18
WHITE PAPER www.ixiacom.com Rev A September 2012, 915-6015-01 Guidebook to MEF Certification

Guidebook to MEF Certification - Ixia

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Guidebook to MEF Certification - Ixia

WHITE PAPER

www.ixiacom.com Rev A September 2012, 915-6015-01

Guidebook to MEF Certification

Page 2: Guidebook to MEF Certification - Ixia

2

Page 3: Guidebook to MEF Certification - Ixia

3

Table of Contents

Introduction ..................................................................................................... 4

Benefits of Certification .................................................................................. 7

Overview ......................................................................................................... 7

Equipment Vendor ........................................................................................... 7

Service Provider ............................................................................................. 8

Enterprise ........................................................................................................ 8

Certification Process ....................................................................................... 9

Certification Currently Available ..................................................................... 9

Future Certifications ......................................................................................17

Overview ........................................................................................................17

Conclusion ......................................................................................................19

Page 4: Guidebook to MEF Certification - Ixia

4

Introduction

Ethernet was developed as a local area network (LAN) technology, and was quickly adopted for its high speed, low latency, and plug-and-play features. Defined as an international standard by the IEEE 802.3 committee, it has been widely deployed in the LAN. Since Ethernet provides the lowest cost per bit, there is significant interest in using Ethernet in other parts of the network. Ethernet has pushed into the metro area networks (MAN) due to its lower cost and lower complexity than existing technologies such as SONET/SDH. Although Ethernet usage continues to expand, it is not without challenges. Until recently, it lacked feature sets such as scalability and reliability that other more mature MAN technologies addressed.

For example, SONET/SDH can recover from a fault in fewer than 50 milliseconds. The Metro Ethernet Forum (MEF) was created in an effort to accelerate the development and adoption of Ethernet as a service-enabling technology. In addition to MAN services, there was significant interest in using Ethernet as a WAN L2 VPN service. The MEF has helped to advance this effort by defining Ethernet services and related technical standards.

The MEF is made up of the following components:

Technical Committee

Marketing Committee

Certification Program

Global Interconnect Program

The technical specifications are developed within the Technical Committee and through the approval process. Once approved, they are assigned a MEF specification number. The technical work is divided into four areas:

• Service Area

• Architecture Area

• Management Area

• Test and Measurement Area

Since Ethernet is evolving from a LAN technology to a MAN technology – and now even a WAN service – it is becoming “Carrier Grade” and is referred to as Carrier Ethernet (CE).

To achieve this status, the MEF has defined five attributes:

Standardized Services

Scalability

Reliability

Page 5: Guidebook to MEF Certification - Ixia

5

Service Management

Quality of Service (See Figure 1).

Figure 1. MEF Carrier Ethernet Attributes

To address the requirement for standardized services, the MEF has defined the technical specification MEF 6 (now updated to 6.1) which outlines E-Line (EPL or EVPL), E-LAN and E-Tree services. Ethernet Private Line (EPL) defines the user network interface (UNI) as a physical Ethernet port. Ethernet virtual private line (EVPL) defines the UNI as a virtual (VLAN tagged) interface. E-Line services can be used to replace traditional point-to-point services built by legacy technologies like TDM, SONET/SDH, Frame-Relay, or ATM. E-LAN services can be used to replace multi-point-to-multi-point services built by legacy services like SONET/SDH, Frame-Relay, ATM, or as an alternative to L3 based IP/MPLS.

E-Tree is a rooted multipoint, and again replaces services built with legacy technologies. These new connections are defined as Ethernet virtual connections (EVC). New Carrier Ethernet services are very attractive to enterprise customers since they are typically higher speed, lower cost, and more flexible than legacy technologies. They are also effective for service providers since Ethernet is a less complicated, more cost effective transport to build services on.

It is important to note that the MEF defines Carrier Ethernet as a service from UNI to UNI. They do not define “how” a service is built end-to-end. Many networks have legacy infrastructures in the metro and leverage an IP/MPLS core, so the actual implementation may be a mix of interworked technologies. A provider may choose to extend MPLS into the metro and use PWE and VPLS to build CE services. Or, a provider may choose to upgrade or replace their existing Metro technology (like SONET) with native Ethernet switches (see Figure 2). MEF 9 specification defines how to test MEF 6 service definitions.

Page 6: Guidebook to MEF Certification - Ixia

6

Figure 2. Carrier Ethernet Architecture

To address the Quality of Service (QoS) requirement, the MEF has defined the MEF 10 (updated to 10.2) technical specification to use service attributes establishing traffic classes. This requires IEEE 802.1Q (VLAN) tagging providing use of the priority bits. Implementing QoS provides the ability to offer service level agreements (SLA) and service profiles. The service definition can include bandwidth, latency, delay variation (jitter), frame loss, and other bandwidth related parameters. The MEF 14 specification defines how to test MEF 10 service attributes.

In addition to technical specifications and implementation agreements, the MEF also produces abstract test suites. These abstract test suites are written to define the standard tests for a technical standard. An example is that MEF 9, ATS for Ethernet Services at the UNI, was written to test the technical specification MEF 6.

Page 7: Guidebook to MEF Certification - Ixia

7

Currently, there are nine abstract test suites defined and three active certifications:

Abstract Test Suite Certification

MEF 9 – Abstract Test Suite for Ethernet Services at the UNI (TS)

Yes, for Vendors and Service Providers

MEF 14 – Abstract Test Suite for Traffic Management Phase 1 (TS)

Yes, for Vendors and Service Providers

MEF 18 – Abstract Test Suite for CES over Ethernet (TS)

Yes, for Vendors

MEF 19 – Abstract Test Suite for UNI Type 1 (TS)

Expected in 2011 as a pre-requisite for UNI Type 2 certification

MEF 21 – UNI Type 2 Test Suite (TS)

Part 1 link OAM Yes, for Vendors

MEF 24 – UNI Type 2 Test Suite (TS)

Part 2 E-LMI Expected in 2011 as a part of UNI Type 2 certification

MEF 25 – UNI Type 2 Test Suite (TS)

Part 3 Service OAM Expected in 2011 as a part of UNI Type 2 certification

Certification for MEF 9, 14, 18 and 21 is performed by Iometrix, the MEF approved testing lab. Pre-requisites for certification require that a company must be a member in good standing of the MEF to apply for certification. A technical pre-requisite requires that equipment operating at the UNI of the service provider network must be MEF certified equipment. This requirement only applies to equipment operating at the edge of the service provider network at the point where the provider interfaces with the customer to deliver the service.

Reference website: http://www.iometrix.com/

Benefits of Certification

Overview

The MEF develops Carrier Ethernet technical specifications and implementation agreements to promote interoperability and deployment of Carrier Ethernet worldwide. Since forming in 2001, it has grown to 168 member companies including telecommunications service providers, cable MSOs, network equipment/software manufacturers, semiconductors vendors, and testing organizations. The MEF certification program was launched in 2005 and by July 2010 there are over 150 companies and 750 systems that have been certified. The certification testing is run by the MEF approved lab, Iometrix, and requires that the company being tested is a MEF member company. The testing typically takes 2 – 4 days and the company is required to provide a supporting engineer for the testing.

Page 8: Guidebook to MEF Certification - Ixia

8

Equipment Vendor

Equipment vendors who achieve MEF certification enjoy the following benefits:• Provides globally recognized standards that independently validate service

functionality and conformance

• Reduces testing costs and time-to-market by leveraging a single universally recognized test and certification process

• Strengthens product launch by guaranteeing full MEF compliance which minimizes risk to their customer selecting the product

• Provides a functional and performance benchmark which in many cases is required by their customers

Service Provider

Service providers who achieve MEF certification have the following key benefits:• Provides assurance when choosing vendor equipment that compiles to MEF

specifications

• Reduces service costs, charges, and time on complex testing between vendors, especially on global installations

• Establishes solid foundation for Carrier Ethernet ubiquity and interoperability

• Removes confusion caused by proprietary service names and overlapping options

• Allows customers to specify their service requirements by referencing independent, international standards

Enterprise

Benefits to the end-user enterprise include: • Demonstrates that MEF certified equipment and services behave and

perform according to agreed service level specification and known international standards

• Provides IT departments with the knowledge to make informed decisions at greatly reduced risks knowing that the products/services have been through standards based testing

• Accelerates Carrier Ethernet deployment at reduced cost

Page 9: Guidebook to MEF Certification - Ixia

9

• Provides common terminology to compare services

• Allows companies to answer “yes” to the question “Are you MEF Certified Compliant?” – Now a common feature of request for quotations (RFQs) and request for proposals (RFPs).

Certification Process

Overview

Each MEF certification is the result of a lengthy process. This process starts within the MEF technical committee, and projects go through the MEF specification process as seen in Figure 4.

Figure 4. MEF Specification Process

Once the technical specification is created, a technical or marketing committee can propose that an abstract test suite (ATS) be defined for certification testing of a specification. The ATS will then go through the same MEF specification process. There is currently a new proposal within the MEF that would require a marketing requirements document to precede any ATS projects to clearly outline the goal and purpose of the certification process. This is currently a work-in-progress.

After the ATS becomes an official MEF specification, then the official test lab of the MEF – Iometrix – gets involved. They define detailed test cases based on the ATS, including specifying the variables and test parameters.

The next phase is pilot testing, also run by Iometrix. This involves:Building the test bed

• Performing the first round of pilot testing with MEF member companies

• Resolving any technical issues or oversights

• Award ceremony announcing the completion of the pilot phase and the first group of companies which have successfully completed the testing

• In the final phase, the full certification program is announced. This includes:

• Opening up the certification to all MEF member companies

• Logistical issues are all worked out between the companies and Iometrix

• Testing – Iometrix performs all testing based on the plan as approved by the MEF

• Certification – MEF certificate, test reports, permission to use MEF Certified Compliant logo, and listing on the certified website listing

Page 10: Guidebook to MEF Certification - Ixia

10

Figure 5. MEF Certified Compliant Logo

Figure 6. MEF Certification Process

In the full certification phase MEF member companies can contact Iometrix about the cost and logistics to complete the testing. The testing typically takes 2 to 4 days, depending on what aspects are being certified, and will require support from an engineer of the requesting company to be onsite. To ensure passing the certification testing it is highly recommended to review the ATS, the Iometrix test plan and conduct pre-certification testing in preparation before attempting the certification test.

Certification Currently Available

Overview

The MEF currently offers four certifications for equipment vendors: MEF 9, 14, 18 and 21. Two certifications are available for service providers: MEF 9 and 14.MEF 9 - Abstract Test Suite for Ethernet Services at the UNI Purpose: Defines the test suite for conformance of Ethernet services and equipment when deployed at the UNI as defined in MEF 6.1The MEF 9 ATS defines 26 test cases.

Page 11: Guidebook to MEF Certification - Ixia

11

Figure 7. Test Bed for Ethernet Services at the UNI

Figure 8. Example Test Case from MEF 9 ATS

Page 12: Guidebook to MEF Certification - Ixia

12

As seen in the example test case, the test case is defined and the results are “pass or fail”. MEF member companies can then get the documents provided by Iometrix, which include the Test Configuration Guide and the Test Plan. The Iometrix test plan for MEF 9 expands the 26 test cases in the ATS to 244 test cases, which are run serially during the certification. The expansion of the test cases is to cover all the variables including EPL, EVPL, and E-LAN test cases.

It is important to review the Iometrix test plan and perform the testing in-house before attempting certification.

When testing a service provider, Iometrix has them complete a survey first and only tests to the specific capabilities of the service – which may not include all 244 test cases. Then, they deploy test probes to three sites to conduct the testing on a live service.

Figure 9. Example Test Case from MEF 14 A

Page 13: Guidebook to MEF Certification - Ixia

13

Similar to MEF 9, the test case details are provided and the result is a “pass or fail”. The primary difference is that the MEF 14 tests are based on service attributes which require traffic generation and performance testing.

The Iometrix test plan for MEF 14 expands the 10 test cases in the ATS to 183 test cases, which are run serially during the certification.

For service providers, the same methodology is used from MEF 9. Iometrix has them first complete a survey, and only tests to the specific capabilities of the service – which may not include all 183 test cases. Then, they deploy test probes to three sites to conduct the testing on a live service.

MEF 18 - Abstract Test Suite for CES

Purpose: Specifies testing procedures for pass/fail assessment of conformance with each of the operating modes as defined in MEF 8

The MEF 18 ATS defines 88 test cases which are divided into mandatory, optional, and dependent.

Figure 10. Test Bed #1 for MEF 18

Page 14: Guidebook to MEF Certification - Ixia

14

Page 15: Guidebook to MEF Certification - Ixia

15

The Iometrix test plan expands the test case count up to 344. The certification is only available for equipment vendors.

MEF 21- Abstract Test Suite for Link UNI Type 2 – Part 1 Link OAM

Purpose: Executes tests against procedures defined in MEF 21 (Abstract Test Suite for UNI Type 2 - Part 1 Link OAM) based on standard IEEE 802.3ah, clause 57The MEF 21 ATS defines 140 test cases for the UNI-C and 140 test cases for the UNI-N.

Figure 14. Test Bed for MEF 21 UNI-N Test Cases

Page 16: Guidebook to MEF Certification - Ixia

16

Figure 15. Example Test Case from MEF 21

Page 17: Guidebook to MEF Certification - Ixia

17

The Iometrix test plan expands the MEF 21 ATS to 371 test cases.

The certification is currently only available for equipment manufactures.

Future Certifications

Overview

The MEF continues to stay active with the development of Abstract Test Suites and expanding the certification program. Certification is expected to be approved for:Certification for UNI Type 2 is currently being defined and expected to begin in 2011. The following components will make up partial or complete certification:

• MEF 19, UNI Type 1 as a pre-requisite

• MEF 21, UNI Type 2 part 1: Link OAM – already certification available for this component

• MEF 24, UNI Type 2 part 2: Part 2 E-LMI

• MEF 25, UNI Type 2 part 3: Service OAM

• There is also likely to be an ENNI Service certification based on MEF 26 in 2011.

ConclusionWith the continued growth in CE products and services, it is clearly one of the leading technologies available today for enabling network services. The MEF has helped to accelerate CE adoption through standards and certification. At this point, it is basically a requirement for equipment vendors to be at least MEF 9 and 14 certified, and many aim to lead the UNI type 2 certification for obvious differentiation in the marketplace. Service providers also clearly benefit from standardization and the testing helps them to easily interoperate with other carriers. Enterprise customers – the end-users of CE services – are still learning the value of MEF certification and they are including it more frequently as a requirement from equipment and service providers. All companies interested in CE are encouraged to learn more about the MEF and join to get more information or pursue certification.

Reference:http://www.metroethernetforum.orghttp://www.iometrix.com

Page 18: Guidebook to MEF Certification - Ixia

WHITE PAPER

Ixia Worldwide Headquarters26601 Agoura Rd.Calabasas, CA 91302

(Toll Free North America)1.877.367.4942

(Outside North America)+1.818.871.1800(Fax) 818.871.1805www.ixiacom.com

Ixia European HeadquartersIxia Technologies Europe LtdClarion House, Norreys DriveMaidenhead SL6 4FLUnited Kingdom

Sales +44 1628 408750(Fax) +44 1628 639916

Ixia Asia Pacifi c Headquarters21 Serangoon North Avenue 3#04-01Singapore 554864

Sales +65.6332.0125Fax +65.6332.0127

Rev A September 2012, 915-6015-01