yields

Row Spacing(in.)

Multiply Sample Weight (lb) byConversion Factor to Obtain cwt /acre

12 43.615 34.818 29.020 26.121 24.924 21.830 17.436 14.540 13.142 12.448 10.9

Example 1: A 10-ft sample of carrots planted in 12-in. rows yields 9 lb ofNo. 1 carrots.

9 � 43.6 � 392.4 cwt /acre

Example 2: The average yield of three 10-ft samples of No. 1 potatoesplanted in 36-in. rows is 26 lb.

26 � 14.5 � 377 cwt /acre

Page 430: HANDBOOK FOR VEGETABLE GROWERS

420

TABLE 8.9. YIELDS OF VEGETABLE CROPS

Vegetable

Approximate AverageYield in the UnitedStates (cwt /acre)

Good Yield(cwt /acre)

Artichoke 125 160Asparagus 30 45Bean, fresh market 62 100Bean, processing 75 135Bean, lima, processing 25 40Beet, fresh market 140 200Beet, processing 320 400Broccoli 145 200Brussels sprouts 180 200Cabbage, fresh market 320 450Cabbage, processing 500 800Carrot, fresh market 350 800Carrot, processing 520 700Cauliflower 170 200Celeriac — 200Celery 650 750Chard, Swiss — 150Chinese cabbage, napa — 400Chinese cabbage, pak choi — 300Collards 120 200Corn, fresh market 110 200Corn, processing 150 200Cucumber, fresh market 185 300Cucumber, processing 110 300Eggplant 250 350Endive, escarole 180 200Garlic 165 200Horseradish — 80Lettuce, head 360 400Lettuce, leaf 200 325Lettuce, romaine 300 350Melon, cantaloupe 250 250Melon, honeydew 205 250Melon, Persian 130 160

Page 431: HANDBOOK FOR VEGETABLE GROWERS

421

TABLE 8.9. YIELDS OF VEGETABLE CROPS (Continued )

Vegetable

Approximate AverageYield in the UnitedStates (cwt /acre)

Good Yield(cwt /acre)

Okra 60 150Onion 420 650Pea, fresh market 40 60Pea, processing (shelled) 30 45Pepper, bell 290 375Pepper, chile (fresh and

dried)100 230

Pepper, pimiento — 100Potato 315 400Pumpkin 215 400Radish 90 200Rhubarb — 200Rutabaga — 400Snowpea — 80Southern pea — 35Spinach, fresh market 160 225Spinach, processing 180 220Squash, summer 160 300Squash, winter — 400Sweet potato 145 300Strawberry 400 600Tomato, fresh market 290 400Tomato, processing 700 900Tomato, cherry — 600Turnip — 400Watermelon 260 500

Page 432: HANDBOOK FOR VEGETABLE GROWERS

422

TABLE 8.10. STATUS OF HAND VERSUS MECHANICAL HARVESTOF VEGETABLES

Acreage HandHarvested

(%)

Vegetable

76–100 Artichoke Asparagus Broccoli1 CabbageCauliflower Celery Cucumber1 LettuceGreen onion Collards Cress DandelionEggplant Endive Escarole FennelKale Kohlrabi Mushroom1 OkraPepper Rapini Rhubarb1 RomaineSorrel Squash Watercress CassavaCeleriac Ginger Parsley root ParsnipRutabaga Salsify Turnip Taro1

Jerusalemartichoke

51–75 Sweet potatoTurnip greens

Mustardgreens

Parsley Swiss chard

26–50 Dry onion Pumpkin1 Tomato1

0–25 Beet1 Carrot Potato1 Lima bean1

Snap bean1

Pea1

Boniato

Sweetcorn1

GarlicRadish

Spinach1

Brusselssprouts1

Horseradish1

Malanga

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 2nd ed., (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 1992).1 More than 50% of the crop is processed.

Page 433: HANDBOOK FOR VEGETABLE GROWERS

423

04C

OO

LIN

GV

EG

ET

AB

LE

S

TA

BL

E8.

11.

CO

MP

AR

ISO

NO

FT

YP

ICA

LP

RO

DU

CT

EF

FE

CT

SA

ND

CO

ST

FO

RC

OM

MO

NC

OO

LIN

GM

ET

HO

DS

Pro

duct

Eff

ect

For

ced-

Air

Hyd

roV

acu

um

Wat

erS

pray

Ice

Roo

m

Coo

lin

gT

ime

(h)

1–10

0.1–

1.0

0.3–

2.0

0.3–

2.0

0.1

to0.

3120

–100

Pro

duct

moi

stu

relo

ss(%

)0.

1–2.

00–

0.5

2.0–

4.0

No

data

No

data

0.1–

2.0

Wat

erco

nta

ctw

ith

prod

uct

No

Yes

No

Yes

Yes,

un

less

bagg

edN

oP

oten

tial

for

deca

yco

nta

min

atio

nL

owH

igh

2N

one

Hig

h2

Low

Low

Cap

ital

cost

Low

Low

Med

ium

Med

ium

Hig

hH

igh

En

ergy

effi

cien

cyL

owH

igh

Hig

hM

ediu

mL

owL

owW

ater

-res

ista

nt

pack

agin

gn

eede

dN

oYe

sN

oYe

sYe

sN

oP

orta

ble

Som

etim

esR

arel

ydo

ne

Com

mon

Com

mon

Com

mon

No

Fea

sibi

lity

ofin

-lin

eco

olin

gR

arel

ydo

ne

Yes

No

No

Rar

ely

don

eN

o

1T

opic

ing

can

take

mu

chlo

nge

r.2R

ecir

cula

ted

wat

erm

ust

beco

nst

antl

ysa

nit

ized

tom

inim

ize

accu

mu

lati

onof

deca

ypa

thog

ens.

Ada

pted

from

Jam

esF.

Th

omps

on,‘

‘Pre

-coo

lin

gan

dS

tora

geF

acil

itie

s’’i

nT

he

Com

mer

cial

Sto

rage

ofF

ruit

s,V

eget

able

s,an

dN

urs

ery

Sto

cks

(US

DA

Agr

icu

ltu

reH

andb

ook

66,

2004

),h

ttp:

//w

ww

.ba.

ars.

usd

a.go

v/h

b66

/con

ten

ts.h

tml.

Page 434: HANDBOOK FOR VEGETABLE GROWERS

424

TA

BL

E8.

12.

GE

NE

RA

LC

OO

LIN

GM

ET

HO

DS

FO

RV

EG

ET

AB

LE

S

Met

hod

1V

eget

able

Com

men

ts

Roo

mco

olin

gA

llve

geta

bles

Too

slow

for

mos

tpe

rish

able

com

mod

itie

s.C

ooli

ng

rate

sva

ryex

ten

sive

lyw

ith

inlo

ads,

pall

ets,

and

con

tain

ers.

For

ced-

air

cool

ing

(pre

ssu

reco

olin

g)

Str

awbe

rry,

fru

it-t

ype

vege

tabl

es,

tube

rs,

cau

lifl

ower

Mu

chfa

ster

than

room

cool

ing;

cool

ing

rate

su

nif

orm

ifpr

oper

lyu

sed.

Con

tain

erve

nti

ng

and

stac

kin

gre

quir

emen

tsar

ecr

itic

alto

effe

ctiv

eco

olin

g.H

ydro

cool

ing

Ste

ms,

leaf

yve

geta

bles

,som

efr

uit

-typ

eve

geta

bles

Ver

yfa

stco

olin

g;u

nif

orm

cool

ing

inbu

lkif

prop

erly

use

d,bu

tm

ayva

ryex

ten

sive

lyin

pack

edsh

ippi

ng

con

tain

ers;

dail

ycl

ean

ing

and

san

itat

ion

mea

sure

ses

sen

tial

;pro

duct

mu

stto

lera

tew

etti

ng;

wat

er-t

oler

ant

ship

pin

gco

nta

iner

sm

aybe

nee

ded.

Pac

kage

icin

gR

oots

,st

ems,

som

efl

ower

-typ

eve

geta

bles

,gre

enon

ion

,B

russ

els

spro

uts

Fast

cool

ing;

lim

ited

toco

mm

odit

ies

that

can

tole

rate

wat

er-i

ceco

nta

ct;

wat

er-t

oler

ant

ship

pin

gco

nta

iner

sar

ees

sen

tial

.

Page 435: HANDBOOK FOR VEGETABLE GROWERS

425

Vac

uu

mco

olin

gL

eafy

vege

tabl

es;s

ome

stem

and

flow

er-

type

vege

tabl

esC

omm

odit

ies

mu

sth

ave

afa

vora

ble

surf

ace-

to-

mas

sra

tio

for

effe

ctiv

eco

olin

g.C

ause

sab

out

1%w

eigh

tlo

ssfo

rea

ch10

�Fco

oled

.A

ddin

gw

ater

duri

ng

cool

ing

prev

ents

this

wei

ght

loss

but

equ

ipm

ent

ism

ore

expe

nsi

ve,a

nd

wat

er-

tole

ran

tsh

ippi

ng

con

tain

ers

are

nee

ded.

Tra

nsi

tco

olin

g:M

ech

anic

alre

frig

erat

ion

All

vege

tabl

esC

ooli

ng

inm

ost

avai

labl

eeq

uip

men

tis

too

slow

and

vari

able

;gen

eral

lyn

otef

fect

ive.

Top

icin

gan

dch

ann

elic

ing

Som

ero

ots,

stem

s,le

afy

vege

tabl

es,

can

talo

upe

.S

low

and

irre

gula

r,to

p-ic

ew

eigh

tre

duce

sn

etpa

yloa

d;w

ater

-tol

eran

tsh

ippi

ng

con

tain

ers

nee

ded.

Ada

pted

from

A.

A.

Kad

er(e

d.),

Pos

thar

vest

Tec

hn

olog

yof

Hor

ticu

ltu

ral

Cro

p,2n

ded

.(U

niv

ersi

tyof

Cal

ifor

nia

,Div

isio

nof

Agr

icu

ltu

rean

dN

atu

ral

Res

ourc

esP

ubl

icat

ion

3311

,199

2).

1F

orth

ese

met

hod

sto

beef

fect

ive,

the

prod

uct

mu

stbe

cool

edco

nti

nu

ousl

yu

nti

lre

ach

ing

the

con

sum

er.

Page 436: HANDBOOK FOR VEGETABLE GROWERS

426

TA

BL

E8.

13.

SP

EC

IFIC

CO

OL

ING

ME

TH

OD

SF

OR

VE

GE

TA

BL

ES

Veg

etab

le

Siz

eof

Ope

rati

on

Lar

geS

mal

lR

emar

ks

Lea

fyV

eget

able

sC

abba

geV

C,

FA

FA

Iceb

erg

lett

uce

VC

FA

Kal

e,co

llar

dsV

C,

R,

WV

CF

AL

eaf

lett

uce

s,sp

inac

h,e

ndi

ve,

esca

role

,C

hin

ese

cabb

age,

pak

choi

,ro

mai

ne

VC

,F

A,

WV

C,

HC

FA

Roo

tV

eget

able

sW

ith

tops

HC

,P

I,F

AH

C,

FA

Car

rots

can

beV

C.

Top

ped

HC

,P

IH

C,

PI,

FA

Iris

hpo

tato

Rw

/eva

pco

oler

sW

ith

evap

cool

ers,

faci

liti

essh

ould

bead

apte

dto

curi

ng.

Sw

eet

pota

toH

CR

Ste

man

dF

low

erV

eget

able

sA

rtic

hok

eH

C,

PI

FA

,P

IA

spar

agu

sH

CH

CB

rocc

oli,

Bru

ssel

ssp

rou

tsH

C,

FA

,P

IF

A,

PI

Cau

lifl

ower

FA

,V

CF

A

Page 437: HANDBOOK FOR VEGETABLE GROWERS

427

Cel

ery,

rhu

barb

HC

,W

VC

,V

CH

C,

FA

Gre

enon

ion

,le

ekP

I,H

C,

WV

CP

I

Mu

shro

omF

A,

VC

FA

Pod

Veg

etab

les

Bea

nH

C,

FA

FA

Pea

FA

,P

I,V

CF

A,

PI

Bu

lbV

eget

able

sD

ryon

ion

RR

,F

AS

hou

ldbe

adap

ted

tocu

rin

g.G

arli

cR

Fru

it-t

ype

Veg

etab

les

Cu

cum

ber,

eggp

lan

tR

,F

A,

FA

-EC

FA

,F

A-E

CF

ruit

-typ

eve

geta

bles

are

chil

lin

gse

nsi

tive

,bu

tat

vary

ing

tem

pera

ture

.See

page

s44

4–44

8.M

elon

sC

anta

lou

peH

C,

FA

,P

IF

A,

FA

-EC

Cre

nsh

aw,h

oney

dew

,ca

saba

FA

,R

FA

,F

A-E

C

Wat

erm

elon

FA

,H

CF

A,

FA

-EC

Pep

per

R,

FA

,F

A-E

C,

VC

FA

,F

A-E

CS

um

mer

squ

ash

,okr

aR

,F

A,

FA

-EC

FA

,F

A-E

CS

wee

tco

rnH

C,

VC

,P

IH

C,

FA

,P

IT

omat

illo

R,

FA

,F

A-E

CF

A,

FA

-EC

Tom

ato

R,

FA

,F

A-E

C

Page 438: HANDBOOK FOR VEGETABLE GROWERS

428

TA

BL

E8.

13.

SP

EC

IFIC

CO

OL

ING

ME

TH

OD

SF

OR

VE

GE

TA

BL

ES

(Con

tin

ued

)

Veg

etab

le

Siz

eof

Ope

rati

on

Lar

geS

mal

lR

emar

ks

Win

ter

squ

ash

RR

Fre

shH

erb

sN

otpa

ckag

edH

C,

FA

FA

,R

Can

beea

sily

dam

aged

byw

ater

beat

ing

inH

C.

Pac

kage

dF

AF

A,

R

Cac

tus

Lea

ves

(nop

alit

os)

RF

AF

ruit

(tu

nas

orpr

ickl

ype

ars)

RF

A

Ada

pted

from

A.

A.

Kad

er(e

d.),

Pos

thar

vest

Tec

hn

olog

yof

Hor

ticu

ltu

ral

Cro

ps,3

rded

.(U

niv

ersi

tyof

Cal

ifor

nia

,Div

isio

nof

Agr

icu

ltu

rean

dN

atu

ral

Res

ourc

esP

ubl

icat

ion

3311

,200

2).

R�

Roo

mC

ooli

ng;

FA

�F

orce

d-ai

rC

ooli

ng;

HC

�H

ydro

cool

ing;

VC

�V

acu

um

Coo

lin

g;W

VC

�W

ater

Spr

ayV

acu

um

Coo

lin

g;F

A-E

C�

For

ced-

air

Eva

pora

tive

Coo

lin

g;P

I�

Pac

kage

Icin

g.

Page 439: HANDBOOK FOR VEGETABLE GROWERS

429

05VEGETABLE STORAGE

TABLE 8.14. RELATIVE PERISHABILITY AND POTENTIALSTORAGE LIFE OF FRESH VEGETABLES IN AIR ATNEAR OPTIMUM STORAGE TEMPERATURE ANDRELATIVE HUMIDITY

Potential Storage Life (weeks)

�2 2–4 4–8 8–16

Asparagus Artichoke Beet GarlicBean sprouts Green bean Carrot OnionBroccoli Brussels sprouts Potato (immature) Potato (mature)Cantaloupe Cabbage Radish PumpkinCauliflower Celery Winter squashGreen onion Eggplant Sweet potatoLeaf lettuce Head lettuce TaroMushroom Mixed melons YamPea OkraSpinach PepperSweet corn Summer squashTomato (ripe)Fresh-cut

vegetables

Tomato(partially ripe)

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).

Page 440: HANDBOOK FOR VEGETABLE GROWERS

430

TABLE 8.15. RECOMMENDED TEMPERATURE AND RELATIVEHUMIDITY CONDITIONS AND APPROXIMATESTORAGE LIFE OF FRESH VEGETABLES

For more detailed information about specific commodities, go to one of thefollowing websites:

http: / /www.ba.ars.usda.gov /hb66 / index.html

http: / /postharvest.ucdavis.edu/produce /producefacts / index.shtml

Vegetable

Storage Conditions

Temperature(�F)

Relative Humidity(%)

ApproximateStorage Life

Amaranth 32–36 95–100 10–14 daysAnise 32–36 90–95 2–3 weeksArtichoke, globe 32 95–100 2–3 weeksArtichoke, Jerusalem 31–32 90–95 4 monthsAsparagus 36 95–100 2–3 weeksBean, fava 32 90–95 1–2 weeksBean, lima 37–41 95 5–7 daysBean, snap 40–45 95 7–10 daysBean, yardlong 40–45 95 7–10 daysBeet, bunched 32 98–100 10–14 daysBeet, topped 32 98–100 4 monthsBitter melon 50–54 85–90 2–3 weeksBok choy 32 95–100 3 weeksBoniato 55–60 85–90 4–5 monthsBroccoli 32 95–100 10–14 daysBrussels sprouts 32 95–100 3–5 weeksCabbage, early 32 98–100 3–6 weeksCabbage, late 32 95–100 5–6 monthsCabbage, Chinese 32 95–100 2–3 monthsCactus, leaves 41–50 90–95 2–3 weeksCactus, pear 41 90–95 3 weeksCalabaza 50–55 50–70 2–3 monthsCarrot, bunched 32 98–100 10–14 daysCarrot, topped 32 98–100 6–8 monthsCassava 32–41 85–90 1–2 months

Page 441: HANDBOOK FOR VEGETABLE GROWERS

431

TABLE 8.15. RECOMMENDED TEMPERATURE AND RELATIVEHUMIDITY CONDITIONS AND APPROXIMATESTORAGE LIFE OF FRESH VEGETABLES(Continued )

Vegetable

Storage Conditions

Temperature(�F)

Relative Humidity(%)

ApproximateStorage Life

Cauliflower 32 95–98 3–4 weeksCeleriac 32 98–100 6–8 monthsCelery 32 98–100 1–2 monthsChard 32 95–100 10–14 daysChayote 45 85–90 4–6 weeksChicory, witloof 36–38 95–98 2–4 weeksChinese broccoli 32 95–100 10–14 daysCollards 32 95–100 10–14 daysCucumber, slicing 50–54 85–90 10–14 daysCucumber, pickling 40 95–100 7 daysDaikon 32–34 95–100 4 monthsEggplant 50 90–95 1–2 weeksEndive, escarole 32 95–100 2–4 weeksGarlic 32 65–70 6–7 monthsGinger 55 65 6 monthsGreens, cool-season 32 95–100 10–14 daysGreens, warm-

season45–50 95–100 5–7 days

Horseradish 30–32 98–100 10–12 monthsJicama 55–65 85–90 1–2 monthsKale 32 95–100 2–3 weeksKohlrabi 32 98–100 2–3 monthsLeek 32 95–100 2 monthsLettuce 32 98–100 2–3 weeksMalanga 45 70–80 3 monthsMelon

Cantaloupe 36–41 95 2–3 weeksCasaba 45–50 85–90 3–4 weeksCrenshaw 45–50 85–90 2–3 weeksHoneydew 41–50 85–90 3–4 weeks

Page 442: HANDBOOK FOR VEGETABLE GROWERS

432

TABLE 8.15. RECOMMENDED TEMPERATURE AND RELATIVEHUMIDITY CONDITIONS AND APPROXIMATESTORAGE LIFE OF FRESH VEGETABLES(Continued )

Vegetable

Storage Conditions

Temperature(�F)

Relative Humidity(%)

ApproximateStorage Life

Persian 45–50 85–90 2–3 weeksWatermelon 50–59 90 2–3 weeks

Mushroom 32 90 7–14 daysMustard greens 32 90–95 7–14 daysOkra 45–50 90–95 7–10 daysOnion, dry 32 65–70 1–8 monthsOnion, green 32 95–100 3 weeksParsley 32 95–100 8–10 weeksParsnip 32 98–100 4–6 monthsPea, English, snow,

snap32–34 90–98 1–2 weeks

Pepino 41–50 95 4 weeksPepper, chile 41–50 85–95 2–3 weeksPepper, sweet 45–50 95–98 2–3 weeksPotato, early1 50–59 90–95 10–14 daysPotato, late2 40–54 95–98 5–10 monthsPumpkin 54–59 50–70 2–3 monthsRadicchio 32–34 95–100 3–4 weeksRadish, spring 32 95–100 1–2 monthsRadish, winter 32 95–100 2–4 monthsRhubarb 32 95–100 2–4 weeksRutabaga 32 98–100 4–6 monthsSalisfy 32 95–98 2–4 monthsScorzonera 32–34 95–98 6 monthsShallot 32–36 65–70 —Southern pea 40–41 95 6–8 daysSpinach 32 95–100 10–14 daysSprouts

Alfalfa 32 95–100 7 daysBean 32 95–100 7–9 days

Page 443: HANDBOOK FOR VEGETABLE GROWERS

433

TABLE 8.15. RECOMMENDED TEMPERATURE AND RELATIVEHUMIDITY CONDITIONS AND APPROXIMATESTORAGE LIFE OF FRESH VEGETABLES(Continued )

Vegetable

Storage Conditions

Temperature(�F)

Relative Humidity(%)

ApproximateStorage Life

Radish 32 95–100 5–7 daysSquash, summer 45–50 95 1–2 weeksSquash, winter 3 54–59 50–70 2–3 monthsStrawberry 32 90–95 5–7 daysSweet corn,

shrunken-232 90–95 10–14 days

Sweet corn, sugary 32 95–98 5–8 daysSweet potato4 55–59 85–95 4–7 monthsTamarillo 37–40 85–95 10 weeksTaro 45–50 85–90 4 monthsTomatillo 45–55 85–90 3 weeksTomato, mature

green50–55 90–95 2–5 weeks

Tomato, firm ripe 46–50 85–90 1–3 weeksTurnip greens 32 95–100 10–14 daysTurnip root 32 95 4–5 monthsWater chestnut 32–36 85–90 2–4 monthsWatercress 32 95–100 2–3 weeksYam 59 70–80 2–7 months

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).1 Winter, spring, or summer-harvested potatoes are usually not stored. However, they can be held 4–5months at 40�F if cured 4 or more days at 60–70�F before storage. Potatoes for chips should be held at70�F or conditioned for best chip quality.2 Fall-harvested potatoes should be cured at 50–60�F and high relative humidity for 10–14 days.Storage temperatures for table stock or seed should be lowered gradually to 38–40�F. Potatoesintended for processing should be stored at 50–55�F; those stored at lower temperatures or with ahigh reducing sugar content should be conditioned at 70�F for 1–4 weeks or until cooking tests aresatisfactory.3 Winter squash varieties differ in storage life.4 Sweet potatoes should be cured immediately after harvest by holding at 85�F and 90–95% relativehumidity for 4–7 days.

Page 444: HANDBOOK FOR VEGETABLE GROWERS

434

TABLE 8.16. POSTHARVEST HANDLING OF FRESH CULINARYHERBS

Herb

Storage Conditions

Temperature(�F)

Relative Humidity(%)

EthyleneSensitivity

ApproximateStorage Life

Basil 50 90 High 7 daysChives 32 95–100 Medium —Cilantro 32–34 95–100 High 2 weeksDill 32 95–100 High 1–2 weeksEpazote 32–41 90–95 Medium 1–2 weeksMint 32 95–100 High 2–3 weeksOregano 32–41 90–95 Medium 1–2 weeksParsley 32 95–100 High 1–2 monthsPerilla 50 95 Medium 7 daysSage 32–50 90–95 Medium 2–3 weeksThyme 32 90–95 — 2–3 weeks

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).

Page 445: HANDBOOK FOR VEGETABLE GROWERS

435

TABLE 8.17. RESPIRATION RATES OF FRESH CULINARY HERBS

Herb

Respiration Rates (mg/kg /hr of CO2)

32�F 50�F 68�F

Basil 36 71 167Chervil 12 80 170Chinese chive 54 99 432Chives 22 110 540Coriander 22 nd ndDill 22 103 ndFennel 191 nd 32Ginger nd nd 62

Ginseng 6 15 ndMarjoram 28 68 ndMint 20 76 252Oregano 22 101 176Sage 36 103 157Tarragon 40 94 234Thyme 12 25 52

Adapted from The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks (USDA,ARS Agriculture Handbook 66, 2004), http: / / www.ba.ars.usda.gov / hb66 / contents.html.1 At 36�F2 At 55�F

Page 446: HANDBOOK FOR VEGETABLE GROWERS

436

TA

BL

E8.

18.

AV

ER

AG

ER

ES

PIR

AT

ION

RA

TE

SO

FV

EG

ET

AB

LE

SA

TV

AR

IOU

ST

EM

PE

RA

TU

RE

S

Veg

etab

le

Res

pira

tion

Rat

e(m

g/k

g/h

rof

CO

2)

32�F

41�F

50�F

59�F

68�F

77�F

Art

ich

oke,

glob

e30

4371

110

193

nd1

Art

ich

oke,

Jeru

sale

m10

1219

50n

dn

dA

spar

agu

s260

105

215

235

270

nd

Bea

n,

snap

2034

5892

130

nd

Bea

n,

lon

g40

4692

202

220

nd

Bee

t5

1118

3160

nd

Bro

ccol

i21

3481

170

300

nd

Bru

ssel

ssp

rou

ts40

7014

720

027

6n

dC

abba

ge5

1118

2842

62C

abba

ge,C

hin

ese

1012

1826

39n

dC

arro

t,to

pped

1520

3140

25n

dC

auli

flow

er17

2134

4679

92C

eler

iac

713

2335

45n

dC

eler

y15

2031

4071

nd

Ch

icor

y3

613

2137

nd

Cu

cum

ber

nd

nd

2629

3137

Egg

plan

t,A

mer

ican

nd

nd

nd

693

nd

nd

Egg

plan

t,Ja

pan

ese

nd

nd

nd

1313

nd

nd

Page 447: HANDBOOK FOR VEGETABLE GROWERS

437

Egg

plan

t,w

hit

eeg

gn

dn

dn

d11

33n

dn

dE

ndi

ve45

5273

100

133

200

Gar

lic

816

2422

20n

dJi

cam

a6

1114

nd

6n

dK

ohlr

abi

1016

3146

nd

nd

Lee

k15

2560

9611

011

5L

ettu

ce,

hea

d12

1731

3956

82L

ettu

ce,

leaf

2330

3963

101

147

Lu

ffa

1427

3663

79n

dM

elon

Can

talo

upe

610

1537

5567

Hon

eyde

wn

d8

1424

3033

Wat

erm

elon

nd

48

nd

21n

dM

ush

room

3570

97n

d26

4n

dN

opal

ito

nd

1840

5674

nd

Okr

an

d40

9114

626

134

5O

nio

n,

dry

35

77

8n

dP

akch

oi6

1120

3956

nd

Par

sley

3060

114

150

199

274

Par

snip

1213

2237

nd

nd

Pea

,E

ngl

ish

3864

8617

527

131

3P

ea,

edib

le-p

odde

d39

6489

176

273

nd

Pep

per

nd

712

2734

nd

Pot

ato,

cure

dn

d12

1617

22n

dP

rick

lype

arn

dn

dn

dn

d32

nd

Rad

icch

io8

134

235

nd

nd

45R

adis

h,t

oppe

d16

2034

7413

017

2R

adis

h,w

ith

tops

610

1632

5175

Rh

uba

rb11

1525

4049

nd

Ru

taba

ga5

1014

2637

nd

Page 448: HANDBOOK FOR VEGETABLE GROWERS

438

TA

BL

E8.

18.

AV

ER

AG

ER

ES

PIR

AT

ION

RA

TE

SO

FV

EG

ET

AB

LE

SA

TV

AR

IOU

ST

EM

PE

RA

TU

RE

S(C

onti

nu

ed)

Veg

etab

le

Res

pira

tion

Rat

e(m

g/k

g/h

rof

CO

2)

32�F

41�F

50�F

59�F

68�F

77�F

Sal

sify

2543

49n

d19

3n

dS

pin

ach

2145

110

179

230

nd

Squ

ash

,su

mm

er25

3267

153

164

nd

Sw

eet

corn

4163

105

159

261

359

Sw

iss

char

d19

6n

dn

dn

d29

nd

Sou

ther

npe

a,po

ds24

625

nd

nd

148

nd

Sou

ther

npe

a,pe

as29

6n

dn

dn

d12

6n

dT

omat

illo

nd

1316

nd

32n

dT

omat

on

dn

d15

2235

43T

urn

ip,t

oppe

d8

1016

2325

nd

Wat

ercr

ess

2250

110

175

322

377

Ada

pted

from

Th

eC

omm

erci

alS

tora

geof

Fru

its,

Veg

etab

les,

and

Flo

rist

and

Nu

rser

yS

tock

s(U

SD

AA

gric

ult

ure

Han

dboo

k66

,20

04),

htt

p://

ww

w.b

a.ar

s.u

sda.

gov

/hb6

6/c

onte

nts

.htm

l.1N

otde

term

ined

21

day

afte

rh

arve

st3A

t55

�F4A

t43

�F5A

t45

�F6A

t36

�F

Page 449: HANDBOOK FOR VEGETABLE GROWERS

439

TABLE 8.19. RECOMMENDED CONTROLLED ATMOSPHERE ORMODIFIED ATMOSPHERE CONDITIONS DURINGTRANSPORT AND/OR STORAGE OF SELECTEDVEGETABLES

Vegetable

Temperature 1 (�F)

Optimum Range

ControlledAtmosphere2

(%)

O2 CO2 Application

Artichoke 32 32–41 2–3 2–3 ModerateAsparagus 36 34–41 air 10–14 HighBean, green 46 41–50 2–3 4–7 SlightBean, processing 46 41–50 8–10 20–30 ModerateBroccoli 32 32–41 1–2 5–10 HighBrussels sprouts 32 32–41 1–2 5–7 SlightCabbage 32 32–41 2–3 3–6 HighCantaloupe 37 36–41 3–5 10–20 ModerateCauliflower 32 32–41 2–3 3–4 SlightCeleriac 32 32–41 2–4 2–3 SlightCelery 32 32–41 1–4 3–5 SlightChinese cabbage 32 32–41 1–2 0–5 SlightCucumber, slicing 54 46–54 1–4 0 SlightCucumber, processing 39 34–39 3–5 3–5 SlightHerbs 3 34 32–41 5–10 4–6 ModerateLeek 32 32–41 1–2 2–5 SlightLettuce, crisphead 32 32–41 1–3 0 ModerateLettuce, cut or shredded 32 32–41 1–5 5–20 HighLettuce, leaf 32 32–41 1–3 0 ModerateMushroom 32 32–41 3–21 5–15 ModerateOkra 50 45–54 air 4–10 SlightOnion, dry 32 32–41 1–2 0–10 SlightOnion, green 32 32–41 2–3 0–5 SlightParsley 32 32–41 8–10 8–10 SlightPea, sugar 32 32–50 2–3 2–3 SlightPepper, bell 46 41–54 2–5 2–5 SlightPepper, chile 46 41–54 3–5 0–5 SlightPepper, processing 41 41–54 3–5 10–20 ModerateRadish, topped 32 32–41 1–2 2–3 Slight

Page 450: HANDBOOK FOR VEGETABLE GROWERS

440

TABLE 8.19. RECOMMENDED CONTROLLED ATMOSPHERE ORMODIFIED ATMOSPHERE CONDITIONS DURINGTRANSPORT AND/OR STORAGE OF SELECTEDVEGETABLES (Continued )

Vegetable

Temperature 1 (�F)

Optimum Range

ControlledAtmosphere2

(%)

O2 CO2 Application

Spinach 32 32–41 7–10 5–10 SlightSweet corn 32 32–41 2–4 5–10 SlightTomato, mature, green 54 54–59 3–5 3–5 ModerateTomato ripe 50 50–59 3–5 3–5 ModerateWitloof chicory 32 32–41 3–4 4–5 Slight

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).1 Usual and / or recommended range. A relative humidity of 90–98% is recommended.2 Specific CA recommendations depend on varieties, temperature, and duration of storage.3 Herbs: chervil, chives, coriander, dill, sorrel, and watercress.

Page 451: HANDBOOK FOR VEGETABLE GROWERS

441

TABLE 8.20. OPTIMUM CONDITIONS FOR CURING ROOT,TUBER, AND BULB VEGETABLES PRIOR TOSTORAGE

Vegetable Temperature (�F) RH (%) Duration (days)

Cassava 86–95 85–90 4–7Malanga 86–95 90–95 7Potato

Early crop 59–68 90–95 4–5Late crop 50–59 90–95 10–15

Sweet potato 84–90 80–90 4–7Taro 93–97 95 5Water chestnut 86–90 95–100 3Yam 86–95 85–95 4–7Garlic and onion ambient (75–90 best) 5–10 (field drying)

93–113 60–75 0.5–3 (forced heated air)

Copyright 2003 from Postharvest Physiology and Pathology of Vegetables, 2nd ed., by J. R. Bartz andJ. K. Brecht (eds.). Reproduced by permission of Routledge / Taylor & Francis Group, LLC.

TABLE 8.21. EFFECT OF TEMPERATURE ON THE RATE OFDETERIORATION OF VEGETABLES NOT SENSITIVETO CHILLING INJURY

Temperature (T)

(�F)Assumed

Q101

Relative Rateof Deterioration

Relative ShelfLife

Loss per Day(%)

32 1.0 100 150 3.0 3.0 33 368 2.5 7.5 13 886 2.0 15.0 7 14

104 1.5 22.5 4 25

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).

1 Q10 �rate of deterioration at T � 10�C

rate of deterioration at T

Page 452: HANDBOOK FOR VEGETABLE GROWERS

442

TABLE 8.22. MOISTURE LOSS FROM VEGETABLES

High Medium Low

Broccoli Artichoke EggplantCantaloupe Asparagus GarlicChard Bean, snap GingerGreen onion Beet1 MelonsKohlrabi Brussels sprouts OnionLeafy greens Cabbage PotatoMushroom Carrot1 PumpkinOriental vegetables Cassava2 Winter squashParsley CauliflowerStrawberry Celeriac1

CelerySweet corn3

Cucumber2

EndiveEscaroleLeekLettuceOkraParsnip1

PeaPepperRadish1

Rutabaga1,2

Sweet potatoSummer squashTomato2

Yam

Adapted from B. M. McGregor, Tropical Products Transport Handbook, USDA Agricultural Handbook668 (1987).1 Root crops with tops have a high rate of moisture loss.2 Waxing reduces the rate of moisture loss.3 Husk removal reduces water loss.

Page 453: HANDBOOK FOR VEGETABLE GROWERS

443

TABLE 8.23. STORAGE SPROUT INHIBITORSSprout inhibitors are most effective when used in conjunction with goodstorage; their use cannot substitute for poor storage or poor storagemanagement. However, storage temperatures may be somewhat higherwhen sprout inhibitors are used than when they are not. Follow labeldirections.

Vegetable Material Application

Potato (do not useon seedpotatoes)

Maleic hydrazide When most tubers are 11⁄2–2 in.in diameter. Vines mustremain green for severalweeks after application.

Chlorprophan (CIPC) In storage, 2–3 weeks afterharvest as an aerosoltreatment. Do not store seedpotatoes in a treated storage.

During washing, as anemulsifiable concentrateadded to wash water toprevent sprouting duringmarketing.

Onion Maleic hydrazide Apply when 50% of the tops aredown, the bulbs are mature,the necks soft, and 5–8leaves are still green.

Page 454: HANDBOOK FOR VEGETABLE GROWERS

444

06C

HIL

LIN

GA

ND

ET

HY

LE

NE

INJ

UR

Y

TA

BL

E8.

24.

SU

SC

EP

TIB

ILIT

YO

FV

EG

ET

AB

LE

ST

OC

HIL

LIN

GIN

JU

RY

Veg

etab

le

App

roxi

mat

eL

owes

tS

afe

Tem

pera

ture

(�F

)A

ppea

ran

ceW

hen

Sto

red

Bet

wee

n32

�Fan

dS

afe

Tem

pera

ture

1

Asp

arag

us

32–3

6D

ull

,gr

ay-g

reen

,an

dli

mp

tips

Bea

n,

lim

a34

–40

Ru

sty

brow

nsp

ecks

,sp

ots,

orar

eas

Bea

n,

snap

45P

itti

ng

and

russ

etin

gC

hay

ote

41–5

0D

ull

brow

ndi

scol

orat

ion

,pit

tin

g,fl

esh

dark

enin

gC

ucu

mbe

r45

Pit

tin

g,w

ater

-soa

ked

spot

s,de

cay

Egg

plan

t45

Su

rfac

esc

ald,

alte

rnar

iaro

t,bl

acke

nin

gof

seed

sG

inge

r45

Sof

ten

ing,

tiss

ue

brea

kdow

n,d

ecay

Jica

ma

55–6

5S

urf

ace

deca

y,di

scol

orat

ion

Mel

onC

anta

lou

pe36

–41

Pit

tin

g,su

rfac

ede

cay

Cas

aba

45–5

0P

itti

ng,

surf

ace

deca

y,fa

ilu

reto

ripe

nC

ren

shaw

45–5

0P

itti

ng,

surf

ace

deca

y,fa

ilu

reto

ripe

nH

oney

dew

45–5

0R

eddi

shta

ndi

scol

orat

ion

,pit

tin

g,su

rfac

ede

cay,

fail

ure

tori

pen

Per

sian

45–5

0P

itti

ng,

surf

ace

deca

y,fa

ilu

reto

ripe

nW

ater

mel

on40

Pit

tin

g,ob

ject

ion

able

flav

orO

kra

45D

isco

lora

tion

,wat

er-s

oake

dar

eas,

pitt

ing,

deca

y

Page 455: HANDBOOK FOR VEGETABLE GROWERS

445

Pep

per,

swee

t45

Sh

eet

pitt

ing,

alte

rnar

iaro

ton

fru

itan

dca

lyx,

dark

enin

gof

seed

Pot

ato

38M

ahog

any

brow

nin

g,sw

eete

nin

gP

um

pkin

and

har

d-sh

ell

squ

ash

50D

ecay

,es

peci

ally

alte

rnar

iaro

tS

wee

tpo

tato

55D

ecay

,pi

ttin

g,h

ard

core

wh

enco

oked

Tam

aril

lo37

–40

Su

rfac

epi

ttin

g,di

scol

orat

ion

Tar

o50

Inte

rnal

brow

nin

g,de

cay

Tom

ato,

ripe

45–5

0W

ater

soak

ing

and

soft

enin

g,de

cay

Tom

ato,

mat

ure

,gr

een

55P

oor

colo

rw

hen

ripe

,al

tern

aria

rot

Ada

pted

from

Ch

ien

Yi

Wan

g,‘‘C

hil

lin

gan

dF

reez

ing

Inju

ry,’’

inT

he

Com

mer

cial

Sto

rage

ofF

ruit

s,V

eget

able

s,an

dF

lori

stan

dN

urs

ery

Sto

ck(U

SD

AA

gric

ult

ure

Han

dboo

k66

,20

04),

htt

p://

ww

w.b

a.ar

s.u

sda.

gov

/hb6

6/i

nde

x.h

tml.

1S

ever

ity

ofin

jury

isre

late

dto

tem

pera

ture

and

tim

e.

Page 456: HANDBOOK FOR VEGETABLE GROWERS

446

TABLE 8.25. VEGETABLES CLASSIFIED ACCORDING TOCHILLING INJURY SUSCEPTIBILITY

Not Susceptible toChilling Injury

Susceptible toChilling Injury

Artichoke Bean, snapAsparagus CantaloupeBean, lima CassavaBeet CucumberBroccoli EggplantBrussels sprouts GingerCabbage OkraCarrot PepperCauliflower PepinoCelery Prickly pearEndive PumpkinGarlic SquashLettuce Sweet potatoMushroom TamarilloOnion TaroParsley TomatoParsnip WatermelonPea YamRadishSpinachStrawberrySweet cornTurnip

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).

Page 457: HANDBOOK FOR VEGETABLE GROWERS

447

TABLE 8.26. RELATIVE SUSCEPTIBILITY OF VEGETABLES TOCHILLING INJURY

Most Susceptible Moderately Susceptible Least Susceptible

Asparagus Broccoli BeetBean, snap Carrot Brussels sproutsCucumber Cauliflower Cabbage, mature and savoyEggplant Celery KaleLettuce Onion, dry KohlrabiOkra Parsley ParsnipPepper, sweet Pea RutabagaPotato Radish SalsifySquash, summer Spinach TurnipSweet potato Squash, winterTomato

Adapted from Chien Yi Wang, ‘‘Chilling and Freezing Injury,’’ in The Commercial Storage of Fruits,Vegetables, and Florist and Nursery Stocks (USDA, Agriculture Handbook 66, 2004), http: / /www.ba.ars.usda.gov / hb66 / index.html.

Page 458: HANDBOOK FOR VEGETABLE GROWERS

448

TABLE 8.27. CHILLING THRESHOLD TEMPERATURES ANDVISUAL SYMPTOMS OF CHILLING INJURY FORSOME SUBTROPICAL AND TROPICAL STORAGEORGAN VEGETABLES

VegetableChilling

Threshold (�F) Symptoms

Cassava 41–46 Internal breakdown, increased water loss,failure to sprout, increased decay, loss ofeating quality

Ginger 54 Accelerated softening and shriveling, oozesmoisture from the surface, decay

Jicama 55–59 External decay, rubbery and translucentflesh with grown discoloration, increasedwater loss

Malanga 45 Tissue breakdown and internaldiscoloration, increased water loss,increased decay, undesirable flavorchanges

Potato 39 Mahogany browning, reddish-brown areas inthe flesh, adverse effects on cookingquality

Sweet potato 54 Internal brown-black discoloration, adverseeffects on cooled quality, hard core,accelerated decay

Taro 45–50 Tissue breakdown and internaldiscoloration, increased water loss,increased decay, undesirable flavorchanges

Yam 55 Tissue softening, internal discoloration(grayish flecked with reddish brown),shriveling, decay

Copyright 2003 from Postharvest Physiology and Pathology of Vegetables, 2nd ed. by J. R. Bartz andJ. K. Brecht (eds.). Reproduced by permission of Routledge / Taylor & Francis Group, LLC.

Page 459: HANDBOOK FOR VEGETABLE GROWERS

449

TABLE 8.28. SYMPTOMS OF FREEZING INJURY ON SOMEVEGETABLES

Vegetable Symptoms

Artichoke Epidermis becomes detached and forms whitish to light tanblisters. When blisters are broken, underlying tissue turnsbrown.

Asparagus Tip becomes limp and dark; the rest of the spear is water-soaked. Thawed spears become mushy.

Beet External and internal water-soaking and, sometimes,blackening of conducting tissue.

Broccoli The youngest florets in the center of the curd are mostsensitive to freezing injury. They turn brown and give strongoff-odors on thawing.

Cabbage Leaves become water-soaked, translucent, and limp on thawing;separated epidermis.

Carrot A blistered appearance; jagged lengthwise cracks. Interiorbecomes water-soaked and darkened on thawing.

Cauliflower Curds turn brown and have a strong off-odor when cooked.Celery Leaves and petioles appear wilted and water-soaked on

thawing. Petioles freeze more readily than leaves.Garlic Thawed cloves appear water-soaked, grayish yellow.Lettuce Blistering, dead cells of the separated epidermis on outer

leaves become tan; increased susceptibility to physicaldamage and decay.

Onion Thawed bulbs are soft, grayish yellow, and water-soaked incross section; often limited to individual scales.

Pepper,bell

Dead, water-soaked tissue in part of or all pericarp surface;pitting, shriveling, decay follow thawing.

Potato Freezing injury may not be externally evident but shows asgray or bluish gray patches beneath the skin. Thawed tubersbecome soft and watery.

Radish Thawed tissues appear translucent; roots soften and shrivel.Sweet

potatoA yellowish brown discoloration of the vascular ring, and a

yellowish green water-soaked appearance of other tissues.Roots soften and become susceptible to decay.

Tomato Water-soaked and soft on thawing. In partially frozen fruits,the margin between healthy and dead tissue is distinct,especially in green fruits.

Turnip Small water-soaked spots or pitting on the surface. Injuredtissues appear tan or gray and give off an objectionable odor.

Adapted from A. A. Kader, J. M. Lyons, and L. L. Morris, ‘‘Postharvest Responses of Vegetables toPreharvest Field Temperature,’’ HortScience 9 (1974):523–527.

Page 460: HANDBOOK FOR VEGETABLE GROWERS

450

TABLE 8.29. SOME POSTHARVEST PHYSIOLOGICAL DISORDERSOF VEGETABLES, ATTRIBUTABLE DIRECTLY ORINDIRECTLY TO PREHARVEST FIELDTEMPERATURES

Vegetable Disorder Symptoms and Development

Asparagus Feathering Bracts of the spears are partly spread as aresult of high temperature.

Brusselssprouts

Black leaf speck Becomes visible after storage for 1–2weeks at low temperature. Has beenattributed in part to cauliflower mosaicvirus infection in the field, which isinfluenced by temperature and otherenvironmental factors.

Tip burn Leaf margins turn light tan to dark brown.Cantaloupe Vein tract

browningDiscoloration of unnetted longitudinal

stripes; related partly to hightemperature and virus diseases.

Garlic Waxybreakdown

Enhanced by high temperature duringgrowth; slightly sunken, light yellowareas in fleshy cloves, then the entireclove becomes amber, slightlytranslucent, and waxy but still firm.

Lettuce Tip burn Light tan to dark brown margins of leaves.Has been attributed to several causes,including field temperature; it can leadto soft rot development duringpostharvest handling.

Rib discoloration More common in lettuce grown when daytemperatures exceed 81�F or when nighttemperatures are between 55–64�F thanin lettuce grown during cooler periods.

Russet spotting Small tan, brown, or olive spots randomlydistributed over the affected leaf; apostharvest disorder of lettuce inducedby ethylene. Lettuce is more susceptibleto russet spotting when harvested afterhigh field temperatures (above 86�F) for2 days or more during the 10 daysbefore harvest.

Page 461: HANDBOOK FOR VEGETABLE GROWERS

451

TABLE 8.29. SOME POSTHARVEST PHYSIOLOGICAL DISORDERSOF VEGETABLES, ATTRIBUTABLE DIRECTLY ORINDIRECTLY TO PREHARVEST FIELDTEMPERATURES (Continued )

Vegetable Disorder Symptoms and Development

Rusty browndiscoloration

Rusty brown discoloration has beenrelated to internal rib necrosisassociated with lettuce mosaic virusinfection, which is influenced by fieldtemperature and other environmentalfactors.

Onion Translucentscale

Grayish water-soaked appearance of theouter two or three fleshy scales of thebulb; translucency makes venationdistinct. In severe cases, the entire bulbsoftens, and off-odors may develop.

Potato Blackheart May occur in the field during excessivelyhot weather in waterlogged soils.Internal symptom is dark gray topurplish or black discoloration, usuallyin the center of the tuber.

Radish Pithiness Textured white spots or streaks in crosssection, large air spaces near the center,tough and dry roots. Results from hightemperature.

Adapted from A. A. Kader, J. M. Lyons, and L. L. Morris, ‘‘Postharvest Responses of Vegetables toPreharvest Field Temperature,’’ HortScience 9 (1974):523–527.

Page 462: HANDBOOK FOR VEGETABLE GROWERS

452

TABLE 8.30. SYMPTOMS OF SOLAR INJURY ON SOMEVEGETABLES

Vegetable Symptoms

Bean, snap Very small brown or reddish spots on one side of thepod coalesce and become water-soaked and slightlyshrunken.

Cabbage Blistering of some outer leaves leads to a bleached,papery appearance. Desiccated leaves are susceptibleto decay.

Cauliflower Discoloration of curds from yellow to brown to black(solar browning).

Cantaloupe Sunburn: dry, sunken, and white to light tan areas. Inmilder sunburn, ground color is green or spottybrown.

Lettuce Papery areas on leaves, especially the cap leaf, developduring clear weather when air temperatures arehigher than 77�F; affected areas become focus fordecay.

Honeydew melon White to gray area at or near the top, may be slightlywrinkled, undesirable flavor, or brown blotch, whichis tan to brown discolored areas caused by death ofepidermal cells due to excessive ultraviolet radiation.

Onion and garlic Sunburn: dry scales are wrinkled, sometimes extendingto one or two fleshy scales. Injured area may bebleached depending on the color of the bulb.

Pepper, bell Dry and papery areas, yellowing, and, sometimes,wilting.

Potato Sunscald: water and blistered areas on the tubersurface. Injured areas become sunken and leathery,and subsurface tissue rapidly turns dark brown toblack when exposed to air.

Tomato Sunburn (solar yellowing): affected areas on the fruitbecome whitish, translucent, thin-walled, a nettedappearance may develop. Mild solar injury may notbe noticeable at harvest but becomes more apparentafter harvest as uneven ripening.

Adapted from A. A. Kader, J. M. Lyons, and L. L. Morris, ‘‘Postharvest Responses of Vegetables toPreharvest Field Temperature,’’ HortScience 9 (1974):523–527.

Page 463: HANDBOOK FOR VEGETABLE GROWERS

453

TABLE 8.31. CLASSIFICATION OF HORTICULTURALCOMMODITIES ACCORDING TO ETHYLENEPRODUCTION RATES

Very Low Low Moderate High Very High

Artichoke Blackberry Banana Apple CherimoyaAsparagus Blueberry Fig Apricot Mammee appleCauliflower Casaba melon Guava Avocado Passion fruitCherry Cranberry Honeydew

melonCantaloupe Sapote

Citrus Cucumber Mango FeijoaGrape Eggplant Plantain Kiwi fruit

(ripe)Jujube Okra Tomato NectarineLeafy vegetables Olive PapayaMost cut flowers Pepper PeachPomegranate Persimmon PearPotato Pineapple PlumRoot vegetables PumpkinStrawberry Raspberry

TamarilloWatermelon

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).

Page 464: HANDBOOK FOR VEGETABLE GROWERS

454

COMPATIBILITY OF FRESH PRODUCE IN MIXED LOADS UNDERVARIOUS RECOMMENDED TRANSIT CONDITIONS

Shippers and receivers of fresh fruits and vegetables frequently prefer tohandle shipments that consist of more than one commodity. In mixed loads,it is important to combine only those commodities that are compatible intheir requirements for temperature, modified atmosphere, relative humidity,protection from odors, and protection from physiologically active gases suchas ethylene.

Page 465: HANDBOOK FOR VEGETABLE GROWERS

455

TA

BL

E8.

32.

RE

CO

MM

EN

DE

DT

RA

NS

ITC

ON

DIT

ION

SF

OR

CO

MP

AT

IBL

EG

RO

UP

S

Tem

p.:

55–6

0�F

;R

elat

ive

hu

mid

ity:

85–9

5%;

Ice:

No

con

tact

wit

hco

mm

odit

y

Tem

p.:

36–4

1�F

;R

elat

ive

hu

mid

ity:

90–9

5%;

Ice:

Con

tact

can

talo

upe

only

Tem

p.:

40–4

5�F

;R

elat

ive

hu

mid

ity:

abou

t95

%;

Ice:

No

con

tact

wit

hco

mm

odit

y

Tem

p.:

40–5

5�F

;R

elat

ive

hu

mid

ity:

85–9

0%;

Ice:

No

con

tact

wit

hco

mm

odit

y

Avo

cado

Cra

nbe

rry

Sn

apbe

anC

ucu

mbe

rB

anan

aL

emon

Lyc

hee

Egg

plan

tG

rape

fru

it(A

Zan

dC

A;

FL

befo

reJa

n.

1)C

anta

lou

peO

kra

Gin

ger

(not

wit

heg

gpla

nt)

Gu

ava

Ora

nge

Pep

per,

gree

n(n

otw

ith

bean

)G

rape

fru

it(F

la.

afte

rJa

n.

1;an

dT

ex.)

Man

goT

ange

rin

eP

eppe

r,re

dL

ime

Cas

aba

mel

onS

um

mer

squ

ash

Pot

ato

Cre

nsh

awm

elon

Tom

ato,

pin

kP

um

pkin

Hon

eyde

wm

elon

Wat

erm

elon

Wat

erm

elon

Per

sian

mel

onW

inte

rsq

uas

hO

live

Pap

aya

Pin

eapp

le(n

otw

ith

avoc

ado)

Tom

ato,

gree

nT

omat

o,pi

nk

Wat

erm

elon

Page 466: HANDBOOK FOR VEGETABLE GROWERS

456

TA

BL

E8.

32.

RE

CO

MM

EN

DE

DT

RA

NS

ITC

ON

DIT

ION

SF

OR

CO

MP

AT

IBL

EG

RO

UP

S(C

onti

nu

ed)

Tem

p.:

32–3

4�F

;R

elat

ive

hu

mid

ity:

95–1

00%

;Ic

e:N

oco

nta

ctw

ith

aspa

ragu

s,fi

g,gr

ape,

mu

shro

om

Tem

p.:

32–3

4�F

;R

elat

ive

hu

mid

ity:

95–

100%

;Ic

e:C

onta

ctw

ith

all

com

mod

itie

s

Tem

p.:

55–6

5�F

;R

elat

ive

hu

mid

ity:

85–9

0%;

Ice:

No

con

tact

wit

han

yco

mm

odit

y

Tem

p.:

32–3

4�F

;R

elat

ive

hu

mid

ity:

65–7

5%;

Ice:

No

con

tact

wit

han

yco

mm

odit

y

Art

ich

oke

Bro

ccol

iG

inge

rG

arli

cA

spar

agu

sB

russ

els

spro

uts

Sw

eet

pota

toO

nio

n,

dry

Bee

tC

abba

geC

arro

tC

auli

flow

erE

ndi

ve,

esca

role

Cel

eria

cF

igC

eler

yG

rape

Hor

sera

dish

Gre

ens

Koh

lrab

iL

eek

(not

wit

hfi

gor

grap

e)O

nio

n,

gree

n(n

otw

ith

rhu

barb

,fig,

orgr

ape;

prob

ably

not

wit

hm

ush

room

orsw

eet

corn

)L

ettu

ceR

adis

hM

ush

room

Ru

taba

gaP

arsl

eyT

urn

ipP

arsn

ipP

eaR

hu

barb

Sal

sify

Spi

nac

hS

wee

tco

rnW

ater

cres

s

Ada

pted

from

W.

J.L

ipto

n,C

ompa

tibi

lity

ofF

ruit

san

dV

eget

able

sD

uri

ng

Tra

nsp

ort

inM

ixed

Loa

ds,

US

DA

,AR

S,

Mar

keti

ng

Res

earc

hR

epor

t10

70(1

977)

.

Page 467: HANDBOOK FOR VEGETABLE GROWERS

457

TA

BL

E8.

33.

CO

MP

AT

IBL

EF

RE

SH

FR

UIT

SA

ND

VE

GE

TA

BL

ES

DU

RIN

G10

-DA

YS

TO

RA

GE

GR

OU

P1A

(32�

–36�

)A

ND

90–9

8%R

HV

EG

ET

AB

LE

S

Alf

alfa

spro

uts

Am

aran

th1

An

ise1

Art

ich

oke1

Asp

arag

us1

Bea

ns:

fava

,lim

aB

ean

spro

uts

Bee

tB

elgi

anen

dive

1

Bro

ccofl

ower

1

Bro

ccol

i1

Bru

ssel

ssp

rou

ts1

Cab

bage

1

Car

rot1

Cau

lifl

ower

1

Cel

eria

cC

eler

y1

Ch

ard1

Ch

ines

eca

bbag

e1

Ch

ines

etu

rnip

Col

lard

s1

Cor

n:

swee

t,ba

byC

ut

vege

tabl

esD

aiko

n1

En

dive

,1ch

icor

yE

scar

ole1

Fen

nel

1

Gar

lic

Gre

enon

ion

1

Her

bs1

(not

basi

l)H

orse

radi

shJe

rusa

lem

arti

chok

eK

ailo

nK

ale1

Koh

lrab

iL

eek1

Let

tuce

1

Min

t1

Mu

shro

om1

Mu

star

dgr

een

s1

Pak

choi

1

Par

sley

1

Par

snip

1

Pea

1

Rad

icch

io1

Rad

ish

Ru

taba

ga

Rh

uba

rbS

alsi

fyS

corz

oner

aS

hal

lot1

Sn

owpe

a1

Spi

nac

h1

Sw

iss

char

d1

Tu

rnip

Tu

rnip

gree

ns1

Wat

erch

estn

ut

Wat

ercr

ess1

GR

OU

P1B

(32�

–36�

)A

ND

85–9

5%R

HF

RU

ITS

AN

DM

EL

ON

S

App

leA

pric

otA

voca

do,

ripe

Bar

bado

sch

erry

Bla

ckbe

rry

Blu

eber

ryB

oyse

nbe

rry

Cai

mit

oC

anta

lou

peC

ash

ewap

ple

Ch

erry

Coc

onu

tC

urr

ant

Cu

tfr

uit

s

Dat

eD

ewbe

rry

Eld

erbe

rry

Fig

Goo

sebe

rry

Gra

peK

iwif

ruit

1

Log

anbe

rry

Lon

gan

Loq

uat

Pea

r:A

sian

,E

uro

pean

Per

sim

mon

1

Plu

m

Plu

mco

tP

omeg

ran

ate

Pru

ne

Qu

ince

Ras

pber

ryS

traw

berr

y

Page 468: HANDBOOK FOR VEGETABLE GROWERS

458

TA

BL

E8.

33.

CO

MP

AT

IBL

EF

RE

SH

FR

UIT

SA

ND

VE

GE

TA

BL

ES

DU

RIN

G10

-DA

YS

TO

RA

GE

(Con

tin

ued

)

GR

OU

P2

(55�

–65�

)A

ND

85–9

5%R

HV

EG

ET

AB

LE

SF

RU

ITS

AN

DM

EL

ON

S

Bea

ns:

snap

,gr

een

,w

axC

actu

sle

aves

(nop

ales

)1

Cal

abaz

aC

hay

ote1

Cu

cum

ber1

Egg

plan

t1

Kiw

ano

(hor

ned

mel

on)

Lon

gbe

anM

alan

ga1

Pep

per:

bell

,ch

ili

Sou

ther

npe

aS

quas

h:s

um

mer

1

Tom

atil

loW

inge

dbe

an

Bab

aco

Cal

amon

din

Car

ambo

laC

ran

berr

yC

ust

ard

appl

eD

uri

anF

eijo

aG

ran

adil

laG

rape

fru

it1

Juan

can

ary

mel

onL

emon

1

Lim

e1

Lim

equ

atM

anda

rin

Oli

veO

ran

geP

assi

onfr

uit

Pep

ino

Pu

mm

elo

Tam

aril

loT

amar

ind

Tan

gelo

Tan

geri

ne

Ugl

ifr

uit

Wat

erm

elon

GR

OU

P3

(55�

–65�

)A

ND

85–9

5%R

HV

EG

ET

AB

LE

SF

RU

ITS

AN

DM

EL

ON

S

Bit

ter

mel

onB

onia

to1

Cas

sava

Dry

onio

nG

inge

rJi

cam

a

Pot

ato

Pu

mpk

inS

quas

h:w

inte

r1

Sw

eet

pota

to1

Tar

o(d

ash

een

)Ya

m

Ate

moy

aB

anan

aB

read

fru

itC

anis

tel

Cas

aba

mel

onC

her

imoy

aC

ren

shaw

mel

on

Hon

eyde

wm

elon

Jabo

tica

baJa

ckfr

uit

Mam

eysa

pote

Man

goM

ango

stee

nP

apay

a

Per

sian

mel

onP

lan

tain

Ram

buta

nS

apod

illa

Sap

ote

Sou

rsop

Ada

pted

from

A.

A.

Kad

er(e

d.),

Pos

thar

vest

Tec

hn

olog

yof

Hor

ticu

ltu

ral

Cro

ps,3

rded

.(U

niv

ersi

tyof

Cal

ifor

nia

.Div

isio

nof

Agr

icu

ltu

rean

dN

atu

ral

Res

ourc

esP

ubl

icat

ion

s33

11,2

002)

.

Not

e:E

thyl

ene

leve

lsh

ould

beke

ptbe

low

1pp

min

stor

age

area

s.1P

rodu

cts

sen

siti

veto

eth

ylen

eda

mag

e.

Page 469: HANDBOOK FOR VEGETABLE GROWERS

459

07POSTHARVEST DISEASES

INTEGRATED CONTROL OF POSTHARVEST DISEASES

Effective and consistent control of storage diseases depends on integrationof the following practices:

● Select disease resistant cultivars where possible.● Maintain correct crop nutrition by use of leaf and soil analysis.● Irrigate based on crop requirements and avoid overhead irrigation.● Apply preharvest treatments to control insects and diseases.● Harvest the crop at the correct maturity for storage.● Apply postharvest treatments to disinfest and control diseases and

disorders on produce.● Maintain good sanitation in packing areas and keep dump water free

of contamination.● Store produce under conditions least conducive to growth of

pathogens.

Page 470: HANDBOOK FOR VEGETABLE GROWERS

460

TA

BL

E8.

34.

IMP

OR

TA

NT

PO

ST

HA

RV

ES

TD

ISE

AS

ES

OF

VE

GE

TA

BL

ES

Veg

etab

leD

isea

seC

ausa

lA

gen

tF

un

gal

Cla

ss/T

ype

Art

ich

oke

Gra

ym

old

Bot

ryti

sci

ner

eaH

yph

omyc

ete

Wat

ery

soft

rot

Scl

erot

inia

scle

roti

oru

mD

isco

myc

ete

Asp

arag

us

Bac

teri

also

ftro

tE

rwin

iaor

Pse

ud

omon

assp

p.B

acte

ria

Fu

sari

um

rot

Fu

sari

um

spp.

Hyp

hom

ycet

eP

hyt

oph

thor

aro

tP

hyt

oph

thor

asp

p.O

omyc

ete

Pu

rple

spot

Ste

mph

yliu

msp

p.H

yph

omyc

ete

Bu

lbs

Bac

teri

also

ftro

tE

rwin

iaca

rato

vora

Bac

teri

um

Bla

ckro

tA

sper

gill

us

nig

erH

yph

omyc

ete

Blu

em

old

rot

Pen

icil

liu

msp

p.H

yph

omyc

ete

Fu

sari

um

basa

lro

tF

usa

riu

mox

yspo

rum

Hyp

hom

ycet

eN

eck

rot

Bot

ryti

ssp

p.H

yph

omyc

ete

Pu

rple

blot

chA

lter

nar

iapo

rri

Hyp

hom

ycet

eS

cler

otiu

mro

tS

cler

otiu

mro

lfsi

iA

gon

omyc

ete

Sm

udg

eC

olle

totr

ich

um

circ

inan

sC

oelo

myc

ete

Car

rot

Bac

teri

also

ftro

tE

rwin

iasp

p.P

seu

dom

onas

spp.

Bac

teri

a

Bla

ckro

tA

.ra

dic

ina

Hyp

hom

ycet

eC

avit

ysp

otD

isea

seco

mpl

exS

oil

fun

giC

hal

arop

sis

rot

Ch

alar

asp

p.H

yph

omyc

etes

Cra

ter

rot

R.

caro

tae

Ago

nom

ycet

eG

ray

mol

dro

tB

.ci

ner

eaH

yph

omyc

ete

Scl

erot

ium

rot

S.

rolf

sii

Ago

nom

ycet

eW

ater

yso

ftro

tS

cler

otin

iasp

p.D

isco

myc

ete

Page 471: HANDBOOK FOR VEGETABLE GROWERS

461

Cel

ery

Bac

teri

also

ftro

tE

rwin

iaor

Pse

ud

omon

assp

p.B

acte

ria

Bro

wn

spot

Cep

hal

ospo

riu

map

iiH

yph

omyc

ete

Cer

cosp

ora

spot

Cer

cosp

ora

apii

Hyp

hom

ycet

eG

ray

mol

dB

otry

tis

cin

erea

Hyp

hom

ycet

eL

icor

ice

rot

Myc

ocen

tros

pora

acer

ina

Hyp

hom

ycet

eP

hom

aro

tP

hom

aap

iico

laC

oelo

myc

ete

Pin

kro

tS

cler

otin

iasp

p.D

isco

myc

ete

Sep

tori

asp

otS

epto

ria

apii

cola

Coe

lom

ycet

eC

ruci

fers

Alt

ern

aria

leaf

spot

Alt

ern

aria

spp.

Hyp

hom

ycet

eB

acte

rial

soft

rot

E.

cara

tovo

raB

acte

riu

mB

lack

rot

Xan

thom

onas

cam

pest

ris

Bac

teri

um

Dow

ny

mil

dew

Per

onos

pora

para

siti

caO

omyc

ete

Rh

izoc

ton

iaro

tR

hiz

octo

nia

sola

ni

Ago

nom

ycet

eR

ing

spot

Myc

osph

aere

lla

bras

sici

cola

Loc

ulo

asco

mye

teV

iru

sdi

seas

esC

auli

flow

erm

osai

cvi

rus

Tu

rnip

mos

aic

viru

sV

iru

s

Wat

ery

soft

rot

Scl

erot

inia

spp.

Dis

com

ycet

eW

hit

ebl

iste

rA

lbu

goca

nd

ida

Oom

ycet

e

Page 472: HANDBOOK FOR VEGETABLE GROWERS

462

TA

BL

E8.

34.

IMP

OR

TA

NT

PO

ST

HA

RV

ES

TD

ISE

AS

ES

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Veg

etab

leD

isea

seC

ausa

lA

gen

tF

un

gal

Cla

ss/T

ype

Cu

curb

its

An

thra

cnos

eC

olle

totr

ich

um

spp.

Coe

lom

ycet

eB

acte

rial

soft

rot

Erw

inia

spp.

Bac

teri

um

Bla

ckro

tD

idym

ella

bryo

nia

eL

ocu

loas

com

ycet

eB

otry

odip

lodi

aro

tB

otry

odip

lod

iath

eobr

omae

Coe

lom

ycet

eC

har

coal

rot

Mac

roph

omin

aph

aseo

lin

aC

oelo

myc

ete

Fu

sari

um

rot

Fu

sari

um

spp.

Hyp

hom

ycet

eL

eak

Pyt

hiu

msp

p.O

omyc

ete

Rh

izop

us

rot

Rh

izop

us

spp.

Zyg

omyc

ete

Scl

erot

ium

rot

Scl

erot

ium

rolf

sii

Ago

nom

ycet

eS

oil

rot

R.

sola

ni

Ago

nom

ycet

eL

egu

mes

Alt

ern

aria

blig

ht

A.

alte

rnat

aH

yph

omyc

ete

An

thra

cnos

eC

olle

totr

ich

um

spp.

Coe

lom

ycet

eA

scoc

hyt

apo

dsp

otA

scoc

hyt

asp

p.C

oelo

myc

etes

Bac

teri

albl

igh

tP

seu

dom

onas

spp.

Xan

thom

onas

spp.

Bac

teri

a

Ch

ocol

ate

spot

B.

cin

erea

Hyp

hom

ycet

eC

otto

ny

leak

Pyt

hiu

msp

p.M

ycos

phae

rell

abl

igh

tM

.pi

nod

es

Oom

ycet

eL

ocu

loas

com

ycet

e

Ru

stU

rom

yces

spp.

Hem

ibas

idio

myc

ete

Scl

erot

ium

rot

S.

rolf

sii

Ago

nom

ycet

eS

oil

rot

R.

sola

ni

Ago

nom

ycet

eW

hit

em

old

Scl

erot

inia

spp.

Dis

com

ycet

e

Page 473: HANDBOOK FOR VEGETABLE GROWERS

463

Let

tuce

Bac

teri

alro

tE

rwin

ia,

Pse

ud

omon

as,

Xan

thom

onas

spp.

Bac

teri

a

Gra

ym

old

rot

B.

cin

erea

Hyp

hom

ycet

eR

hiz

octo

nia

rot

R.

sola

ni

Ago

nom

ycet

eR

ings

pot

Mic

rod

och

ium

pan

atto

nia

nu

mH

yph

omyc

ete

Sep

tori

asp

otS

.la

ctu

cae

Coe

lom

ycet

eS

tem

phyl

ium

spot

Ste

mph

yliu

mh

erba

rum

Hyp

hom

ycet

eW

ater

yso

ftro

tS

cler

otin

iasp

p.D

isco

myc

ete

Pot

ato

Bac

teri

also

ftro

tE

rwin

iasp

p.B

acte

ria

Bli

ght

Ph

ytop

hth

ora

infe

stan

sO

omyc

ete

Ch

arco

alro

tS

.ba

tati

cola

Ago

nom

ycet

eC

omm

onsc

abS

trep

tom

yces

scab

ies

Act

inom

ycet

eF

usa

riu

mro

tF

usa

riu

msp

p.H

yph

omyc

ete

Gan

gren

eP

hom

aex

igu

aC

oelo

myc

ete

Rin

gro

tC

lavi

bact

erm

ich

igan

ensi

sB

acte

riu

mS

cler

otiu

mro

tS

.ro

lfsi

iA

gon

omyc

ete

Sil

ver

scu

rfH

elm

inth

ospo

riu

mso

lan

iH

yph

omyc

ete

Wat

ery

wou

nd

rot

Pyt

hiu

msp

p.O

omyc

ete

Page 474: HANDBOOK FOR VEGETABLE GROWERS

464

TA

BL

E8.

34.

IMP

OR

TA

NT

PO

ST

HA

RV

ES

TD

ISE

AS

ES

OF

VE

GE

TA

BL

ES

(Con

tin

ued

)

Veg

etab

leD

isea

seC

ausa

lA

gen

tF

un

gal

Cla

ss/T

ype

Sol

anac

eou

sF

ruit

sA

lter

nar

iaro

tA

.al

tern

ata

Hyp

hom

ycet

eA

nth

racn

ose

Col

leto

tric

hu

msp

p.C

oelo

myc

ete

Bac

teri

alca

nke

rC

.m

ich

igan

ensi

sB

acte

riu

mB

acte

rial

spec

kP

seu

dom

onas

syri

nga

eB

acte

riu

mB

acte

rial

spot

X.

cam

pest

ris

Bac

teri

um

Fu

sari

um

rot

Fu

sari

um

spp.

Hyp

hom

ycet

esG

ray

mol

dro

tB

.ci

ner

eaH

yph

omyc

ete

Lig

ht

blig

ht

P.in

fest

ans

Oom

ycet

eP

hom

aro

tP

hom

aly

cope

rsic

iH

yph

omyc

ete

Ph

omop

sis

rot

Ph

omop

sis

spp.

Coe

lom

ycet

esP

hyt

oph

thor

aro

tP

hyt

oph

thor

asp

p.O

omyc

ete

Ple

ospo

raro

tS

tem

phyl

ium

her

baru

mH

yph

omyc

ete

Rh

izop

us

rot

Rh

izop

us

spp.

Zyg

omyc

etes

Scl

erot

ium

rot

S.

rolf

sii

Ago

nom

ycet

eS

oil

rot

R.

sola

ni

Ago

nom

ycet

eS

our

rot

Geo

tric

hu

mca

nd

idu

mH

yph

omyc

ete

Wat

ery

soft

rot

Scl

erot

inia

spp.

Dis

com

ycet

esS

wee

tpo

tato

Bla

ckro

tC

erat

ocys

tis

fim

bria

taP

yren

omyc

ete

Fu

sari

um

rot

Fu

sari

um

spp.

Hyp

hom

ycet

eR

hiz

opu

sro

tR

hiz

opu

ssp

p.Z

ygom

ycet

esS

oil

rot

Str

epto

myc

esip

omoe

aeA

ctin

omyc

ete

Scu

rfM

onil

och

aete

sin

fusc

ans

Hyp

hom

ycet

e

Ada

pted

from

Pet

erL

.S

hol

berg

and

Wil

liam

S.

Con

way

,‘‘P

osth

arve

stP

ath

olog

y,’’

inT

he

Com

mer

cial

Sto

rage

ofF

ruit

s,V

eget

able

s,an

dF

lori

stan

dN

urs

ery

Sto

cks

(200

4),h

ttp:

//w

ww

.ba.

ars.

usd

a.go

v/h

b66

/con

ten

ts.h

tml.

Page 475: HANDBOOK FOR VEGETABLE GROWERS

465

08VEGETABLE QUALITY

Quality is defined as ‘‘any of the features that make something what it is’’or ‘‘the degree of excellence or superiority.’’ The word quality is used invarious ways in reference to fresh fruits and vegetables, such as marketquality, edible quality, dessert quality, shipping quality, table quality,nutritional quality, internal quality, and appearance quality.

Quality of fresh vegetables is a combination of characteristics, attributes,and properties that give the vegetables value to humans for food andenjoyment. Producers are concerned that their commodities have goodappearance and few visual defects, but for them a useful variety also mustscore high on yield, disease resistance, ease of harvest, and shipping quality.To receivers and market distributors, appearance quality is most important;they are also keenly interested in firmness and long storage life. Consumersconsider good-quality vegetables those that look good, are firm, and offergood flavor and nutritive value. Although consumers buy on the basis ofappearance and feel, their satisfaction and repeat purchases depend on goodedible quality.

TABLE 8.35. QUALITY ASSURANCE RECORDS FOR VEGETABLES

Field packingMaturity / ripeness stage and uniformityHarvest method (hand or mechanical)Temperature of product (harvest during cool times of the day and keep

product shaded)Uniformity of packs (size, trimming, maturity)Well-constructed boxes; palletization and unitizationCondition of field boxes or bins (no rough or dirty surfaces)Cleaning and sanitization of bins and harvest equipment

PackinghouseTime from harvest to arrivalShaded receiving areaUniformity of harvest (size, trimming, maturity)Washing /hydrocooling operation (sanitization)Water changed daily and constant sanitizer levels maintained in dump

tanks

Page 476: HANDBOOK FOR VEGETABLE GROWERS

466

TABLE 8.35. QUALITY ASSURANCE RECORDS FOR VEGETABLES(Continued )

Decay control chemical usageSorting for size, color, quality, etc.Product that falls on the floor discardedCulls checks for causes of rejection and for sorting accuracyFacilities and equipment sanitized regularlyWell-constructed boxes; palletization and unitization

CoolerTime from harvest to coolerTime from arrival to start of coolingPackage design (ventilation)Speed of cooling and final temperatureTemperature of product after coolingTemperature of holding roomTime from cooling to loading

Loading TrailerFirst-in, first-out truck loadingTemperature of productBoxes palletized and unitizedTruck condition (clean, undamaged, precooled)Loading pattern; palletization and unitizationDuration of transportTemperature during transport (thermostat setting and use of recorders)

Arrival at Distribution CenterTransit timeTemperature of productProduct condition and uniformity

Uniformity of packs (size, trimming, maturity)Ripeness stage, firmnessDecay incidence / type

Refrigeration maintained during cooling

Copyright 2003 from Postharvest Physiology and Pathology of Vegetables, 2nd ed. by J. R. Bartz andJ. K. Brecht (eds.). Reproduced by permission of Routledge / Taylor & Francis Group, LLC.

Page 477: HANDBOOK FOR VEGETABLE GROWERS

467

TABLE 8.36. QUALITY COMPONENTS OF FRESH VEGETABLES

Main Factors Components

Appearance (visual) Size: dimensions, weight, volumeShape and form: diameter /depth ratio,

compactness, uniformityColor: uniformity, intensityGloss: nature of surface waxDefects, external and internal: morphological,

physical and mechanical, physiological,pathological, entomological

Texture (feel) Firmness, hardness, softnessCrispnessSucculence, juicinessMealiness, grittinessToughness, fibrousness

Flavor (taste and smell) SweetnessSourness (acidity)AstringencyBitternessAroma (volatile compounds)Off-flavors and off-odors

Nutritional value Carbohydrates (including dietary fiber)ProteinsLipidsVitaminsEssential elements

Safety Naturally occurring toxicantsContaminants (chemical residues, heavy metals)MycotoxinsMicrobial contamination

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311, 2002).

Page 478: HANDBOOK FOR VEGETABLE GROWERS

468

09U.S. STANDARDS FOR GRADES OF VEGETABLES

Grade standards issued by the U.S. Department of Agriculture (USDA) arecurrently in effect for most vegetables for fresh market and for processing.Some standards have been unchanged since they became effective, whereasothers have been revised quite recently.

For the U.S. Standards for Grades of Fresh and Processing Vegetables,go to:

http: / /www/ams.usda.gov /standards /stanfrfv.htm

Page 479: HANDBOOK FOR VEGETABLE GROWERS

469

TA

BL

E8.

37.

QU

AL

ITY

FA

CT

OR

SF

OR

FR

ES

HV

EG

ET

AB

LE

SIN

TH

EU

.S.S

TA

ND

AR

DS

FO

RG

RA

DE

S

Veg

etab

leD

ate

Issu

edQ

ual

ity

Fact

ors

An

ise,

swee

t19

73F

irm

nes

s,te

nde

rnes

s,tr

imm

ing,

blan

chin

g,an

dfr

eedo

mfr

omde

cay

and

dam

age

cau

sed

bygr

owth

crac

ks,

pith

ybr

anch

es,w

ilti

ng,

free

zin

g,se

edst

ems,

inse

cts,

and

mec

han

ical

mea

ns

Art

ich

oke

1969

Ste

mle

ngt

h,

shap

e,ov

erm

atu

rity

,un

ifor

mit

yof

size

,co

mpa

ctn

ess,

and

free

dom

from

deca

yan

dde

fect

sA

spar

agu

s19

66F

resh

nes

s(t

urg

idit

y),t

rim

min

g,st

raig

htn

ess,

free

dom

from

dam

age

and

deca

y,di

amet

erof

stal

ks,

perc

ent

gree

nco

lor

Bea

n,

lim

a19

38U

nif

orm

ity,

mat

uri

ty,f

resh

nes

s,sh

ape,

and

free

dom

from

dam

age

(def

ect)

and

deca

yB

ean

,sn

ap19

36U

nif

orm

ity,

size

,m

atu

rity

,firm

nes

s,an

dfr

eedo

mfr

omde

fect

and

deca

yB

eet,

bun

ched

orto

pped

1955

Roo

tsh

ape,

trim

min

gof

root

lets

,fi

rmn

ess

(tu

rgid

ity)

,sm

ooth

nes

s,cl

ean

nes

s,m

inim

um

size

(dia

met

er),

and

free

dom

from

defe

ctB

eet,

gree

ns

1959

Fre

shn

ess,

clea

nn

ess,

ten

dern

ess,

and

free

dom

from

deca

y,ot

her

kin

dsof

leav

es,

disc

olor

atio

n,i

nse

cts,

mec

han

ical

inju

ry,a

nd

free

zin

gin

jury

Bro

ccol

i19

43C

olor

,m

atu

rity

,sta

lkdi

amet

eran

dle

ngt

h,c

ompa

ctn

ess,

base

cut,

and

free

dom

from

defe

cts

and

deca

yB

russ

els

spro

uts

1954

Col

or,

mat

uri

ty(fi

rmn

ess)

,n

ose

edst

ems,

size

(dia

met

eran

dle

ngt

h),

and

free

dom

from

defe

ctan

dde

cay

Cab

bage

1945

Un

ifor

mit

y,so

lidi

ty(m

atu

rity

orfi

rmn

ess)

,n

ose

edst

ems,

trim

min

g,co

lor,

and

free

dom

from

defe

ctan

dde

cay

Can

talo

upe

1968

Sol

ubl

eso

lids

(�9

perc

ent)

,u

nif

orm

ity

ofsi

ze,

shap

e,gr

oun

dco

lor

and

net

tin

g;m

atu

rity

and

turg

idit

y;an

dfr

eedo

mfr

omw

etsl

ip,

sun

scal

d,an

dot

her

defe

cts

Page 480: HANDBOOK FOR VEGETABLE GROWERS

470

TA

BL

E8.

37.

QU

AL

ITY

FA

CT

OR

SF

OR

FR

ES

HV

EG

ET

AB

LE

SIN

TH

EU

.S.S

TA

ND

AR

DS

FO

RG

RA

DE

S(C

onti

nu

ed)

Veg

etab

leD

ate

Issu

edQ

ual

ity

Fact

ors

Car

rot,

bun

ched

1954

Sh

ape,

colo

r,cl

ean

nes

s,sm

ooth

nes

s,fr

eedo

mfr

omde

fect

s,fr

esh

nes

s,le

ngt

hof

tops

,an

dro

otdi

amet

erC

arro

t,to

pped

1965

Un

ifor

mit

y,tu

rgid

ity,

colo

r,sh

ape,

size

,cl

ean

nes

s,sm

ooth

nes

s,an

dfr

eedo

mfr

omde

fect

(gro

wth

crac

ks,

pith

ines

s,w

oodi

nes

s,in

tern

aldi

scol

orat

ion

)C

arro

tsw

ith

shor

ttr

imm

edto

ps19

54R

oots

;fi

rmn

ess,

colo

r,sm

ooth

nes

s,an

dfr

eedo

mfr

omde

fect

(su

nbu

rn,p

ith

ines

s,w

oodi

nes

s,in

tern

aldi

scol

orat

ion

,an

din

sect

and

mec

han

ical

inju

ries

)an

dde

cay;

leav

es:

(cu

tto

�4

inch

es)

free

dom

from

yell

owin

gor

oth

erdi

scol

orat

ion

,di

seas

e,in

sect

s,an

dse

edst

ems

Cau

lifl

ower

1968

Cu

rdcl

ean

nes

s,co

mpa

ctn

ess,

wh

ite

colo

r,si

ze(d

iam

eter

),fr

esh

nes

san

dtr

imm

ing

ofja

cket

leav

es,

and

free

dom

from

defe

ctan

dde

cay

Cel

ery

1959

Sta

lkfo

rm,

com

pact

nes

s,co

lor,

trim

min

g,le

ngt

hof

stal

kan

dm

idri

bs,

wid

than

dth

ickn

ess

ofm

idri

bs,

no

seed

stem

s,an

dfr

eedo

mfr

omde

fect

and

deca

yC

olla

rdgr

een

sor

broc

coli

gree

ns

1953

Fre

shn

ess,

ten

dern

ess,

clea

nn

ess,

and

free

dom

from

seed

stem

s,di

scol

orat

ion

,fr

eezi

ng

inju

ry,i

nse

cts,

and

dise

ases

Cor

n,

swee

t19

92U

nif

orm

ity

ofco

lor

and

size

,fr

esh

nes

s,m

ilky

kern

els,

cob

len

gth

,fre

edom

from

inse

ctin

jury

,dis

colo

rati

on,a

nd

oth

erde

fect

s,co

vera

gew

ith

fres

hh

usk

sC

ucu

mbe

r19

58C

olor

,sh

ape,

turg

idit

y,m

atu

rity

,siz

e(d

iam

eter

and

len

gth

),an

dfr

eedo

mfr

omde

fect

and

deca

yC

ucu

mbe

r,gr

een

hou

se19

85F

resh

nes

s,sh

ape,

firm

nes

s,co

lor,

size

(11

in.

orlo

nge

r),

and

free

dom

from

deca

y,cu

ts,

bru

ises

,sc

ars,

inse

ctin

jury

,an

dot

her

defe

cts

Dan

deli

ongr

een

s19

55F

resh

nes

s,cl

ean

nes

s,te

nde

rnes

s,an

dfr

eedo

mfr

omda

mag

eca

use

dby

seed

stem

s,di

scol

orat

ion

,fre

ezin

g,di

seas

es,

inse

cts,

and

mec

han

ical

inju

ry

Page 481: HANDBOOK FOR VEGETABLE GROWERS

471

Egg

plan

t19

53C

olor

,tu

rgid

ity,

shap

e,si

ze,

and

free

dom

from

defe

ctan

dde

cay

En

dive

,es

caro

le,

orch

icor

y19

64F

resh

nes

s,tr

imm

ing,

colo

r(b

lan

chin

g),n

ose

edst

ems,

and

free

dom

from

defe

ctan

dde

cay

Gar

lic

1944

Mat

uri

ty,c

uri

ng,

com

pact

nes

s,w

ell-

fill

edcl

oves

,bu

lbsi

ze,

and

free

dom

from

defe

ctH

oney

dew

and

hon

eyba

llm

elon

s19

67M

atu

rity

,firm

nes

s,sh

ape,

and

free

dom

from

deca

yan

dde

fect

(su

nbu

rn,

bru

isin

g,h

ail

spot

s,an

dm

ech

anic

alin

juri

es)

Hor

sera

dish

root

s19

36U

nif

orm

ity

ofsh

ape

and

size

,fi

rmn

ess,

smoo

thn

ess,

and

free

dom

from

hol

low

hea

rt,

oth

erde

fect

s,an

dde

cay

Kal

e19

34U

nif

orm

ity

ofgr

owth

and

colo

r,tr

imm

ing,

fres

hn

ess,

and

free

dom

from

defe

ctan

dde

cay

Let

tuce

,cr

isp

hea

d19

75T

urg

idit

y,co

lor,

mat

uri

ty(fi

rmn

ess)

,tr

imm

ing

(nu

mbe

rof

wra

pper

leav

es),

and

free

dom

from

tip

burn

,ot

her

phys

iolo

gica

ldi

sord

ers,

mec

han

ical

dam

age,

seed

stem

s,ot

her

defe

cts,

and

deca

yL

ettu

ce,

gree

nh

ouse

leaf

1964

Wel

l-de

velo

ped,

wel

l-tr

imm

ed,a

nd

free

dom

from

coar

sest

ems,

blea

ched

ordi

scol

ored

leav

es,

wil

tin

g,fr

eezi

ng,

inse

cts,

and

deca

yL

ettu

ce,

rom

ain

e19

60F

resh

nes

s,tr

imm

ing,

and

free

dom

from

deca

yan

dda

mag

eca

use

dby

seed

stem

s,br

oken

,br

uis

ed,

ordi

scol

ored

leav

es,

tipb

urn

,an

dw

ilti

ng

Mu

shro

om19

66M

atu

rity

,sh

ape,

trim

min

g,si

ze,

and

free

dom

from

open

veil

s,di

seas

e,sp

ots,

inse

ctin

jury

,an

dde

cay

Page 482: HANDBOOK FOR VEGETABLE GROWERS

472

TA

BL

E8.

37.

QU

AL

ITY

FA

CT

OR

SF

OR

FR

ES

HV

EG

ET

AB

LE

SIN

TH

EU

.S.S

TA

ND

AR

DS

FO

RG

RA

DE

S(C

onti

nu

ed)

Veg

etab

leD

ate

Issu

edQ

ual

ity

Fact

ors

Mu

star

dgr

een

san

dtu

rnip

gree

ns

1953

Fre

shn

ess,

ten

dern

ess,

clea

nn

ess,

and

free

dom

from

dam

age

cau

sed

byse

edst

ems,

disc

olor

atio

n,f

reez

ing,

dise

ase,

inse

cts,

orm

ech

anic

alm

ean

s;ro

ots

(if

atta

ched

):fi

rmn

ess

and

free

dom

from

dam

age

Okr

a19

28F

resh

nes

s,u

nif

orm

ity

ofsh

ape

and

colo

r,an

dfr

eedo

mfr

omde

fect

and

deca

yO

nio

n,

dry

Cre

ole

1943

Mat

uri

ty,fi

rmn

ess,

shap

e,si

ze(d

iam

eter

),an

dfr

eedo

mfr

omde

cay,

wet

sun

scal

d,do

ubl

es,

bott

len

ecks

,spr

outi

ng,

and

oth

erde

fect

sB

erm

uda

-Gra

nex

-G

ran

o19

95M

atu

rity

,firm

nes

s,sh

ape,

size

(dia

met

er)

and

free

dom

from

deca

y,w

etsu

nsc

ald,

dou

bles

,bo

ttle

nec

ks,s

eeds

tem

s,sp

rou

tin

gan

dot

her

defe

cts

Oth

erva

riet

ies

1995

Mat

uri

ty,fi

rmn

ess,

shap

e,si

ze(d

iam

eter

),an

dfr

eedo

mfr

omde

cay,

wet

sun

scal

d,do

ubl

es,

bott

len

ecks

,spr

outs

and

oth

erde

fect

s.O

nio

n,

gree

n19

47T

urg

idit

y,co

lor,

form

,cl

ean

nes

s,bu

lbtr

imm

ing,

no

seed

stem

s,an

dfr

eedo

mfr

omde

fect

and

deca

yO

nio

nse

ts19

40M

atu

rity

,firm

nes

s,si

ze,

and

free

dom

from

deca

yan

dda

mag

eca

use

dby

tops

,sp

rou

tin

g,fr

eezi

ng,

mol

d,m

oist

ure

,di

rt,

dise

ase,

inse

cts,

orm

ech

anic

alm

ean

sP

arsl

ey19

30F

resh

nes

s,gr

een

colo

r,an

dfr

eedo

mfr

omde

fect

s,se

edst

ems,

and

deca

yP

arsn

ip19

45T

urg

idit

y,tr

imm

ing,

clea

nn

ess,

smoo

thn

ess,

shap

e,fr

eedo

mfr

omde

fect

san

dde

cay,

and

size

(dia

met

er)

Page 483: HANDBOOK FOR VEGETABLE GROWERS

473

Pea

,fr

esh

1942

Mat

uri

ty,s

ize,

shap

e,fr

esh

nes

s,an

dfr

eedo

mfr

omde

fect

san

dde

cay

Pep

per,

swee

t19

89M

atu

rity

,col

or,

shap

e,si

ze,

firm

nes

s,an

dfr

eedo

mfr

omde

fect

s(s

un

burn

,su

nsc

ald,

free

zin

gin

jury

,hai

l,sc

ars,

inse

cts,

mec

han

ical

dam

age)

and

deca

yP

otat

o19

91U

nif

orm

ity,

mat

uri

ty,fi

rmn

ess,

clea

nn

ess,

shap

e,si

ze,

and

free

dom

from

spro

uts

,sc

ab,

grow

thcr

acks

,h

ollo

wh

eart

,bla

ckh

eart

,gre

enin

g,an

dot

her

defe

cts

Rad

ish

1968

Ten

dern

ess,

clea

nn

ess,

smoo

thn

ess,

shap

e,si

ze,

and

free

dom

from

pith

ines

san

dot

her

defe

cts;

tops

ofbu

nch

edra

dish

esfr

esh

and

free

from

dam

age

Rh

uba

rb19

66C

olor

,fr

esh

nes

s,st

raig

htn

ess,

trim

min

g,cl

ean

nes

s,st

alk

diam

eter

and

len

gth

,an

dfr

eedo

mfr

omde

fect

Sh

allo

t,bu

nch

ed19

46F

irm

nes

s,fo

rm,

ten

dern

ess,

trim

min

g,cl

ean

nes

s,an

dfr

eedo

mfr

omde

cay

and

dam

age

cau

sed

byse

edst

ems,

dise

ase,

inse

cts,

mec

han

ical

and

oth

erm

ean

s;to

ps:

fres

hn

ess,

gree

nco

lor,

and

no

mec

han

ical

dam

age

Sou

ther

npe

a19

56M

atu

rity

,pod

shap

e,an

dfr

eedo

mfr

omdi

scol

orat

ion

and

oth

erde

fect

sS

pin

ach

bun

ches

1987

Fre

shn

ess,

clea

nn

ess,

trim

min

g,an

dfr

eedo

mfr

omde

cay

and

dam

age

cau

sed

byco

arse

stal

ksor

seed

stem

s,di

scol

orat

ion

,in

sect

s,or

mec

han

ical

mea

ns

Spi

nac

hle

aves

1946

Col

or,

turg

idit

y,cl

ean

nes

s,tr

imm

ing,

and

free

dom

from

seed

stem

s,co

arse

stal

ks,

and

oth

erde

fect

sS

quas

h,s

um

mer

1984

Imm

atu

rity

,ten

dern

ess,

shap

e,fi

rmn

ess,

and

free

dom

from

deca

y,cu

ts,

bru

ises

,sc

ars,

and

oth

erde

fect

s

Page 484: HANDBOOK FOR VEGETABLE GROWERS

474

TA

BL

E8.

37.

QU

AL

ITY

FA

CT

OR

SF

OR

FR

ES

HV

EG

ET

AB

LE

SIN

TH

EU

.S.S

TA

ND

AR

DS

FO

RG

RA

DE

S(C

onti

nu

ed)

Veg

etab

leD

ate

Issu

edQ

ual

ity

Fact

ors

Squ

ash

,win

ter,

and

pum

pkin

1983

Mat

uri

ty,fi

rmn

ess,

free

dom

from

disc

olor

atio

n,c

rack

ing,

dry

rot,

inse

ctda

mag

e,an

dot

her

defe

cts;

un

ifor

mit

yof

size

Str

awbe

rry

1965

Mat

uri

ty(�

1⁄2

or�

3⁄4

ofsu

rfac

esh

owin

gre

dor

pin

kco

lor,

depe

ndi

ng

ongr

ade)

,fi

rmn

ess,

atta

ched

caly

x,si

ze,

and

free

dom

from

defe

ctan

dde

cay

Sw

eet

pota

to19

63F

irm

nes

s,sm

ooth

nes

s,cl

ean

nes

s,sh

ape,

size

,an

dfr

eedo

mfr

omm

ech

anic

alda

mag

e,gr

owth

crac

ks,

inte

rnal

brea

kdow

n,i

nse

ctda

mag

e,ot

her

defe

cts,

and

deca

yT

omat

o19

91M

atu

rity

and

ripe

nes

s(c

olor

char

t),

firm

nes

s,sh

ape,

size

,an

dfr

eedo

mfr

omde

fect

(pu

ffin

ess,

free

zin

gin

jury

,su

nsc

ald,

scar

s,ca

tfac

es,

grow

thcr

acks

,in

sect

inju

ry,a

nd

oth

erde

fect

s)an

dde

cay

Tom

ato,

gree

nh

ouse

1966

Mat

uri

ty,fi

rmn

ess,

shap

e,si

ze,

and

free

dom

from

deca

y,su

nsc

ald,

free

zin

gin

jury

,br

uis

es,

cuts

,sh

rive

lin

g,pu

ffin

ess,

catf

aces

,gr

owth

crac

ks,

scar

s,di

seas

e,an

din

sect

sT

urn

ipan

dru

taba

ga19

55U

nif

orm

ity

ofro

otco

lor,

size

,an

dsh

ape,

trim

min

g,fr

esh

nes

s,an

dfr

eedo

mfr

omde

fect

s(c

uts

,gr

owth

crac

ks,

pith

ines

s,w

oodi

nes

s,w

ater

core

,dr

yro

t)W

ater

mel

on20

06M

atu

rity

and

ripe

nes

s(o

ptio

nal

inte

rnal

qual

ity

crit

eria

:so

lubl

eso

lids

con

ten

t10

%or

mor

eve

rygo

od,

�8%

good

),sh

ape,

un

ifor

mit

yof

size

(wei

ght)

,an

dfr

eedo

mfr

oman

thra

cnos

e,de

cay,

sun

scal

d,an

dw

hit

ehea

rt

Ada

pted

from

A.

A.

Kad

er(e

d.),

Pos

thar

vest

Tec

hn

olog

yof

Hor

ticu

ltu

ral

Cro

ps,3

rded

.(U

niv

ersi

tyof

Cal

ifor

nia

,Div

isio

nof

Agr

icu

ltu

rean

dN

atu

ral

Res

ourc

esP

ubl

icat

ion

3311

,200

2).

Page 485: HANDBOOK FOR VEGETABLE GROWERS

475

TA

BL

E8.

38.

QU

AL

ITY

FA

CT

OR

SF

OR

PR

OC

ES

SIN

GV

EG

ET

AB

LE

SIN

TH

EU

.S.S

TA

ND

AR

DS

FO

RG

RA

DE

S

Veg

etab

leD

ate

Issu

edQ

ual

ity

Fact

ors

Asp

arag

us,

gree

n19

72F

resh

nes

s,sh

ape,

gree

nco

lor,

size

(spe

arle

ngt

h),

and

free

dom

from

defe

ct(f

reez

ing

dam

age,

dirt

,di

seas

e,in

sect

inju

ry,a

nd

mec

han

ical

inju

ries

)an

dde

cay

Bea

n,

shel

led

lim

a19

53T

ende

rnes

sgr

een

colo

r,an

dfr

eedo

mfr

omde

cay

and

from

inju

ryca

use

dby

disc

olor

atio

n,s

hri

veli

ng,

sun

scal

d,fr

eezi

ng,

hea

tin

g,di

seas

e,in

sect

s,or

oth

erm

ean

sB

ean

,sn

ap19

85F

resh

nes

s,te

nde

rnes

s,sh

ape,

size

,an

dfr

eedo

mfr

omde

cay

and

from

dam

age

cau

sed

bysc

ars,

rust

,di

seas

e,in

sect

s,br

uis

es,

pun

ctu

res,

brok

enen

ds,

orot

her

mea

ns

Bee

t19

45F

irm

nes

s,te

nde

rnes

s,sh

ape,

size

,an

dfr

eedo

mfr

omso

ftro

t,cu

llm

ater

ial,

grow

thcr

acks

,in

tern

aldi

scol

orat

ion

,wh

ite

zon

ing,

rode

nt

dam

age,

dise

ase,

inse

cts,

and

mec

han

ical

inju

ryB

rocc

oli

1959

Fre

shn

ess,

ten

dern

ess,

gree

nco

lor,

com

pact

nes

s,tr

imm

ing,

and

free

dom

from

deca

yan

dda

mag

eca

use

dby

disc

olor

atio

n,f

reez

ing,

pith

ines

s,sc

ars,

dirt

,or

mec

han

ical

mea

ns

Cab

bage

1944

Fir

mn

ess,

trim

min

g,an

dfr

eedo

mfr

omso

ftro

t,se

edst

ems,

and

from

dam

age

cau

sed

bybu

rsti

ng,

disc

olor

atio

n,f

reez

ing,

dise

ase,

bird

s,in

sect

s,or

mec

han

ical

orot

her

mea

ns

Car

rot

1984

Fir

mn

ess,

colo

r,sh

ape,

size

(roo

tle

ngt

h),

smoo

thn

ess,

not

woo

dy,

and

free

dom

from

soft

rot,

cull

mat

eria

l,an

dfr

omda

mag

eca

use

dby

grow

thcr

acks

,su

nbu

rn,g

reen

core

,pi

thy

core

,w

ater

core

,in

tern

aldi

scol

orat

ion

,dis

ease

,or

mec

han

ical

mea

ns

Page 486: HANDBOOK FOR VEGETABLE GROWERS

476

TA

BL

E8.

38.

QU

AL

ITY

FA

CT

OR

SF

OR

PR

OC

ES

SIN

GV

EG

ET

AB

LE

SIN

TH

EU

.S.S

TA

ND

AR

DS

FO

RG

RA

DE

S(C

onti

nu

ed)

Veg

etab

leD

ate

Issu

edQ

ual

ity

Fact

ors

Cau

lifl

ower

1959

Fre

shn

ess,

com

pact

nes

s,co

lor,

and

free

dom

from

jack

etle

aves

,st

alks

,an

dot

her

cull

mat

eria

l,de

cay,

and

dam

age

cau

sed

bydi

scol

orat

ion

,bru

isin

g,fu

zzin

ess,

enla

rged

brac

ts,

dirt

,fr

eezi

ng,

hai

l,or

mec

han

ical

mea

ns

Cor

n,

swee

t19

62M

atu

rity

,fre

shn

ess,

and

free

dom

from

dam

age

byfr

eezi

ng,

inse

cts,

bird

s,di

seas

e,cr

oss-

poll

inat

ion

,or

ferm

enta

tion

Cu

cum

ber,

pick

lin

g19

36C

olor

,sh

ape,

fres

hn

ess,

firm

nes

s,m

atu

rity

,an

dfr

eedo

mfr

omde

cay

and

from

dam

age

cau

sed

bydi

rt,

free

zin

g,su

nbu

rn,d

isea

se,

inse

cts,

orm

ech

anic

alor

oth

erm

ean

sM

ush

room

1964

Fre

shn

ess,

firm

nes

s,sh

ape,

and

free

dom

from

deca

y,di

seas

esp

ots,

and

inse

cts,

and

from

dam

age

cau

sed

byin

sect

s,br

uis

ing,

disc

olor

atio

n,o

rfe

ath

erin

gO

kra

1965

Fre

shn

ess,

ten

dern

ess,

colo

r,sh

ape,

and

free

dom

from

deca

yan

din

sect

s,an

dfr

omda

mag

eca

use

dby

scar

s,br

uis

es,

cuts

,pu

nct

ure

s,di

scol

orat

ion

,dir

tor

oth

erm

ean

sO

nio

n19

44M

atu

rity

,firm

nes

s,an

dfr

eedo

mfr

omde

cay,

spro

uts

,bo

ttle

nec

ks,s

call

ion

s,se

edst

ems,

sun

scal

d,ro

ots,

inse

cts,

and

mec

han

ical

inju

ryP

ea,

fres

hsh

elle

dfo

rca

nn

ing

/fr

eezi

ng

1946

Ten

dern

ess,

succ

ule

nce

,col

or,

and

free

dom

from

deca

y,sc

ald,

rust

,sh

rive

lin

g,h

eati

ng,

dise

ase,

and

inse

cts

Pep

per,

swee

t19

48F

irm

nes

s,co

lor,

shap

e,an

dfr

eedo

mfr

omde

cay,

inse

cts,

and

dam

age

byan

ym

ean

sth

atre

sult

sin

5–20

%tr

imm

ing

(by

wei

ght)

depe

ndi

ng

ongr

ade

Pot

ato

1983

Sh

ape,

smoo

thn

ess,

free

dom

from

deca

yan

dde

fect

(fre

ezin

gin

jury

,bla

ckh

eart

,sp

rou

ts),

size

,sp

ecifi

cgr

avit

y,gl

uco

seco

nte

nt,

and

fry

colo

r

Page 487: HANDBOOK FOR VEGETABLE GROWERS

477

Pot

ato

for

chip

pin

g19

78F

irm

nes

s,cl

ean

nes

s,sh

ape,

free

dom

from

defe

ct(f

reez

ing,

blac

khea

rt,d

ecay

,in

sect

inju

ry,a

nd

mec

han

ical

inju

ry),

size

;op

tion

alte

sts

for

spec

ific

grav

ity

and

fry

colo

rin

clu

ded

Sou

ther

npe

a19

65P

ods:

mat

uri

ty,f

resh

nes

s,an

dfr

eedo

mfr

omde

cay;

seed

s:fr

eedo

mfr

omsc

ars,

inse

cts,

deca

y,di

scol

orat

ion

,spl

its,

crac

ked

skin

,an

dot

her

defe

cts

Spi

nac

h19

56F

resh

nes

s,fr

eedo

mfr

omde

cay,

gras

sw

eeds

,an

dot

her

fore

ign

mat

eria

l,an

dfr

eedo

mfr

omda

mag

eca

use

dby

seed

stem

s,di

scol

orat

ion

,coa

rse

stal

ks,

inse

cts,

dirt

,or

mec

han

ical

mea

ns

Sw

eet

pota

tofo

rca

nn

ing

/fre

ezin

g19

59F

irm

nes

s,sh

ape,

colo

r,si

ze,

and

free

dom

from

deca

yan

dde

fect

(fre

ezin

gin

jury

,sc

ald,

cork

,in

tern

aldi

scol

orat

ion

,bru

ises

,cu

ts,

grow

ths

crac

ks,

pith

ines

s,st

rin

gin

ess,

and

inse

ctin

jury

)S

wee

tpo

tato

for

dici

ng

/pu

lpin

g19

51F

irm

nes

s,sh

ape

size

,an

dfr

eedo

mfr

omde

cay

and

defe

ct(s

cald

,fr

eezi

ng

inju

ry,

cork

,in

tern

aldi

scol

orat

ion

,pit

hin

ess,

grow

thcr

acks

,in

sect

dam

age,

and

stri

ngi

nes

s)T

omat

o19

83F

irm

nes

s,ri

pen

ess

(col

oras

dete

rmin

edby

aph

otoe

lect

ric

inst

rum

ent)

,an

dfr

eedo

mfr

omin

sect

dam

age,

free

zin

g,m

ech

anic

alda

mag

e,de

cay,

grow

thcr

acks

,su

nsc

ald,

gray

wal

l,an

dbl

osso

m-e

nd

rot

Tom

ato,

gree

n19

50F

irm

nes

s,co

lor

(gre

en),

and

free

dom

from

deca

yan

dde

fect

(gro

wth

crac

ks,

scar

s,ca

tfac

es,

sun

scal

d,di

seas

e,in

sect

s,or

mec

han

ical

dam

age)

Tom

ato,

Ital

ian

type

for

can

nin

g19

57F

irm

nes

s,co

lor

un

ifor

mit

y,an

dfr

eedo

mfr

omde

cay

and

defe

ct(g

row

thcr

acks

,su

nsc

ald,

free

zin

g,di

seas

e,in

sect

s,or

mec

han

ical

inju

ry)

Ada

pted

from

A.

A.

Kad

er(e

d.),

Pos

thar

vest

Tec

hn

olog

yof

Hor

ticu

ltu

ral

Cro

ps,3

rded

.(U

niv

ersi

tyof

Cal

ifor

nia

,Div

isio

nof

Agr

icu

ltu

rean

dN

atu

ral

Res

ourc

esP

ubl

icat

ion

3311

,200

2).

Page 488: HANDBOOK FOR VEGETABLE GROWERS

478

INTERNATIONAL STANDARDS

International standards for vegetables published by the Organization forEconomic Cooperation and Development (OECD) are available from theOECD Bookshop at http: / /www.oecdbookshop.org in the series InternationalStandardization of Fruit and Vegetables.

Ontario, Canada, Grading and Packing Manuals are available at:

http: / /www.gov.on.ca /omafra /english / food / inspection / fruitveg / intro.htm

Page 489: HANDBOOK FOR VEGETABLE GROWERS

479

10MINIMALLY PROCESSED VEGETABLES

Helpful website: http: / /www.fresh-cuts.org

TABLE 8.39. BASIC REQUIREMENTS FOR PREPARATION OFMINIMALLY PROCESSED VEGETABLES

High-quality raw materialVariety selectionProduction practicesHarvest and storage conditionsStrict hygiene and good manufacturing practicesUse of Hazard Analysis Critical Control Points principlesSanitation of processing line, product, and workersLow temperatures during processingCareful cleaning and/or washing before and after peelingGood-quality water (sensory, microbiological, pH)Use of mild processing aids in wash water for disinfection or prevention of

browning and texture lossChlorine, ozone, and other disinfectantsAntioxidant chemicals such as ascorbic acid, citric acid, etc.Calcium salts to reduce textural changesMinimal damage during peeling, cutting, slicing, and shredding operationsSharp knives and blades on cuttersElimination of defective and damaged piecesGentle draining, spin- or air-drying to remove excess moistureCorrect packing materials and packaging methodsSelection of plastic films to ensure adequate O2 levels to avoid fermentationCorrect temperature during distribution and handlingAll minimally processed products kept at 32–41�F

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources Publication 3311. 2002).

Page 490: HANDBOOK FOR VEGETABLE GROWERS

480

TABLE 8.40. ADVANTAGES, DISADVANTAGES, ANDREQUIREMENTS OF FRESH-CUT VEGETABLEPRODUCTS PREPARED AT DIFFERENT LOCATIONS

Location of Processing Characteristics and Requirements

Source of production Raw product processed fresh when it is of thehighest quality.

Processed product requires a minimum of 14 dayspostprocessing shelf life.

Good temperature management critical.Economy of scale.Avoid long-distance transport of unusable product.Vacuum- and gas-flushing common; differentially

permeable films.Regional Raw product processed when of good quality,

typically 3–7 days after harvest.Reduced need to maximize shelf life; about 7 days

postprocessing life required.Good temperature management vital.Several deliveries weekly to end-users.Can better respond to short-term demands.Vacuum- and gas-flushing common; differentially

permeable films.Local Raw product quality may vary greatly because

processed 7–14 days after harvest.Relatively short postprocessing life required or

expected.Good temperature management required but is

often deficient.Small quantities processed and delivered.More labor intensive; discard large amounts of

unusable product.Simpler and less costly packaging; less use of

vacuum- or gas-flushing techniques.

Adapted from A. A. Kader (ed.), Postharvest Technology of Horticultural Crops, 3rd ed. (University ofCalifornia, Division of Agriculture and Natural Resources publication 3311, 2002).

Page 491: HANDBOOK FOR VEGETABLE GROWERS

481

TA

BL

E8.

41.

PH

YS

IOL

OG

YA

ND

ST

OR

AG

EC

HA

RA

CT

ER

IST

ICS

OF

FR

ES

H-C

UT

VE

GE

TA

BL

ES

(AL

LP

RO

DU

CT

SS

HO

UL

DB

ES

TO

RE

DA

T32

–41�

F)

Veg

etab

leF

resh

-cu

tP

rodu

ct

Res

pira

tion

Rat

ein

Air

at41

�F(m

LC

O2

�kg

�1

�h

�1 )

Com

mon

Qu

alit

yD

efec

ts(o

ther

than

mic

robi

algr

owth

)

Ben

efici

alA

tmos

pher

e

%O

2%

CO

2

Asp

arag

us

tips

Tri

mm

edsp

ears

40B

row

nin

g,so

ften

ing

10–2

010

–15

Bea

ns,

snap

Cu

t15

–18

Bro

wn

ing

2–5

3–12

Bee

tC

ube

d5

Lea

kage

;col

orlo

ss5

5B

rocc

oli

Flo

rets

20–3

5Ye

llow

ing,

off–

odor

s3–

105–

10C

abba

geS

hre

dded

13–2

0B

row

nin

g3–

75–

15C

arro

tS

tick

s,sh

redd

ed7–

10;1

2–15

Su

rfac

edr

yin

g(w

hit

ebl

ush

),le

akag

e0.

5–5

10C

auli

flow

erF

lore

ts—

Dis

colo

rati

on;o

ffod

ors

5–10

�5

Cel

ery

Sti

cks

2–3

Bro

wn

ing,

surf

ace

dryi

ng

——

Cu

cum

ber

Sli

ced

5L

eaka

ge—

—G

arli

cP

eele

dcl

ove

20S

prou

tgr

owth

,di

scol

orat

ion

35–

10Ji

cam

aS

tick

s5–

10B

row

nin

g;te

xtu

relo

ss3

10L

eek

Sli

ced

25D

isco

lora

tion

55

Let

tuce

,ic

eber

gC

hop

ped,

shre

dded

6;10

Bro

wn

ing

ofcu

ted

ges

�0.

5–3

10–1

5L

ettu

ce,

oth

erC

hop

ped

10–1

3B

row

nin

gof

cut

edge

s1–

35–

10

Page 492: HANDBOOK FOR VEGETABLE GROWERS

482

TA

BL

E8.

41.

PH

YS

IOL

OG

YA

ND

ST

OR

AG

EC

HA

RA

CT

ER

IST

ICS

OF

FR

ES

H-C

UT

VE

GE

TA

BL

ES

(AL

LP

RO

DU

CT

SS

HO

UL

DB

ES

TO

RE

DA

T32

–41�

F)

(Con

tin

ued

)

Veg

etab

leF

resh

-cu

tP

rodu

ct

Res

pira

tion

Rat

ein

Air

at41

�F(m

LC

O2

�kg

�1

�h

�1 )

Com

mon

Qu

alit

yD

efec

ts(o

ther

than

mic

robi

algr

owth

)

Ben

efici

alA

tmos

pher

e

%O

2%

CO

2

Mel

ons

Can

talo

upe

Cu

bed

5–8

Lea

kage

;sof

ten

ing;

glas

sin

ess

(tra

nsl

uce

ncy

)3–

55–

15

Hon

eyde

wC

ube

d2–

4L

eaka

ge;s

ofte

nin

g;gl

assi

nes

s(t

ran

slu

cen

cy)

2–3

5–15

Wat

erm

elon

Cu

bed

2–4

Lea

kage

;sof

ten

ing

3–5

5–15

On

ion

,bu

lbS

lice

d,di

ced

8–12

Tex

ture

,ju

ice

loss

,di

scol

orat

ion

2–5

10–1

5O

nio

n,

gree

nC

hop

ped

25–3

0D

isco

lora

tion

,gro

wth

;le

akag

e—

—P

eppe

rS

lice

d,di

ced

3;6

Tex

ture

loss

,br

own

ing

35–

10P

otat

oS

tick

s,pe

eled

4–8

Bro

wn

ing,

dryi

ng

1–3

6–9

Ru

taba

gaC

ube

d10

Dis

colo

rati

on,d

ryin

g5

5S

pin

ach

Cle

aned

,cu

t6–

12O

ff-o

dors

;ra

pid

dete

rior

atio

nof

smal

lpi

eces

1–3

8–10

Squ

ash

,su

mm

erC

ube

d,sl

iced

12–2

4B

row

nin

g;le

akag

e1

—S

traw

berr

yS

lice

d;to

pped

12;

6L

oss

ofte

xtu

re,

juic

e,co

lor

1–2

5–10

Tom

ato

Sli

ced

3L

eaka

ge3

3

Ada

pted

from

A.

A.

Kad

er(e

d.),

Pos

thar

vest

Tec

hn

olog

yof

Hor

ticu

ltu

ral

Cro

ps,3

rded

.(U

niv

ersi

tyof

Cal

ifor

nia

,Div

isio

nof

Agr

icu

ltu

rean

dN

atu

ral

Res

ourc

esP

ubl

icat

ion

3311

,200

2).

Page 493: HANDBOOK FOR VEGETABLE GROWERS

483

11CONTAINERS FOR VEGETABLES

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Artichoke Carton by count or loose pack 23Asparagus Pyramid cartons or crates 30

Cartons or crates, bunched 28Lugs or cartons, loose 25Cartons, 16 11⁄2-lb bunches 24–25Lugs or cartons, loose 21Pyramid carton or crate, 1⁄2 20Carton, bunched 20Pyramid carton or crate, 1⁄2 15–17Carton, bunched 14Carton, loose 15Carton, 1⁄2 12Carton or crate, 1⁄3 12–13Carton or crate 11

Bean Wirebound crate or hamper, bushel 26–31Carton or crate 25–30

Green Carton 20–22Presnipped bags, retail 12 oz3

Presnipped bags, foodservice 10Yellow Wirebound crate or hamper 30

Carton 25–30Carton 15

Beet, Bunched Wirebound crate or carton, 12bunches

45

Carton or crate, 24 bunches 38Topped Mesh sack 50

Sack 25Carton or crate, 12 bunches 20

Belgian endive Carton 10Bitter melon Crate 40

Carton or crate 30

Page 494: HANDBOOK FOR VEGETABLE GROWERS

484

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Carton 20Carton 10Carton 5

Boniato Carton or sack 50Carton 10

Brussels sprouts Cartons, loose 25Flats or cartons, 16 12-oz cello bags 10

8 1-lb clamshells 824 1-lb Vexar bags 25

Cabbage Bulk bin 2,000Bulk bin 1,000Flat crate 50–60Carton or mesh sack 50Crate, 13⁄4 bushel 50Carton 45Carton (savoy) 20

Calabaza Bin 800Carton or sack 50

Carrot Table carton 5048 1-lb film bags 48Table poly bags 2524 2-lb poly bags 4812 2-lb poly bags 245 10-lb poly bags 5016 3-lb poly bags 4810 5-lb poly bags 50

Bunched Carton 26Baby, peeled Carton 20 1-lb bags 20

24 1-lb bags 2440 1-lb bags 4010 2-lb bags 2012 2-lb bags 2420 2-lb bags 404 5-lb bags 20

Page 495: HANDBOOK FOR VEGETABLE GROWERS

485

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

8 5-lb bags 4073 3-oz bags 14

Foodservice Poly jumbo 25Poly jumbo 50

Cauliflower Long Island wirebound crate 60Catskill carton 50Carton, 12- and 16-count film-

wrapped trimmed heads25–30

Celeriac Crate, 11⁄9 bushel 35Crate 20Carton, 12 count

Celery Carton or crate 50–60Hearts Carton 28

Carton 18Chayote Crate 50

Crate 40Carton 301-layer flat, 24 countCarton 20

Corn Carton or crate 50Carton, crate, or sack 42Wirebound crate 42Sack 37Carton, 48 count12 � 4 packaged tray pack12 � 3 packaged tray pack

Cucumber Carton or crate, 11⁄9 bushel 55Carton, 3.56 decaliter 55Carton, 48 count 30Carton or crate, 5⁄8 bushel 28Carton, 36–42 count 28Carton, 36–42 count (CA) 24Carton, 24 count 22

Greenhouse Carton, film wrapped 16Carton or flat, film wrapped 12

Page 496: HANDBOOK FOR VEGETABLE GROWERS

486

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Daikon Carton or crate 50Carton or crate 45Carton or crate, 11⁄2 bushel 40Box, crate, or lug 20Carton 10Carton 5

Eggplant Carton, crate, or basket; bushel or11⁄9 bushel

33

Carton, 3.56 decaliter 33Carton, crate, or lug 25L.A. lug or carton, 18–24 countLug, 1⁄2 and 5⁄8 bushel 17

Chinese Lug 26Carton 25Carton or crate, 1⁄2 and 5⁄8 bushel 15

Italian Lug 26Carton or crate, 1⁄2 and 5⁄8 bushel 15

Japanese Carton or crate, 1⁄2 and 5⁄8 bushel 15Endive /Escarole Carton, 24 count 34

Crate, 3-wire celery, 24 count 30–40Crate, 15⁄8 bushel VariousCrate, 5⁄8 bushel Various

Garlic Carton 5Carton 10Carton 15Carton 22Carton 30Bag 3Bag 3 16-oz3

Cello bag or tray; 2, 3, 4 countGinger Carton 30

Carton 20Carton or film bag 5

Page 497: HANDBOOK FOR VEGETABLE GROWERS

487

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Greens (collardsand dandelion)

Crate, 12⁄5, 13⁄5 bushelBasket, crate or carton; bushel

30–3520–25

Crate or carton, 12–24 bunch countHaricot vert Tray 11

Tray 10Tray 5

Jerusalem artichoke Carton 25Carton 20Carton 10Carton 5

Jicama Crate, 11⁄9 bushel 45Wirebound crate 40Carton or crate 20Carton 10

Leek Carton, 12 bunches 30Carton, 24 bunches 24–30Carton or crate, 4⁄5 bushel 20Carton, 10 1-lb film bag 10

Lettuce, iceberg Carton; 18, 24, 30 count 50Carton 30Carton; 15, 16 count 20

Boston Crate, 11⁄9 bushel 22Carton or crate, 24 count 20Flat, carton, or crate 10Basket or carton, 12 q 5

Bibb Flat, carton, or crate 10Basket or carton, 12 q 5Basket, greenhouse 5

Leaf Carton or crate, 24 count 25Crate, 4⁄5 bushel 20Crate, 12⁄3 bushel 14Basket or carton, 24 q 10Carton 3

Page 498: HANDBOOK FOR VEGETABLE GROWERS

488

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Carton 2Processed iceberg Carton, chopped 20

Carton, chopped or cleaned /cored 30Bins 1,000

Romaine Carton; 2⁄3, 24 count (West) 40Carton 40Carton, 1.3 bushel 28Carton or crate, 11⁄9 bushel 22Carton, 24 count (East) 22Carton, 12 count 18

Lo Bok Crate 45Crate 40Carton, crate, or lug 25

Long bean Carton 40Crate 30Carton 10Carton 5

MelonCantaloupe Bin 1,000

Jumbo crate 8013⁄4 bushel cartons or crates 60Carton or crate, 1⁄3 54Carton or crate, 1⁄2 40Carton or crate, 11⁄9 bushel 40Bushel basket 40Single-layer pack 18–21

Honeydew Flat crate 35Carton, 2⁄3, various count 30Carton 30

Mixed Flat crate 35Carton, various count 30

Mushroom Carton, 12 1-lb trays 12Carton 10Carton, 18 8-oz or 8 1-lb trays 8Carton, 12 8-oz trays 6

Page 499: HANDBOOK FOR VEGETABLE GROWERS

489

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Carton 5Basket, 4 q 3

Napa WGA crate 70Crate, celery 50Carton 50Crate, 1.3 bushel 45Carton 45Carton or crate, 11⁄9 bushel 40Carton 30

Okra Basket, crate, hamper; bushel 30Hamper, 3⁄4 bushel 23Crate or flat, 5⁄9 bushel 18Basket, crate or lug 15

OnionBulb Carton, crate, sack 50

Master container, 10 5-lb bags 50Master container, 16 3-lb bags 48Master container, 24 2-lb sacks 48Master container, 15 3-lb sacks 45Master container, 20 2-lb sacks 40Carton 40Master container, 12 3-lb sacks 36Master container, 16 2-lb sacks 32Sack, reds, boilers 25Carton or bag 25Master container, 12 2-lb sacks 24Carton, sack, or bag 10Bag or carton 5

Green Carton, bunched bulb-type 28Carton or crate, bunched 24 count 20Carton, bunched 48 count 13Carton, bunched 36 count 11

Pak choi WGA Crate 70Crate 60

Page 500: HANDBOOK FOR VEGETABLE GROWERS

490

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Carton or crate 50Carton or crate 40Carton or crate 35Carton or crate 30

Parsley Carton or wirebound crate, 60count

Carton or wirebound crate, 30count

Carton or crate, 11⁄9 bushel,bunched

21

Carton, crate, or basket, bunched 11Parsnip Carton or crate, 1⁄2 bushel 25

Film sack 20Carton, 12 1-lb bags 12

PeaGreen Basket, crate, or hamper; 1 bushel 30

Crate, 11⁄9 bushel 30Edible pod Carton 10Southern Hamper, 1 bushel 25

Pepino Carton, 1 layer 10Carton 8

PepperBell Carton, 11⁄9 bushel 35

Carton or crate (Mexico) 30Carton or crate, bushel, and 11⁄9

bushel28

Carton, 3.56 decaliter 28Carton 25Carton, 1⁄2 bushel 14–15Flat carton (Netherlands) 11

Chiles: jalapeno,yellow wax,others

Crate or carton, 1⁄2 bushelCrate or carton, 5⁄8 bushelBin 500

Page 501: HANDBOOK FOR VEGETABLE GROWERS

491

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Crate or carton 11⁄9 bushelCases, bulk 10

Potato Sack 100Carton or sack 50Baled, 5 10-lb bags 50Baled, 10 5-lb bags 50Carton, 60–100 count

Prickly pear Carton 18Carton, 35 count 10

Pumpkin Bin 1,000Carton, crate, or sack 50Carton or crate, 1⁄2 bushel 25

Radicchio Carton or lug 7Radish

Topped Sack or bag, loose 40Bag 25Bag, resealable or conventional 14Basket or carton 12Bag, 30 6-oz or 24 8-oz 12Bag, 4 5-lb 20

Bunched Carton or crate, 48 count 35Carton or lug, 4⁄5 bushel 30Carton, 24 count 25Carton or crate, 24 count 20Carton or crate, 24 count 15

Rhubarb Carton or lug 20Carton 15

Rutabaga Carton or bag, 1 bushel 50Carton or bag, 1⁄2 bushel 25

Salad mix Carton, 4 5-lb bags 20Carton, 2 10-lb bags 20Carton, 3 24 count (retail)Carton, mesclun 3

Page 502: HANDBOOK FOR VEGETABLE GROWERS

492

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Salsify Carton 22Carton 10Bag 4

Spinach Carton or crate, 11⁄2 bushel 32Container, bushel 25Carton, 24-bunch count 20Carton, 12-bunch count 20Bag, 12 10-lb 120Bag, 24-q 10Carton, 12 10-oz bags 8

SproutsAlfalfa Carton or flat 5

Bag 5Bag 1

Bean Carton or film bag 10Carton 6Film bag 5

Radish Various containers 50Carton or crate, 11⁄9 bushel 40Various containers 30Various containers 25Carton 20Various containers 20Carton 10Various containers 10Various containers 8Carton 5Various containers 4

SquashSummer Container, bushel and 11⁄9 bushel 42

Carton or crate 35Carton or crate, 3⁄4 bushel 30Carton or lug (California, Mexico) 26

Page 503: HANDBOOK FOR VEGETABLE GROWERS

493

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Container, 1⁄2 or 5⁄8 bushel 21Basket or carton, 8-q 10

Winter Carton or crate, 11⁄9 bushel 50Carton or crate 40Carton or crate 35

Strawberry Flat, 12 1-pt baskets 12Flat, 6 1-qt baskets 12Flat, 12 10-oz clamshells 7.5Flat, 12 8.8-oz clamshells 6.6Crate, 8 16-oz clamshells 9Tray, 1⁄2 5Flat, 4 2-lb clamshells 8

Sweet potato Carton 40Carton 20Carton 10Poly bag 5Poly bag 3

Taro Carton, crate, or sack 50Carton 10

Tomatillo Carton 40Carton 30Carton 10

TomatoRound Carton, loose 25

Carton, flats 20Lug, 3-layerLug, 2-layer

Cherry Flat, 12 1-pt basketsRoma Carton, loose 25Greenhouse Flat, 1 layer 15Grape Clamshells: 8, 12, 24-oz

Containers, 12 1-ptContainers, bulk 20

Page 504: HANDBOOK FOR VEGETABLE GROWERS

494

TABLE 8.42. SHIPPING CONTAINERS FOR FRESH VEGETABLES(Continued )

Vegetable Container1

ApproximateNet Weight

(lb)2, 3

Turnip Basket or sack, bushel 50Carton, bunched 40Basket, carton, crate, bag; 1⁄2 bushel 25Carton, 12-count bunch 20

Watermelon Bulk 45,000Bin 1,050Carton, various count 85Carton, seedless 65Carton, icebox 35Bins: 24, 30, and 36 in.

Winter melon Bin 800Crate 70Carton, crate, or sack 50Various containers 50Various containers 40Various containers 30Various containers 20Various containers 10

Yucca Carton, crate, or sack 50Various containers 50Various containers 40Various containers 30Various containers 20Various containers 10Cartons 10

Adapted from The Packer Sourcebook, Vance Publishing Corp., 10901 W. 84th Terr., Lenexa, KS66214-1632 (2004). Reprinted by permission from The Packer. The Packer does not review or endorseproducts, services, or opinions.1 Other containers are being developed and used in the marketplace. The requirements of each marketshould be determined.2 Actual weights larger and smaller than those shown may be found. The midpoint of the range shouldbe used if a single value is desired.3 Other weight as shown.

Page 505: HANDBOOK FOR VEGETABLE GROWERS

495

TABLE 8.43. STANDARDIZED SHIPPING CONTAINERDIMENSIONS DESIGNED FOR A 40 � 48-INCHPALLET

Outside Base Dimensions(in.) Containers per Layer

Layers may beCross-stacked

153⁄4 � 113⁄4 10 Yes193⁄4 � 113⁄4 8 No193⁄4 � 153⁄4 6 No233⁄4 � 153⁄4 5 Yes

Adapted from S. A. Sargent, M. A. Ritenour and J. K. Brecht, ‘‘ Handling, Cooling, and SanitationTechniques for Maintaining Postharvest Quality’’ in Vegetable Production Handbook (University ofFlorida, 2005–2006).

Page 506: HANDBOOK FOR VEGETABLE GROWERS

496

TABLE 8.45. TRANSPORT EQUIPMENT INSPECTION

Most carriers check their transport equipment before presenting it to theshipper for loading. The condition of the equipment is critical tomaintaining the quality of the products. Therefore, the shipper also shouldcheck the equipment to ensure it is in good working order and meets theneeds of the product. Carriers provide guidance on checking and operatingthe refrigeration systems.

All transportation equipment should be checked for:

● Cleanliness—the load compartment should be regularly steam-cleaned.

● Damage—walls, floors, doors, ceilings should be in good condition.● Temperature control—refrigerated units should be recently calibrated

and supply continuous air circulation for uniform producttemperatures.

Shippers should insist on clean equipment. A load of products can be ruinedby:

● Odors from previous shipments● Toxic chemical residues● Insects nesting in the equipment● Decaying remains of agricultural products● Debris blocking drain openings or air circulation along the floor

Shipper should insist on well-maintained equipment and check for thefollowing:

● Damage to walls, ceilings, or floors that can let in the outside heat,cold, moisture, dirt, and insects

● Operation and condition of doors, ventilation openings, and seals● Provisions for load locking and bracing

For refrigerated trailers and van containers, the following additional checksare important:

● With the doors closed, have someone inside the cargo area check forlight—the door gaskets must seal. A smoke generator also can beused to detect leaks.

Page 507: HANDBOOK FOR VEGETABLE GROWERS

497

● The refrigeration unit should cycle from high to low speed when thedesired temperature is reached and then back to high speed.

● Determine the location of the sensing element that controls thedischarge air temperature. If it measures return air temperature, thethermostat may have to be set higher to avoid chilling injury orfreezing injury of the products.

● A solid return air bulkhead should be installed at the front of thetrailer.

● A heating device should be available for transportation in areas withextreme cold weather.

● Equipment with a top air delivery system must have a fabric airchute or metal ceiling duct in good condition.

Adapted from B. M. McGregor, Tropical Products Handbook, USDA Agr. Handbook 668 (1987).

Page 508: HANDBOOK FOR VEGETABLE GROWERS

498

12V

EG

ET

AB

LE

MA

RK

ET

ING

TA

BL

E8.

46.

CH

AR

AC

TE

RIS

TIC

SO

FD

IRE

CT

MA

RK

ET

ING

AL

TE

RN

AT

IVE

SF

OR

FR

ES

HV

EG

ET

AB

LE

S

Gro

wer

Ch

arac

teri

stic

sP

ick-

You

r-O

wn

Roa

dsid

eM

arke

tFa

rmer

’sM

arke

t

Har

vest

ing

cost

Cu

stom

eras

sum

esth

eco

st.

Usu

alco

st.

Usu

alco

st.

Tra

nsp

orta

tion

cost

Cu

stom

eras

sum

esth

eco

st.

Usu

ally

min

imal

for

prod

uce

.D

epen

dson

grow

er’s

dist

ance

tom

arke

t.S

elli

ng

cost

Fie

ldat

ten

dan

tis

nee

ded.

Har

vest

ing

inst

ruct

ion

ssh

ould

bepr

ovid

ed.

Adv

erti

sin

g.

Ch

ecko

ut

atte

nda

nt

isn

eede

d.A

dver

tisi

ng.

Ch

ecko

ut

atte

nda

nt

isn

eede

d.

Gro

wer

liab

ilit

yL

iabl

efo

rac

cide

nts

.Abs

orbs

dam

ages

topr

oper

tyan

dcr

op.

Lia

ble

for

acci

den

tsat

mar

ket.

Ow

ner

ofm

arke

tis

resp

onsi

ble.

Mar

ket

inve

stm

ent

Con

tain

ers.

Loc

atio

nal

sign

s.A

vail

able

park

ing.

Bu

ildi

ng

orst

and.

Ava

ilab

lepa

rkin

g.C

onta

iner

s.U

sual

lypa

rkin

gor

buil

din

gsp

ace

isre

nte

d.C

onta

iner

s.

Page 509: HANDBOOK FOR VEGETABLE GROWERS

499

Vol

um

eof

prod

uce

desi

red

En

ough

for

cust

omer

traf

fic

dem

ands

.E

nou

ghto

visi

bly

attr

act

cust

omer

sto

stop

.V

arie

tyis

hel

pfu

l.

En

ough

toju

stif

ytr

ansp

orta

tion

and

oth

erco

sts.

Pri

ces

rece

ived

for

prod

uce

Oft

enlo

wer

than

oth

eral

tern

ativ

esbe

cau

setr

ansp

orta

tion

and

har

vest

ing

cost

isas

sum

edby

the

cust

omer

.P

rodu

cer

sets

the

pric

e.

Pro

duce

rse

tsth

epr

ice

give

npe

rcei

ved

dem

and

com

peti

tive

con

diti

ons.

Pro

duce

rse

tsth

epr

ice.

Th

ere

may

beco

mpe

titi

onfr

omot

her

sell

ers.

Qu

alit

yC

anse

llw

hat

ever

the

cust

omer

sw

ill

pick

.C

ancl

assi

fypr

odu

cean

dse

llm

ore

than

one

grad

e.A

bili

tyto

sell

may

depe

nd

onth

eco

mpe

tin

gqu

alit

ies

avai

labl

efr

omot

her

grow

ers.

Oth

erB

alan

cebe

twee

nn

um

ber

ofpi

cker

san

dam

oun

tn

eedi

ng

tobe

har

vest

edso

met

imes

isdi

fficu

ltto

ach

ieve

.

Som

etim

esot

her

item

sbe

side

spr

odu

cear

eso

ldto

supp

lem

ent

inco

me.

Pro

duce

spoi

lage

can

bem

inim

ized

ifad

equ

ate

cool

ing

faci

liti

esar

eu

sed.

Som

etim

esot

her

item

sbe

side

spr

odu

cear

eso

ldto

supp

lem

ent

inco

me.

Bu

lksa

les

are

som

etim

esre

com

men

ded.

Ada

pted

from

Cu

curb

itP

rod

uct

ion

and

Pes

tM

anag

emen

t,O

klah

oma

Coo

pera

tive

Ext

ensi

onC

ircu

lar

E-8

53(1

986)

.

Page 510: HANDBOOK FOR VEGETABLE GROWERS

500

TA

BL

E8.

47.

CH

AR

AC

TE

RIS

TIC

SO

FS

OM

EW

HO

LE

SA

LE

MA

RK

ET

ING

AL

TE

RN

AT

IVE

SF

OR

FR

ES

HV

EG

ET

AB

LE

S

Gro

wer

Con

side

rati

onT

erm

inal

Mar

ket

Coo

pera

tive

and

Pri

vate

Pac

kin

gFa

cili

ties

Ped

dlin

gto

Gro

cer

orR

esta

ura

nt

Wh

oles

ale

/Bro

ker

Har

vest

ing

cost

Usu

alco

st.

Som

etim

esh

arve

stin

geq

uip

men

tis

prov

ided

.

Usu

alco

st.

Usu

alco

st.

Tra

nsp

orta

tion

cost

Dep

ends

ondi

stan

ceto

mar

ket.

Som

etim

estr

ansp

orta

tion

ispr

ovid

ed.

Dep

ends

ondi

stan

cetr

avel

ed.

Dep

ends

onpr

ior

arra

nge

men

tsfo

rde

live

ryor

pick

up.

Pri

ces

rece

ived

for

prod

uce

Gro

wer

isu

sual

lyth

epr

ice

take

r.P

rice

sre

ceiv

edby

grow

ers

depe

nd

onm

arke

tpr

ices

,co

sts,

and

reve

nu

es.

Bu

yer

and

grow

erm

ayco

mpr

omis

eon

pric

e,or

grow

erfi

xes

pric

e.

Gro

wer

isu

sual

lyth

epr

ice

take

r.

Req

uir

edvo

lum

eU

sual

lyla

rge

quan

titi

esar

en

eede

d.

Dep

ends

onth

epr

odu

cts

tobe

sold

.D

epen

dson

the

size

ofou

tlet

san

dro

ute

.

Usu

ally

larg

equ

anti

ties

are

nee

ded.

Page 511: HANDBOOK FOR VEGETABLE GROWERS

501

Mar

ket

inve

stm

ent

Tru

ckor

som

etr

ansp

orta

tion

arra

nge

men

ts.

Spe

cial

ized

con

tain

ers

are

requ

ired

.

Rel

ativ

ely

low

ona

per-

un

itba

sis.

Tru

ck.

Con

tain

ers.

Dep

ends

onar

ran

gem

ents

.U

sual

lym

inim

alco

sts

togr

ower

.S

peci

aliz

edco

nta

iner

sar

ere

quir

ed.

Qu

alit

yM

ust

mee

tbu

yer’

sst

anda

rds

orU

.S.

grad

es.

Mu

stm

eet

buye

r’s

stan

dard

sor

U.S

.gr

ades

.

Hig

hqu

alit

yis

nee

ded.

Mu

stm

eet

stan

dard

sor

U.S

.gr

ades

sopr

odu

ceca

nbe

han

dled

inbu

lk.

Oth

erG

ood

sou

rce

ofm

arke

tin

form

atio

n.

Can

mov

eve

ryla

rge

quan

titi

esat

one

tim

e.M

any

buye

rsar

elo

cate

dat

term

inal

mar

kets

.

May

prov

ide

tech

nic

alas

sist

ance

togr

ower

s.F

irm

sh

elp

inpl

ann

ing

ofgr

owin

gan

dse

llin

g.E

quip

men

tm

aybe

shar

edby

grow

ers.

Lon

g-te

rmou

tlet

for

con

sist

ent

qual

ity.

Goo

dpr

ice

for

qual

ity

prod

uce

.D

iffi

cult

toen

ter

mar

ket

and

deve

lop

cust

omer

s.

Goo

dw

hol

esal

er/

brok

erca

nse

llpr

odu

cequ

ickl

yat

good

pric

es.

Alo

ng-

term

buye

r/se

ller

rela

tion

ship

isde

sira

ble.

Bro

ker

does

not

nec

essa

rily

take

titl

eof

prod

uce

.

Ada

pted

from

Cu

curb

itP

rod

uct

ion

and

Pes

tM

anag

emen

t,O

klah

oma

Coo

pera

tive

Ext

ensi

onC

ircu

lar

E-8

53(1

986)

.

Page 512: HANDBOOK FOR VEGETABLE GROWERS

502

ADDITIONAL SOURCES OF POSTHARVEST INFORMATION

J. A. Bartz and J. K. Brecht, Postharvest Physiology and Pathology ofVegetables, 2nd ed. (New York: Marcel Dekker, 2003).

A. A. Kader (ed.), Postharvest Technology of Horticultural Crops (Universityof California Agriculture and Natural Resource Publication 3211, 2002).

S. J. Kays and R. E. Powell, Postharvest Biology (Athens, Ga.: Exon, 2004).A. L. Snowdon, A Color Atlas of Post-Harvest Disease and Disorders of

Fruits and Vegetables, vol. 1, General Introduction and Fruits (BocaRaton, Fla.: CRC Press, 1990).

A. L. Snowdon, A Color Atlas of Post-Harvest Disease and Disorders ofFruits and Vegetables, vol. 2, Vegetables (Boca Raton, Fla.: CRC Press,1992).

Page 513: HANDBOOK FOR VEGETABLE GROWERS

PART 9VEGETABLE SEEDS

01 SEED LABELS

02 SEED GERMINATION TESTS

03 SEED GERMINATION STANDARDS

04 SEED PRODUCTION

05 SEED YIELDS

06 SEED STORAGE

07 VEGETABLE VARIETIES

08 VEGETABLE SEED SOURCES

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 514: HANDBOOK FOR VEGETABLE GROWERS

504

01SEED LABELS

LABELING VEGETABLE SEEDS

Seeds entering into interstate commerce must meet the requirements of theFederal Seed Act. Most state seed laws conform to federal standards.However, the laws of the individual states vary considerably with respect tothe kinds and tolerances for noxious weeds. The noxious weed seedregulations and tolerances, if any, may be obtained from the State SeedLaboratory of any state.

Vegetable seed in packets or in larger containers must be labeled in anyform that is clearly legible with the following required information:

● Kind, variety, and hybrid. The name of the kind and variety andhybrid, if appropriate, must be on the label. Words or terms thatcreate a misleading impression as to the history or characteristics ofkind or variety may not be used.

● Name of shipper or consignee. The full name and address of either theshipper or consignee must appear on the label.

● Germination. Vegetable seeds in containers of 1 lb or less withgermination equal to or more than the standards need not be labeledto show the percentage germination or date of test. Vegetable seeds incontainers of more than 1 lb must be labeled to show the percentageof germination, the month and year of test, and the percentage ofhard seed, if any.

● Lot number. The lot number or other lot identification of vegetableseed in containers of more than 1 lb must be shown on the label andmust be the same as that used in the records pertaining to the samelot of seed.

● Seed treatment. Any vegetable seed that has been treated must belabeled in no smaller than 8-point type to indicate that the seed hasbeen treated and to show the name of any substance used in suchtreatment.

Adapted from Federal Seed Act Regulations, http: / / www.ams.usda.gov / lsg / seed.htm.

Page 515: HANDBOOK FOR VEGETABLE GROWERS

505

02S

EE

DG

ER

MIN

AT

ION

TE

ST

S

TA

BL

E9.

1.R

EQ

UIR

EM

EN

TS

FO

RV

EG

ET

AB

LE

SE

ED

GE

RM

INA

TIO

NT

ES

TS

See

dS

ubs

trat

a1T

empe

ratu

re2

(�F

)

Fir

stC

oun

t(D

ays)

Fin

alC

oun

t(D

ays)

Add

itio

nal

Dir

ecti

ons

Spe

cifi

cR

equ

irem

ents

Fre

shan

dD

orm

ant

See

d

Art

ich

oke

B,

T68

–86

721

Asp

arag

us

B,

T,S

68–8

67

21A

spar

agu

sbe

anB

,T,

S68

–86

583

Bea

nG

arde

nB

,T,

S,

TC

68–8

6;77

non

e8

Use

0.3–

0.6%

Ca(

NO

3)2

tom

oist

ensu

bstr

atu

mfo

rre

test

ing

ifh

ypoc

otyl

coll

arro

tis

obse

rved

inin

itia

lte

st.

Lim

aB

,T,

C,

S68

–86

593

Ru

nn

erB

,T,

S68

–86

593

Bee

tB

,T,

S68

–86

314

Pre

soak

seed

sin

wat

erfo

r2

hrs

.

Page 516: HANDBOOK FOR VEGETABLE GROWERS

506

TA

BL

E9.

1.R

EQ

UIR

EM

EN

TS

FO

RV

EG

ET

AB

LE

SE

ED

GE

RM

INA

TIO

NT

ES

TS

(Con

tin

ued

)

See

dS

ubs

trat

a1T

empe

ratu

re2

(�F

)

Fir

stC

oun

t(D

ays)

Fin

alC

oun

t(D

ays)

Add

itio

nal

Dir

ecti

ons

Spe

cifi

cR

equ

irem

ents

Fre

shan

dD

orm

ant

See

d

Bro

adbe

anS

,C

644

143

Pre

chil

lat

50�F

for

3da

ys.

Bro

ccol

iB

,P,

T68

–86

310

Pre

chil

lat

41�

or50

�Ffo

r3

days

;K

NO

3

and

ligh

t.B

russ

els

spro

uts

B,

P,T

68–8

63

10P

rech

ill

at41

�or

50�F

for

3da

ys;

KN

O3

and

ligh

t.B

urd

ock,

grea

tB

,T

68–8

67

14C

abba

geB

,P,

T68

–86

310

Pre

chil

lat

41�

or50

�Ffo

r3

days

;K

NO

3

and

ligh

t.C

abba

ge,C

hin

ese

B,

T68

–86

37

Cab

bage

,tro

nch

uda

B,

P68

–86

310

Pre

chil

lat

41�

or50

�Ffo

r3

days

;K

NO

3

and

ligh

t.C

anta

lou

peB

,T,

S68

–86

410

Kee

psu

bstr

atu

mon

dry

side

;re

mov

eex

cess

moi

stu

re.

Page 517: HANDBOOK FOR VEGETABLE GROWERS

507

Car

doon

B,

T68

–86

721

Car

rot

B,

T68

–86

614

Cau

lifl

ower

B,

P,T

68–8

63

10P

rech

ill

at41

�or

50�F

for

3da

ys;

KN

O3

and

ligh

t.C

eler

iac

P59

–77;

6810

21L

igh

t;75

0–1,

250

lux

from

cool

-wh

ite

flu

ores

cen

tso

urc

e.C

eler

yP

59–7

7;68

1021

Lig

ht;

750–

1,25

0lu

xfr

omco

ol-w

hit

efl

uor

esce

nt

sou

rce.

Ch

ard,

Sw

iss

B,

T,S

68–8

63

14P

reso

akse

edin

wat

erfo

r2

hrs

.C

hic

ory

P,T

S68

–86

514

Lig

ht;

KN

O3

orso

il.

Ch

ives

B,

T68

614

Cit

ron

B,

T68

–86

714

Soa

kse

eds

6h

rs.

Tes

tat

86�F

.C

olla

rds

B,

P,T

68–8

63

10P

rech

ill

at41

�or

50�F

for

3da

ys;

KN

O3

and

ligh

t.C

orn

,sw

eet

B,

T,S

,T

C,

TC

S68

–86;

774

7C

orn

sala

dB

,T

597

28T

est

at50

�F.

Cow

pea

B,

T,S

68–8

65

83

Cre

ssG

arde

nB

,P,

T59

410

Lig

ht.

Upl

and

P68

–86

7L

igh

t;K

NO

3.M

ake

firs

tco

un

tw

hen

nec

essa

ryor

desi

rabl

e.W

ater

P68

–86

414

Lig

ht.

Page 518: HANDBOOK FOR VEGETABLE GROWERS

508

TA

BL

E9.

1.R

EQ

UIR

EM

EN

TS

FO

RV

EG

ET

AB

LE

SE

ED

GE

RM

INA

TIO

NT

ES

TS

(Con

tin

ued

)

See

dS

ubs

trat

a1T

empe

ratu

re2

(�F

)

Fir

stC

oun

t(D

ays)

Fin

alC

oun

t(D

ays)

Add

itio

nal

Dir

ecti

ons

Spe

cifi

cR

equ

irem

ents

Fre

shan

dD

orm

ant

See

d

Cu

cum

ber

B,

T,S

68–8

63

7K

eep

subs

trat

um

ondr

ysi

de;

rem

ove

exce

ssm

oist

ure

.D

ande

lion

P,T

B68

–86

721

Lig

ht,

750–

1,25

0lu

x.D

ill

B,

T68

–86

721

Egg

plan

tP,

TB

,R

B,

T68

–86

714

Lig

ht;

KN

O3.

En

dive

P,T

S68

–86

514

Lig

ht,

KN

O3

orso

il.

Fen

nel

B,

T68

–86

614

Kal

eB

,P,

T68

–86

310

Pre

chil

lat

41�

or50

�Ffo

r3

days

;K

NO

3

and

ligh

t.K

ale,

Ch

ines

eB

,P,

T68

–86

310

Pre

chil

lat

41�

or50

�Ffo

r3

days

;K

NO

3

and

ligh

t.K

ale,

Sib

eria

nB

,P,

T68

–86;

683

7K

ohlr

abi

B,

P,T

68–8

63

10P

rech

ill

at41

�or

50�F

for

3da

ys;

KN

O3

and

ligh

t.L

eek

B,

T68

614

Page 519: HANDBOOK FOR VEGETABLE GROWERS

509

Let

tuce

P68

non

e7

Lig

ht.

Pre

chil

lat

50�F

for

3da

ysor

test

at59

�F.

Mu

star

d,In

dia

P68

–86

37

Lig

ht.

Pre

chil

lat

50�F

for

7da

ysan

dte

stfo

r5

addi

tion

alda

ys.

Mu

star

d,sp

inac

hB

,T

68–8

63

7O

kra

B,

T68

–86

414

3

On

ion

B,

T68

610

Alt

ern

ate

met

hod

S68

612

On

ion

,W

elsh

B,

T68

610

Pak

choi

B,

T68

–86

37

Par

sley

B,

T,T

S68

–86

1128

Par

snip

B,

T,T

S68

–86

628

Pea

B,

T,S

685

83

Pep

per

TB

,R

B,

T,B

,P

68–8

66

14L

igh

tan

dK

NO

3.P

um

pkin

B,

T,S

68–8

64

7K

eep

subs

trat

um

ondr

ysi

de;

rem

ove

exce

ssm

oist

ure

.R

adis

hB

,T

684

6R

hu

barb

TB

,T

S68

–86

721

Lig

ht.

Ru

taba

gaB

,T

68–8

63

14S

age

B,

T,S

68–8

65

14S

alsi

fyB

,T

595

10P

rech

ill

at50

�Ffo

r3

days

.S

avor

y,su

mm

erB

,T

68–8

65

21S

orre

lP,

TB

,T

S68

–86

314

Lig

ht.

Tes

tat

59�F

.S

oybe

anB

,T,

S,

TC

,T

CS

68–8

6;77

583

Page 520: HANDBOOK FOR VEGETABLE GROWERS

510

TA

BL

E9.

1.R

EQ

UIR

EM

EN

TS

FO

RV

EG

ET

AB

LE

SE

ED

GE

RM

INA

TIO

NT

ES

TS

(Con

tin

ued

)

See

dS

ubs

trat

a1T

empe

ratu

re2

(�F

)

Fir

stC

oun

t(D

ays)

Fin

alC

oun

t(D

ays)

Add

itio

nal

Dir

ecti

ons

Spe

cifi

cR

equ

irem

ents

Fre

shan

dD

orm

ant

See

d

Spi

nac

hT

B,

T59

,50

721

Kee

psu

bstr

atu

mon

dry

side

;re

mov

eex

cess

moi

stu

re.

Spi

nac

h,N

ewZ

eala

nd

T59

,68

521

Soa

kfr

uit

sov

ern

igh

t(1

6h

rs),

air-

dry

7h

rs;

plan

tin

very

wet

tow

els;

don

otre

wat

eru

nle

ssla

ter

cou

nts

exh

ibit

dryi

ng

out.

On

21st

day,

scra

pefr

uit

san

dte

stfo

r7

addi

tion

alda

ys.

Squ

ash

B,

T,S

68–8

64

7K

eep

subs

trat

um

ondr

ysi

de;

rem

ove

exce

ssm

oist

ure

.T

omat

oB

,P,

RB

,T

68–8

65

14L

igh

t;K

NO

3.T

omat

o,h

usk

P,T

B68

–86

728

Lig

ht;

KN

O3.

Tu

rnip

B,

T68

–86

37

Wat

erm

elon

B,

T,S

68–8

6;77

414

Kee

psu

bstr

atu

mon

dry

side

;re

mov

eex

cess

moi

stu

re.

Tes

tat

86�F

.

Page 521: HANDBOOK FOR VEGETABLE GROWERS

511

Ada

pted

from

Ass

ocia

tion

ofO

ffici

alS

eed

An

alys

ts,R

ule

sfo

rT

esti

ng

See

ds,

Ger

min

atio

nT

ests

,M

eth

ods

ofT

esti

ng

for

Lab

orat

ory

Ger

min

atio

n(2

004)

,htt

p://

ww

w.a

osas

eed.

com

.1

B�

betw

een

blot

ters

TB

�to

pof

blot

ters

T�

pape

rto

wel

ing,

use

dei

ther

asfo

lded

tow

elte

sts

oras

roll

tow

elte

sts

inh

oriz

onta

lor

vert

ical

posi

tion

S�

san

dor

soil

TS

�to

pof

san

dor

soil

P�

cove

red

petr

idi

shes

:wit

h2

laye

rsof

blot

ters

;wit

h1

laye

rof

abso

rben

tco

tton

;wit

h5

laye

rsof

pape

rto

wel

ing;

wit

h3

thic

knes

ses

offi

lter

pape

r;or

wit

hsa

nd

orso

ilC

�cr

eped

cell

ulo

sepa

per

wad

din

g(0

.3-i

n.t

hic

kK

impa

kor

equ

ival

ent)

cove

red

wit

ha

sin

gle

thic

knes

sof

blot

ter

thro

ugh

wh

ich

hol

esar

epu

nch

edfo

rth

ese

edth

atar

epr

esse

dfo

rab

out

one-

hal

fth

eir

thic

knes

sin

toth

epa

per

wad

din

g.T

C�

onto

pof

crep

edce

llu

lose

pape

rw

ith

out

abl

otte

rR

B�

blot

ters

wit

hra

ised

cove

rs,

prep

ared

byfo

ldin

gu

pth

eed

ges

ofth

ebl

otte

rto

form

ago

odsu

ppor

tfo

rth

eu

pper

fold

wh

ich

serv

esas

aco

ver,

prev

enti

ng

the

top

from

mak

ing

dire

ctco

nta

ctw

ith

the

seed

s2T

empe

ratu

re.A

sin

gle

nu

mbe

rin

dica

tes

aco

nst

ant

tem

pera

ture

.Tw

on

um

eral

sse

para

ted

bya

dash

indi

cate

anal

tern

atio

nof

tem

pera

ture

;th

ete

stis

tobe

hel

dat

the

firs

tte

mpe

ratu

refo

rap

prox

imat

ely

16h

rsan

dat

the

seco

nd

tem

pera

ture

for

appr

oxim

atel

y8

hrs

per

day.

3H

ard

seed

s.S

eeds

that

rem

ain

har

dat

the

end

ofth

epr

escr

ibed

test

beca

use

they

hav

en

otab

sorb

edw

ater

,du

eto

anim

perm

eabl

ese

edco

at,

are

tobe

cou

nte

das

har

dse

ed.

Ifat

the

end

ofth

ege

rmin

atio

npe

riod

prov

ided

for

legu

me

and

okra

swol

len

seed

sor

seed

sof

thes

eki

nds

that

hav

eju

stst

arte

dto

germ

inat

ear

est

ill

pres

ent,

all

seed

sor

seed

lin

gsex

cept

the

abov

e-st

ated

shal

lbe

rem

oved

and

the

test

con

tin

ued

for

5ad

diti

onal

days

and

the

nor

mal

seed

lin

gsin

clu

ded

inth

epe

rcen

tage

ofge

rmin

atio

n.

Page 522: HANDBOOK FOR VEGETABLE GROWERS

512

03SEED GERMINATION STANDARDS

TABLE 9.2. GERMINATION STANDARDS FOR VEGETABLE SEEDSIN INTERSTATE COMMERCE

The following germination standards for vegetable seeds in interstatecommerce, which are construed to include hard seed, are determined andestablished under the Federal Seed Act.

Seed % Seed %

Artichoke 60 Cress, garden 75Asparagus 70 Cress, upland 60Bean, asparagus 75 Cress, water 40Bean, broad 75 Cucumber 80Bean, garden 70 Dandelion 60Bean, lima 70 Dill 60Bean, runner 75 Eggplant 60Beet 65 Endive 70Broccoli 75 Kale 75Brussels sprouts 70 Kale, Chinese 75Burdock, great 60 Kale, Siberian 75Cabbage 75 Kohlrabi 75Cabbage, tronchuda 70 Leek 60Cantaloupe 75 Lettuce 80Cardoon 60 Mustard, India 75Carrot 55 Mustard, spinach 75Cauliflower 75 Okra 50Celeriac 55 Onion 70Celery 55 Onion, Welsh 70Chard, Swiss 65 Pak choi 75Chicory 65 Parsley 60Chinese cabbage 75 Parsnip 60Chives 50 Pea 80Citron 65 Pepper 55Collards 80 Pumpkin 75Corn, sweet 75 Radish 75Corn salad 70 Rhubarb 60Cowpea (southern pea) 75 Rutabaga 75

Page 523: HANDBOOK FOR VEGETABLE GROWERS

513

TABLE 9.2. GERMINATION STANDARDS FOR VEGETABLE SEEDSIN INTERSTATE COMMERCE (Continued )

Seed % Seed %

Sage 60 Spinach, New Zealand 40Salsify 75 Squash 75Savory, summer 55 Tomato 75Sorrel 65 Tomato, husk 50Soybean 75 Turnip 80Spinach 60 Watermelon 70

Adapted from Federal Seed Act Regulations, http: / / www.ams.usda.gov / lsg / seed.htm (2005).

Page 524: HANDBOOK FOR VEGETABLE GROWERS

514

04SEED PRODUCTION

TABLE 9.3. ISOLATION DISTANCES BETWEEN PLANTINGS OFVEGETABLES FOR OPEN-POLLINATED SEEDPRODUCTION

Self-pollinated Vegetables

Self-pollinated crops have little outcrossing. Consequently, the only isolationnecessary is to have plantings spaced far enough apart to prevent mechanicalmixture at planting or harvest. A tall-growing crop is often planted betweendifferent varieties.

Bean Bean, lima Chicory EndiveLettuce Pea Tomato

Cross-pollinated Vegetables

Cross-pollination of vegetables may occur by wind or insect activity. Therefore,plantings of different varieties of the same crop or different crops in the samefamily that can cross with each other must be isolated. Some general isolationguidelines are provided; however, the seed grower should follow the recom-mendations of the seed company for whom the seed is being grown.

Wind-pollinated Vegetables Distance (miles)

Beet 1⁄2–25 from sugar beet or Swiss chard

Sweet corn 1Spinach 1⁄4–3Swiss chard 3⁄4–5

5 for sugar beet or beet

Page 525: HANDBOOK FOR VEGETABLE GROWERS

515

TABLE 9.3. ISOLATION DISTANCES BETWEEN PLANTINGS OFVEGETABLES FOR OPEN-POLLINATED SEEDPRODUCTION (Continued )

Insect-pollinated Vegetables Distance (miles)

Asparagus 1⁄4Broccoli 1⁄2–3Brussels sprouts 1⁄2–3Cabbage 1⁄2–3Cauliflower 1⁄2–3Collards 3⁄4–3

5 from other cole cropsKale 3⁄4–2

5 from other cole cropsKohlrabi 1⁄2–3Carrot 1⁄2–3Celeriac 1Celery 1Chinese cabbage 1Cucumber 11⁄2 for varieties

1⁄4 from other cucurbitsEggplant 1⁄4Gherkin 1⁄4Leek 1Melons 11⁄2–2 for varieties

1⁄4 from other cucurbitsMustard 1Onion 1–3Parsley 1⁄2–1Pepper 1⁄2Pumpkin 11⁄2–2 for varieties

1⁄4 from other cucurbitsRadish 1⁄4–2Rutabaga 1⁄4–2Spinach 1⁄4–2Squash 11⁄2–2 for varieties

1⁄4 from other cucurbitsTurnip 1⁄4–2

Adapted in part from Seed Production in the Pacific Northwest, Pacific Northwest ExtensionPublications (1985).

Page 526: HANDBOOK FOR VEGETABLE GROWERS

516

TA

BL

E9.

4.C

ON

DIT

ION

SF

OR

CL

AS

SE

SO

FC

ER

TIF

IED

VE

GE

TA

BL

ES

EE

D

Veg

etab

le

Fou

nda

tion

Lan

d1Is

olat

ion2

Fie

ld3

See

d4

Reg

iste

red

Lan

d1Is

olat

ion2

Fie

ld3

See

d4

Cer

tifi

ed

Lan

d1Is

olat

ion2

Fie

ld3

See

d4

Bea

n1

02,

000

0.05

10

1,00

00.

11

040

00.

2B

ean

,br

oad

10

2,00

00.

051

01,

000

0.1

10

500

0.2

Bea

n,

mu

ng

10

1,00

00.

11

050

00.

21

020

00.

5C

orn

,sw

eet

——

——

——

——

066

01,

000

0.5

Okr

a1

1,32

00

01

1,32

02,

500

0.5

182

51,

250

1.0

On

ion

15,

280

200

01

2,64

020

00.

51

1,32

020

01.

0P

eppe

r1

200

00

110

030

00.

51

3015

01.

0S

outh

ern

pea

10

2,00

00.

11

01,

000

0.2

10

500

0.5

Tom

ato

120

00

01

100

300

0.5

130

150

1.0

Wat

erm

elon

12,

640

00

12,

640

00.

51

1,32

050

01.

0

Ada

pted

from

Fed

eral

See

dA

ctR

egu

lati

ons,

US

DA

,A

MS

.C

erti

fied

See

d.M

inim

um

Lan

d,Is

olat

ion

,Fie

ld,a

nd

See

dS

tan

dard

s(2

004)

,htt

p://

ww

w.a

ms.

usd

a.go

v/l

sg/s

eed.

htm

.1Ye

ars

that

mu

stel

apse

afte

rde

stru

ctio

nof

apr

evio

us

crop

ofth

esa

me

kin

d.2D

ista

nce

infe

etfr

oman

yco

nta

min

atin

gso

urc

e,bu

tsu

ffici

ent

topr

even

tm

ech

anic

alm

ixtu

re.

3M

inim

um

nu

mbe

rof

plan

tsin

wh

ich

one

off-

type

plan

tis

perm

itte

d.4M

axim

um

perc

enta

geof

off-

type

seed

spe

rmit

ted

incl

ean

edse

ed.

Page 527: HANDBOOK FOR VEGETABLE GROWERS

517

VEGETABLE SEED PRODUCTION WEBSITES

Vegetable Seed Production, http: / /www.ag.ohio-state.edu/�seedsci /vsp01.html

Vegetable Seed Production—Dry Seeds, http: / /www.ag.ohio-state.edu/�seedsci /vsp02.html

Vegetable Seed Production—Wet Seeds, http: / /www.ag.ohio-state.edu/�seedsci /vsp03.html

Onion Seed Production in California, http: / /www.anrcatalog.ucdavis.edu/pdf8008.pdf

Cucurbit Seed Production in California, http: / /www.anrcatalog.ucdavis.edu/pdf7229.pdf

Carrot Seed Production, http: / /www.ars.usda.gov /research /docs.htm?docid�5235

Crop Profile for Table Beet Seed in Washington, http: / /www.ipmcenters.org /cropprofiles /docs /wabeetseed.html

Crop Profile for Cabbage Seed in Washington, http: / /www.ipmcenters.org /cropprofiles /docs /wacabbageseed.html

Crop Profile for Spinach Seed in Washington, http: / /www.ipmcenters.org /cropprofiles /docs /waspinachseed.html

Seed Production and Seed Sources of Organic Vegetables, http: / /edis.ifas.ufl.edu/hs227

Investigation of Organic Seed Treatments for Spinach Disease Control,http: / /vric.ucdavis.edu/scrp /sum-koike.html

Page 528: HANDBOOK FOR VEGETABLE GROWERS

518

05SEED YIELDS

TABLE 9.5. VEGETABLE SEED YIELDS1

VegetableAverage Yield

(lb /acre)Range

(lb /acre)

Asparaguso.p.2 925 380–2,800F1 500F2 750

Bean, snap 1,800 1,400–2,800Bean, lima 2,220 1,500–3,000Beet

o.p. 1,950 1,800–2,500F1 1,150 900–1,400

Broccolio.p. 725 350–1,000F1 375 250–500

Brussels sproutso.p. 900 800–1,000F1 425 250–600

Cabbageo.p. 740 500–1,000F1 440 300–600

Cantaloupeo.p. 420 350–500F1 225 175–300

Carroto.p. 840 500–1,000F1 450 200–800

Cauliflowero.p. 540 350–1,000F1 175 100–250

Celeriac 1,200 800–2,000Celery 835 500–1,200Chard, Swiss 1,600 1,000–2,000Chicory 500 400–600Chinese cabbage

o.p. 900 800–1,000F1 400 300–500

Page 529: HANDBOOK FOR VEGETABLE GROWERS

519

TABLE 9.5. VEGETABLE SEED YIELDS1 (Continued )

VegetableAverage Yield

(lb /acre) Range

Cilantro 2,000 1,500–2,500Corn, sweet

su 1,940 1,500–2,500sh2 1,100 400–1,700

Cucumberbeit alpha 450 350–550pickle 650 450–850slicer

o.p. 500 275–600F1 290 200–550

Eggplanto.p. 640 500–775F1 500 400–625

Endive 735 650–800Florence fennel

o.p. 1,500 1,000–2,000F1 700 600–800

Kaleo.p. 1,100 1,000–1,200F1 650 600–700

Kohlrabio.p. 875 850–900F1 450 400–500

Leeko.p. 625 500–850F1 300 200–400

Lettuce 600 450–800Mustard 1,325 1,300–1,350New Zealand spinach 1,750 1,500–2,000Okra

o.p. 1,600 1,200–2,000F1 650 600–700

Oniono.p. 690 575–900F1 450 350–550

Parsley 900 600–1,200Parsnip 975 600–1,300Pea 2,085 1,000–3,000

Page 530: HANDBOOK FOR VEGETABLE GROWERS

520

TABLE 9.5. VEGETABLE SEED YIELDS1 (Continued )

VegetableAverage Yield

(lb /acre) Range

Peppero.p. 170 100–300F1 125 100–150

Pumpkino.p. 575 300–850F1 300 235–400

Radisho.p. 1,200 600–2,000F1 525 200–1,000

Rutabaga 2,200 1,800–2,500Salisfy 800 600–1,000Southern pea 1,350 1,200–1,500Spinach

o.p. 1,915 1,000–2,500F1 1,100 1,000–1,200

Squash, summero.p. 760 400–1,200F1 360 250–425

Squash, wintero.p. 620 300–1,200F1 310 200–400

Tomatillo 600 500–700Tomato

F1 125 75–170Turnip

o.p. 2,300 2,000–3,000F1 1,350 1,200–1,500

Watermelono.p. 405 350–600F1 220 190–245Triploid (seedless) 40 20–70

1 Yields are from information provided by representations of several major seed companies. Yields ofsome hybrids may be very much lower because of difficulties of seed production.2 o.p. � open pollinatedF1 � first-generation hybridF2 � second-generation hybrid

Page 531: HANDBOOK FOR VEGETABLE GROWERS

521

06SEED STORAGE

STORAGE OF VEGETABLE SEEDS

High moisture and temperature cause rapid deterioration in vegetableseeds. The control of moisture and temperature becomes more important thelonger seeds are held. Low moisture in the seeds means longer life,especially if they must be held at warm temperatures. Kinds of seeds varyin their response to humidity.

The moisture content of seeds can be lowered by drying them in movingair at 120�F. This may be injurious to seeds with an initial moisture contentof 25–40%. With such seeds, 110�F is preferred. It may require less than 1hr to reduce the moisture content of small seeds or up to 3 hr for largeseeds. The difference depends on the depth of the layer of seeds, the volumeof air, dryness of air, and original moisture content of seed. When seedscannot be dried in this way, seal them in airtight containers over, but nottouching, some calcium chloride. Use enough calcium chloride so that themoisture absorbed from the seeds produces no visible change in thechemical. Dried silica gel can be used in place of the calcium chloride.

Bean and okra may develop hard seeds if their moisture content islowered to 7% or below. White-seeded beans are likely to become hard if themoisture content is reduced to about 10%. Dark-colored beans can be driedto less than 10% moisture before they become hard. Hard seeds do notgerminate satisfactorily.

The moisture content of seed reaches an equilibrium with theatmosphere after a period of about 3 weeks for small seeds and 3–6 weeksfor large seeds.

Storage temperatures near 32�F are not necessary. Between 40 and 50�Fis quite satisfactory when the moisture content of the seed is low.

If the moisture content is reduced to 4–5% and the seeds put in sealedcontainers, a storage temperature of about 70�F will be satisfactory for morethan 1 year.

The 5-month limitation on the date of test does not apply when thefollowing conditions are met:

a. The seed was packaged within 9 months after harvest.b. The container does not allow water vapor penetration through any

wall or seal greater than 0.05 g water per 100 sq in. of surface at100�F with a relative humidity on one side of 90% and on the otherside of 0%.

Page 532: HANDBOOK FOR VEGETABLE GROWERS

522

c. The seed in the container does not exceed the percentage of moisture,on a wet weight basis, as listed in the table.

d. The container is conspicuously labeled in not less than 8-point typewith the information that the container is hermetically sealed, thatthe seed is preconditioned as to moisture content, and the calendarmonth and year in which the germination test was completed.

e. The percentage pf germination of vegetable seed at the time ofpackaging was equal or above Federal Standards for Germination (seepages 512–513).

TABLE 9.6. STORAGE OF VEGETABLE SEEDS INHERMETICALLY SEALED CONTAINERS

Vegetable Moisture (%) Vegetable Moisture (%)

Bean, garden 7.0 Lettuce 5.5Bean, lima 7.0 Melon 6.0Beet 7.5 Mustard, India 5.0Broccoli 5.0 Onion 6.5Brussels sprouts 5.0 Onion, Welsh 6.5Cabbage 5.0 Parsley 6.5Carrot 7.0 Parsnip 6.0Cauliflower 5.0 Pea 7.0Celeriac 7.0 Pepper 4.5Celery 7.0 Pumpkin 6.0Chard, Swiss 7.5 Radish 5.0Chinese cabbage 5.0 Rutabaga 5.0Chives 6.5 Spinach 8.0Collards 5.0 Squash 6.0Cucumber 6.0 Sweet corn 8.0Eggplant 6.0 Tomato 5.5Kale 5.0 Turnip 5.0Kohlrabi 5.0 Watermelon 6.5Leek 6.5 All others 6.0

Adapted from Federal Seed Act Regulations, http: / / www.ams.usda.gov / lsg / seed / seed pub.htm(2005).

Page 533: HANDBOOK FOR VEGETABLE GROWERS

523

07VEGETABLE VARIETIES

NAMING AND LABELING OF VEGETABLE VARIETIES

Every year, many new varieties of vegetable seed reach the U.S.marketplace. New varieties, when added to those already on the market,provide growers with a wide selection of seed. But, in order for them to buyintelligently, seed must be correctly named and labeled.

Marketing a product by its correct name might seem the most likely wayto do business. However, USDA seed officials have found that seed,unfortunately, is sometimes named, labeled, or advertised improperly as itpasses through marketing channels.

Marketing seed under the wrong name is misrepresentation. It can leadto financial loss for several participants in the seed marketing chain.

The grower, for example, buys seed to achieve specific objectives such asincreased yield, competitiveness in a specialized market, or adaptability togrowing conditions of a specific region. If seed is misrepresented and thegrower buys seed other than he or she intended, the harvest may be lessvaluable than anticipated—or, worse yet, there may not even be a marketfor the crop.

In one case, a grower bought seed to grow cabbage to be marketed forprocessing into sauerkraut. As the cabbage matured, he found his crop wasnot suitable for processing and, even worse, that there was no market forthe cabbage in his fields. In this case, improper variety labeling broughtabout financial hardship.

Seed companies and plant breeders also suffer in a market whereproblems with variety names exist. For instance, if the name of a newlyreleased variety is misleading or confusing to the potential buyer, thevariety may not attract the sales that it might otherwise.

This section outlines requirements for naming vegetable seed. It is basedon the Federal Seed Act, a truth-in-labeling law intended to protect growersand home gardeners who purchase seed. Exceptions to the basic rules andthe do’s and don’ts of seed variety labeling and advertising also areexplained.

WHO NAMES NEW VARIETIES

The originator or discoverer of a new variety may give that variety a name.If the originator or discoverer can’t or chooses not to name a variety,

Page 534: HANDBOOK FOR VEGETABLE GROWERS

524

someone else may give that variety a name for marketing purposes. In sucha case, the name first used when the seed is introduced into commerce isthe name of the variety.

It is illegal to change a variety name once the name is legally assigned.In other words, a buyer may not purchase seed labeled as variety X andresell it as variety Y. An exception to this rule occurs when the originalname is determined to be illegal. In such an instance, the variety must berenamed according to the rules mentioned above. Another exception appliesto a number of varieties that were already being marketed under severalnames before 1956. (See section on synonyms.)

WHAT’S IN A NAME

To fully understand what goes into naming a variety, you need to know thedifference between a kind of seed and a variety. Kind is the term used forthe seed of one or more related plants known by a common name, such ascarrot, radish, tomato, or watermelon.

Variety is a subdivision of kind. A variety has different characteristicsfrom another variety of the same kind of seed—for example, ‘‘Oxheart’’carrot and ‘‘Danvers 126’’ carrot or ‘‘Charleston Gray’’ and ‘‘Mickylee’’watermelon.

The rules for naming plants relate to both kinds and varieties of seed:

1. A variety must be given a name unique to the kind of seed to which itbelongs. For instance, there can only be one variety of squash called‘‘Dividend.’’

2. Varieties of two or more kinds of seed may have the same name if thekinds are not closely related. For example, there could be a ‘‘Dividend’’squash and a ‘‘Dividend’’ tomato because squash and tomato are kindsof seed not closely related. On the other hand, it would not bepermissible to have a ‘‘Dividend’’ squash and a ‘‘Dividend’’ pumpkinbecause the two kinds of seed are closely related.

3. Once assigned to a variety, the name remains exclusive. Even if‘‘Dividend’’ squash has not been marketed for many years, a newlydeveloped and different squash variety can’t be given the name‘‘Dividend’’ unless the original owner agrees to withdraw ‘‘Dividend’’squash.

4. A company name may be used in a variety name as long as it is partof the original, legally assigned name. Once part of a legal varietyname, the company name must be used by everyone, includinganother company that might market the seed.

Page 535: HANDBOOK FOR VEGETABLE GROWERS

525

When a company name is not a part of the variety name, it shouldnot be used in any way that gives the idea that it is part of thevariety name. For example, Don’s Seed Company can’t label oradvertise ‘‘Dividend’’ squash variety as ‘‘Don’s Dividend’’ because‘‘Don’s’’ may be mistaken to be part of the variety name.

The simplest way to avoid confusion is to separate the companyand variety names in advertising or labeling.

5. Although the USDA discourages it, you may use descriptive terms invariety names as long as such terms are not misleading. ‘‘X3R,’’ forinstance, is accepted among pepper growers as meaning ‘‘BacterialLeaf Spot, Race 1, 2, 3 resistant.’’ It would be illegal to include ‘‘X3R’’as part of a variety name if that variety were not ‘‘X3R’’ resistant.Similarly, if a cantaloupe variety is named ‘‘Burpee Hybrid PMT,’’ thename would be illegal if the variety were not tolerant of powderymildew.

6. A variety name should be clearly different in spelling and in sound.‘‘Alan’’ cucumber would not be permissible if an ‘‘Allen’’ cucumberwere already on the market.

HYBRIDS

Remember that a hybrid also is a variety. Hybrid designations, whetherthey are names or numbers, also are variety names. Every rule discussedhere applies to hybrid seed as well as to nonhybrid seed.

In the case of hybrids, however, the situation is potentially more complexbecause more than one seed producer or company might use identicalparent lines in producing a hybrid variety. One company could then producea hybrid that was the same as one already introduced by another firm.

When this happens, both firms must use the same name because theyare marketing the same variety.

If the people who developed the parent lines give the hybrid variety aname, that is the legal name. Otherwise, the proper name is the one givenby the company that first introduced the hybrid seed into commerce.

USDA seed regulatory officials believe the following situation occurs fartoo often:

1. State University releases hybrid corn parent lines A and B.2. John Doe Seed Company obtains seed lines of A and B, crosses the

two lines, and is the first company to introduce the resulting hybridinto commerce under a variety name. John Doe Seed Company namesthis hybrid ‘‘JD 5259.’’

Page 536: HANDBOOK FOR VEGETABLE GROWERS

526

3. La Marque Seeds, Inc., obtains lines A and B, makes the same cross,and names the resulting hybrid variety ‘‘SML 25.’’ There has been nochange in the A and B lines that would result in a different variety.La Marque ships the hybrid seed, labeled ‘‘SML 25,’’ in interstatecommerce, and violates the Federal Seed Act because the seed shouldhave been labeled ‘‘JD 5259.’’

SYNONYMS—VARIETIES WITH SEVERAL NAMES

As noted earlier, the name originally assigned to a variety is the name thatmust be used forever. It can’t be changed unless it is illegal.

This does not mean that all varieties must be marketed under a singlename. In fact, some old varieties may be marketed legally under more thanone name. If several names for a single variety of a vegetable seed were inbroad general use before July 28, 1956, those names still may be used.

Here are some examples:The names ‘‘Acorn,’’ ‘‘Table Queen,’’ and ‘‘Des Moines’’ have been known

for many years to represent a single squash variety. They were in broadgeneral use before July 28, 1956, so seed dealers may continue to use thesenames interchangeably.

With the exception of old varieties with allowable synonym names, allvegetable and agricultural varieties may have only one legally recognizedname, and that name must be used by anyone who represents the varietyname in labeling and advertising. This includes interstate seed shipmentsand seed advertisements sent in the mail or in interstate or foreigncommerce.

IMPORTED SEED

Seed imported into the United States can’t be renamed if the original nameof the seed is in the Roman alphabet.

For example, cabbage seed labeled ‘‘Fredrikshavn’’ and shipped to theUnited States from Denmark can’t be given a different variety name such as‘‘Bold Blue.’’

Seed increased from imported seed also can’t be renamed. If‘‘Fredrikshavn’’ were increased in the United States, the resulting crop stillcouldn’t be named ‘‘Bold Blue.’’

Seed with a name that is not in the Roman alphabet must be given anew name. In such a case, the rules for naming the variety are the same asstated previously.

Page 537: HANDBOOK FOR VEGETABLE GROWERS

527

BRAND NAMES

USDA officials have found evidence of confusion over the use of varietynames and brand or trademark names. This includes names registered withthe Trademark Division of the U.S. Patent Office.

Guidelines:

1. The brand or trademark name must be clearly identified as beingother than part of the variety name.

2. A brand name must never take the place of a variety name.3. If a brand or trademark name is part of a variety’s name, that

trademark loses status. Anyone marketing the variety under its nameis required to use the exact, legal variety name, including brand ortrademark.

SUMMARY

If the naming, labeling, and advertising of a seed variety is truthful, it isprobably in compliance with the Federal Seed Act.

Keep these simple rules in mind to help eliminate violations andconfusion in the marketing of seed:

● Research the proposed variety name before adopting it.● Make sure the name cannot be confused with company names,

brands, trademarks, or names of other varieties of the same kind ofseed.

● Never change the variety name, whether marketing seed obtainedfrom another source or from your own production—for example,hybrid seed that already has a legal name.

Adapted from Seed Regulatory and Testing Programs, http: / / www.ams.usda.gov / lsg / seed / facts.htm.

SELECTION OF VEGETABLE VARIETIES

Selection of the variety (technically, cultivar) to plant is one of the mostimportant decisions the commercial vegetable grower must make eachseason. Each year, seed companies and experiment stations release dozensof new varieties to compete with those already available. Growers shouldevaluate some new varieties each year on a trial basis to observe

Page 538: HANDBOOK FOR VEGETABLE GROWERS

528

performance on their own farms. A limited number of new varieties shouldbe evaluated so that observations on plant performance and characteristicsand yields can be noted and recorded. It is relatively easy to establish atrial but time-consuming to make all the observations necessary to make adecision on adoption of a new variety. Some factors to consider beforeadopting a variety follow:

Yield: The variety should have the potential to produce crops at leastequivalent to those already grown. Harvested yield is usually much lessthan potential yield because of market restraints.

Disease resistance: The most economical and effective means of pestmanagement is through the use of varieties with genetic resistance todisease. When all other factors are about equal, it is prudent to select avariety with the needed disease resistance.

Horticultural quality: Characteristics of the plant habit as related to climateand production practices and of the marketed plant product must beacceptable.

Adaptability: Successful varieties must perform well under the range ofenvironmental conditions usually encountered on the individual farm.

Market acceptability: The harvested plant product must have characteristicsdesired by the packer, shipper, wholesaler, retailer, and consumer.Included among these qualities are packout, size, shape, color, flavor, andnutritional quality.

During the past few years there has been a decided shift to hybridvarieties in an effort by growers to achieve earliness, higher yields, betterquality, and greater uniformity. Seed costs for hybrids are higher than foropen-pollinated varieties because seed must be produced by controlledpollination of the parents of the hybrid.

Variety selection is a dynamic process. Some varieties retain favor formany years, whereas others are used only a few seasons if some specialsituation, such as plant disease or marketing change, develops. If a varietywas released by the USDA or a university, many seed companies may carryit. Varieties developed by a seed company may be available only from thatsource, or may be distributed through many sources.

The Cooperative Extension Service in most states publishes annual orperiodic lists of recommended varieties. These lists are usually available incounty extension offices.

Adapted from D. N. Maynard, ‘‘Variety Selection,’’ in Stephen M. Olson and Eric Simonne (eds.),Vegetable Production Handbook for Florida. (Gainesville, Fla.: Florida Cooperative Extension Service,2004–2005), 17, http: / / edis.ifas.ufl.edu / CV102.

Page 539: HANDBOOK FOR VEGETABLE GROWERS

529

08VEGETABLE SEED SOURCES

SOME SOURCES OF VEGETABLE SEEDS1

-A-

Abbott & CobbP.O. Box 307Feasterville, PA 10953-0307Ph (215) 245-6666Fax (215) 245-9043http: / /www.acseed.com

Abundant Life SeedsP.O. Box 157Saginaw, OR 97472Ph (541) 767-9606Fax (866) 514-7333http: / /www.abundantlifeseeds.com

American Takii, Inc.301 Natividad RoadSalinas, CA 93906Ph (831) 443-4901Fax (831) 443-3976http: / /www.takii.com

Arkansas Valley Seed Solutions4625 Colorado BoulevardDenver, CO 80216Ph (877) 957-3337Fax (303) 320-7516http: / /www.seedsolutions.com

-B-

Bakker Brothers USAP.O. Box 519Caldwell, ID 83606Ph (208) 459-4420Fax (208) 459-4457http: / /www.bakkerbrothers.nl

Baker Creek Heirloom Seeds2278 Baker Creek RoadMansfield, MO 65704Ph (417) 924-8917Fax (417) 924-8887http: / /www.rareseeds.com

Bejo Seeds, Inc.1972 Silver Spur PlaceOceano, CA 93445Ph (805) 473-2199http: / /www.bejoseeds.com

BHN SeedP.O. Box 3267Immokalee, FL 34142Ph (239) 352-1100Fax (239) 352-1981http: / /www.bhnseed.com

Bonanza Seeds International,Inc.

3818 Railroad AvenueYuba City, CA 95991Ph (530) 673-7253Fax (530) 673-7195http: / /www.bonanzaseeds.com

Page 540: HANDBOOK FOR VEGETABLE GROWERS

530

Bountiful Gardens Seeds18001 Shafer Ranch RoadWillits, CA 95490-9626Ph (707) 459-6410Fax (707) 459-1925http: / /www.bountifulgardens.org

W. Brotherton Seed Co., Inc.P.O. Box 1136Moses Lake, WA 98837Ph (509) 765-1816Fax (509) 765-1817http: / /www.vanwaveren.de /uk /

mitte /brotherton.htm

Bunton Seed Co.939 E. Jefferson StreetLouisville, KY 40206Ph (800) 757-7179Fax (502) 583-9040http: / /www.buntonseed.com

Burgess Seed & Plant Co.905 Four Seasons RoadBloomington, IL 61701Ph (309) 622-7761http: / /www.eburgess.com

W. Atlee Burpee & Co.300 Park AvenueWarminster, PA 18974Ph (800) 333-5808Fax (800) 487-5530http: / /www.burpee.com

-C-

California Asparagus Seed2815 Anza AvenueDavis, CA 95616Ph (530) 753-2437Fax (530) 753-1209http: / /www.calif-asparagus-seed.com

Carolina Gourds and Seeds259 Fletcher AvenueFuquay Varina, NC 27526Ph (919) 577-5946http: / /www.carolinagourdsandseeds.

com

Champion Seed Co.529 Mercury LaneBrea, CA 92621-4894Ph (714) 529-0702Fax (714) 990-1280http: / /www.championseed.com

Chesmore Seed Co.P.O. Box 8368St. Joseph, MO 64508-8368Ph (816) 279-0865Fax (816) 232-6134http: / /www.chesmore.com

Alf Chrisianson Seed Co.P.O. Box 98Mount Vernon, WA 98273Ph (360) 366-9727Fax (360) 419-3035http: / /www.chriseed.com

Clifton Seed CompanyP.O. Box 206Faison, NC 28341Ph (800) 231-9359Fax (910) 267-2692http: / /www.cliftonseed.com

Comstock, Ferre & Co.263 Main StreetWethersfield, CT 06109Ph (860) 571-6590Fax (860) 571-6595http: / /www.comstockferre.com

Page 541: HANDBOOK FOR VEGETABLE GROWERS

531

The Cook’s GardenPO Box 6530Warminster, PA 18974Ph (800) 457-9703http: / /www.cooksgarden.com

Corona Seeds Worldwide590-F Constitution AvenueCamarillo, CA 93012Ph (805) 388-2555Fax (805) 445-8344http: / /www.coronaseeds.com

Crookham Co.P.O. Box 520Caldwell, ID 83606-0520Ph (208) 459-7451Fax (208) 454-2108http: / /www.crookham.com

Crop King Inc.5050 Greenwich RoadSeville, OH 44273-9413Ph (330) 769-2002Fax (330) 769-2616http: / /www.cropking.com

Cutter Asparagus Seed516 Young AvenueArbuckle, CA 95912Ph (530) 475-3647Fax (953) 476-2422http: / /www.asparagusseed.com

-D-

DeRuiter Seeds, Inc.13949 W. Colfax AvenueBuilding No. 1, Suite 220Lakewood, CO 80401Ph (303) 274-5511Fax (303) 274-5514http: / /www.deruiterusa.com

Dominion Seed HouseP.O. Box 2500Georgetown, ONTCanada L7G 4A2Ph (905) 873-3037Fax (800) 282-5746http: / /www.dominion-seed-house.com

-E-

Elsoms Seeds Ltd.Pinchbeck RoadSpaldingLincolnshire PE11 1QGEngland, UKPh 0 1775 715000Fax 0 1775 715001http: / /www.elsoms.com

Enza Zaden7 Harris PlaceSalinas, CA 93901Ph (831) 751-0937Fax (831) 751-6103http: / /www.enzazaden.nl / site /uk /

-F-

Farmer Seed & Nursery Co.Division of Plantron, Inc.818 NW Fourth StreetFaribault, MN 52201Ph (507) 334-1623http: / /www.farmerseed.com

Henry Field Seed & Nursery Co.P.O. Box 397Aurora, IN 47001-0397Ph (513) 354-1494Fax (513) 354-1496http: / /www.henryfields.com

Page 542: HANDBOOK FOR VEGETABLE GROWERS

532

-G-

Germania Seed Co.P.O. Box 31787Chicago, IL 60631Ph (800) 380-4721Fax (800) 410-4721http: / /www.germaniaseed.com

Fred C. Gloeckner & Co., Inc.600 Mamaroneck AvenueHarrison, NY 10528-1631Ph (800) 345-3787Fax (914) 698-2857http: / /www.fredgloeckner.com

Golden Valley SeedP.O. Box 1600El Centro, CA 92243Ph (760) 337-3100Fax (760) 337-3135http: / /www.goldenvalleyseed.com

Gurney’s Seed & Nursery Co.P. O. Box 4178Greendale, IN 47025-4178Ph (513) 354-1492Fax (513) 354-1493http: / /www.gurneys.com

-H-

Harris Moran Seed Co.P.O. Box 4938Modesto, CA 95352Ph (209) 579-7333Fax (209) 527-8684http: / /www.harrismoran.com

Harris SeedsP.O. Box 24966Rochester, NY 14624-0966Ph (800) 544-7938Fax (877) 892-9197http: / /www.harrisseeds.com

The Chas. C. Hart Seed Co.P.O. Box 9169Wethersfield, CT 06109Ph (860) 529-2537Fax (860) 563-7221http: / /www.hartseed.com

Hazera Genetics Ltd.2255 Glades Road, Suite 123ABoca Raton, FL 33431Ph (561) 988-1315Fax (561) 988-1319http: / /www.hazera.co.il /

Heirloom SeedsP.O. Box 245West Elizabeth, PA 15088-0245Ph (412) 384-0852http: / /www.heirloomseeds.com

Hollar and Company, Inc.P.O. Box 106Rocky Ford, CO 81067Ph (719) 254-7411Fax (719) 254-3539http: / /www.hollarseeds.com

Hydro-Gardens, Inc.P.O. Box 25845Colorado Springs, CO 80932Ph (800) 936-5845Fax (888) 693-0578http: / /www.hydro-gardens.com

Page 543: HANDBOOK FOR VEGETABLE GROWERS

533

-I-

Illinois Foundation Seeds, Inc.P.O. Box 722Champaign, IL 61824-0722Ph (217) 485-6260Fax (217) 485-3687http: / /www.ifsi.com

-J-

Jersey Asparagus Farms, Inc.105 Porchtown RoadPittsgrove, NJ 08318Ph (856) 358-2548Fax (856) 358-6127http: / /www.jerseyasparagus.com

Johnny’s Selected Seeds955 Benton AvenueWinslow, ME 04901Ph (866) 838-1073http: / /www.johnnyseeds.com

Jordan Seeds, Inc.6400 Upper Aston RoadWoodbury, MN 55125Ph (651) 738-3422Fax (651) 731-7690http: / /www.jordanseeds.com

J. W. Jung Seed Co.335 S. High StreetRandolph, WI 53957-0001Ph (800) 247-5864Fax (800) 692-5864http: / /www.jungseed.com

-K-

Keithly-Williams SeedsP.O. Box 177Holtville, CA 92250Ph (800) 533-3465Fax (760) 356-2409http: / /www.keithlywilliams.com

Known-You Seed Co., Ltd.26, Chung Cheng 2nd RoadKaohsiung, TaiwanRepublic of Chinahttp: / /www.knownyou.com

-L-

Livingston Seed Co.880 Kinnear RoadColumbus, OH 43212Ph (614) 488-1163Fax (614) 488-4857http: / /www.livingstonseed.com

-M-

Earl May Seed & Nursery Co.208 N. Elm StreetShenandoah, IA 51603Ph (712) 246-1020Fax (712) 246-1760http: / /www.earlmay.com

Mesa Maize Co.60936 Falcon RoadOlathe, CO 81425http: / /www.mesamaize.com

Page 544: HANDBOOK FOR VEGETABLE GROWERS

534

McFayden Seed Co., Ltd.30 Ninth StreetBrandon, ManitobaCanada, R7A 6A6Ph (800) 205-7111http: / /www.mcfayden.com

Henry F. Michell Co.P.O. Box 60160King of Prussia, PA 19406-0160Ph (800) 422-4678http: / /www.michells.com

Monsanto Company800 N. Lindbergh BoulevardSt. Louis, MO 63167Ph (314) 694-1000http: / /www.monsanto.com

MushroompeopleP.O. Box 220Summertown, TN 38483-0220Ph (800) 692-6329Fax (800) 386-4496http: / /www.mushroompeople.com

-N-

Native Seeds/SEARCH526 N. Fourth AvenueTucson, AZ 85705-8450Ph (520) 622-5561Fax (520) 622-5591http: / /www.nativeseeds.org

New England Seed Co.3580 Main StreetHartford, CT 06120Ph (800) 825-5477Fax (877) 229-8487http: / /www.neseed.com

Nichol’s Garden Nursery1190 Old Salem Road NEAlbany, OR 97321-4580Ph (800) 422-3985Fax (800) 231-5306http: / /www.

nicholsgardennursery.com

Nirit Seeds Ltd.Moshav Hadar-Am42935 IsraelPh (972) 9 832 24 35Fax (972) 9 832 24 38http: / /www.niritseeds.com

NK Lawn & Garden Co.P.O. Box 24028Chattanooga, TN 37422-4028Ph (800) 328-2402Fax (423) 697-8001http: / /www.nklawnandgarden.com

Nourse Farms, Inc.41 River RoadSouth Deerfield, MA 01373Ph (413) 665-2658Fax (413) 665-7888http: / /www.noursefarms.com

Nunhems SeedP.O. Box 18Lewisville, ID 83431Ph (208) 754-8666Fax (208) 754-8669http: / /www.nunhems.com

Page 545: HANDBOOK FOR VEGETABLE GROWERS

535

-O-

OSCBox 7Waterloo, OntarioCanada N2J 3Z9Ph (519) 886-0557Fax (519) 886-0605http: / /www.oscseeds.com

Oriental Vegetable SeedsEvergreen Y. H. EnterprisesP.O. Box 17538Anaheim, CA 92817Ph (714) 637-5769http: / /www.evergreenseeds.com

Ornamental Edibles5723 Trowbidge WaySan Jose, CA 95138Ph (408) 528-7333Fax (408) 532-1499http: / /www.ornamentaledibles.com

Orsetti Seed Co., Inc.2301 Technology ParkwayP.O. Box 2350Hollister, CA 95023Ph (831) 636-4822Fax (831) 636-4814http: / /www.orsettiseed.com

Outstanding Seed Company354 Center Grange RoadMonaca, PA 15061Ph (800) 385-9254http: / /www.outstandingseed.com

-P-

D. Palmer Seed Co., Inc.8269 S. Highway 95Yuma, AZ 85365Ph (928) 341-8494Fax (928) 341-8496http: / /www.dpalmerseed.com

Paramount Seeds, Inc.P.O. Box 1866Palm City, FL 34991Ph (772) 221-0653Fax (772) 221-0102http: / /www.paramount-seeds.com

Park Seed Co.1 Parkton AvenueGreenwood, SC 29647Ph (800) 213-0076http: / /www.parkseed.com

Penn State Seed Co.Box 390, Route 309Dallas, PA 18612-9781Ph (800) 847-7333Fax (570) 675-6562http: / /www.pennstateseed.com

Pepper GalP.O. Box 23006Ft. Lauderdale, FL 33307-3007Ph (954) 537-5540Fax (954) 566-2208http: / /www.peppergal.com

Pinetree Garden SeedsP.O. Box 300New Gloucester, ME 04260Ph (207) 926-3400Fax (888) 527-3337http: / /www.superseeds.com

Page 546: HANDBOOK FOR VEGETABLE GROWERS

536

-R-

Redwood City Seed Co.P.O. Box 361Redwood City, CA 94064Ph (650) 325-7333Fax (650) 325-4056http: / /www.ecoseeds.com

Renee’s Garden Seeds7389 W. Zayante RoadFelton, CA 95018Ph (888) 880-7228Fax (831) 335-7227http: / /www.reneesgarden.com

Rijk Zwaan2274 Portola DriveSalinas, CA 93908Ph (831) 484-9486Fax (831) 484-9486http: / /www.rijkzwaan.com

Rupp Seeds, Inc.17919 County Road BWauseon, OH 43567Ph (419) 337-1841Fax (419) 337-5491http: / /www.ruppseeds.com

Rispens Seeds, Inc.P.O. Box 310Beecher, IL 60401Ph (888) 874-0241Fax (708) 746-6115http: / /www.rispenseeds.com

-S-

Sakata Seed America, Inc.P.O. Box 880Morgan Hill, CA 95038-0880Ph (408) 778-7758Fax (408) 778-7751http: / /www.sakata.com

Seeds of Change621 Old Santa Fe Trail #10Santa Fe, NM 87501Ph (5888 762-7333Fax (505) 438-7052http: / /www.seedsofchange.com

Seedway, Inc.1225 Zeager RoadElizabethtown, PA 17022Ph (800) 952-7333Fax (800) 645-2574http: / /www.seedway.com

Seminis Inc.2700 Camino del SolOxnard, CA 93030-7967Ph (805) 647-1572http: / /www.seminis.com

Shamrock Seed Co.3 Harris PlaceSalinas, CA 93901-4856Ph (831) 771-1500Fax (831) 771-1517http: / /www.shamrockseed.com

R.H. Shumway334 W. Stroud StreetRandolph, WI 53956-1274Ph (800) 342-9461Fax (888) 437-2773http: / /www.rhshumway.com

Page 547: HANDBOOK FOR VEGETABLE GROWERS

537

Siegers Seed Co.13031 Reflections DriveHolland, MI 49424Ph (616) 786-4999Fax (616) 994-0333http: / /www.siegers.com

Snow Seed Co.12855 Rosehart WaySalinas, CA 93908Ph (831) 758-9869Fax (831) 757-4550http: / /www.snowseedco.com

Southern Exposure SeedExchange

P.O. Box 460Mineral, VA 23117Ph (540) 894-9480Fax (540) 894-9481http: / /www.southernexposure.com

Southwestern Seed Co.P.O. Box 11449Casa Grande, AZ 85230Ph (520) 836-7595Fax (520) 836-0117http: / /www.southwesternseed.com

Stokes Seeds, Inc.P.O. Box 548Buffalo, NY 14240-0548Ph (716) 695-6980http: / /www.stokesseeds.com

Sugar Creek Seed, Inc.P.O. Box 508Hinton, OK 73047Ph (405) 542-3920Fax (405) 542-3921http: / /www.sugarcreekseed.com

Sutter SeedsP.O. Box 1357Colusa, CA 95932Ph (530) 458-2566Fax (530) 458-2721http: / /www.sutterseed.com

Syngenta Seeds, Inc.Rogers Brand Vegetable SeedsP.O. Box 4188Boise, ID 83711-4188Ph (208) 322-7272Fax (208) 378-6625http: / /www.rogersadvantage.com

-T-

The Territorial Seed Co.P.O. Box 158Cottage Grove, OR 97424-0061Ph (541) 942-9547Fax (888) 657-3131http: / /www.territorial-seed.com

Thompson & Morgan, Inc.P.O. Box 1308Jackson, NJ 08527-0308Ph (800) 274-7333Fax (888) 466-4769http: / /www.wholesale.thompson-

morgan.com/us /

Tokita Seed Co., Ltd.1069 NakagawaOmiya-shiSaitama-ken 300-8532Japanhttp: / /www.tokitaseed.co.jp

Page 548: HANDBOOK FOR VEGETABLE GROWERS

538

Tomato Grower’s Supply Co.P.O. Box 2237Ft. Myers, FL 33902Ph (888) 478-7333http: / /www.tomatogrowers.com

Otis S. Twilley Seed Co., Inc.121 Gary RoadHodges, SC 29653Fax (864) 227-5108http: / /www.twilleyseed.com

-U-

United Genetics800 Fairview RoadHollister, CA 95023Ph (831) 636-4882Fax (831) 636-4883http: / /www.unitedgenetics.com

U S Seedless, LLCP.O. Box 3006Falls Church, VA 22043Ph (703) 903-9190Fax (703) 903-9456http: / /www.usseedless.com

-V-

Vermont Bean Seed Co., Inc.334 W. Stroud StreetRandolph, WI 53956-1274Ph (800) 349-1071Fax (888) 500-7333http: / /www.vermontbean.com

Vesey’s Seeds Ltd.P.O. Box 9000Charlottetown, PEICanada C1A 8K6Ph (902) 368-7333Fax (800) 686-0329http: / /www.veseys.com

Victory Seed Co.P.O. Box 192Molalla, OR 97038Ph & Fax (503) 829-3126http: / /www.victoryseeds.com

Vilmorin Inc.2551 N. DragoonTucson, AZ 85175Ph (520) 884-0011Fax (520) 884-5102http: / /www.vilmorin.com

Virtual Seeds92934 Coyote DriveAstoria, OR 97103Ph (503) 458-0919http: / /www.virtualseeds.com

-W-

West Coast Seeds3925 Sixty-fourth StreetDelta, BCCanada V4K 3N2Ph (604) 952-8820Fax (8770 482-8822http: / /www.westcoastseeds.com

Page 549: HANDBOOK FOR VEGETABLE GROWERS

539

Willhite Seed Co.Box 23Poolville, TX 76487-0023Ph (800) 828-1840Fax (817) 599-5843http: / /www.willhiteseed.com

Wyatt-Quarles Seed Co.P.O. Box 739Garner, NC 27529Ph (919) 772-4243http: / /www.wqseeds.com

-Y-

Arthur Yates & Co. Ltd.P.O. Box. 6672Silverwater BCNSW 1811Australiahttp: / /www.yates.com.au

-Z-

Zeraim GederaP.O. Box 103Gedera 70750Israelhttp: / /www.zeraimgedera.com

Information in this section was correct at the time of preparation. However, there are frequentchanges in phone area codes, postal codes, addresses, and even company names. Suggest using yourcomputer search engine if there is difficulty locating a specific concern.

Page 550: HANDBOOK FOR VEGETABLE GROWERS

PART 10APPENDIX

01 SOURCES OF VEGETABLE INFORMATION

02 PERIODICALS FOR VEGETABLE GROWERS

03 U.S. UNITS OF MEASUREMENT

04 CONVERSION FACTORS FOR U.S. UNITS

05 METRIC UNITS OF MEASUREMENT

06 CONVERSION FACTORS FOR SI AND NON SI UNITS

07 CONVERSIONS FOR RATES OF APPLICATION

08 WATER AND SOIL SOLUTION CONVERSION FACTORS

09 HEAT AND ENERGY EQUIVALENTS AND DEFINITIONS

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 551: HANDBOOK FOR VEGETABLE GROWERS

542

01SOURCES OF INFORMATION ON VEGETABLES

The Agricultural Experiment Station and Cooperative Extension Service ineach state has been the principal source of information on vegetables inprinted form. Most of this information is now on the Internet because of thehigh cost of producing, storing, and distributing printed information.

Websites providing information on vegetables from the state agriculturaluniversity in most states are listed below. If you are unable to access a site,try using the search engine on your computer.

State Website Address /URL

Alabama CommercialVegetableProduction

http: / /www.aces.edu/dept / com veg

Arizona Vegetables http: / / cals.arizona.edu/crops /vegetables /vegetables.html

Arkansas Vegetables http: / /aragriculture.org /horticulture/vegetables /default.asp

California Vegetable &ResearchInformationCenter

http: / /vric.ucdavis.edu

Vegetable Crops http: / /www.anrcatalog.ucdavis.edu/InOrder /Shop /Shop.asp

PostharvestTechnology

http: / /postharvest.ucdavis.edu.

Colorado Specialty CropsProgram

http: / /www.specialtycrops.colostate.edu/SCP about.htm

Connecticut Vegetables http: / /137.99.85.230 /FMProAgricultural

ExperimentStation

http: / /www.caes.state.ct.us /Publications /publications.htm

Delaware Vegetable Program http: / /www.rec.udel.edu /veggie /veggie2001.htm

Page 552: HANDBOOK FOR VEGETABLE GROWERS

543

State Website Address /URL

Florida Vegetable Crops http: / / edis.ifas.ufl.edu/TOPICVegetables

Watermelons http: / /watermelons.ifas.ufl.eduGeorgia Vegetables http: / /www.uga.edu/�hort /

comveg.htmHawaii Vegetables http: / /www.ctahr.hawaii.edu / fb /

vege.htmIllinois Commercial

VegetableProduction

http: / /www.nres.uiuc.edu/outreach /pubs.html

Indiana Purdue Fruit andVegetableConnection

http: / /www.hort.purdue.edu/fruitveg /vegmain.shtml

Iowa CommercialVegetables

http: / /www.public.iastate.edu/�taber /Extension /extension.html

Kansas HorticultureLibrary

http: / /www.oznet.ksu.edu/ library /hort2

Kentucky VegetableInformation

http: / /www.uky.edu/Ag /Horticulture / comveggie.html

Louisiana CommercialVegetableProductionRecommendations

http: / /www.louisianalawnandgarden.org /en /crops livestock /crops /vegetables /

Maryland Crops, Livestock &Nursery

http: / /www.agnr.umd.edu/MCE/Publications /Category.cfm?ID�C

Massachusetts Vegetable Program http: / /www.umassvegetable.orgMichigan Michigan Vegetable

InformationNetwork

http: / /web4.msue.msu.edu/veginfo /index.cfm?doIntro�1

Minnesota Fruits andVegetables

http: / /horticulture.coafes.umn.edu/http: / /horticulture coafes umnedu fruitveg.html

Mississippi CommercialHorticulture

http: / /msucares.com/crops / comhort /index.html

Missouri HorticulturePublications

http: / /muextension.missouri.edu /explore /agguides /hort

Nebraska Horticulture http: / / ianrpubs.unl.edu/horticulture

Page 553: HANDBOOK FOR VEGETABLE GROWERS

544

State Website Address /URL

NewHampshire

CooperativeExtension’sVegetableProgram

http: / /www.ceinfo.unh.edu/Agric /AGFVC/FVCVEG.htm

New Jersey Vegetable and HerbCrops

http: / /www.rcre.rutgers.edu/pubs /subcategory.asp?cat�3&sub�24

New York Commercial Fruitsand Vegetables

http: / /www.hort.cornell.edu /extension /commercial /comfrveg.html

Vegetable Researchand Extension

http: / /www.hort.cornell.edu /department / faculty / rangarajan /Veggie / index.html

North Carolina Vegetable Crops http: / /www.cals.ncsu.edu/hort sci /veg /vegmain.html

Ohio Vegetable Crops http: / / extension.osu.edu/crops andlivestock /vegetable crops.php

The ExtensionVegetable Lab

http: / /www.oardc.ohio-state.edu/Kleinhenz /Stuff / tm-wrkgrp1.htm

Oklahoma Vegetable TrialReport

http: / /www.okstate.edu/ag /asnr /hortla /vegtrial / index.htm

Oregon VegetableProductionGuides

http: / / oregonstate.edu/Dept /NWREC/vegindex.html

Pennsylvania Vegetable CropResources

http: / /hortweb.cas.psu.edu/extension /vegcrp.html

South Carolina Vegetable & FruitProgram

http: / /virtual.clemson.edu/groups /hort /vegprog.htm

Tennessee Field andCommercialCrops

http: / /www.utextension.utk.edu/publications /fieldCrops /default.asp

Texas Vegetable WebSites

http: / /aggie-horticulture.tamu.edu/extension / infolinks.html

Vegetable IPM http: / /vegipm.tamu.eduVermont Vermont Vegetable

and Berry Pagehttp: / /www.uvm.edu/vtvegandberry

Virginia Vegetable-CommercialProduction

http: / /www.ext.vt.edu /cgi-bin /WebObjects /Docs.woa /wa/getcat?cat�ir-fv-vegc

Page 554: HANDBOOK FOR VEGETABLE GROWERS

545

State Website Address /URL

Washington Vegetable Researchand Extension

http: / /agsyst.wsu.edu/vegtble.htm

Vegetables http: / / cecommerce.uwex.edu/showcat.asp?id�18

OntarioCanada

VegetableProductionInformation

http: / /www.gov.on.ca /omafra /english /crops /hort /vegetable.html

Page 555: HANDBOOK FOR VEGETABLE GROWERS

546

02SOME PERIODICALS FOR VEGETABLE GROWERS

American Fruit GrowerAmerican Vegetable GrowerFlorida GrowerGreenhouse GrowerProductores de HortalizasMeister Media Worldwide3377 Euclid AvenueWilloughby, OH 44094-5992Ph (440) 942-2000http: / /www.meistermedia.com

Carrot Countryhttp: / /www.columbiapublications.com/carrotcountry

Onion Worldhttp: / /www.columbiapublications.com/onionworld

Potato Countryhttp: / /www.columbiapublications.com/potatocountry

The Tomato Magazinehttp: / /www.columbiapublications.com/tomatomagazineColumbia Publishing413-B N. Twentieth AvenueYakima, WA 98902

Citrus & Vegetable MagazineSubscription Service CenterP.O. Box 83Tifton, GA 31793http: / /www.citrusandvegetable.com

The GrowerSubscription Service Center400 Knightsbridge ParkwayLincolnshire, IL 60069-3613Fax (847) 634-4373http: / /www.growermagazine.com

Page 556: HANDBOOK FOR VEGETABLE GROWERS

547

The PackerCirculation DepartmentP.O. Box 2939Shawnee Mission, KS 66201-1339Ph (800) 621-2845Fax (913) 438-0657http: / /www.thepacker.com

The Produce News482 Hudson TerraceEnglewood Cliffs, NJ 07632Ph (800) 753-9110http: / /www.producenews.com

Western Grower and Shipper MagazineP.O. Box 2130Newport Beach, CA 92614http: / /www.wga.com

Vegetable Growers Newshttp: / /www.vegetablegrowersnews.com

Spudmanhttp: / /www.spudman.com

Fresh Cuthttp: / /www.freshcut.com

Fruit Grower Newshttp: / /www.fruitgrowersnews.com

Great American PublishingP.O. Box 128Sparta, MI 49345Ph (616) 887-9008Fax (616) 887-2666

Page 557: HANDBOOK FOR VEGETABLE GROWERS

548

Growing for MarketP.O. Box 3747Lawrence, KS 66046Ph (785) 748-0605Fax (785) 748-0609http: / /www.growingformarket.com

Potato Grower Magazinehttp: / /www.potatogrowers.com

Page 558: HANDBOOK FOR VEGETABLE GROWERS

549

03U.S. UNITS OF MEASUREMENT

Length1 foot � 12 inches1 yard � 3 feet1 yard � 36 inches1 rod � 16.5 feet1 mile � 5280 feet

Area1 acre � 43,560 square feet1 section � 640 acres1 section � 1 square mile

Volume1 liquid pint � 16 liquid ounces1 liquid quart � 2 liquid pints1 liquid quart � 32 liquid ounces1 gallon � 8 liquid pints1 gallon � 4 liquid quarts1 gallon � 128 liquid ounces1 peck � 16 pints (dry)1 peck � 8 quarts (dry)1 bushel � 4 pecks1 bushel � 64 pints (dry)1 bushel � 32 quarts (dry)

Mass or Weight1 pound � 16 ounces1 hundredweight � 100 pounds1 ton � 20 hundredweight1 ton � 2000 pounds1 unit (fertilizer) � 1% ton � 20 pounds

Page 559: HANDBOOK FOR VEGETABLE GROWERS

550

04CONVERSION FACTORS FOR U.S. UNITS

Multiply By To Obtain

Length

feet 12. inchesfeet 0.33333 yardsinches 0.08333 feetinches 0.02778 yardsmiles 5,280. feetmiles 63,360. inchesmiles 1,760. yardsrods 16.5 feetyards 3. feetyards 36. inchesyards 0.000568 miles

Area

acres 43,560. square feetacres 160. square rodsacres 4,840. square yardssquare feet 144. square inchessquare feet 0.11111 square yardssquare inches 0.00694 square feetsquare miles 640. acressquare miles 27,878,400. square feetsquare miles 3,097,600. square yardssquare yards 0.0002066 acressquare yards 9. square feetsquare yards 1,296. square inches

Volume

bushels 2,150.42 cubic inchesbushels 4. pecks

Page 560: HANDBOOK FOR VEGETABLE GROWERS

551

Multiply By To Obtain

bushels 64. pintsbushels 32. quartscubic feet 1,728. cubic inchescubic feet 0.03704 cubic yardscubic feet 7.4805 gallonscubic feet 59.84 pints (liquid)cubic feet 29.92 quarts (liquid)cubic yards 27. cubic feetcubic yards 46,656. cubic inchescubic yards 202. gallonscubic yards 1,616. pints (liquid)cubic yards 807.9 quarts (liquid)gallons 0.1337 cubic feetgallons 231. cubic inchesgallons 128. ounces (liquid)gallons 8. pints (liquid)gallons 4. quarts (liquid)gallons water 8.3453 pounds waterpecks 0.25 bushelspecks 537.605 cubic inchespecks 16. pints (dry)pecks 8. quarts (dry)pints (dry) 0.015625 bushelspints (dry) 33.6003 cubic inchespints (dry) 0.0625 peckspints (dry) 0.5 quarts (dry)pints (liquid) 28.875 cubic inchespints (liquid) 0.125 gallonspints (liquid) 16. ounces (liquid)pints (liquid) 0.5 quarts (liquid)quarts (dry) 0.03125 bushelsquarts (dry) 67.20 cubic inchesquarts (dry) 2. pints (dry)quarts (liquid) 57.75 cubic inchesquarts (liquid) 0.25 gallonsquarts (liquid) 32. ounces (liquid)quarts (liquid) 2. pints (liquid)

Page 561: HANDBOOK FOR VEGETABLE GROWERS

552

Multiply By To Obtain

Mass or Weight

ounces (dry) 0.0625 poundsounces (liquid) 1.805 cubic inchesounces (liquid) 0.0078125 gallonsounces (liquid) 0.0625 pints (liquid)ounces (liquid) 0.03125 quarts (liquid)pounds 16. ouncespounds 0.0005 tonspounds of water 0.01602 cubic feetpounds of water 27.68 cubic inchespounds of water 0.1198 gallonstons 32,000. ouncestons 20. hundredweighttons 2,000. pounds

Rate

feet per minute 0.01667 feet per secondfeet per minute 0.01136 miles per hourmiles per hour 88. feet per minutemiles per hour 1.467 feet per minute

Page 562: HANDBOOK FOR VEGETABLE GROWERS

553

05METRIC UNITS OF MEASUREMENT

Length

1 millimeter � 1,000 microns1 centimeter � 10 millimeters1 meter � 100 centimeters1 meter � 1,000 millimeters1 kilometer � 1,000 meters

Area

1 hectare � 10,000 square meters

Volume

1 liter � 1,000 milliliters

Mass or Weight

1 gram � 1,000 milligrams1 kilogram � 1,000 grams1 quintal � 100 kilograms1 metric ton � 1,000 kilograms1 metric ton � 10 quintals

Page 563: HANDBOOK FOR VEGETABLE GROWERS

554

06C

ON

VE

RS

ION

FA

CT

OR

SF

OR

SI

AN

DN

ON

-SI

UN

ITS

To

Con

vert

Col

um

n1

into

Col

um

n2,

Mu

ltip

lyby

Col

um

n1

SI

Un

itC

olu

mn

2n

on-S

IU

nit

To

Con

vert

Col

um

n2

into

Col

um

n1,

Mu

ltip

lyby

Len

gth

0.62

1ki

lom

eter

,km

(103

m)

mil

e,m

i1.

609

1.09

4m

eter

,m

yard

,yd

0.91

43.

28m

eter

,m

foot

,ft

0.30

41.

0m

icro

met

er,

�(1

0�6

m)

mic

ron

,�

1.0

3.94

�10

�2

mil

lim

eter

,m

m(1

0�3

m)

inch

,in

25.4

10n

anom

eter

,n

m(1

0�9

m)

An

gstr

om,

A0.

1

Are

a 2.47

hec

tare

,h

aac

re0.

405

247

squ

are

kilo

met

er,

km2

(103

m)2

acre

4.05

�10

�3

0.38

6sq

uar

eki

lom

eter

,km

2(1

03m

)2sq

uar

em

ile,

m2

2.59

02.

47�

10�

4sq

uar

em

eter

,m

2(1

03m

)2ac

re4.

05�

103

10.7

6sq

uar

em

eter

,m

2(1

03m

)2sq

uar

efo

ot,

ft2

9.29

�10

�2

1.55

�10

�3

squ

are

mil

lim

eter

,m

2(1

0�6

m)2

squ

are

inch

,in

264

5

Vol

um

e

6.10

�10

4cu

bic

met

er,

m3

cubi

cin

ch,

in3

1.64

�10

�5

2.84

�10

�2

lite

r,L

(10�

3m

3 )bu

shel

,bu

35.2

4

Page 564: HANDBOOK FOR VEGETABLE GROWERS

555

1.05

7li

ter,

L(1

0�3

m3 )

quar

t(l

iqu

id),

qt0.

946

3.53

�10

�2

lite

r,L

(10�

3m

3 )cu

bic

foot

,ft

328

.30.

265

lite

r,L

(10�

3m

3 )ga

llon

3.78

33.7

8li

ter,

L(1

0�3

m3 )

oun

ce(fl

uid

),oz

2.96

�10

�2

2.11

lite

r,L

(10�

3m

3 )pi

nt

(flu

id),

pt0.

473

1.06

lite

r,L

(10�

3m

3 )qu

art

(liq

uid

),qt

0.94

69.

73�

10�

3m

eter

3 ,m

3ac

re-i

nch

102.

835

.7m

eter

3 ,m

3cu

bic

foot

,ft

32.

80�

10�

2

Mas

s 2.20

�10

�3

gram

,g

(10�

3kg

)po

un

d,lb

454

3.52

�10

�2

gram

,g

oun

ce(a

vdp)

,oz

28.4

2.20

5ki

logr

am,k

gpo

un

d,lb

0.45

410

2ki

logr

am,k

gqu

inta

l(m

etri

c),

q10

2

1.10

�10

�3

kilo

gram

,kg

ton

(2,0

00lb

),to

n90

71.

102

meg

agra

m,M

g(t

onn

e)to

n(U

.S.)

,to

n0.

907

Yie

ldan

dR

ate

0.89

3ki

logr

ampe

rh

ecta

re,

kgh

a�1

pou

nd

per

acre

,lb

acre

�1

1.12

7.77

�10

�2

kilo

gram

per

cubi

cm

eter

,kg

m�

3po

un

dpe

rbu

shel

,lb

bu�

112

.87

1.49

�10

�2

kilo

gram

per

hec

tare

,kg

ha�

1bu

shel

per

acre

,60

lb67

.19

1.59

�10

�2

kilo

gram

per

hec

tare

,kg

ha�

1bu

shel

per

acre

,56

lb62

.71

1.86

�10

�2

kilo

gram

per

hec

tare

,kg

ha�

1bu

shel

per

acre

,48

lb53

.75

0.10

7li

ter

per

hec

tare

,L

ha�

1ga

llon

per

acre

9.35

893

meg

agra

mpe

rh

ecta

re,

Mg

ha�

1po

un

dpe

rac

re,

lbac

re�

11.

12�

10�

3

0.44

6m

egag

ram

per

hec

tare

,M

gh

a�1

ton

(2,0

00lb

)pe

rac

re,

ton

acre

�1

2.24

2.10

met

erpe

rse

con

d,m

s�1

mil

epe

rh

our

0.47

7

Page 565: HANDBOOK FOR VEGETABLE GROWERS

556

To

Con

vert

Col

um

n1

into

Col

um

n2,

Mu

ltip

lyby

Col

um

n1

SI

Un

itC

olu

mn

2n

on-S

IU

nit

To

Con

vert

Col

um

n2

into

Col

um

n1,

Mu

ltip

lyby

Spe

cifi

cS

urf

ace

10sq

uar

em

eter

per

kilo

gram

,m2

kg�

1sq

uar

ece

nti

met

erpe

rgr

am,

cm2

g�1

0.1

103

squ

are

met

erpe

rki

logr

am,m

2

kg�

1sq

uar

em

illi

met

erpe

rgr

am,

mm

2

g�1

10�

3

Pre

ssu

re

9.90

meg

apas

cal,

MP

a(1

06P

a)at

mos

pher

e0.

101

10m

egap

asca

l,M

Pa

(106

Pa)

bar

0.1

1.00

meg

agra

mpe

rcu

bic

met

er,

Mg

m�

3gr

ampe

rcu

bic

cen

tim

eter

,g

cm�

31.

00

2.09

�10

�2

pasc

al,

Pa

pou

nd

per

squ

are

foot

,lb

ft�

247

.91.

45�

10�

4pa

scal

,P

apo

un

dpe

rsq

uar

ein

ch,

lbin

�2

6.90

�10

3

Tem

pera

ture

1.00

(�K

–27

3)K

elvi

n,

KC

elsi

us,

�C1.

00(�

C�

273)

(9/5

�C)

�32

Cel

siu

s,�C

Fah

ren

hei

t,�F

5⁄9

(�F

–32

)

Page 566: HANDBOOK FOR VEGETABLE GROWERS

557

En

ergy

,W

ork,

Qu

anti

tyof

Hea

t

9.52

�10

�4

jou

le,

JB

riti

shth

erm

alu

nit

,B

tu1.

05�

103

0.23

9jo

ule

,J

calo

rie,

cal

4.19

107

jou

le,

Jer

g10

�7

0.73

5jo

ule

,J

foot

-pou

nd

1.36

2.38

7�

10�

5jo

ule

per

squ

are

met

er,

Jm

�2

calo

rie

per

squ

are

cen

tim

eter

(lan

gley

)4.

19�

104

105

new

ton

,N

dyn

e10

�5

1.43

�10

�3

wat

tpe

rsq

uar

em

eter

,W

m�

2ca

lori

epe

rsq

uar

ece

nti

met

erm

inu

te(i

rrad

ian

ce),

cal

cm�

2

min

�1

698

Tra

nsp

irat

ion

and

Ph

otos

ynth

esis

3.60

�10

�2

mil

ligr

ampe

rsq

uar

em

eter

seco

nd,

mg

m�

2s�

1gr

ampe

rsq

uar

ede

cim

eter

hou

r,g

dm�

2h

�1

27.8

5.56

�10

�3

mil

ligr

am(H

2O)

per

squ

are

met

erse

con

d,m

gm

�2

s�1

mic

rom

ole

(H2O

)pe

rsq

uar

ece

nti

met

erse

con

d,�

mol

cm�

2s�

118

0

10�

4m

illi

gram

per

squ

are

met

erse

con

d,m

gm

�2

s�1

mil

ligr

ampe

rsq

uar

ece

nti

met

erse

con

d,m

gcm

�2

s�1

104

35.9

7m

illi

gram

per

squ

are

met

erse

con

d,m

gm

�2

s�1

mil

ligr

ampe

rsq

uar

ede

cim

eter

hou

r,m

gdm

�2

h�

12.

78�

10�

2

An

gle

5.73

radi

an,r

adde

gree

s(a

ngl

e),�

1.75

�10

�2

Page 567: HANDBOOK FOR VEGETABLE GROWERS

558

To

Con

vert

Col

um

n1

into

Col

um

n2,

Mu

ltip

lyby

Col

um

n1

SI

Un

itC

olu

mn

2n

on-S

IU

nit

To

Con

vert

Col

um

n2

into

Col

um

n1,

Mu

ltip

lyby

Wat

erM

easu

rem

ent

9.73

�10

�3

cubi

cm

eter

,m

3ac

re-i

nch

es,

acre

-in

102.

89.

81�

10�

3cu

bic

met

erpe

rh

our,

m3

h�

1cu

bic

feet

per

seco

nd,

ft3

s�1

101.

94.

40cu

bic

met

erpe

rh

our,

m3

h�

1U

.S.

gall

ons

per

min

ute

,ga

lm

in�

10.

227

8.11

hec

tare

-met

ers,

ha-

mac

re-f

eet,

acre

-ft

0.12

397

.28

hec

tare

-met

ers,

ha-

mac

re-i

nch

es,

acre

-in

1.03

�10

�2

8.1

�10

�2

hec

tare

-cen

tim

eter

s,h

a-cm

acre

-fee

t,ac

re-f

t12

.33

Con

cen

tra

tion

s

1ce

nti

mol

epe

rki

logr

am,c

mol

kg�

1

(ion

exch

ange

capa

city

)m

illi

equ

ival

ents

per

100

gram

s,m

eq10

0g�

11

0.1

gram

per

kilo

gram

,gkg

�1

perc

ent,

%10

1m

egag

ram

per

cubi

cm

eter

,M

gm

�3

gram

per

cubi

cce

nti

met

er,

gcm

�3

1

1m

illi

gram

per

kilo

gram

,mg

kg�

1pa

rts

per

mil

lion

,pp

m1

Page 568: HANDBOOK FOR VEGETABLE GROWERS

559

07CONVERSIONS FOR RATES OF APPLICATION

1 ton per acre � 20.8 grams per square foot1 ton per acre � 1 pound per 21.78 square feet1 ton per acre furrow slice (6-inch depth) � 1 gram per 1,000 grams soil1 gram per square foot � 96 pounds per acre1 pound per acre � 0.0104 grams per square foot1 pound per acre � 1.12 kilograms per hectare100 pounds per acre � 0.2296 pounds per 100 square feetgrams per square foot � 96 � pounds per acrekilograms per 48 square feet � tons per acrepounds per square feet � 21.78 � tons per acre

Page 569: HANDBOOK FOR VEGETABLE GROWERS

560

08WATER AND SOIL SOLUTION—CONVERSION FACTORS

Concentration1 decisiemens per meter (dS/m) � 1 millimho per centimeter (mmho/cm)1 decisiemens per meter (dS/m) � approximately 640 milligrams per liter

salt1 part per million (ppm) � 1/1,000,0001 percent � 0.01 or 1 /1001 ppm � 10,000 � 1 percentppm � 0.00136 � tons per acre-foot of waterppm � milligrams per literppm � 17.12 � grains per gallongrains per gallon � 0.0584 � ppmppm � 0.64 � micromhos per centimeter (in range of 100–5,000 micromhos

per centimeter)ppm � 640 � millimhos per centimeter (in range of 0.1–5.0 millimhos per

centimeter)ppm � grams per cubic metermho � reciprocal ohmmillimho � 1000 micromhosmillimho � approximately 10 milliequivalents per liter (meq/ liter)milliequivalents per liter � equivalents per millionmillimhos per centimeter � EC � 103 (EC � 1,000) at 25�C (EC � electrical

conductivity)micromhos per centimeter � EC � 106 (EC � 1,000,000) at 25�Cmillimhos per centimeter � 0.1 siemens per metermillimhos per centimeter � (EC � 103) � decisiemens per meter (dS/m)1,000 micromhos per centimeter � approximately 700 ppm1,000 micromhos per centimeter � approximately 10 milliequivalents per

liter1,000 micromhos per centimeter � 1 ton of salt per acre-foot of watermilliequivalents per liter � 0.01 � (EC � 106) (in range of 100–5,000

micromhos per centimeter)milliequivalents per liter � 10 � (EC � 103) (in range of 0.1–5.0 millimhos

per centimeter)

Pressure and Head1 atmosphere at sea level � 14.7 pounds per square inch1 atmosphere at sea level � 29.9 inches of mercury1 atmosphere at sea level � 33.9 feet of water

Page 570: HANDBOOK FOR VEGETABLE GROWERS

561

1 atmosphere � 0.101 megapascal (MPa)1 bar � 0.10 megapascal (MPa)1 foot of water � 0.8826 inch mercury1 foot of water � 0.4335 pound per square inch1 inch of mercury � 1.133 feet water1 inch of mercury � 0.4912 pound per square inch1 inch of water � 0.07355 inch mercury1 inch of water � 0.03613 pound per square inch1 pound per square inch � 2.307 feet water1 pound per square inch � 2.036 inches mercury1 pound per square foot � 47.9 pascals

Weight and Volume (U.S. Measurements)1 acre-foot of soil � about 4,000,000 pounds1 acre-foot of water � 43,560 cubic feet1 acre-foot of water � 12 acre-inches1 acre-foot of water � about 2,722,500 pounds1 acre-foot of water � 325,851 gallons1 cubic-foot of water � 7.4805 gallons1 cubic foot of water at 59�F � 62.37 pounds1 acre-inch of water � 27,154 gallons1 gallon of water at 59�F � 8.337 pounds1 gallon of water � 0.1337 cubic foot or 231 cubic inches

Flow (U.S. Measurements)1 cubic foot per second � 448.8 gallons per minute1 cubic foot per second � about 1 acre-inch per hour1 cubic foot per second � 23.80 acre-inches per hour1 cubic foot per second � 3600 cubic feet per hour1 cubic foot per second � about 71⁄2 gallons per second1 gallon per minute � 0.00223 cubic feet per second1 gallon per minute � 0.053 acre-inch per 24 hours1 gallon per minute � 1 acre-inch in 41⁄2 hours1000 gallons per minute � 1 acre-inch in 27 minutes1 acre-inch per 24 hours � 18.86 gallons per minute1 acre-foot per 24 hours � 226.3 gallons per minute1 acre-foot per 24 hours � 0.3259 million gallons per 24 hours

U.S.-Metric Equivalents1 cubic meter � 35.314 cubic feet1 cubic meter � 1.308 cubic yards

Page 571: HANDBOOK FOR VEGETABLE GROWERS

562

1 cubic meter � 1000 liters1 liter � 0.0353 cubic feet1 liter � 0.2642 U.S. gallon1 liter � 0.2201 British or Imperial gallon1 cubic centimeter � 0.061 cubic inch1 cubic foot � 0.0283 cubic meter1 cubic foot � 28.32 liters1 cubic foot � 7.48 U.S. gallons1 cubic foot � 6.23 British gallons1 cubic inch � 16.39 cubic centimeters1 cubic yard � 0.7645 cubic meter1 U.S. gallon � 3.7854 liters1 U.S. gallon � 0.833 British gallon1 British gallon � 1.201 U.S. gallons1 British gallon � 4.5436 liters1 acre-foot � 43,560 cubic feet1 acre-foot � 1,233.5 cubic meters1 acre-inch � 3,630 cubic feet1 acre-inch � 102.8 cubic meters1 cubic meter per second � 35.314 cubic feet per second1 cubic meter per hour � 0.278 liter per second1 cubic meter per hour � 4.403 U.S. gallons per minute1 cubic meter per hour � 3.668 British gallons per minute1 liter per second � 0.0353 cubic feet per second1 liter per second � 15.852 U.S. gallons per minute1 liter per second � 13.206 British gallons per minute1 liter per second � 3.6 cubic meters per hour1 cubic foot per second � 0.0283 cubic meter per second1 cubic foot per second � 28.32 liters per second1 cubic foot per second � 448.8 U.S. gallons per minute1 cubic foot per second � 373.8 British gallons per minute1 cubic foot per second � 1 acre-inch per hour (approximately)1 cubic foot per second � 2 acre-feet per day (approximately)1 U.S. gallon per minute � 0.06309 liter per second1 British gallon per minute � 0.07573 liter per second

Power and Energy1 horsepower � 550 foot-pounds per second1 horsepower � 33,000 foot-pounds per minute1 horsepower � 0.7457 kilowatts1 horsepower � 745.7 watts

Page 572: HANDBOOK FOR VEGETABLE GROWERS

563

1 horsepower-hour � 0.7457 kilowatt-hour1 kilowatt � 1.341 horsepower1 kilowatt-hour � 1.341 horsepower-hours1 acre-foot of water lifted 1 foot � 1.372 horsepower-hours of work1 acre-foot of water lifted 1 foot � 1.025 kilowatt-hours of work

Page 573: HANDBOOK FOR VEGETABLE GROWERS

564

09HEAT AND ENERGY EQUIVALENTS AND DEFINITIONS

1 joule � 0.239 calorie1 joule � Nm (m2 kg s–2)temperature of maximum density of water � 3.98�C (about 39�F)1 British thermal unit (Btu) � heat needed to change 1 pound water at

maximum density of 1�F1 Btu � 1.05506 kilojoules (kJ)1 Btu / lb � 2.326 kJ/kg1 Btu per minute � 0.02356 horsepower1 Btu per minute � 0.01757 kilowatts1 Btu per minute � 17.57 watts1 horsepower � 42.44 Btu per minute1 horsepower-hour � 2547 Btu1 kilowatt-hour � 3415 Btu1 kilowatt � 56.92 Btu per minute1 pound water at 32�F changed to solid ice requires removal of 144 Btu1 pound ice in melting takes up to 144 Btu1 ton ice in melting takes up to 288,000 Btu

USEFUL WEBSITES FOR UNITS AND CONVERSIONS

Weights, Measures, and Conversion Factors for Agricultural Commoditiesand Their Products (USDA Agricultural Handbook 697, 1992), http: / /www.ers.usda.gov /publications /ah697

Metric Conversions (2002), http: / /www.extension.iastate.edu/agdm/wholefarm/html / c6-80.html

A Dictionary of Units—Part 1 (2004), http: / /www.projects.ex.ac.uk / trol /dictunit /dictunit1.htm

A Dictionary of Units—Part 2 (2004), http: / /www.projects.ex.ac.uk / trol /dictunit /dictunit2.htm

U.S. Metric Association (2005), http: / / lamar.colostate.edu/�hillger

Page 574: HANDBOOK FOR VEGETABLE GROWERS

565

INDEX

Acanthus family, 6Acre:

length of row, 121number of plants, 122–123

Air pollutants:ammonia, 311, 313chlorine, 310, 313fluoride, 312hydrochloric acid, 311hydrogen sulfide, 313nitrogen dioxide, 312ozone, 310, 312PAN, 310, 312–313sulfur dioxide, 310, 312

Alfalfa, (Lucerne):botanical classification, 18edible plant part, 18

Alligator weed (Joseph’s coat):botanical classification, 6edible plant part, 6

Amaranth family, 6–7Amaranthus (tampala):

botanical classification, 7edible plant part, 7storage, 430

Angelica:botanical classification, 7edible plant part, 7

Angelica, Japanese:botanical classification, 7

edible plant part, 7Anise:

storage, 430U.S. grades, 469

Aralia family, 7–8botanical classification, 8edible plant part, 8

Arracacha (Peruvian carrot):botanical classification, 7edible plant part, 7

Arrowhead:botanical classification, 2edible plant part, 2

Arrowhead, Chinese:botanical classification, 2edible plant part, 2

Arrowroot, East Indian:botanical classification, 5edible plant part, 5

Arrowroot family, 5Arrowroot, West Indian:

botanical classification, 5edible plant part, 5

Artichoke, globe:boron:

in irrigation water, 307response, 240–241

botanical classification, 8chilling injury, 446compatibility in mixed loads, 456

Knott’s Handbook for Vegetable Growers, Fifth Edition. D. N. Maynard and G. J. Hochmuth© 2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73828-2

Page 575: HANDBOOK FOR VEGETABLE GROWERS

566

INDEX

Artichoke, globe (Continued )composition, 46cooling methods, 426edible plant part, 8ethylene production, 453freezing injury, 449harvest method, 422in nine languages, 25insects, 373per capita consumption, 42postharvest diseases, 460production statistics, 34–35respiration rate, 436rooting depth, 252shipping containers, 483seed germination:

standards, 512tests, 506

spacing, 119temperature:

classification, 105for growth, 107

storage:compatibility, 457conditions, 430controlled atmosphere, 439life, 429moisture loss, 442

U.S. grades, 496vitamin content, 50world production, 44yield per acre, 36, 420

Artichoke, Japanese (Chineseartichoke):

botanical classification, 20edible plant part, 20

Artichoke, Jerusalem:boron response, 241botanical classification, 9edible plant part, 9harvest method, 422

shipping containers, 487spacing, 120storage:

compatibility, 457conditions, 430

respiration rate, 436Arugula (Rocket salad):

botanical classification, 13edible plant part, 13

Asparagus:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 4chilling injury, 444, 446, 447compatibility in mixed loads, 456cooling methods, 426crowns needed per acre, 131diseases, 356edible plant part, 4ethylene production, 453fertilizer:

Mid-Atlantic states, 223New England, 227New York, 229

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 25insects, 373nutrient composition, 190per capita consumption, 42physiological disorders, 450plant analysis guide, 182postharvest diseases, 460production statistics, 34–36respiration rate, 436response to micronutrients, 239rooting depth, 252shipping containers, 483

Page 576: HANDBOOK FOR VEGETABLE GROWERS

567

INDEX

seed:germination:

days, 111standards, 542tests, 505

production isolation, 515yield, 518

spacing, 119storage:

compatibility, 457conditions, 430controlled atmosphere, 435crowns, 130life, 429moisture loss, 442

temperature:base, 106classification, 105seed germination, 108

tolerance to soil acidity, 159transplant production, 44vitamin content, 50U.S. grades, 469, 475world production, 44yield per acre, 36, 420

Asparagus, wild:botanical classification, 4edible plant part, 4

Aster:botanical classification, 8edible plant part, 8

Arum family, 3Asiatic pennywort

botanical classification, 7edible plant part, 7

Bamboo shoots:botanical classification, 5edible plant part, 5

Bamboo, water (cobo):botanical classification, 5

edible plant part, 5Banana family, 5Basella family, 9–10Basil, common (sweet basil):

boron response, 241botanical classification, 20edible plant part, 20storage:

conditions, 434respiration rate, 435

Basil, hoary:botanical classification, 20edible plant part, 20

Basswood family, 24Bean, adzuki

botanical classification, 19edible plant part, 19

Bean, African yam:botanical classification, 19edible plant part, 19

Bean, asparagus (yard-long bean):botanical classification, 19edible plant part, 19respiration rate, 436seed germination:

standards, 512tests, 505

shipping containers, 488storage:

conditions, 430compatibility, 458

Bean, buffalo (velvet bean):botanical classification, 18edible plant part, 18

Bean, cluster, (guar):botanical classification, 17edible plant part, 17

Bean, dry:trends in consumption, 43

Bean, fava (broad bean, horse bean):botanical classification, 19

Page 577: HANDBOOK FOR VEGETABLE GROWERS

568

INDEX

Bean, fava (broad bean, horse bean)(Continued )

days to maturity, 415edible plant part, 19in nine languages, 25seed:

certified, 516germination:

standards, 512tests, 506

needed per acre, 113per pound, 113

salt tolerance, 168spacing, 119temperature:

classification, 105for growth, 107

storage, 430Bean, garden (snap bean):

air pollutant sensitivity, 312, 313boron:

in irrigation water, 307response, 240, 241

botanical classification, 18chilling injury, 444, 446, 447compatibility in mixed loads, 455cooling methods, 427days to maturity, 415, 418diseases, 356–357edible plant part, 18fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229magnesium response, 245

fresh cut, 481harvest method, 422in nine languages, 25insects, 373–375nematodes, 352

nutrient:accumulation, 18composition, 190concentration, 195

per capita consumption, 42plant analysis guide, 182postharvest diseases, 462production statistics, 34–35, 37–

38respiration rate, 436response to micronutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

certified, 516germination:

days, 11standards, 512tests, 505

needed per acre, 113per pound, 113production isolation, 514storage, 522yields, 518

shipping containers, 483, 487solar injury, 452spacing, 118, 119storage:

compatibility, 458conditions, 430controlled atmosphere, 439life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 469, 475

Page 578: HANDBOOK FOR VEGETABLE GROWERS

569

INDEX

vitamin content, 50world production, 44yield per acre, 36, 38, 420

Bean, goa (winged bean):botanical classification, 18edible plant part, 18storage compatibility, 485

Bean, hyacinth:botanical classification, 17edible plant part, 17

Bean, jack, (horse bean):botanical classification, 17edible plant part, 17

Bean, Lima:boron:

in irrigation water, 307response 240–241

botanical classification, 18chilling injury, 444, 446composition, 46days to maturity, 415diseases, 360edible plant part, 18harvest method, 422nutrient composition, 190postharvest diseases, 462production statistics, 37rooting depth, 252seed:

germination:days, 111standards, 512tests, 505

needed per acre, 113per pound, 113production isolation, 514storage, 522

storage, 430spacing, 119temperature:

classification, 105

for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 469, 475vitamin content, 50yield per acre, 38, 420

Bean, marama:botanical classification, 17edible plant part, 17

Bean, moth:botanical classification, 19edible plant part, 19

Bean, mung:botanical classification, 19certified, seed, 516edible plant part, 19

Bean, potato:botanical classification, 18edible plant part, 18

Bean, rice:botanical classification, 19edible plant part, 19

Bean, scarlet runner:botanical classification, 18edible plant part, 18seed germination:

standards, 512tests, 505

yields, 518Bean sprouts:

storage life, 429Bean, sword (horse bean):

botanical classification, 17edible plant part, 17

Bean, tepary:botanical classification, 18edible plant part, 18

Bean, yam:botanical classification, 18edible plant part, 18

Page 579: HANDBOOK FOR VEGETABLE GROWERS

570

INDEX

Beet, garden:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 14chilling injury, 446–447compatibility in mixed loads, 456composition, 46days to maturity, 415diseases, 357edible plant part, 14fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229magnesium response, 245

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 25insects, 375nutrient concentration, 195–196rooting depth, 252response to micronutrients, 239salinity yield loss, 306seed:

germination:days, 111standards, 512tests, 505

needed per acre, 113per pound, 113production isolation, 514storage, 522yields, 518

salt tolerance, 168shipping containers, 483spacing, 118, 119temperature:

base, 106

classification, 105for growth, 107seed germination, 108

storage:compatibility, 457conditions, 430life, 429moisture loss, 442

tolerance to soil acidity, 159transplanting, 56U.S. grades, 469, 475vitamin content, 50yield per acre, 420

Beet, greens:composition, 46vitamin content, 50

Begonia family, 29Belgian endive, see ChicoryBellflower family, 13Best Management Practices, 144–

145Bitter leaf:

botanical classification, 9edible plant part, 9

Bindweed family, 14Bitter melon:

botanical classification, 16edible plant part, 16shipping containers, 483–484storage:

compatibility, 458conditions, 430

Boniato:harvest method, 422shipping containers, 484storage:

compatibility, 458conditions, 430

Borage:botanical classification, 10edible plant part, 10

Borage family, 10, 29

Page 580: HANDBOOK FOR VEGETABLE GROWERS

571

INDEX

Boron:application, 242conversion factors, 176critical values, 195, 210deficiency symptoms, 231diagnosis, 190–194recommendations, 244requirements, 240response, 239soil test interpretation, 234tolerance, 241

Boxthorn:botanical classification, 23edible plant part, 23

Broccoli:aid pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 12chilling injury, 446, 447compatibility in mixed loads, 456composition, 46cooling methods, 426days to maturity, 415diseases, 357–358edible plant part, 12fertilizer:

Florida, 225Mid-Atlantic states, 223New York, 229rates for linear bed feet, 21

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 25insects, 375–376nutrient:

accumulation, 180concentration, 196

per capita consumption, 42plant analysis guide, 182

postharvest diseases, 461production statistics, 34–36respiration rate, 436response to micronutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

germination:standards, 512tests, 506

hot water treatment, 347needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 518

storage:compatibility, 457conditions, 430controlled atmosphere, 439life, 429moisture loss, 442

spacing, 119temperature:

base, 106classification, 105for growth, 107

tolerance to soil acidity, 159transplant production, 62, 63transplanting, 56U.S. grades, 469, 475vitamin content, 50yield per acre, 420

Broccoli raab (turnip broccoli):botanical classification, 13composition, 46days to maturity, 415edible plant part, 13vitamin content, 50

Broomrape:botanical classification, 21

Page 581: HANDBOOK FOR VEGETABLE GROWERS

572

INDEX

Broomrape (Continued )edible plant part, 21

Broomrape family, 21Brussels sprouts:

air pollutant sensitivity, 316–313boron response, 240botanical classification, 12chilling injury, 446, 447compatibility in mixed loads, 456composition, 46cooling methods, 426days to maturity, 415diseases, 357–358edible plant part, 12fertilizer for New York, 229harvest method, 422in nine languages, 25insects, 375–376nutrient:

accumulation, 180concentration, 196

physiological disorders, 450postharvest diseases, 461respiration rate, 436rooting depth, 252seed:

germination:standards, 512tests, 506

hot water treatment, 347needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 518

shipping containers, 484spacing, 119storage:

compatibility, 457controlled atmosphere, 439conditions, 430life, 429

moisture loss, 442transplant production, 62–63temperature:

classification, 105for growth, 107

tolerance to soil acidity, 159transplanting, 56U.S. grades, 469vitamin content, 50yield per acre, 420

Bucko:botanical classification, 19edible plant part, 19

Bugleweed, shiny:botanical classification, 20edible plant part, 20

Burdock, edible:botanical classification, 8edible plant part, 8seed:

germination standards, 512germination tests, 506

Butterburs:botanical classification, 9edible plant part, 9

Buckwheat family, 22Bumblebee pollination, 8

Cabbage:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 12chilling injury, 446, 447compatibility in mixed loads, 456composition, 46cooling methods, 426days to maturity, 415diseases, 357–358edible plant part, 12fertilizer:

Page 582: HANDBOOK FOR VEGETABLE GROWERS

573

INDEX

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229magnesium response, 245rates per linear bed feet, 221

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 25insects, 375–376nematodes, 352nutrient concentration, 196–197per capita consumption, 42plant analysis guide, 183postharvest diseases, 461production statistics, 24–35respiration rate, 436response to micronutrients, 239transplant production, 62–63rooting depth, 252salt tolerance, 168seed:

germination:days, 111standards, 512tests, 506

hot water treatment, 347needed per acre, 113per ounce, 113storage, 522yields, 518

shipping containers, 484solar injury, 452spacing, 118, 119storage:

compatibility, 45conditions, 430controlled atmosphere, 439life, 429moisture loss, 442

temperature:classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplanting, 56U.S. grades, 469, 475vitamin content, 50world production, 44yield per acre, 36, 420

Cabbage, Chinese (pe-tsai):botanical classification, 12composition, 47cooling methods, 426days to maturity, 415edible plant part, 12fertilizer for Florida, 225in nine languages, 25nutrient concentration, 199plant analysis guide, 184respiration rate, 436rooting depth, 252seed:

germination:standards, 512tests, 506

needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 518

shipping containers, 489spacing, 119storage:

compatibility, 457conditions, 430controlled atmosphere, 439

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159vitamin content, 50yield per acre, 420

Page 583: HANDBOOK FOR VEGETABLE GROWERS

574

INDEX

Cabbage, Portuguese (tronchuda):botanical classification, 12edible plant part, 12seed:

germination:standards, 512tests, 506

Cabbage, red:composition, 46vitamin content, 50

Cabbage, savoy:botanical classification, 12composition, 46edible plant part, 12vitamin content, 50

Cactus family, 13Calabaza:

shipping containers, 484storage:

compatibility, 458conditions, 430

Calcium:application, 242conversion factors, 176critical values, 195–210deficiency symptoms, 232soil tests:

Mehlich-1 extraction, 216Mehlich-3 extraction, 216

Calibration:aerial applicators, 337–338dusters, 338field sprayers, 333–335granular applicators, 335–337

Canna family, 3Canna, Italian (arrowroot):

botanical classification, 3edible plant part, 3

Cantaloupe (muskmelon, Persianmelon):

boron:in irrigation water, 307

response, 240–241botanical classification, 15chilling injury, 444, 446compatibility in mixed loads, 455composition, 47cooling methods, 427days to maturity, 416, 418diseases, 368–370edible plant part, 15ethylene production, 453fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229magnesium response, 245rates per linear bed feet, 221

fresh cut, 482in nine languages, 26insects, 382–383nutrient:

accumulation, 180composition, 191concentration, 197

per capita consumption, 42physiological disorders, 450plant analysis guide, 183postharvest diseases, 462production statistics, 34–35rooting depth, 252respiration rate, 437salinity yield loss, 306seed:

germination:days, 111standards, 512tests, 506

needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 518

Page 584: HANDBOOK FOR VEGETABLE GROWERS

575

INDEX

shipping containers, 488solar injury, 452spacing, 119storage:

compatibility, 458conditions, 431controlled atmosphere, 439life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 63transplanting, 56U.S. grades, 469vitamin content, 51world production, 44yield per acre, 36, 420

Cape gooseberry:botanical classification, 23edible plant part, 23

Caper:botanical classification, 13edible plant part, 13

Caper family, 13–14:Carbon dioxide greenhouse

enrichment, 83–84Cardoon:

days to maturity, 415edible plant part, 8seed:

germination:standards, 512tests, 507

needed per acre, 113per pound, 113

spacing, 119Carrot:

air pollutant sensitivity, 312–313

boron:in irrigation water, 307response, 240–241

botanical classification, 7chilling injury, 446, 447compatibility in mixed loads, 456composition, 46cooling methods, 426days to maturity, 415diseases, 358edible plant part, 7fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 25insects, 376nematodes, 352nutrient:

accumulation, 180concentration, 197–198

per capita consumption, 42plant analysis guide, 184postharvest diseases, 460production statistics, 34–35, 37–

38respiration rate, 43response to micronutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

germination:days, 111standards, 512tests, 507

needed per acre, 113per pound, 113

Page 585: HANDBOOK FOR VEGETABLE GROWERS

576

INDEX

Carrot (Continued )production isolation, 515storage, 52yields, 518

shipping containers, 484–485spacing, 118, 119storage:

compatibility, 457conditions, 430life, 429moisture loss, 442temperature:base, 106for growth, 107seed germination, 108

tolerance to soil acidity, 159vitamin content, 50U.S. grades, 470, 475world production, 44yield per acre, 36, 38, 420

Carrot family, 7, 28Carpet weed family, 6Casabanana:

botanical classification, 16edible plant part, 16

Catjang:botanical classification, 19edible plant part, 19

Cat’s whiskers:botanical classification, 13edible plant part, 13

Cauliflower:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 12chilling injury, 446, 447composition, 46cooling methods, 426days to maturity, 415diseases, 357–358

edible plant part, 12ethylene production, 453fertilizer:

Florida, 225Mid-Atlantic states, 223New York, 229rates per linear bed feet, 221

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 25insects, 375–376nutrient concentration, 198per capita consumption, 42postharvest diseases, 461production statistics, 34–35respiration rate, 436response to micronutrients, 239rooting depth, 252seed:

germination:days, 111standards, 512tests, 507

hot water treatment, 347needed per acre, 113per ounce, 113storage, 522yields, 518

shipping containers, 485solar injury, 452spacing, 118, 119storage:

compatibility, 457conditions, 421controlled atmosphere, 439life, 429moisture loss, 442

temperature:classification, 105for growth, 107seed germination, 108

Page 586: HANDBOOK FOR VEGETABLE GROWERS

577

INDEX

tolerance to soil acidity, 159transplant production, 62, 63transplanting, 56vitamin content, 50world production, 44yield per acre, 36, 420

Celeriac (turnip-rooted celery):botanical classification, 7compatibility in mixed loads, 456composition, 46days to maturity, 415edible plant part, 7harvest method, 422in nine languages, 25respiration rate, 436seed:

germination:standards, 512tests, 507

needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 518

shipping containers, 485spacing, 119storage:

compatibility, 457conditions, 431controlled atmosphere, 439moisture loss, 442U.S. grades, 470, 476vitamin content, 50yield per acre, 420

Celery:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 7chilling injury, 446–447compatibility in mixed loads, 456

composition, 46cooling methods, 427days to maturity, 415diseases, 359edible plant part, 7fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 25insects, 376–377nematodes, 352nutrient:

accumulation, 180composition, 190concentration, 198

per capita consumption, 42plant analysis guide, 184postharvest diseases, 461production statistics, 34–35respiration rate, 436response to micronutrients, 239rooting depth, 252seed:

germination:days, 111standards, 512tests, 507

hot water treatment, 347needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 518

shipping containers, 485storage:

compatibility, 457conditions, 431

Page 587: HANDBOOK FOR VEGETABLE GROWERS

578

INDEX

Celery (Continued )controlled atmosphere, 439life, 429moisture loss, 442

salt tolerance, 168spacing, 119temperature:

classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 63transplanting, 56U.S. grades, 470vitamin content, 50yield per acre, 36, 420

Celery, oriental (water dropwort):botanical classification, 7edible plant part, 7

Century plant family, 28Chard, (Swiss chard):

air pollution sensitivity, 312–313botanical classification, 14composition, 49days to maturity, 415edible plant part, 14fertilizer for New England, 227magnesium response, 245harvest method, 422in nine languages, 27respiration rate, 438rooting depth, 252seed:

germination:standards, 512tests, 507

needed per acre, 114per pound, 114production isolation, 514storage, 522yields, 518

storage:

conditions, 431moisture loss, 442

spacing, 119temperature:

classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplanting, 56vitamin content, 52yield per acre, 420

Chaya:botanical classification, 17eible plant part, 17

Chayote (mirliton, vegetable pear):botanical classification, 16chilling injury, 444composition, 47edible plant part, 16shipping containers, 485storage:

compatibility, 457, 558conditions, 431

vitamin content, 50Chervil:

botanical classification, 7days to maturity, 415edible plant part, 7respiration rate, 435spacing, 119

Chervil, tuberousbotanical classification, 7edible plant part, 7

Chestnut, water:botanical classification, 4edible plant part, 4

Chestnut, wild water:botanical classification, 4edible plant part, 4

Chicory, witloof (Belgian endive):botanical classification, 8composition, 47

Page 588: HANDBOOK FOR VEGETABLE GROWERS

579

INDEX

days to maturity, 415edible plant part, 8in nine languages, 25respiration rate, 436seed:

germination:standards, 512tests, 507

needed per acre, 113per ounce, 113production isolation, 514yields, 518

shipping containers, 483spacing, 119storage:

conditions, 431controlled atmosphere, 440planting stock, 131

tolerance to soil acidity, 159vitamin content, 50

Chinese bellflower:botanical classification, 14edible plant part, 14

Chinese lantern plant:botanical classification, 23edible plant part, 23

Chive:botanical classification, 3days to maturity, 415edible plant part, 3seed:

germination:standards, 512tests, 507

storage, 522storage:

conditions, 434respiration rate, 435

Chive, Chinese:botanical classification, 3edible plant part, 3respiration rates, 435

Chrysanthemum, edible:botanical classification, 8edible plant part, 8

Citron (preserving melon):botanical classification, 15edible plant part, 15seed:

germination:standards, 512tests, 507

Coastal glehnia:botanical classification, 7edible plant part, 7

Cockscomb:botanical classification, 7edible plant part, 7

Cold protection:high tunnels, 141row covers, 138–139sprinkler irrigation, 282windbreaks, 140–141

Collards, see KaleComfrey, common:

botanical classification, 10edible plant part, 10

Comfrey, Russianbotanical classification, 10edible plant part, 10

Compatibility in mixed loads, 455–456

Controlling transplant height, 74–75

Cooling vegetables:comparisons of methods, 423forced air, 423, 424, 426–428for specific vegetables, 426–428general, 424–425hydro, 423, 424, 426–428ice, 423, 424, 425, 426–428room, 423, 424, 426–428vacuum, 423, 425, 426–428water spray, 423, 426–428

Page 589: HANDBOOK FOR VEGETABLE GROWERS

580

INDEX

Copper:application, 242critical values, 195–210deficiency symptoms, 232recommendations, 238response, 239soil:

test, 217test interpretation, 324

Cornell peat-lite mix, 65Coriander (cilantro):

botanical classification, 7edible plant part, 7respiration rates, 435seed yields, 519storage, 434

Corn-salad, European:botanical classification, 24days to maturity, 415edible plant part, 24seed:

germination:standards, 512tests, 507

needed per acre, 113per ounce, 113

Corn-salad, Italian:botanical classification, 24edible plant part, 24

Comos:botanical classification, 8edible plant part, 8

Cress, Brazil:botanical classification, 9edible plant part, 9

Cress, garden:botanical classification, 13days to maturity, 415edible plant part, 13harvest method, 422spacing, 119seed germination:

standards, 512tests, 507

tolerance to soil acidity, 159Cress, upland:

botanical classification, 10edible plant part, 10seed germination:

standards, 512tests, 507

Croton:botanical classification, 17edible plant part, 17

Cuckoo flower:botanical classification, 13edible plant part, 13

Cucumber:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 15chilling injury, 444, 446, 447compatibility in mixed loads, 453composition, 47cooling methods, 427days to maturity, 415, 418diseases, 368–370edible plant part, 15ethylene production, 453fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229magnesium response, 245rates per linear bed feet, 221

fresh cut, 481greenhouse production:

nutrient solutions, 92–96nutrient sufficiency ranges, 101pollination, 81–82pruning and tying, 81

Page 590: HANDBOOK FOR VEGETABLE GROWERS

581

INDEX

spacing, 80tissue composition, 100

harvest method, 422in nine languages, 26insects, 382–383nematodes, 352per capita consumption, 42plant analysis guide, 184–185postharvest diseases, 462production statistics, 34–35, 37–

38respiration rate, 436response to micronutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

germination:days, 111standards, 512tests, 508

production isolation, 515needed per acre, 113per pound, 113storage, 522yields, 519

shipping containers, 485spacing, 118, 119storage:

compatibility, 458condition, 431controlled atmosphere, 439moisture loss, 442

temperature:base, 106for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 63transplanting, 56U.S. grades, 470, 476vitamin content, 51

world production, 44yield per acre, 36, 38, 420

Cucumber, African horned (kiwano):botanical classification, 15edible plant part, 15storage compatibility, 458

Cypress, mock:botanical classification, 14edible plant part, 14

Daikon:botanical classification, 13edible plant part, 13storage:

compatibility, 457conditions, 431

Dandelion:botanical classification, 9days to maturity, 415edible plant part, 9harvest method, 422seed:

germination:standards, 512tests, 508

needed per acre, 113per ounce, 113

shipping containers, 486spacing, 119tolerance to soil acidity, 159U.S. grades, 470

Danish names of vegetables, 25–27Daylily:

botanical classification, 4edible plant part, 4

DIF, response of transplants, 75–76Dill:

seed:germination:

standards, 512tests, 508

storage:

Page 591: HANDBOOK FOR VEGETABLE GROWERS

582

INDEX

Dill (Continued )conditions, 434respiration rates, 435

Diseases:control, 356–370descriptions, 356–370general control program, 354–355postharvest, 459–464transplant production, 73–74

Dock:botanical classification, 22edible plant part: 22

Dutch names of vegetables, 25–27

Egg, garden:botanical classification, 23edible plant part, 23

Eggplant, (aubergine):air pollutant sensitivity, 312–313botanical classification, 23chilling injury, 444, 446, 447compatibility in mixed loads, 455composition, 47cooling methods, 427days to maturity, 416, 418diseases, 359edible plant part, 23ethylene production, 453fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 227New York, 229magnesium response, 245rates for linear bed feet, 221

harvest method, 422in nine languages, 26insects, 377nematodes, 352nutrient:

concentration, 199–200fresh petiole concentration, 211

plant analysis guide, 185postharvest diseases, 464respiration rate, 436rooting depth, 252seed:

germination:days, 111standards, 512tests, 508

hot water treatment, 347needed per acre, 113production isolation, 515storage, 522yields, 519

shipping containers, 486spacing, 119storage:

compatibility, 457, 458conditions, 431life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 63transplanting, 56U.S. grades, 471vitamin content, 51world production, 44yield per acre, 420

Eggplant, African:botanical classification, 23edible plant part, 23

Eggplant, pea:botanical classification, 23edible plant part, 23

Eggplant, scarlet (tomato eggplant):botanical classification, 23edible plant part, 23

Page 592: HANDBOOK FOR VEGETABLE GROWERS

583

INDEX

Elephant grass (napier grass):botanical classification, 5edible plant part, 5

Emilia (false sow-thistle):botanical classification, 8edible plant part, 8

Endive, Escarole:air pollutant sensitivity, 312, 313botanical classification, 8chilling injury, 446compatibility in mixed loads, 456composition, 47cooling methods, 426days to maturity, 416diseases, 359–360edible plant part, 8fertilizer:

New England, 228New York, 229

harvest method, 422in nine languages, 26insects, 377nutrient concentration, 200postharvest diseases, 463respiration rate, 437rooting depth, 252seed:

germination:standards, 512tests, 508

needed per acre, 113per ounce, 113yields, 519

shipping containers, 486spacing, 119storage:

conditions, 431life, 429moisture loss, 442

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159U.S. grades, 471vitamin content, 51yield per acre, 420

Ethylene production, 453Epazote:

storage, 434Evening primrose:

botanical classification, 21edible plant part, 21

Evening primrose family, 21

Farfugium, Japanese:botanical classification, 8edible plant part, 8

Fennel:botanical classification, 7days to maturity, 416edible plant part, 7harvest method, 422respiration rates, 435seed:

germination tests, 508needed per acre, 113per ounce, 113yields, 519

spacing, 119storage compatibility, 457tolerance to soil acidity, 159

Fern, bracken:botanical classification, 2edible plant part, 2

Fern, cinnamon:botanical classification, 2edible plant part, 2

Fern group, 2Fern, vegetable:

botanical classification, 2edible plant part, 2

Fern, water:botanical classification, 2edible plant part, 2

Page 593: HANDBOOK FOR VEGETABLE GROWERS

584

INDEX

Fertilizer:boron recommendations, 244carrier needed, 173composition, 171conversion factors, 176–178definitions, 170distributors:

adjustment:row crop, 246grain drill type, 247

calibration, 248effect on soil reaction, 165for Florida, 225–226for Mid-Atlantic states, 223–224for New England, 227–228for New York, 229magnesium response, 245micronutrient application, 242–

243nitrogen materials, 174overhead irrigation applied, 280–

281quantity to use, 212–213rates for linear bed feet

application, 221–222salt effects, 166–167solubility, 172tests:

California extraction, 218Mehlich extraction, 216, 217Olsen bicarbonate extraction

method, 215predicted crop response, 214pre-sidedress N sweet corn, 219

transplant starter solutions, 78Flameflower:

botanical classification, 22edible plant part, 22

Flemingia:botanical classification, 17edible plant part, 17

Florence fennel:

botanical classification, 7edible plant part, 7

Flowering fern, Japanese:botanical classification, 2edible plant part, 2

Flowering rush family, 5Four O’clock family, 21Flowers, edible and garnish:

cautions, 28common names:

apple (crabapple), 32arugula, 29balm, bee, 30balm, lemon, 30basil, 30bean, scarlet runner, 30begonia, eukerous, 29borage, 29burnet, 31calendula, 29chamomile, English, 29chicory, 29chive, Chinese, 28chrysanthemum, 29chrysanthemum, garland, 29clover, red, 30coriander, 28daisy, English, 29daisy, oxeye, 29dandelion, 29daylily, 31dill, 28fennel, 28garlic, society, 28geranium, scented, 30gladiolus, 30guava, pineapple, 31hibiscus, 31hollyhock, 31hyacinth, grape, 31hyssop, 30Johnny-jump-up, 32

Page 594: HANDBOOK FOR VEGETABLE GROWERS

585

INDEX

lavender, 30lemon, 32lilac, 31marjoram, 30marigold, African, 29marigold, signet, 29mint, 30mustard, 29nasturtium, 32okra, 31orange, 32oregano, 30pansy, 32pea, garden, 30pinks, 29radish, 29redbud, 30rosemary, 31rose of sharon, 31safflower, 29sage, 31sage, pineapple, 31savory, summer, 31savory, winter, 31squash, summer (pumpkin), 29thyme, 31tulip, 31violet, 32woodruff, sweet, 32yucca, 28

Foxnut:botanical classification, 21edible plant part, 21

Food safety:farm contamination sources, 402good agricultural practices, 404–

405human pathogens, 404in harvest and postharvest

operations, 403–404in vegetable production, 403sanitizing chemicals, 406–407

French names of vegetables, 25–27Fresh-cut vegetables:

storage:compatibility, 457life, 429

Frost protection:row covers, 138–39sprinkler irrigation, 282

Galinsaga:botanical classification, 9edible plant part, 9

Gallan:botanical classification, 3edible plant part, 3

Garbanzo, (chickpea):botanical classification, 17edible plant part, 17

Garlic:boron:

in irrigation water, 307response, 240–241

botanical classification, 3chilling injury, 446cloves needed per acre, 131compatibility in mixed loads, 456composition, 47cooling methods, 427edible plant part, 3freezing injury, 449fresh cut, 481harvest method, 422nutrient concentration, 191per capita consumption, 42physiological disorders, 450plant analysis guide, 185postharvest diseases, 460production statistics, 34–35respiration rate, 437rooting depth, 252shipping containers, 486solar injury, 452

Page 595: HANDBOOK FOR VEGETABLE GROWERS

586

INDEX

Garlic (Continued )spacing, 119storage:

compatibility, 457conditions, 431curing conditions, 441life, 429moisture loss, 442of planting stock, 130

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159U.S. grades, 471vitamin content, 51world production, 44yield per acre, 36, 420

Garlic, great headed:botanical classification, 3edible plant part, 3

Garlic, Japanese:botanical classification, 3edible plant part, 3

General postharvest handlingprocedures:

immature fruit vegetables, 413leafy, floral and succulent

vegetables, 411mature fruit vegetables, 414underground storage organ

vegetables, 412Geranium family, 30German names of vegetables, 25–27Getang:

botanical classification, 9edible plant part, 9

Gherkin, West Indian:botanical classification, 15edible plant part, 15

Gila (jilo):botanical classification, 23edible plant part, 23

Ginger:botanical classification, 6chilling injury, 444, 446, 448compatibility in mixed loads, 455,

456edible plant part, 6harvest method, 422respiration rate, 435shipping containers, 486storage:

compatibility, 458conditions, 431moisture loss, 442

Ginger family, 5–6Ginger, Japanese wild:

botanical classification, 6edible plant part, 6

Ginseng:respiration rate, 435

Gnetum family, 19Goatsbeard (meadow salsify)

botanical classification, 9edible plant part, 9

Gobouazami:botanical classification, 8edible plant part, 8

Gogoro:botanical classification, 21edible plant part, 21

Good King Henry:botanical classification, 14edible plant part, 14

Goosefoot family, 14Gourd, bottle (calabash gourd):

botanical classification, 16edible plant part, 16

Gourd family, 14–16, 29Gourd, fly-leaf (Malabar gourd):

botanical classification, 15edible plant part, 15

Gourd, fluted (fluted pumpkin):botanical classification, 16

Page 596: HANDBOOK FOR VEGETABLE GROWERS

587

INDEX

edible plant part, 16Gourd, Japanese snake:

botanical classification, 16edible plant part, 16

Gourd, pointed:botanical classification, 16edible plant part, 16

Gourd, snake:botanical classification, 16edible plant part, 16

Gram, black (urd):botanical classification, 19edible plant part, 19

Gram, horse:botanical classification, 17edible plant part, 17

Grape family, 24Grass family, 5Greater galangal:

botanical classification, 6edible plant part, 6

Greenhouse crop production:carbon dioxide enrichment, 83–84cultural management, 79–82

greenhouse design, 79pest monitoring, 80pollination, 81–82pruning and tying, 81sanitation, 80spacing, 80temperature, 81

information sources, 102nutrient solutions:

for tomato in Florida, 97–99Hoagland’s, 92–94Jensen’s, 96Johnson’s, 95

nutrient sufficiency ranges, 101soilless culture, 85–92

liquid, 85–86, 89media, 86–92

tissue composition, 100

Groundnut:botanical classification, 17edible plant part, 17

Groundnut, hausa:botanical classification, 17edible plant part, 17

Groundnut, Madagascar:botanical classification, 19edible plant part, 19

Guasca:botanical classification, 9edible plant part, 9

Gynura:botanical classification, 9edible plant part, 9

Harvest:hand vs. mechanical, 422time to, 415–417

Hastate-leaved pondweed:botanical classification, 5edible plant part, 5

Hawksbeard velvetplant:botanical classification, 8edible plant part, 8

Herbs:cooling methods, 428storage:

compatibility, 457conditions, 434controlled atmosphere, 439

Herbicides:application rates, 397cleaning sprayers, 396–397dilution table, 398weed control, 396

Hibiscus root:botanical classification, 20edible plant part, 20

High tunnels, 141Honeybees:

pesticide hazards, 325

Page 597: HANDBOOK FOR VEGETABLE GROWERS

588

INDEX

Honeybees (Continued )pollination, 514–515

Hops:botanical classification, 21edible plant part, 21

Horn of plenty (African valerian):botanical classification, 8edible plant part, 8

Hornwart, Japanese:botanical classification, 7edible plant part, 7

Horseradish:botanical classification, 10compatibility in mixed loads, 456edible plant part, 10harvest method, 422in nine languages, 26root cuttings needed per acre, 131spacing, 119storage:

compatibility, 457conditions, 431of planting stock, 130

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159yield per acre, 240

Horsetail:botanical classification, 2edible plant part, 2

Horsetail family, 2Hyacinth, tuffed:

botanical classification, 4edible plant part, 4

Hydrocotyl:botanical classification, 7edible plant part, 7

Icacina family, 20Ice plant:

botanical classification, 6

edible plant part, 6Information sources:

best management practices, 144–45

cold protection, 282–283disease identification, 371edible flowers, 32fertilizer recommendations, 230food safety, 402fresh cut vegetables, 479general, 542–545greenhouse vegetables, 102insects, 383–384integrated pest management

(IPM), 315–316high tunnels, 141organic pest management, 386pesticide safety, 323–324plasticulture, 141postharvest handling, 410, 502seed:

organic, 349production, 517treatment, 348

soil solarization, 318–319soil testing, 220spray adjuvant, 346sprayer calibration, 338–339toxicity of pesticides, 326transplant production, 79units and conversions, 564weeds:

control, 399cover crops, 395identification, 393noxious, 393organic farming, 394–395

wildlife control, 388Inkweed:

botanical classification, 22edible plant part, 22

Insects:

Page 598: HANDBOOK FOR VEGETABLE GROWERS

589

INDEX

descriptions, 373–383identification, 383–384

Integrated pest management (IPM):basics, 314–315diseases, 354–355guidelines, 342–345insects, 372nematodes, 351, 353organic systems, 385weeds, 390–392

Iron:application, 242critical values, 195–210deficiency symptoms, 232response, 239soil test interpretation, 234

Iris family, 4, 30Irrigation:

drip:chlorine treatment, 290–291discharge per acre, 286fertilizer injection, 291–302maximum application, 289system components, 284volume available, 288volume to apply, 285water per bed spacing, 287

furrow:available water depletion, 260basin, 261bed arrangement, 258fertilizer:

flow, 269application, 267–268

infiltration rate, 260siphons, 266–267time required, 263–264water:

applied, 262flow, 259to wet, 265

management, 250–251

sprinkler (overhead):acreage covered per move, 272application, 261calculation of rates, 273cold protection, 282–283fertilizer application, 280–281flow required, 279layout of system, 270pipe size, 276–277power required, 278precipitation rates, 274–275

supplying water to crops, 250transplant production, 70–71, 77water quality:

guidelines, 303–304tolerance to boron, 307trace elements, 305yield loss, 306

Italian names of vegetables, 25–27Ivy gourd (tindora):

botanical classification, 15edible plant part, 15

Jew’s marrow:botanical classification, 24edible plant part, 24

Jicama (Mexican yam bean):botanical classification, 18chilling injury, 444, 448edible plant part, 18fresh cut, 481respiration rate, 437shipping containers, 487storage:

compatibility, 448conditions, 431

Kale (collards):botanical classification, 11chilling injury, 447composition, 47cooling methods, 426

Page 599: HANDBOOK FOR VEGETABLE GROWERS

590

INDEX

Kale (collards) (Continued )days to maturity, 245diseases, 357–358edible plant part, 11fertilizer for Florida, 225harvest method, 422in nine languages, 26insects, 375–376nematodes, 352nutrient concentration, 199postharvest diseases, 461seed:

germination:standards, 512tests, 507

hot water treatment, 347needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 519

shipping containers, 487spacing, 120storage:

compatibility, 447conditions, 431

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159U.S. grades, 470vitamin content, 51yield per acre, 240

Kale, Chinese:botanical classification, 12edible plant part, 12seed germination:

standards, 512tests, 508

Kale, marrow stem:botanical classification, 12edible plant part, 12

Kale, sea:botanical classification, 13edible plant part, 13

Kale, Siberian (Hanover salad):botanical classification, 11edible plant part, 11seed germination:

standards, 512tests, 508

Kale, thousand-headed:botanical classification, 12edible plant part, 12

Kangaroo vine:botanical classification, 24edible plant part, 24

Kohlrabi:botanical classification, 12chilling injury, 447compatibility in mixed loads, 456composition, 47days to maturity, 416diseases, 357–358edible plant part, 12harvest method, 422in nine languages, 26insects, 375–376respiration rate, 437seed:

germination:standards, 512test, 508

hot water treatment, 347needed per acre, 113per ounce, 113production isolation, 515storage, 522yields, 519

spacing, 120storage:

compatibility, 457conditions, 431moisture loss, 442

Page 600: HANDBOOK FOR VEGETABLE GROWERS

591

INDEX

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159vitamin content, 51

Kudzu:botanical classification, 19edible plant part, 19

Kurrat:botanical classification, 3edible plant part, 3

Large seeds planting rate, 115–117Leafy greens:

moisture loss in storage, 442Leek, sand (giant garlic):

botanical classification, 3edible plant part, 3

Leek:botanical classification, 3compatibility in mixed loads, 456composition, 47cooling methods, 428days to maturity, 416edible plant part, 3fertilizer for Mid-Atlantic states,

223fresh cut, 481in nine languages, 26postharvest diseases, 460respiration rate, 437rooting depth, 252seed:

germination:standards, 512tests, 508

needed per acre, 113per pound, 113production isolation, 515storage, 522yields, 519

spacing, 120

storage:compatibility, 457conditions, 431controlled atmosphere, 439moisture loss, 442

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159vitamin content, 51

Leek, turfed stone:botanical classification, 3edible plant part, 3

Lentil:botanical classification, 17edible plant part, 17

Lettuce, asparagus (celtuce):botanical classification, 9edible plant part, 9

Lettuce, cut:controlled atmosphere in storage,

439Lettuce, greenhouse production:

nutrient solutions, 92–96nutrient sufficiency ranges, 101spacing, 80

Lettuce, head (crisphead,butterhead):

air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 9chilling injury, 446–447compatibility in mixed loads, 456composition, 47cooling methods, 426days to maturity, 416diseases, 359–360edible plant part, 9fertilizer:

Florida, 225

Page 601: HANDBOOK FOR VEGETABLE GROWERS

592

INDEX

Lettuce, head (crisphead,butterhead) (Continued )Mid-Atlantic states, 223New England, 228New York, 229magnesium response, 245rates per liner bed feet, 221

freezing injury, 449fresh cut, 481harvest method, 422in nine languages, 26insects, 377nutrient:

accumulation, 180composition, 191concentration, 200–202

per capita consumption, 42physiological disorders, 450plant analysis guide, 185postharvest diseases, 463production statistics, 34–35respiration rate, 437response to micronutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

germination:days, 111standards, 512tests, 509

needed per acre, 113per ounce, 113storage, 522yields, 519

shipping containers, 487solar injury, 452spacing, 118, 120storage:

compatibility, 457conditions, 431controlled atmosphere, 439

life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 64transplanting, 56U.S. grades, 471vitamin content, 51world production, 44yield per acre, 36, 420

Lettuce, Indian:botanical classification, 9edible plant part, 9

Lettuce, leaf:botanical classification, 9composition, 47controlled atmosphere storage,

439cooling methods, 426days to maturity, 416edible plant part, 9postharvest diseases, 463production statistics, 34–35respiration rate, 437shipping containers, 487spacing, 120U.S. grades, 471yield per acre, 36, 420

Lettuce, romaine:botanical classification, 9composition, 47cooling methods, 426days to maturity, 416edible plant part, 9fresh cut, 481harvest method, 422nutrient concentration, 202postharvest diseases, 463

Page 602: HANDBOOK FOR VEGETABLE GROWERS

593

INDEX

production statistics, 34–35shipping containers, 488spacing, 120U.S. grades, 471vitamin content, 51yield per acre, 36, 420

Lettuce, wild:botanical classification, 9edible plant part, 9

Lily:botanical classification, 4edible plant part, 4

Lily family, 2, 31Liming materials, 163Lizard’s tail family, 22Long zedoary:

botanical classification, 6edible plant part, 6

Loofah, angled:botanical classification, 16edible plant part, 16respiration rate, 437

Loofah, smooth (sponge gourd):botanical classification, 16edible plant part, 16respiration rate, 437

Lotus family, 21Lotus root:

botanical classification, 21edible plant part, 21

Lupin:botanical classification, 17edible plant part, 17

Maca:botanical classification, 13edible plant part, 13

Magnesium:application, 242–243conversion factors, 177critical values, 195–210deficiency symptoms, 232

soil tests:ammonium acetate extraction,

215Mehlich-1 extraction, 216–217Mehlich-3 extraction, 216

tolerance, 245Malanga (tannia, yautia):

botanical classification, 3chilling injury, 448edible plant part, 3harvest method, 422storage:

compatibility, 458conditions, 431curing conditions, 441

Manganese:application, 243critical values, 195–210deficiency symptoms, 232recommendations, 235–236response, 239soil test, 217, 234

Madder family, 32Mallow:

botanical classification, 21edible plant part, 21

Mallow family, 20–21, 31Mango:

botanical classification, 15edible plant part, 15

Manure:composition, 151nitrogen losses, 152

Marigold, bur:botanical classification, 8edible plant part, 8

Marjoram:botanical classification, 20edible plant part, 20respiration rates, 435

Marketing:direct:

Page 603: HANDBOOK FOR VEGETABLE GROWERS

594

INDEX

Marketing (Continued )farmer’s market, 498–499pick-your-own, 498–499roadside market, 498–499

wholesale:broker, 500–501cooperative, 500–501local wholesale, 500–501terminal market, 500–501

Mauka:botanical classification, 21edible plant part, 21

Measurements:application rates, conversions, 559heat and energy equivalents, 564metric, 553SI and non-SI conversion factors,

554–558area, 554energy, 557length, 554mass, 555pressure, 556specific surface, 556temperature, 556transpiration and

photosynthesis, 557volume, 554–555water, 558yield and rate, 555

U.S. units, 549conversion factors, 550–552

water and soil solutionconversions, 560

Melon, honeydew (casaba melon):botanical classification, 15chilling injury, 444composition, 47cooling methods, 427days to maturity, 416edible plant part, 15ethylene production, 453

fresh cut, 482nutrient accumulation, 180per capita consumption, 42postharvest diseases, 462production statistics, 34–35respiration rate, 437seed:

production isolation, 515storage, 522

solar injury, 452shipping containers, 488storage:

compatibility, 458conditions, 431moisture loss, 442

U.S. grades, 471vitamin content, 51yield per acre, 36

Melon, snake (Japanese cucumber):botanical classification, 15edible plant part, 15

Melon, white seeded:botanical classification, 18edible plant part, 18

Micronutrients:boron response, 240–241, 244copper recommendations, 238crop response, 239interpretations of soil tests, 234manganese recommendations,

235–236soil and foliar applications, 242–

243Mignonette:

botanical classification, 22edible plant part, 22

Mignonette family, 22Mimosa, water:

botanical classification, 15edible plant part, 15

Minimally processed vegetables(fresh-cut):

Page 604: HANDBOOK FOR VEGETABLE GROWERS

595

INDEX

basic requirements, 479processing location, 480

local, 480production source, 480regional, 480

storage, 481–482Mint storage:

compatibility, 457conditions, 434respiration rate, 435

Mint family, 20, 30–31Mint, pennyroyal:

botanical classification, 20edible plant part, 20

Molybdenum:application, 243critical values, 195–210deficiency symptoms, 233response, 239soil test interpretation, 234

Mugwort:botanical classification, 8edible plant part, 8

Mulberry family, 21, 29Mushroom:

chilling injury, 446compatibility in mixed loads, 456composition, 47cooling methods, 427harvest method, 422per capita consumption, 42production statistics, 34respiration rate, 437shipping containers, 488–489storage:

compatibility, 457conditions, 432controlled atmosphere, 439life, 429moisture loss, 442

U.S. grades, 471, 476vitamin content, 51

world production, 44Mulch:

polyethylene, 134–37Mustard, Abyssinian:

botanical classification, 10edible plant part, 10

Mustard, bamboo shoot:botanical classification, 10edible plant part, 10

Mustard, black:botanical classification, 11edible plant part, 11

Mustard, broad-beaked:botanical classification, 12edible plant part, 12

Mustard, capitata:botanical classification, 10edible plant part, 10

Mustard, curled:botanical classification, 10edible plant part, 10

Mustard, flowerlike leaf:botanical classification, 11edible plant part, 11

Mustard, gemmiferous:botanical classification, 10edible plant part, 10

Mustard, hill:botanical classification, 13edible plant part, 13

Mustard, involute:botanical classification, 11edible plant part, 11

Mustard, line:botanical classification, 11edible plant part, 11

Mustard, long-petiole:botanical classification, 11edible plant part, 11

Mustard, peduncled:botanical classification, 11edible plant part, 11

Page 605: HANDBOOK FOR VEGETABLE GROWERS

596

INDEX

Mustard, small-leaf:botanical classification, 10edible plant part, 10

Mustard, spinach (tendergreen):air pollutant sensitivity, 312–313botanical classification, 12composition, 47edible plant part, 12fertilizer for Florida, 225harvest method, 422insects, 377rooting depth, 252seed:

production isolation, 515yields, 519

spacing, 120storage:

compatibility, 457conditions, 432

tolerance to soil acidity, 159U.S. grades, 472vitamin content, 51

Mustard, strumous:botanical classification, 11edible plant part, 11

Mustard, swollen-stem:botanical classification, 11edible plant part, 11

Mustard, tillered:botanical classification, 11edible plant part, 11

Mustard, tuberous-rooted:botanical classification, 11edible plant part, 11

Mustard, white:botanical classification, 13edible plant part, 13

Mustard, white-flowered:botanical classification, 11edible plant part, 11

Mustard, wide-petiole:botanical classification, 11

edible plant part, 11Mustard family, 10–13, 29Mustard greens, (brown mustard):

botanical classification, 11edible plant part, 11

Myrtle family, 31Myrr, garden:

botanical classification, 7edible plant part, 7

Naranjillo:botanical classification, 23edible plant part, 23

Nasturtium family, 32Nematodes:

common, 350economically important, 352management, 353

Nettle family, 24Nettle, stinging:

botanical classification, 24edible plant part, 24

New Zealand spinach:botanical classification, 6edible plant part, 6in nine languages, 27seed:

germination:standards, 513tests, 510

needed per acre, 114per pound, 114yields, 519

spacing, 120temperature:

classification, 105for growth, 107

tolerance to soil acidity, 159Nightshade, American black:

botanical classification, 23edible plant part, 23

Nightshade, black:

Page 606: HANDBOOK FOR VEGETABLE GROWERS

597

INDEX

botanical classification, 23edible plant part, 23

Nightshade family, 23–24Nitrogen:

absorption, 179–181composition of organic materials,

153–155conversion factors, 177–78critical values, 195–210crop accumulation, 180–181deficiency symptoms, 231diagnosis, 190–94fertilizers, 174, 175loss from manure, 152manure composition, 151plant analysis guide, 182–189recommendations:

Florida, 225–226Mid-Atlantic states, 223–224New England, 227–228New York, 229

sap testing, 211soil tests, 219, 231

Nutrient deficiency symptoms:boron, 231calcium, 232copper, 232iron, 232magnesium, 232manganese, 232molybdenum, 233nitrogen, 231phosphorus, 231potassium, 231zinc, 233

Nutrient solutions:for tomatoes in Florida, 97–99Hoagland’s, 92–94Jensen’s, 96

Oca (oca):botanical classification, 21

edible plant part, 21Okra, (gumbo):

air pollutant sensitivity, 312–313botanical classification, 20chilling injury, 444, 446, 447compatibility in mixed loads, 455composition, 47cooling methods, 427days to maturity, 416, 418diseases, 360edible plant part, 20ethylene production, 453fertilizer for Florida, 225harvest method, 422insects, 377nematodes, 352nutrient concentration, 202respiration rate, 437seed:

certified, 516germination:

standards, 512tests, 509

needed per acre, 114per pound, 114yields, 519

shipping containers, 489spacing, 120storage:

conditions, 432controlled atmosphere, 439life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 472, 476vitamin content, 51world production, 44

Page 607: HANDBOOK FOR VEGETABLE GROWERS

598

INDEX

Okra, (gumbo) (Continued )yield per acre, 421

Olive family, 31Onion:

air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 3chilling injury, 446, 447compatibility in mixed loads, 456composition, 47cooling methods, 427days to maturity, 416diseases, 361edible plant part, 3fertilizer:

Florida, 225Mid-Atlantic states, 223New England, 228New York, 229

freezing injury, 489fresh cut, 482harvest method, 422in nine languages, 26insects, 377nematodes, 352nutrient:

accumulation, 180composition, 191–192concentration, 202

per capita consumption, 42physiological disorders, 451plant analysis guide, 185postharvest diseases, 460production statistics, 34–35respiration rates, 437response to nutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

certified, 516germination:

standards, 512tests, 509

needed per acre, 114per pound, 114production isolation, 515storage, 522yields, 519

sets needed per acre, 131shipping containers, 489solar injury, 452spacing, 118, 120sprout inhibitors, 443storage:

compatibility, 458conditions, 432controlled atmosphere, 439curing conditions, 441life, 429moisture loss, 442sets for propagation, 130

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 64transplanting, 56U.S. grades, 472, 476vitamin content, 51world production, 44yield per acre, 36, 421

Onion family, 3, 28Onion, longroot:

botanical classification, 3edible plant part, 3

Onion, tree ( Egyptian onion):botanical classification, 3edible plant part, 3

Onion, Welch (Japanese bunchingonion):

Page 608: HANDBOOK FOR VEGETABLE GROWERS

599

INDEX

botanical classification, 3compatibility in mixed loads, 456composition, 47cooling methods, 427days to maturity, 416edible plant part, 3fresh cut, 482harvest method, 422seed:

germination:standards, 512tests, 509

storage, 522shipping containers, 489storage:

compatibility, 457conditions, 432controlled atmosphere, 439life, 429moisture loss, 422

vitamin content, 51Orach:

botanical classification, 14edible plant part, 14tolerance to soil acidity, 159

Organic matter:composition of materials, 152–155environmental aspects, 147function, 146soil amendments, 146

Organic production systems:pest management, 385–386seed treatments, 349weed management, 394–395

Oregano:storage:

conditions, 434respiration rates, 435

Orpine family, 14Oval-leaved pondweed:

botanical classification, 5edible plant part, 5

Oxalis family, 21Oyster nut:

botanical classification, 16edible plant part, 16

Packinghouse sanitizing chemicals,406–407

Pak choi (Chinese mustard):botanical classification, 12edible plant part, 12

Pak choi, mock (Choy sum):botanical classification, 12edible plant part, 12

Palm grass:botanical classification, 5edible plant part, 5

Parrot’s feather:botanical classification, 20edible plant part, 20

Parsley:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 7chilling injury, 446, 447compatibility in mixed loads, 456composition, 47days to maturity, 416edible plant part, 7fertilizer for Florida, 226harvest method, 422in nine languages, 26respiration rate, 437rooting depth, 252seed:

germination:days, 112standards, 512tests, 509

needed per acre, 114per pound, 114

Page 609: HANDBOOK FOR VEGETABLE GROWERS

600

INDEX

Parsley (Continued )production isolation, 515

shipping containers, 490spacing, 120storage:

compatibility, 457conditions, 432, 434controlled atmosphere, 439moisture loss, 442

temperature:classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 472vitamin content, 51

Parsley, Italian:botanical classification, 7edible plant part, 7

Parsley, turnip-rooted:botanical classification, 7days to maturity, 416edible plant part, 7harvest method, 422spacing, 120

Parsnip:air pollutant sensitivity, 312–313botanical classification, 7chilling injury, 446–447compatibility in mixed loads, 456composition, 48days to maturity, 416diseases, 361edible plant part, 7fertilizer for New England, 227harvest method, 422in nine languages, 26insects, 378respiration rate, 437rooting depth, 255seed:

germination:

days, 112standards, 512

needed per acre, 114per pound, 114storage, 522yields, 519

shipping containers, 490spacing, 120storage:

compatibility, 457conditions, 432moisture loss, 442

temperature:classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 472vitamin content, 51

Passion flower:botanical classification, 21edible plant part, 21

Passion flower family, 21Pea, Cajan (pigeon pea):

botanical classification, 17edible plant part, 17

Pea, chickling:botanical classification, 17edible plant part, 17

Pea family, 17–19, 30Pea, asparagus (winged pea):

botanical classification, 17edible plant part, 17

Pea, garden:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 18chilling injury, 446–447compatibility in mixed loads, 456composition, 48

Page 610: HANDBOOK FOR VEGETABLE GROWERS

601

INDEX

cooling methods, 427days to maturity, 416diseases, 361–362edible plant part, 18fertilizer:

Mid-Atlantic states, 224New England, 228New York, 229magnesium response, 245

harvest method, 422in nine languages, 26insects, 378nematodes, 352nutrient accumulation, 181per capita consumption, 42postharvest diseases, 462production statistics, 37–38respiration rate, 437response to micronutrients, 239rooting depth, 252seed:

germination:days, 112standards, 512tests, 509

needed per acre, 114per pound, 114storage, 522yields, 519

shipping containers, 490spacing, 120storage:

compatibility, 457conditions, 432life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159

U.S. grades, 473, 476vitamin content, 51world production, 44yield per acre, 38, 421

Pea, snow (edible-podded pea):botanical classification, 18composition, 48days to maturity, 416edible plant part, 18postharvest diseases, 462respiration rate, 437shipping containers, 490storage:

compatibility, 457conditions, 432controlled atmosphere, 439

vitamin content, 51yield per acre, 421

Pea, southern (cowpea):air pollutant sensitivity, 312–313botanical classification, 19composition, 48days to maturity, 417diseases, 364edible plant part, 19fertilizer for Florida, 226insects, 379nutrient:

composition, 193concentration, 205

seed:certified, 516germination:

standards, 512tests, 507

needed per acre, 114per pound, 114yields, 520

shipping containers, 490spacing, 120storage:

compatibility, 458

Page 611: HANDBOOK FOR VEGETABLE GROWERS

602

INDEX

Pea, southern (cowpea) (Continued )conditions, 432

temperature:classification, 105for growth, 107

U.S. grades, 473, 77vitamin content, 52yield per acre, 421

Peanut (groundnut):botanical classification, 17edible plant part, 17

Pedalium family, 21Pepino (cyclanthera):

botanical classification, 5edible plant pat, 15

Pepino (sweet pepino):botanical classification, 23chilling injury, 446edible plant part, 23shipping containers, 490storage:

compatibility, 458conditions, 432

Pepper, bell:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 23chilling injury, 445, 446, 447compatibility in mixed loads, 455composition, 48cooling methods, 427days to maturity, 416, 418diseases, 362edible plant part, 23ethylene production, 453fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 228New York, 229

magnesium response, 245rates per linear bed feet, 221

freezing injury, 449fresh cut, 482harvest method, 422in nine languages, 26insects, 378nematodes, 352nutrient:

accumulation, 181composition, 203concentration, 192fresh petiole concentration, 211

per capita consumption, 42plant analysis guide, 186–87postharvest diseases, 464production statistics, 34–35respiration rate, 437rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

certified, 516germination:

days, 112standards, 512tests, 509

hot water treatment, 347needed per acre, 114per pound, 114production isolation, 515storage, 522yields, 520

shipping containers, 490–491solar injury, 452spacing, 120storage:

compatibility, 458conditions, 432controlled atmosphere, 439life, 429moisture loss, 442

Page 612: HANDBOOK FOR VEGETABLE GROWERS

603

INDEX

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 64transplanting, 56U.S. grades, 473, 476vitamin content, 51world production, 44yield per acre, 38, 421

Pepper, cayenne (chile pepper):botanical classification, 23composition, 48days to maturity, 416edible plant part, 23per capita consumption, 42plant analysis guide, 185–186postharvest diseases, 464production statistics, 34–35storage:

compatibility, 458conditions, 432controlled atmosphere, 439

vitamin content, 51yield per acre, 36, 421

Pepper, Scotch bonnet (habaneropepper):

botanical classification, 23edible plant part, 23

Pepper, small:botanical classification, 23edible plant part, 23

Pepper, tobasco:botanical classification, 23edible plant part, 23

Perilla (shiso):botanical classification, 20edible plant part, 20storage, 434

Periodicals, 546–548

Pesticide:dilution, 340–341effective control, 342–345equivalents, 340formulations, 326–327hazards to honeybees, 325preventing spray drift, 327safety:

worker protection standards,320–323

general suggestions, 320rates for small plantings, 342toxicity, 325–326

Pesticide application and equipment:cleaning herbicide sprayers, 396–

397distance traveled at various

speeds, 329equipment:

aerial application, 332calibration, 333–338ground application:

air-blast sprayers, 331–332air boom sprayers, 332boom-type sprayers, 331estimation of crop area, 328

time required to work an acre,331

Phosphorous:composition of organic materials,

153–155conversion factors, 178crop accumulation, 180–181critical values, 195–210deficiency symptoms, 231diagnosis, 190–194manure composition, 151plant analysis guide, 182–189recommendations:

Florida, 225–226Mid-Atlantic states, 223–224New England, 227–228

Page 613: HANDBOOK FOR VEGETABLE GROWERS

604

INDEX

Phosphorous (Continued )New York, 229

soil tests:bicarbonate extraction, 215Mehlich-1 extraction, 216–217Mehlich-3 extraction, 216

yield response, 218Pickerelweed famiy, 5Pickling melon, Oriental:

botanical classification, 15edible plant part, 15

Pilea:botanical classification, 24edible plant part, 24

Plantain:botanical classification, 5edible plant part, 5ethylene production, 453

Plant analysis, 182–211Plantain, buckshorn:

botanical classification, 22edible plant part, 22

Plantain family, 22Plant growing problems, 72–73Plastic high tunnels, 141Poke:

botanical classification, 22edible plant part, 22

Poke, Indian:botanical classification, 22edible plant part, 22

Pokeweed:botanical classification, 22edible plant part, 22

Pokeweed family, 21–22Poppy family, 31Portuguese names of vegetables, 25–

27Postharvest:

diseases:integrated control, 459casual agent, 460–464

handling procedures:immature fruit vegetables, 413leafy, floral and succulent

vegetables, 411mature fruit vegetables, 414underground storage organ

vegetables, 412Potato, hausa:

botanical classification, 20edible plant part, 20

Potato, raffin:botanical classification, 20edible plant part, 20

Potato:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 24chilling injury, 445, 447, 448compatibility in mixed loads, 455composition, 48cooling methods, 426crop utilization, 40days to maturity, 416diseases, 362–363edible plant part, 24ethylene production, 453fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 228New York, 229magnesium response, 245

freezing injury, 449fresh cut, 482harvest method, 422in nine languages, 26insects, 378–379nematodes, 352physiological disorders, 451postharvest diseases, 463

Page 614: HANDBOOK FOR VEGETABLE GROWERS

605

INDEX

production statistics, 34–35respiration rate, 437rooting depth, 252salinity yield loss, 306seed needed per acre, 132–133shipping containers, 491solar injury, 452spacing, 120sprout inhibitors, 443storage:

compatibility, 458conditions, 432curing conditions, 441life, 429moisture loss, 442

tolerance to soil acidity, 159U.S. grades, 473, 476vitamin content, 52world production, 44yield per acre, 36, 421

Potassium:composition of organic materials,

153–155conversion factors, 178crop accumulation, 180–181critical values, 195–210deficiency symptoms, 231manure composition, 151plant analysis guide, 182–189recommendations:

Florida, 225–226Mid-Atlantic states, 223–224New England, 227–228New York, 229

sap testing, 211soil tests:

ammonium acetate extraction,215

Mehlich-1 extraction, 216–217Mehlich-3 extraction, 216

yield response, 218Prickly pear (nopalitos):

botanical classification, 13chilling injury, 446composition, 48cooling methods, 428edible plant part, 13respiration rate, 437shipping containers, 491storage:

compatibility, 458conditions, 432

Product traceability, 407–409Production statistics:

U.S. fresh market, 33–36U.S. potato, 39–40U.S. processing, 37–38U.S. sweet potato, 39world, 44–45

Pumpkin, common field:air pollutant sensitivity, 312–313boron response, 240–241botanical classification, 15chilling injury, 445, 446compatibility in mixed loads, 455composition, 48days to maturity, 416, 418diseases, 368–370edible plant part, 15ethylene production, 453fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 228New York, 229

harvest method, 422in nine languages, 27insects, 382–283nutrient concentration, 204response to micronutrients, 239rooting depth, 252salt tolerance, 168seed:

germination:

Page 615: HANDBOOK FOR VEGETABLE GROWERS

606

INDEX

Pumpkin, common field (Continued )days, 112standards, 512tests, 509

needed per acre, 114per pound, 114yields, 520

shipping containers, 491spacing, 120storage:

compatibility, 458conditions, 432life, 429moisture loss, 442

temperature:classification, 107for growth, 107soil germination, 108

tolerance to soil acidity, 159vitamin content, 52

Purslane:botanical classification, 22edible plant part, 22

Purslane family, 22Purslane, winter (miner’s lettuce):

botanical classification, 22edible plant part, 22

Q10, 441Quality assurance records:

arrival at distribution center, 466cooler, 446field packing, 465loading trailer, 466packinghouse, 465

Quality components, 467Quinoa:

botanical classification, 14edible plant part, 14

Radicchio (chicory):botanical classification, 18

composition, 48days to maturity, 416edible plant part, 18respiration rate, 437shipping containers, 491storage:

compatibility, 458conditions, 432

vitamin content, 52Radish:

air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 15chilling injury, 446, 447compatibility in mixed loads, 456days to maturity, 416diseases, 363edible plant part, 15freezing injury, 449harvest method, 422insects, 379nutrient concentration, 204physiological disorders, 451respiration rate, 437rooting depth, 252salinity yield loss, 306seed:

germination:standards, 51tests, 509

needed per acre, 114per pound, 114production isolation, 515storage, 522yields, 520

shipping containers, 491spacing, 120storage:

compatibility, 457conditions, 432

Page 616: HANDBOOK FOR VEGETABLE GROWERS

607

INDEX

controlled atmosphere, 439life, 429moisture loss, 442

temperature:classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 473yield per acre, 421

Radish rat-tail:botanical classification, 13edible plant part, 13

Rakkyo:botanical classification, 3edible plant part, 3

Rampion:botanical classification, 13edible plant part, 13

Rape, vegetable:botanical classification, 11edible plant part, 11

Rhubarb (pieplant):air pollutant sensitivity, 312–313botanical classification, 22compatibility in mixed loads, 456composition, 48crowns needed per acre, 131diseases, 363edible plant part, 22harvest method, 422in nine languages, 27insects, 379respiration rate, 437seed germination:

standards, 512tests, 509

shipping containers, 491spacing, 120storage:

compatibility, 457conditions, 432

crowns, 130tolerance to soil acidity, 159vitamin content, 52U.S. grades, 473yield per acre, 421

Rocoto:botanical classification, 23edible plant part, 22

Rose family, 22, 31Rose glorybind:

botanical classification, 14edible plant part, 14

Roselle, false:botanical classification, 21edible plant part, 21

Row covers:floating, 138–39supported, 138

Rue family, 32Rungia:

botanical classification, 6edible plant part, 6

Rushnut (chufa):botanical classification, 4edible plant part, 4

Rutabaga:botanical classification, 11chilling injury, 447compatibility in mixed loads, 456days to maturity, 416diseases, 363–364fresh cut, 482harvest method, 422insects, 379respiration rate, 437rooting depth, 252seed:

germination:standards, 512tests, 509

production isolation, 515storage, 522

Page 617: HANDBOOK FOR VEGETABLE GROWERS

608

INDEX

Rutabaga (Continued )yields, 520

shipping containers, 491spacing, 120storage:

compatibility, 457conditions, 432life, 429moisture loss, 442

U.S. grades, 474yield per acre, 421

Sage:seed germination:

standards, 513tests, 509

storage:conditions, 434respiration rates, 435

Salad mix:shipping containers, 49

Salinity:crop response, 169

Salisfy (vegetable oyster):botanical classification, 9chilling injury, 447compatibility in mixed loads, 455composition, 48days to maturity, 417edible plant part, 9harvest method, 422respiration rate, 438seed:

germination:standards, 513tests, 509

needed per acre, 114per ounce, 114yields, 520

shipping containers, 492spacing, 120storage:

compatibility, 457conditions, 432

temperature:classification, 105for growth, 107

tolerance to soil acidity, 159vitamin content, 52

Salsify, black (Scorzonera):botanical classification, 9edible plant part, 9storage:

compatibility, 457conditions, 432

Salsola:botanical classification, 14edible plant part, 14

Sauropus, common:botanical classification, 17edible plant part, 17

Saururis (tsi):botanical classification, 22edible plant part, 22

Savory (summer savory):botanical classification, 20edible plant part, 20seed germination:

standards, 513tests, 509

Scheduling plantings, 109–110Sedge family, 4Sedum:

botanical classification, 14edible plant part, 14

Seeding:equipment, 124–125precision, 124–125

Seed:germination:

days, 111standards, 512–513tests, 506–511

labels:

Page 618: HANDBOOK FOR VEGETABLE GROWERS

609

INDEX

germination, 504kind, variety, hybrid, 504lot numbers, 504name of shipper, 504seed treatment, 504

large, planting rates, 115–117planted per minute, 126priming, 127–129production:

conditions for certified seed, 516isolation distances, 514–515yields, 518–520

requirements for plant growing,62, 63–64

sources, 529–539storage:

hermetically sealed containers,522

treatment:chemical, 348hot water, 347organic, 349

Seepweed, common:botanical classification, 14edible plant part, 14

Sessile alternanthera:botanical classification, 6edible plant part, 6

Shallot:botanical classification, 3composition, 48edible plant part, 3spacing, 120storage:

compatibility, 457conditions, 432

tolerance to soil acidity, 159U.S. grades, 473vitamin content, 52

Shepherd’s purse:botanical classification, 13edible plant part, 13

Sierra Leone bologni:botanical classification, 8edible plant part, 8

Shipping:containers, 483–494pallets, 495

Skirret:botanical classification, 7edible plant part, 7

Soil:moisture:

determining by appearance,253–255

devices for measuring, 256reaction (pH), 158–68

availability of plant nutrients,161–62

effect of fertilizers, 165liming materials, 163plant growth and soil reaction,

160soil acidifying materials, 163sulfur need to acidify, 164vegetable response o soil acidity,

158–59salinity, 169solarization, 317–318texture, 156–57water characteristics for soil

classes, 257Soil improving crops, 148–149

C�N ratios, 150decomposition, 150

Soil solarization, 317–318Sorrel:

botanical classification, 22days to maturity, 417edible plant part, 22harvest method, 422seed:

germination:standards, 512

Page 619: HANDBOOK FOR VEGETABLE GROWERS

610

INDEX

Sorrel (Continued )tests, 509

needed per acre, 114per ounce, 114

spacing, 120tolerance to soil acidity, 159

Sorrel, French:botanical classification, 22edible plant part, 22

Sorrel, Jamaican (roselle):botanical classification, 21edible plant part, 21days to maturity, 416seed:

needed per acre, 114per ounce, 114

Soybean:botanical classification, 17days to maturity, 415edible plant part, 17seed:

germination:standards, 513tests, 509

needed per acre, 114per pound, 114

tolerance to soil acidity, 159Spanish names of vegetables, 25–27Spacing:

high density, 118seed potato, 132–133traditional, 119–121

Spearmint:botanical classification, 20edible plant part, 20

Spikenard:botanical classification, 7edible plant part, 7

Spinach:air pollutant sensitivity, 312–313botanical classification, 14chilling injury, 446, 447

compatibility in mixed loads, 456composition, 48cooling methods, 426days to maturity, 417diseases, 364edible plant part, 14fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 228New York, 229

fresh cut, 482harvest method, 422in nine languages, 27insects, 379nutrient:

accumulation, 181composition, 205concentration, 193

per capita consumption, 42plant analysis guide, 187production statistics, 34–35, 37–

38response to micronutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168seed:

germination:days, 112standards, 513tests, 510

needed per acre, 114per pound, 114production isolation, 514, 515storage, 522yields, 520

shipping containers, 492spacing, 120storage:

compatibility, 457conditions, 432

Page 620: HANDBOOK FOR VEGETABLE GROWERS

611

INDEX

controlled atmosphere, 440life, 429

temperature:classification, 107for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 473, 477vitamin content, 52world production, 44yield per acre, 36, 38, 421

Spinach, buffalo:botanical classification, 8edible plant part, 8

Spinach, Indian or Malabar:botanical classification, 10edible plant part, 10

Spray additives, 345–346Sprouts, shipping containers, 42Spurge, family, 16–7Squash, acorn:

composition, 48storage, conditions, 432vitamin content, 52

Squash, butternut (tropicalpumpkin) see Calabaza

botanical classification, 15edible plant part, 15

Squash, hubbard (winter):botanical classification, 15chilling injury, 445compatibility in mixed loads, 455composition, 49cooling methods, 427days to maturity, 417, 418diseases, 368–370edible plant part, 15fertilizer:

New England, 228New York, 229

harvest method, 422insects, 382–383

postharvest diseases, 462rooting depth, 252seed:

germination:standards, 513tests, 510

needed per acre, 114per pound, 114production isolation, 515storage, 522yields, 520

shipping containers, 493spacing, 120storage:

compatibility, 458conditions, 433life, 429moisture loss, 442

tolerance to soil acidity, 159U.S. grades, 474vitamin content, 52yield per acre, 421

Squash, scallop:botanical classification, 15composition, 49edible plant part, 15salt tolerance, 168vitamin content, 52

Squash, summer (zucchini):air pollutant sensitivity, 312–323botanical classification, 15chilling injury, 446, 447compatibility in mixed loads, 455composition, 49days to maturity, 417, 418diseases, 368–370edible plant part, 15fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 228New York, 229

Page 621: HANDBOOK FOR VEGETABLE GROWERS

612

INDEX

Squash, summer (zucchini)(Continued )rate per linear bed feet, 221

fresh cut, 482harvest method, 422in nine languages, 27insects, 382–383nematodes, 352nutrient concentration, 205plant analysis guide, 187postharvest diseases, 462production statistics, 34–35respiration rate, 438rooting depth, 252seed:

germination:standards, 513tests, 510

needed per acre, 114per pound, 114production isolation, 515storage, 522yields, 520

salt tolerance, 168shipping containers, 492–493spacing, 120storage:

compatibility, 458conditions, 433life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 64transplanting, 56U.S. grades, 473vitamin content, 52yield per acre, 36, 421

Squash, melon:botanical classification, 16edible plant part, 16

State extension service websites,543–545

Storage:compatibility, 457–458conditions, 430–433controlled atmosphere, 439–440curing, 441herbs, 434–435life, 429, 430–433moisture loss, 442recommended conditions, 430–433respiration rates, 436–438sprout inhibitors, 443vegetable perishability, 429

Strawberry:botanical classification, 22chilling injury, 446composition, 49days to maturity, 418diseases, 365edible plant part, 22fertilizer:

Florida, 226Mid-Atlantic states, 224rate per linear bed feet, 221

fresh cut, 482in nine languages, 27insects, 380per capita consumption, 42plants needed per acre, 131nutrient:

concentration, 205–206fresh petiole concentration, 211

production statistics, 34–35rooting depth, 252salinity yield loss, 306salt tolerance, 168shipping containers, 493spacing, 120

Page 622: HANDBOOK FOR VEGETABLE GROWERS

613

INDEX

storage:compatibility, 457conditions, 433moisture loss, 442of plants, 130

temperature:base, 106plant storage, 130

tolerance to soil acidity, 159vitamin content, 52world production, 44yield per acre, 36, 421

Sugarcane:botanical classification, 5edible plant part, 5

Sulfur:application, 243conversion factors, 178critical values, 195–210to increase soil acidity, 164

Sunflower family, 8–9, 29Swedish names of vegetables, 25–27Sweet corn:

air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 5chilling injury, 446compatibility in mixed loads, 456composition, 49cooling methods, 427days to maturity, 415, 418diseases, 365–366edible plant part, 5fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 227New York, 229magnesium response, 245

harvest method, 422

in nine languages, 27insects, 380–381nematodes, 352nutrient:

accumulation, 181composition, 193concentration, 207

per capita consumption, 42plant analysis guide, 187production statistics, 34–35, 37–

38respiration rate, 438response to micronutrients, 239rooting depth, 252salinity yield loss, 306salt tolerance, 168scheduling plantings, 109–110seed:

certified, 516germination:

days, 111standards, 512tests, 507

needed per acre, 113per pound, 113production isolation, 514storage, 522yields, 519

shipping containers, 485spacing, 119storage:

compatibility, 457conditions, 433controlled atmosphere, 440life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159

Page 623: HANDBOOK FOR VEGETABLE GROWERS

614

INDEX

Sweet corn (Continued )transplant production, 62, 64transplanting, 56U.S. grades, 470, 476vitamin content, 52world production, 44yield per acre, 36, 38, 421

Sweet corn root:botanical classification, 5edible plant part, 5

Sweet potato:air pollutant sensitivity, 312–313boron response, 240–241botanical classification, 14chilling injury, 445, 446, 447, 448compatibility in mixed loads, 456composition, 49cooling methods, 426days to maturity, 417diseases, 366edible plant part, 14ethylene production, 453fertilizer:

Florida, 226Mid-Atlantic states, 224magnesium response, 245

freezing injury, 449harvest method, 422insects, 381nematodes, 352nutrient:

accumulation, 181concentration, 207–208

per capita consumption, 42, 43plant analysis guide, 188postharvest diseases, 464production statistics, 39rooting depth, 252roots needed per acre, 131salinity yield loss, 306salt tolerance, 168shipping containers, 493

spacing, 120storage:

compatibility, 450conditions, 433curing conditions, 441life, 429moisture loss, 442of planting stock, 131

temperature:base, 106classification, 105for growth, 107

tolerance to soil acidity, 159U.S. grades, 474, 477vitamin content, 52world production, 44yield per acre, 421

Tacca family, 5Tamarillo, (tree tomato):

botanical classification, 23chilling injury, 445, 446edible plant part, 23ethylene production, 453storage:

compatibility, 458conditions, 433

Tannier spinach, (catalou):botanical classification, 3edible plant part, 3

Tarragon, French:botanical classification, 8edible plant part, 8respiration rates, 435

Taro, (cocoyam, dasheen):botanical classification, 3chilling injury, 445, 446, 448composition, 49edible plant part, 3harvest method, 422shipping containers, 493spacing, 119

Page 624: HANDBOOK FOR VEGETABLE GROWERS

615

INDEX

storage:compatibility, 458conditions, 433curing conditions, 441life, 429

vitamin content, 53Taro, giant (alocasia):

botanical classification, 3edible plant part, 3

Taro, giant swamp:botanical classification, 3edible plant part, 3

Tartar breadplant:botanical classification, 13edible plant part, 13

Temperature:base, 106classification of vegetables, 105cool-season vegetables, 104–105chilling injury, 444–448conditioning transplants, 77DIF response of transplants, 75–

76for growth, 107for transplant production, 63–64for vegetables, 104–108freezing injury, 449greenhouse, 81physiological disorders, 450–451seed germination, 108soil sterilization, 66, 67solar injury, 452vegetable deterioration, 441warm-season vegetables, 104–105

Tettu:botanical classification, 6edible plant part, 6

Thistle, golden:botanical classification, 9edible plant part, 9

Thistle, Komarov Russian:botanical classification, 14

edible plant part, 14Thistle, milk:

botanical classification, 9edible plant part, 9

Thistle, spotted garden:botanical classification, 9edible plant part, 9

Thyme:storage:

conditions, 434respiration rates, 435

Tiger flower, common:botanical classification, 4edible plant part, 4

Time:from planting to harvest, 415–417from pollination to harvest, 418from seeding to transplant, 63–64

Tomatillo:botanical classification, 23cooling method, 427days to maturity, 417edible plant part, 23respiration rate, 438seed yields, 520shipping containers, 493storage:

compatibility, 458conditions, 433

Tomato:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 23chilling injury, 445, 446, 447compatibility in mixed loads, 455composition, 49cooling methods, 427days to maturity, 417, 418diseases, 366–368edible plant part, 23

Page 625: HANDBOOK FOR VEGETABLE GROWERS

616

INDEX

Tomato (Continued )ethylene production, 453fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 228New York, 229magnesium response, 245rates per linear bed feet, 221

freezing injury, 449fresh cut, 482greenhouse production:

nutrient solutions, 92–99nutrient sufficiency ranges, 101pollination, 81pruning and tying, 81spacing, 80tissue composition, 100

harvest method, 422in nine languages, 27insects, 381–382nematodes, 352nutrient:

accumulation, 181composition, 194concentration, 208–209fresh petiole concentration, 211

per capita consumption, 42plant analysis guide, 188–189postharvest diseases, 464production statistics, 34, 35, 36,

37, 38respiration rate, 438response to micronutrients, 239salinity yield loss, 306salt tolerance, 168seed:

germination:days, 112standards, 513tests, 510

hot water treatment, 347

needed per acre, 114per ounce, 114production isolation distance,

514storage, 522yields, 520

shipping containers, 493solar injury, 452spacing, 121storage:

conditions, 432controlled atmosphere, 440life, 429moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 64transplanting, 56U.S. grades, 474, 477vitamin content, 53world production, 44yield per acre, 36, 38, 421

Tomato, current:botanical classification, 23edible plant part, 23

Transplant production:cell size, 63–64conditioning, 77containers, 58–59controlling plant height, 74–75DIF, 75–76diseases, 73–74electrical conductivity of media,

69fertilizers for, 68germination temperature, 64information sources, 79irrigation, 70–71

Page 626: HANDBOOK FOR VEGETABLE GROWERS

617

INDEX

organic production, 57plant growing mixes, 65postharvest handling, 77–78rooting depth, 252problems, 72–73seed required, 62, 63–64seeding suggestions, 60–61soil sterilization, 66starter solutions, 78time required, 63–64water quality for, 70

Transplanting vegetables, 56Transport equipment inspection,

496–497Turmeric:

botanical classification, 6edible plant part, 6

Turnip:air pollutant sensitivity, 312–313boron:

in irrigation water, 307response, 240–241

botanical classification, 12chilling injury, 446, 447compatibility in mixed loads, 456composition, 49days to maturity, 417diseases, 363–364edible plant part, 12fertilizer:

New England, 228New York, 229

freezing injury, 449harvest method, 422in nine languages, 27insects, 379postharvest diseases, 461respiration rate, 438response to micronutrients, 239rooting depth, 252salt tolerance, 168seed:

certified, 516germination:

days, 112standards, 513tests, 510

hot water treatment, 347needed per acre, 114per pound, 114production isolation, 515storage, 522yields, 520

shipping containers, 494spacing, 121storage:

compatibility, 457conditions, 433

temperature:classification, 107for growth, 107seed germination, 108

tolerance to soil acidity, 159U.S. grades, 474vitamin content, 53yield per acre, 36, 38, 421

Turnip greens:botanical classification, 12composition, 49edible plant part, 12harvest method, 422nutrient concentration, 209spacing, 121storage:

compatibility, 457conditions, 433

vitamin content, 53

Ulluco:botanical classification, 10edible plant part, 10

Valerian family, 24Varieties:

Page 627: HANDBOOK FOR VEGETABLE GROWERS

618

INDEX

Varieties (Continued )naming and labeling, 523–527selection, 527–528

Vegetable(s):air pollution damage, 310–313botanical classification, 2–24chilling injury, 444–448consumption trends, 41cooling, 423–428diseases, 354–371edible plant part, 2–24estimating yields, 419ethylene production, 453fertilizer recommendations, 223–

229freezing injury, 449germination standards, 512–513grades:

fresh vegetables, 469–474international, 478processing vegetables, 475–477

harvesting and handling, 411–414in nine languages, 25–27information, 542–545insects, 372–384marketing, 498–501nematodes, 350, 352nutrient absorption, 179–181organic production system, 385–

386per capita consumption, 42postharvest diseases, 459–464production in high tunnels, 141quality, 465–477salt tolerance, 168seed:

germination standards, 512–513sources, 529–539storage, 522–523yields, 518–520

shipping containers, 483–494spacing, 118–123

storage, 429–443temperature for, 104–108tolerance to soil acidity, 159U.S. consumption statistics, 41–43U.S. production statistics, 33–40varieties, 523–528world production statistics, 44–45yields, 420–421

Vegetative propagation:seed potatoes required, 132–133storage, 130–131field requirements, 131

Vegetable seed sources, 529–539Violet (pansy):

botanical classification, 24edible plant part, 24

Violet family, 24, 32

Wallrocket:botanical classification, 13edible plant part, 13

Wasabi (Japanese horseradish):botanical classification, 13edible plant part, 13

Water:quality for transplant production,

70soil characteristics, 257supplying to vegetables, 250

Water chestnut (Chinese waterchestnut):

botanical classification, 24edible plant part, 24storage:

compatibility, 457conditions, 433curing conditions, 441

Water chestnut family, 24Watercress:

botanical classification, 13compatibility in mixed loads, 456days to maturity, 417

Page 628: HANDBOOK FOR VEGETABLE GROWERS

619

INDEX

edible plant part, 13harvest method, 422respiration rate, 438seed:

germination:standards, 512tests, 507

spacing, 121storage:

compatibility, 457conditions, 433

tolerance to soil acidity, 159Waterleaf (Suraim spinach):

botanical classification, 22edible plant part, 22

Water Lily:botanical classification, 21edible plant part, 21

Water lily family (Cabombaceae), 13Water lily family (Nymphaceae), 21Watermelon:

botanical classification, 15chilling injury, 444, 446compatibility in mixed loads, 455composition, 49cooling methods, 427days to maturity, 417, 418diseases, 368–370edible plant part, 15ethylene production, 453fertilizer:

Florida, 226Mid-Atlantic states, 224New England, 228New York, 229magnesium response, 245rates per linear bed feet, 221

fresh cut, 482in nine languages, 27insects, 381–382nematodes, 352nutrient:

concentration, 209–210fresh petiole concentration, 211

per capita consumption, 42plant analysis guide, 189postharvest diseases, 462production statistics, 34–35respiration rate, 438rooting depth, 252seed:

certified, 516germination:

days, 112standards, 513tests, 510

needed per acre, 114per pound, 114production isolation distance,

515storage, 522yields, 520

shipping containers, 494spacing, 121storage:

compatibility, 458conditions, 432moisture loss, 442

temperature:base, 106classification, 105for growth, 107seed germination, 108

tolerance to soil acidity, 159transplant production, 62, 64transplanting, 56U.S. grades, 474vitamin content, 53world production, 44yield per acre, 36, 421

Water milfoil family, 19–20Water plantain family, 2Watershield:

botanical classification, 13

Page 629: HANDBOOK FOR VEGETABLE GROWERS

620

INDEX

Watershield (Continued )edible plant part, 13

Water spinach (kangkong):botanical classification, 14edible plant part, 14

Wax gourd (winter melon):botanical classification, 14composition, 49edible plant part, 14shipping containers, 494vitamin content, 53

Weeds:control:

practices, 398recommendations, 399

cover crops, 395herbicides, 396identification, 393management strategies, 390–392noxious, 393organic farming, 394

Wildlife control:birds, 387deer, 387mice, 387raccoons, 387

Windbreaks, 140, 141

Yacon strawberry:botanical classification, 9edible plant part, 9

Yam:chilling injury, 446, 448storage:

compatibility, 458conditions, 433life, 429moisture loss, 442

Yam, bitter:botanical classification, 4edible plant part, 4

Yam, Chinese:

botanical classification, 4edible plant part, 4

Yam, elephant:botanical classification, 3edible plant part, 3

Yam, false:botanical classification, 20edible plant part, 20

Yam family, 4Yam, Indian:

botanical classification, 4edible plant part, 4

Yam, lesser:botanical classification, 4edible plant part, 4

Yam potato (aerial yam):botanical classification, 4edible plant part, 4

Yam, yellow:botanical classification, 4edible plant part, 4

Yam, white (water yam):botanical classification, 4edible plant part, 4

Yam, white Guinea:botanical classification, 4edible plant part, 4

Yellow velvet leaf:botanical classification, 5edible plant part, 5

Yields:estimating, 419vegetables, 36, 38, 39, 420–421

Yuca (cassava, manioc):botanical classification, 17chilling injury, 446, 448edible plant part, 17harvest method, 422shipping containers, 494storage:

compatibility, 458conditions, 430

Page 630: HANDBOOK FOR VEGETABLE GROWERS

621

INDEX

curing conditions, 441moisture loss, 442

Zinc:application, 243critical values, 195–210deficiency symptoms, 233recommendations, 237

response, 239soil tests:

DTPA extraction, 215interpretation, 234Mehlich-1 extraction, 217

yield response, 218