20
Streamers and their applications. Guus Pemen, Bert van Heesch, Wilfred Hoeben Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of Electrical Engineering [email protected]

Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Streamers and their applications.

Guus Pemen, Bert van Heesch, Wilfred HoebenGuus Pemen, Bert van Heesch, Wilfred Hoeben

Faculty of Electrical Engineering

[email protected]

Page 2: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Pulsed corona discharges

10 ns

20 ns

10 ns

20 ns

10 ns

20 ns

10 ns

20 ns

Primary streamers

Secondary or late streamers

(can be avoided by using

short pulses)

PAGE 127-Oct-2010

fast ICCD

end-on

views

30 ns

40 ns

30 ns

40 ns

30 ns

40 ns

30 ns

40 ns

Page 3: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Quantification of O-radical yields

Primary yield increases if

velocity is increased

(because local E-field

increases and consequently

so does the electron

energy)

PAGE 227-Oct-2010

Secondary or late streamers

(can be avoided by using

short pulses)

Page 4: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Quantification of O-radical yields

7.0 mole/kWh corresponds

to 5.3 eV/molecule.

Theoretical cost to produce

an O* radical is 3 eV.

PAGE 327-Oct-2010

O* radical yield as function of voltage and pulse

width. The rise rate of the pulses was fixed 2.2-

2.7 kV/ns. DC bias: 0-20 kV.

Thus more than half of the

available energy is used to

produce O* radicals

Page 5: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Emission intensities of SPS(0,0) and FNS(0,0)

secondary

streamer

Em

issi

on

in

ten

sity

(A

.U.)

-0,6

-0,4

-0,2

0,0

0,2

N2, SPS(2,5)

394.30 nm

N2, SPS(3,6)

389.46 nm

N+

2, FNS(0,0)

391.44 nm

Electron energies during primary

streamer propagation are assumed

to be much larger than the energy

in the secondary streamer

PAGE 427-Oct-2010

streamer

primary streamer

Em

issi

on

in

ten

sity

(A

.U.)

Wave length (nm)

-1,2

-1,0

-0,8

-0,6

388 390 392 394 396

Electron energy for N2+(B2∑u

+) generation by direct electron impact excitation

from the N2 ground state is 18.7 eV. It is assumed that the stronger the

FNS(0,0) emission, the larger the average electron energy.

in the secondary streamer

development.

Page 6: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Experimental setup

Rise-time 7.7 ns, FWHM 16 ns

Peak value 56.6-57.9 kV

27-Oct-2010 PAGE 5

Page 7: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Optical characteristics – air

Time integrated - shutter 30 ns

PAGE 627-Oct-2010

11.6 mm

56.6 kV, 50 A

16.4 mm

57.2 kV, 22 A21.6 mm

57.9 kV, 8.5 A

28.4 mm

57.9 kV, 3ALonger gap distance:

- Less current, more branches,

- Smaller diameter, smaller velocity.

Page 8: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Optical characteristics – air

Time resolved - 11.6 mm gap, shutter 0.5 ns

Primary streamer

development in

about 2 ns (6.106 m/s)

PAGE 7

ΔT = 0 ns ΔT = 0.5 ns ΔT = 1 ns ΔT = 2 ns

ΔT = 5 ns ΔT = 8 ns ΔT = 20 ns ΔT = 40 ns

27-Oct-2010

Secondary streamers,

total duration about

40 ns.

Page 9: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Optical characteristics – air

Time resolved - 21.6 mm gap, shutter 1 ns

Primary streamer

development in

about 6 ns (4.106 m/s)

ΔT = 0 ns ΔT = 2 ns ΔT = 5 ns ΔT = 6 ns

ΔT = 6 ns ΔT = 8 ns ΔT = 20 ns ΔT = 25 ns

27-Oct-2010 PAGE 8

Little secondary

streamers, total

duration about 25 ns.

Page 10: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Laser absorption – air

Visualization of density gradients (shockwaves)

Formation of elliptical

shockwaves at anode.

Followed by hemispherical

ones at the cathode.

anode

Initial velocity 880 m/s.

11.6 mm gap

27-Oct-2010 PAGE 9

cathode

ΔT = 0 ns ΔT = 840 ns ΔT = 5.9 μs

ΔT = 10.8 μs ΔT = 21.9 μs ΔT = 306 μs

Initial velocity 880 m/s.

“Slows” down to 420 m/s

after about 20 μs.

Apparently sufficient

energy has been deposited

in the gas to create

substantial gas heating.

Page 11: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Applications

ODOR

VOLATILE CHEMICAL COMPOUNDS

FINE DUST, NOx, SOx

VIRUS AND MICRO-ORGANISMS

DIOXINS, HEAVY METALS

AIR

Food, Agro

Petrochem

Traffic, Power plants

Hospitals, Agro

Incinerators, P plants

Time to demonstration

SEISMIC, FRACTURE

VIRUS AND MICRO-ORGANISMS

CHEMICAL COMPOUNDS

GAS CONDITIONING, REFORMING

PLASMA CATALYSIS

PLASMA COMBUSTION, GASIFICATION

WATER

PROCESS

Marine Industry

Food, Waste water

Waste + Proc. water

Green+Proc. Industry

Green+Proc. Industry

Powergen, Recycling

27-Oct-2010 PAGE 10

Page 12: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Application – syngas conditioning

Biomass

CO

Sunlight

Gasification

Biomass

CO

Sunlight

Gasification

Fuel

CO2

Electric Power

Gasification

CO + H2 + CH4 +CO2 + N2 + tars

Fuel

CO2

Electric Power

Gasification

CO + H2 + CH4 +CO2 + N2 + tars

27-Oct-2010 PAGE 11

Page 13: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Tar compositionComponents with high individual dewpoints cannot be tolerated

Component Formula mass % in

tar

Tdew,wet

(oC)

Benzene C6H6 67.56 32

Toluene C7H8 1.28 32

Naphtalene C10H8 17.86 33

Penol C6H6O 0.12 32

Pyrene C16H10 2.94 114

Phenanthrene C14H10 4.27 91

CH3

OH

toluene phenol

14 10

Fluorene C13H10 0.53 35

Indene C9H8 1.35 32

4-Methylstyrene C9H10 0.04 32

1-Methylnaphtalene C11H10 0.13 32

2-Methylnaphtalene C11H10 0.26 32

Biphenyl C12H10 0.50 12

Acenaphtalene C12H8 0.29 14

Fluoranthene C16H10 2.83 113

Pyridine C5H5N 0.04 32

Dewpoint of each tar component, based on total tar concentration of 20 g/Nm3, at 1 bar.

naphthalene

phenanthrene

27-Oct-2010 PAGE 12

Page 14: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Lab investigations (1/3)

High-Voltage

Condensor

FTIR

FTIR

H2

N2

Vacuum pump

Stack

Coronareactor

Heating tapes +insulation

1.5 m,

15 cm dia

Condensor

GC

Recirculationfan

Coolertar

injectionPressuregauge

Biogas

CO

CO2

H2

Pulsed power:

20 - 40 kV

5 ns rise time, 50 ns wide

0.4 J/pulse

1 – 100 pulse/second

Properties:

Volume 56 L

Reactor volume 20 L

Temp 200 – 800 oC

velocity 6 – 12 m/s

Measurements:

FTIR, pressure,

Temperature, SPA,

Pulse energy, # pulses

Model compound:

Naphthalene C10H8

27-Oct-2010 PAGE 13

Page 15: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Lab investigations (2/3)

Corona Reactor

Window for FTIR

Tar Injector

Corona Reactor

Window for FTIR

Tar Injector

Effect of temperature on naphthalene

removal in synthetic fuel gas

60

80

100

Rem

ain

ing f

raction

(%

) 200 degr.C, dry

200 degr.C, wet

biogas 400400 degr.C, dry

60

80

100

Rem

ain

ing f

raction

(%

) 200 degr.C, dry

200 degr.C, wet

biogas 400400 degr.C, dry

FanFan

0

20

40

0 200 400 600 800

Corona energy density (kJ/Nm3)

Rem

ain

ing f

raction

(%

)

0

20

40

0 200 400 600 800

Corona energy density (kJ/Nm3)

Rem

ain

ing f

raction

(%

)

27-Oct-2010 PAGE 14

Page 16: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Lab investigations (3/3)

200

250

300

350

400

Co

ron

a e

ne

rgy d

en

sity

for

90

% r

em

ova

l (k

J/N

m3)

fuelgas (N2 + 12% CO

2 + 20% CO + 17% H

2 + 1% CH

4)

N2 + 10% CO

2 + 10% CO + 10% H

2

N2 + 10% CO

2 + 10% CO

N2 + 10% CO

2

Most favourable

kinetics at 400 oC.

Hydrogen hampers

200 300 400 500

0

50

100

150

200

Co

ron

a e

ne

rgy d

en

sity

for

90

% r

em

ova

l (k

J/N

m

Temperature (oC)

Effect of gas composition and temperature.

Hydrogen hampers

the process.

27-Oct-2010 PAGE 15

Page 17: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Mechanism (1/2)

Dominant reactions (by order of importance):

N2(A) + C10H8 —> products

N(2D) + C10H8 —> products

N2(A) + N2(A) —> N2 + N2(A)

O + C10H8 —> H + C10H7O

CO + N2(A) —> N2 + CO

CO2 + N —> CO + NO 0.6

0.8

1

fra

ctio

n r

em

ain

ing

12% CO2 + 20% CO + 17% H2 + 1% CH4 + N2

N2

2

CO2 + N(2D) —> CO + NO

NO + N —> O +N2

NO + NH —> H + N2O

NO + NH —> OH + N2

NO + NH —> O + N2H

O + H2 —> H + OH

O(1D) + H2 —> H + OH

OH + C10H8 —> H2O +C10H7

H2 + C10H7 —> H + C10H8

diffusion —> C10H8

0

0.2

0.4

0 50 100 150 200 250 300

Corona energy density (kJ/Nm3)

fra

ctio

n r

em

ain

ing

27-Oct-2010 PAGE 16

Page 18: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Mechanism (2/2)

Example of an important naphthalene decomposition pathway.

+ H

+ H

+ OH

+ OO

.

.

+ O

+ H

+ H

+ OO

O H

C H CH ..

.

Backformation reactions, involving H and OH radicals, seem

to hamper the process.

Thats why the energy requirements are higher for gas

compositions containing H2.

27-Oct-2010 PAGE 17

Page 19: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Demonstrator

PAGE 1827-Oct-2010

20 kW corona power.

10.000 – 30.000m3/hr

Page 20: Guus Pemen, Bert van Heesch, Wilfred Hoeben Faculty of

Acknowledgements:

PAGE 1927-Oct-2010

• Frank Beckers, Oranjewoud

• Hans Winands, TNO

• Zhen Liu, Zhejiang University

• Sreejit Nair, Dow Chemical

• Luc Rabou, ECN