16
Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment Downloaded from: https://research.chalmers.se, 2021-03-27 18:23 UTC Citation for the original published paper (version of record): Kovtun, A., Zambianchi, M., Bettini, C. et al (2019) Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment Nanoscale(11): 22780-22787 http://dx.doi.org/10.1039/c9nr06897j N.B. When citing this work, cite the original published paper. research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is administrated and maintained by Chalmers Library (article starts on next page)

Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

Graphene oxide–polysulfone filters for tap water purification,obtained by fast microwave oven treatment

Downloaded from: https://research.chalmers.se, 2021-03-27 18:23 UTC

Citation for the original published paper (version of record):Kovtun, A., Zambianchi, M., Bettini, C. et al (2019)Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oventreatmentNanoscale(11): 22780-22787http://dx.doi.org/10.1039/c9nr06897j

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Page 2: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

Grapheneoxide-polysulfonefiltersfortapwaterpurification,obtainedbyfastmicrowaveoventreatment.AlessandroKovtun,a†MassimoZambianchi,a†CristianBettini,aAndreaLiscio,bMassimoGazzano,a,FrancoCorticelli,bEmanueleTreossi,aMariaLuisaNavacchia,aVincenzoPalermo,a,c,*ManuelaMeluccia,*Theavailabilityofclean,purewaterisamajorchallengeforthefutureofoursociety.2-dimensionalnanosheetsofGOseempromisingasnanoporousadsorbentorfiltersforwaterpurification;however,theirprocessinginmacroscopicfiltersischallenging,andtheircostvs.standardpolymerfiltersistoohigh.Herewedescribeanovelapproachtocombinegrapheneoxide(GO)sheetswithcommercialpolysulfone(PSPSU)granulesforimprovedremovaloforganiccontaminantsfromwater.TheadsorptionphysicphysicsofcontaminantsonthePSPSU-GOcompositefollowstheLangmuirandBrunauer-Emmet-Teller(BET)modelmodels,withpartialswellingandintercalationofthemoleculesinbetweenGOlayers.Suchmechanism,well-knowninlayeredclays,hasnotbeenreportedpreviouslyforgrapheneorGO.OurapproachrequiresminimalamountsofGO,depositeddirectlyonthesurfaceofthepolymer,followedbystabilizationusingmicrowavesorheat.ThepurificationefficiencyofthePSU-GO-PScompositesissignificantlyimprovedvs.benchmarkcommercialPSPSU,asdemonstratedbyremovaloftwomodelcontaminants,RhodamineBandOfloxacin.Theexcellentstabilityofthecompositeisconfirmedbyextensive(100hours)filtrationtests(100h)incommercialwatercartridges.Theoutstandingadsorptionefficiencyofgrapheneoxide(GO)towardorganicmoleculeshasbeenwidelyprovedinthelastfewyears.1-7Thehighsurfaceareaandthemultiplesurfacechemicalgroupsenablestronginterfaceinteractionsbyp-pstackingthroughthesp2region,byHbondthroughthecarboxyl,hydroxylorepoxygroupsaswellasvanderWaalsandhydrophobicinteractions..3,8,9Suchuniquefeatureshavemotivatedtheextensiveuseofgraphene(bothGOandreducedGO,rGO)andpolymer-GO/rGO3Dcompositessuchashydrogel/aerogel,10,11sponges,12-14membranes15-20asadsorbentforwaterremediation.TheplethoralargeamountofreporteddataishighlightinghighlightsgrapheneandGOasthemostpromisingnanomaterialsforthedevelopmentofadvancedwatertreatmenttechnologies,bothdrinkingandwastewater,technologies.21-23KeyadvantagesofhybridGObased3Dstructuresare:i)theeasyrecoveringoftheadsorbentafteruse,ii)thesignificantenhancementofadsorptionperformancebyadditionofGOatevenatlowamount,iii)thepossiblemodificationofGOforpromotingselectivebindingprocesses.24-30

Page 3: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

Figure1.a)RepresentativechemicalstructureofGOandPSPSU.b)SEMandc)opticalimageofthePSPSU-GOcompositefilter.TheGOsheetshavebeenhighlightedinblueinb).SEMunfilteredimagesareavailableinSI.Werecentlydemonstratedthesuperiorperformanceofpolysulfone-GO(PSPSU-GO)compositesfortheremovalofseveralclassesofemergingorganiccontaminantsfromtapwater(figure1).).31,32Thesecompoundsarecurrentlycauseofmajorenvironmentalconcernduetotheirincreasingoccurrenceinsurfacewaterbodiesandevendrinkingwaterandtotheirpotentialeffectonhumanhealthandecosystem.33-35ThecompositewasobtainedbyphaseinversionofaPSPSU-GOmixture(5%w/wofGO)usingwaterandN-methyl-2-pyrrolidinone(NMP)asorthogonalsolvents,i.e.thestandardindustrial

Page 4: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

methodforthepreparationofPSUultrafiltrationmembranes.Thecontaminantscapturedcouldthenberemovedbysimplewashingofthecompositeinethanol,31allowinginthiswaytorecyclereusethefiltersmaterial.Amajorchallengeindevelopingnewmaterialsforfiltersforwaterfilterremediationistoensuretheirsafety,i.e.utilizecheapandenvironmentfriendlymethodstoproducethem,andstabilizethematerialsothatnopoisonousdebrisormoleculesarereleased,evenafterextensiveuse.Buildingonourpreviousresults,herewedescribeanewmethodtostabilizeGOnanosheetsonPSusingmicrowavesorheath.Theprocedureisentirelyperformedinwater.ThemethodisbasedondirectlycoatingGOoncoatthesurfaceofcheapindustrialscrapsofPS.PSUhollowfiberswithGO32Insteadofusingphaseinversion,wefixtheGOnanosheetsonthepolymerbyuseofmicrowavesorthermalconventionalheattreatments.Theprocedureisentirelyperformedinwater.SuchapproachallowstoproducegramsscaleofPSPSU-GOcompositepowdersmaterialwithnoneedoftoxicsolvents.,onPSUfiltersalreadycommercialized.Wethentesttestedtheabilityofsuchcompositestocapturetwoimportantorganiccontaminants(atextiledyeandamedicaldrug)comparingthemincomparisonwithstandard,commercialPSunmodifiedPSUgranules,unravellingthisallowingtounravelthephysicsoftheadsorptionprocess.WefinallytestFinally,wetestedthestabilityofthecompositeuponprolongedwaterflowoperation,byextensivetestinwaterpurificationfilters.CoatingofGOonPSPSUrecycledgranulesWeusedasstartingsubstratethescrapsofantheindustrialproductionofpolysulfonefiltrationhollowfibersultrafiltrationmembranes;madeofPSU(representingabout10%ofthetotalyearlyproduction);thissubstrate,evenifmorechallengingandcomplexthanpolymericsubstratesweusedinpreviousworks,36,37hasthekeyadvantage,asindustrialwaste,ofhavingnegativecostsandrepresentsanenvironmentaladdedvalueofthefinalcomposite.32Polysulfonehollowfiber(MediSulfone®)scrapsweremechanicallygroundedtoobtainpolysulfonehollowporousgranules(figureS1a-c,ESI).Polysulfonehollowfiberscraps(MediSulfone)weremechanicallygroundtoobtainpolysulfonehollowporousgranules(figureS1c).ThegranuleswerethendispersedinasolutionofGOinDIwater;GOconcentrationwastunedtohave5wt%GOcontentinthefinalcomposite.Waterwasremovedbyheatingat50°Conarotaryevaporator.ThegranuleswerethendispersedinasolutionofGOinDIwater,preparedasdescribedinESI;GOconcentrationwastunedtohave5wt%GOcontentinthefinalcompositeinordertoallowdirectcomparisonwithwhatalreadydescribedinpreviouswork.31Waterwasremovedbyheatingat50°Conarotaryevaporator.StabilizationofGOcoatingsonPSPSUAmainchallengeingraphene-polymercompositesistoensureagoodinteractionbetweenthenanosheetsandthepolymer,typicallytoenhancemechanicalproperties.38Incompositesforwaterfilterfilters,agoodinteractionisrequiredtoensurealong-lastingadhesionofthenano-additivestothematrix,toavoidtheirreleaseinthetreatedwater.GrapheneandGOareexcellentadsorbersofmicrowaves,andweexploitedthisopportunityinthepasttoachievefast,environmentallyfreefunctionalizationofGO.39Here,wedonotusemicrowavesforaspecificfunctionalizationoftofunctionalizeGOinsolution,buttoensurefixGOnanosheetstothePSUscraps,thusensuringagoodcohesionofperformanceandstabilizingthecomposite.ThePSstabilizationwasperformedonthePSU-GOpowderwasirradiatedwithbymicrowavesatatmosphericpressureinaCEMDiscoverSPapparatus(f=2.45GHz)whichhasinsitumagneticvariable

Page 5: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

speed,irradiationmonitoredbyPCcomputer,infraredtemperaturemeasurementandcontinuousfeedbacktemperaturecontrol.Sampleswereirradiatedfor45minat100W(fixedpower)..DuringMWirradiationthetemperaturewasmeasured,andneverexceeded70°C.ThePSPSU-GOwasfinallywashedina1:1mixtureofwater/ethanoltoremoveanytracesofunreactedGOandfinallylefttodryatroomtemperatureuntilweightstabilized.(PSU-GO-MW,Figure1).Inanalternativeapproach,PSPSU-GOwasalsotreatedinastandardovenfor2hoursat120°C.Thematerialwasallowedtocooltoroomtemperature,thenwashedanddriedasdescribedabove.(figureS1d,ESI).Remarkably,theThepresenceofGOcoatingwasstableonlyaftertheMWorovenannealingtreatmentconfirmedbyhighresolutionScanningElectronMicroscope(SEM)images(figureS2).,ESI).Nochangesinsurfaceporosityandcross-sectionwereobservedincomparisontopristinePSgranulesaftercoating,asmeasuredbystandardtechniques(N2adsorption).Remarkably,bothtreatmentsenhancedgreatlythestabilityofGOonPSU,asshownbyextendedimmersioninwater(figureS3,ESI).ThepristinePSPSU-GOcomposite,thecompositetreatedwithmicrowavesandtheonetreatedinoven(namedrespectivelyBlank,PSGOPSU,PSU-GO-MWandPSGOPSU-GO-OV)werethencharacterizedbyXPSXRDandXRDXPS.

Figure2.(a).XRDpatternofGO(bluline),PSGOPSU-GO-MW(redline)andPSGOPSU-GO-OV(blackline).The(001)peakoftheGOstructureiswellappreciatedinbothPSGOPSU-GOsamples,at10-12°,togetherwiththeamorphousbell-shapedbandduetoPS.PSUat15-20°.XPSC1sspectraofb)pristineGO,c)PSGOPSU-GO-MWsamplesafterpolymerdissolutionwithDCMandd)PSGOPSU-GO-OVsamplesafterpolymerdissolutionwithDCM.

Page 6: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

StructuralcharacterizationofthePSGOPSU-GOcompositesX-raydiffractionpatternswerecollectedinBragg-Brentanogeometry(CuKradiation,0.15418nm).AveragethicknessofGOcrystalstackswascalculatedfrompeakwidthbyusingtheScherrerequation.ThenumberofGOlayerswasestimatedastheratioofthesizeandtheinterlayerdistance,obtainedfrompositionof(001)GOpeak.Figure2acomparestheXRDofpureGOwiththePSGOPSU-GO-MWandPSGOPSU-GO-OVcomposites.PureGOshowedasharp,intensepeak,asexpectedforabulk2Dmaterial.Anaveragespacingof7.8±0.3Åwasobserved,withaverageof14±2GOlayersstackedontopofeachother.PSGOPSU-GO-MWandPSGOPSU-GO-OVsamplesshowedtheamorphousbell-shapedbandduetoPSPSU,butalsoaclear(001)peakoftheGOstructure,indicatingthepresenceofstackedGOmultilayersonthesurfaceofthePSPSUgranules.Thestackingdistancewas8.3±0.3ÅforPSGOPSU-GO-MWand7.9±0.3ÅforPSGOPSU-GO-OV;theestimatednumberoflayerswasca.10layers,slightlylowerthanwhatobservedinblanksample(seeTableS2S1,ESIforfulldetailsandexp.errors).Thefastmicrowaveoroventreatmentsdidnotchangethemesoscalestructureofthemembranes,withnodeformationordestructionofthePSUmicrochannelsasobservedbySEM.Nochangesinsurfaceporosityandcross-sectionwereobservedincomparisontopristinePSUgranulesaftercoating,asmeasuredbystandardtechniques(N2adsorption).ThedifferencesbetweenthetwomethodswereinsteadobservedclearlybyXPS.ChemicalcharacterizationofthePSGOPSU-GOcompositesXPSisapowerfultechnique,abletoprobetheoutersurfaceofthegranules,thusallowingtogetinformationonthepossiblepresenceoftheGOcoating,itsuniformity,itsoxygen/carbonratioandtheabundanceofdifferentchemicalgroups.WeperformedXPSonallthesamples,andanalysedtheresultswithanoveldeconvolutionprocedurewhichallowtoobtainprecisechemicalanalysisandoxygencontentinGOalsoinpresenceofotheroxygen-containingmaterials(figureFigure2b,c,dandTable1S2).40Suchprocedureisbasedonquantitativeline-shapeanalysisofC1ssignalswithasymmetricpseudo-Voigtline-shapes(APV),incontrasttoGaussian-basedapproachesconventionallyused(seeESIandref.40fordetails).TheXPSofuntreated,bulkPSPSUgranulesyieldedcarbon/oxygenandsulphur/carbonO/C=0.13±0.01andS/C=0.04±0.01ingoodagreementwithPSPSUchemicalcomposition(O/C=0.15andS/C=0.04,respectively).XPSofpristineGO(Figure2b)showedthepresenceofsp2areasandseveralchemicalgroupstypicalofGO,withanaverageoxygen/carbonratioO/C=0.39±0.01.(seealsofigs.S4,5andtableS2,ESI).XPStechniqueprobesonlytheoutersurface(2-3nm)ofthepowders;thus,fromthecontributiontoXPSdataofGOandPSPSUwecouldestimatetheamountofsurfacecomposedofuncoatedPSPSUandtheonecoatedfromtheGOnanosheets.TheGOcoatingcovered>50%ofthesurfaceofthegranules;however,itwasnotpossibletoobtainamorepreciseestimateestimation.ToovercomethisissueandhaveadetailedanalysisoftheGOcoating,wethushadtoremovecompletelythepolymerphase.Thiswasachievedbyimmersionindichloromethane(DCM).This);PSUissolubleinDCMwhileGOisstableinsuchsolventcompletelyremoves,allowingamoreprecisecharacterizationofthePS,whileleavingunalteredtheoxidationstateofGO.remainingGObyXPS.Forcomparisonsake,pureGOwasalsoimmersedinDCMandanalyzedanalysedbyXPS.Table1S2showstheO/Cratiomeasuredforallchemicalcompositionofthedifferentsamples,includingtheirO/Cratio.Weseethat,whiletreatmentwithMWdoesnotaltersignificantlytheGOchemistry(O/C=0.38±0.01),

Page 7: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

classicalheatinginoven,evenifatarelativelylowtemperatureof120°C,givespartialreductionoftheGO,withtheO/Cratiodecreasingto0.30±0.01.Table1:Oxygen/CarbonratiomeasuredbyfittingtheXPSC1speakondifferentsamples.Exp.erroris±0.01inallsamples.Material O/CratioBlankPS* 0.13GO-pristine 0.39GOwashedinDCM 0.40GOMWafterPSdissolutioninDCM

0.38

GOOVafterPSdissolutioninDCM

0.30

*O/CofblankPSwasobtainedfromthearearatioofO1sandC1sduetothesignificantpresenceofS-OgroupsinPSstructure.ContaminantsadsorptiontestsTheadsorptioncapacitiesofblankPS,PSGOPSU,PSU-GO-MWandPSGOPSU-GO-OVsampleswerestudiedbyexposingthemtotapwatercontaminatedwithdifferentemergingorganiccontaminants(EOC).TheremovalperformanceofPSU-GOtowardsmanywidelyusedcontaminants(i.e.drugs,pigments,surfactantsetc.)waspreviouslydescribedinref.31;herewefocusedmoreonthepreparationtechniqueofthecompositeandontheirapplicationinwatercartridges.Astestcontaminants,wechoseRhodamineB(RhB,adyelargelyusedintextileandpharmaceuticindustries),andofloxacine(OFLOX,aquinolonicantibiotic).StructureofbothmoleculesisshowninFigure3.Bothmoleculesareofsignificantconcernforpollutionofsurfacewaterbodies.,41Structureofbothmoleculesisshowninfigure3.andadsorptioncapacityofOFLOXandRhBhasbeenalreadyreportedforGOsheets.42,43Using100%GOinthecartridgestoremovesuchmoleculeswouldbeeffective,butbulkGOinpowdercannotbeextrudedorprocessedinpelletsorfibers,itcanbevolatileandalsoburnorexplodeinsuitableconditions.HighadsorptioncapacitypriceofOFLOXandRhBwasthefiltrationcartridgeandproblemsofmaterialaggregationormechanicalstabilitywouldalsohinderstraightforwardapplicationofGO,makingitincompatiblewithactualcartridgeproductiontechnique,whichisbasedonPSUfibers.Conversely,theadvantageofourmethodisthatcanbeappliednotonlyoncommercialmembranesalreadyreportedforGOsheets.42,43Wethusproducedonlargescale,butalsoonscrapsderivingfromtheirpreparation,asdemonstratedintheprevioussections.WetestedtheadsorptionperformanceofpureGO,blankPS,PSGOPSU,PSU-GO-MWandPSGOPSU-GO-OVcompositesbydedicatedexperimentsperformedintapwatercontaminatedonpurposespikedwiththetargetmolecules(Figs.S10,ESI)..ExperimentaldatawerethenfittedusingBrunauer–Emmett–Teller(BET,eq.1),Langmuir(eq.2)andFreundlichmodels,seetablesS5-S10.DetailsofHPLCmethodusedforanalyticaldeterminationarereportedinESI.

Page 8: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

TheadsorptionisothermofGOwasperformedatfixedconcentrationofRhBandOFLOXbyvaryingtheamountofGO.Thetwocontaminants(inpowder,asreceived)wereaddedtoGOsuspensions(5ml)atdifferentconcentrations.ThedetailsofsamplepreparationandalistofsamplespreparedarereportedintablesS3andS4.Theisothermcurveswereobtainedequilibratingthesolutionsfor24hrsatroomtemperature.ThesolutionswereanalysedbyHPLC.TheadsorptionisothermsofblankPS,PSGO-MWandPSGO-OVwerefittedwiththeBrunauer–Emmett–Teller(BET)adsorptionmodel(eq.1,figure3).TheBETmodeldescribesamultilayeradsorptionmechanisminthegas–solidandliquid-solidequilibriumsystems.describedbytheformula:44Qe=(Qm·CBET·x)/((1-x)·(1+CBET·x-x)) (1)HereQe(mg/g)isthequantityamountofmoleculesadsorbedwhentheequilibriumconcentrationisCe(mg/mL);Qmisthe,thequantityamountofmoleculesneededtocovertheentireadsorbentsurfacewithamonolayer(i.e.themonolayersaturationcapacity,mg/g).ThethermodynamicequilibriumBETconstantis𝐶"#$ = exp ∆𝐸 𝐾,𝑇 ,where∆Eisthedifferencebetweentheenergyofadsorptionoffirstandsecondlayersofmolecules,𝐾,𝑇isthetermalthermalenergy;x=Ce/Cs,whereCs(mg/mL)istheadsorbatesaturationconcentrationinBETadsorptionprocess(seeref.45).Thelinearfitwasperformedplottingy=1/(Qe·(1⁄x-1))vs.xandtheresultsareshowninfigure3andintableS3x.Langmuirmodeldescribesamonolayeradsorptionprocess,whichdependsontheequilibriumconcentrationCe(mg/mL);theQm(mg/g)andthethermodynamicequilibriumconstantKL(mL/mg).Qe=Qm·KL·Ce/(1+KL·Ce) (2)Remarkably,Eq.1canfitverywellalladsorptionisothermstestedwithofOfloxacineonthe3threedifferentmaterialsand2targetmolecules..ThisindicatesthattheadsorptionfollowsinallthesecasestheBETphysicalmodel,i.e.canformmultilayersonthesubstrate,fillingsmallporesfirst.OnceassessingthatOnthesamephysicalotherhand,theadsorptionofRhBonthe3differentmaterialscanbebetterdescribedbyLangmuirmodelapplies(eq.2).ItshouldbenotedanyhowthatbothmoleculesshowagoodfittobothBETandLangmuirmodels(tablesS8-S10,ESI).Freundlichisothermmodelgaveinsteadapoorfitforallthesurfacesundertest,wecomparedtheirperformanceincapturingRhBandOFLOXinsolution.samples.Figure3showsthatbothPSGOPSU-GOcompositesoutperformthestandardPSpolymerPSUmaterial.Inparticular,PSGOPSU-GO-MWsamplescapturedca.3timesmoreRhBthanblank,and>ca.2timesmoreOFLOXthanPSU.WealsocomparedItisinterestingtocomparetheadsorptionofRhBandOFLOXinsolutionwithadsorptionofN2moleculesfromgas,whichistheconventionaltechniqueusedtomeasurethespecificsurfacearea(SSA)ofnanomaterials(tableS11,ESI.

Page 9: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

Figure3.ChemicalformulasstructuresofRhB(a)andOFLOX(b),andthecorrespondingadsorptionisotherms.BlacklinesrepresentLangmuirmodelforRhB(a)andBETmodelforOFLOX(b).Thetwoprocessesareverydifferent;N2adsorbsfromgasphase,withweakinteractionbetweenN2moleculesandthesubstrate,mainlyduetoVanvanderWaalsinteractions.Insolution,instead,moleculesadsorbbydisplacingothersolventmoleculesalreadypresentonthesurface,46ofteninteractingstronglywiththesubstrateandthesolventduetoelectrostaticforces.That’sThisexplainswhythesurfaceareameasuredbygasadsorptionofGO,47andmoregenerallyoflayeredmaterials,48issystematicallysmallerthanwhatmeasuredbyadsorptionofmoleculesinsolution.Tocomparetheadsorptioncapabilityofdifferentmolecules,weconvertedthequantityofmoleculesadsorbedQm(measuredaboveinmg/g)intheSSAideallyoccupiedbythosemoleculesusing:SSA=QmMw

-1NAAmol (23)whereMwisthemolecularweight,NAistheAvogadronumberandAmolistheestimated“footprint”ofthemolecule,i.e.theamountofsubstrateideallyoccupiedbyasingleadsorbedmolecule.WecouldestimateAmol»1.81nm2forRhBandAmol»1.30nm2forOFLOX,basedonSTM49orandXRDmeasurements50respectively.Thisisjustanapproximation,andtheactualfootprintofthemoleculesonthesurfacewilllikelyvaryduetospecificinteractionsbetweenthemolecule,thesolventandGO.51Weexpectthoughtthoughthatthefootprintwillremainofthesameorderofmagnitudeofwhatwaspreviouslyreported.4950Figure4acomparestheestimatedSSAofblankPS,PSGOPSU,PSU-GO-MWandPSGOPSU-GO-OV,estimatedbymolecularadsorptionofN2fromgas,RhBandOFLOXfromwatersolutions.WeunderlinethattheSSAreportedshouldbeconsideredasspecifictothematerialstudied,tobeusedonlyfordirectcomparisonamongsamples,becauseitdependsnotonlyonthematerial,butalsoonitsinteractionwiththemoleculeconsidered.

Page 10: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

Figure4.a)Comparisonoftheareameasuredineachspecificmolecule/substratecombinationtested.Conversionfrommg/gtom2/ghasbeenperformedestimatingmolecularfootprint,asdescribedinmaintext.b,c)SchematiccartoonshowingthedifferentpossiblecapturemechanismofN2ingasandoforganicmoleculesinsolutions(seealsoref.48)Incaseofnitrogenadsorptionfromgas,allthreematerialsgivecomparableSSAvalues,»23-2526m2/g,confirmingthattheGOcoatingandfixationdoesnotchangetheoverallporosityofthematerial,andthatN2adsorptiondoesnotdependsignificantlyonthesurfacechemistryofthedifferentsamples.OFLOXadsorptiononpristine,blankPSPSUgivesSSA=20±2m2/g,avaluecomparabletowhatmeasuredwithnitrogen;conversely,uponGOcoatingthenumberofmoleculeswhichcanbecapturedbythematerialincreasessignificantly.TheestimatedSSAincreasesto3339±2m2/gfortheoven-treatedPSU-GO,andto67±4m2/gfortheMWtreatedPSU-GO,ca.threetimestheoriginalvalue.RhBgivesevenmoreextremechanges,likelyduetoitselectriccharges(beingasalt)..TheoriginalSSAmeasuredonblank(48±5m2/g)increasesto95105±7m2/gforoventreatedPSU-GO,andto135143±9m2/gforthemicrowavetreatedsample,correspondingtoanadsorptioncapacityof6063mgofRhodaminepergramofsamplecomposite.SuchSSAismorethanfivetimeslargerthantheSSAmeasuredwithnitrogen(24m2/g).Suchlargedifferencecannotbeexplaineduniquelybytheuncertaintyinthedetailedmoleculararrangementofthemoleculeonthesubstrates;furthermore,bothRhBandOFLOXgivesignificantlydifferentSSAondifferentsubstrates,whileadsorptionofN2fromgasgivessimilarvaluesforPSGO,PSGO-MWandPSGO-OV.allsamples.

Page 11: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

Similarly,testsperformedon100%GO,withnoPS,gaveextremelyhighvaluesofSSA,reportedintableS6(thoughiftheuseofpureGOwouldnotbeeconomicallyviableforfilters).Thedifferencesobservedinfigure4suggestthatGOcanactasaneffectiveadsorbentfororganicmoleculesthankstoitslayeredstructure,abletocapturethetargetpollutantsformorethan6%ofitsweightinthebestscenario(RhBonmicrowavetreatedsamples).AdsorptiontestperformedonpureGOalsogaveveryhighvaluesofSSA(tableS5).ItisknownfromcharacterizationoflayeredmineralslikeclaythatthepresenceofswellingmineralsshouldbesuspectedwhentheSSAmeasurementsinliquidaresignificantlyhigherthangasadsorptionmeasurements.48GOisauniquelayeredmaterial,whichcaneasilybeexfoliatedinwater;52watermoleculescanintercalateandtravelefficientlyamongstackedGOnanosheets.53WatertrappedinbetweentheGOnanosheetscanbehaveasbulkwater.54Todemonstratethishypothesis,weperformedXRDscansonPSGOPSU-GO-OVcompositesexposedtoalargeexcessofRhBcontaminants(figureS9inS8,ESI).Intheexposedsamplesthe(001)peakofGOalmostdisappeared,aclearindicationthattheorganicmoleculesweredisruptingtheperiodicstackingofthenanosheets.WhileintercalationofionsormoleculescangiveXRDpeaksingraphiteintercalationcompounds,noperiodicitycouldbeobservedinthePSGOPSU-GOsamplesexposedtoRhB,likelyduetothesmallnumberofnanosheetsinvolvedandtheunevenintercalationofRhBwithintheGOlayers.GOstability,measuredbyreleasetestsAnymaterialusedforwaterpurificationshouldbesafe,i.e.shouldnotreleaseadditionalcontaminantsintheoutgoingwater.Acompletestudyofadsorbentmaterialsshouldnotonlymeasurehowmuchcontaminantscantransferfromthewatertothefilter;itshouldalsodemonstratethatthereisnotransferofcontaminantsfromthefiltertothewater.Weobservedintargetexperiments(figureS6S10,ESI)thatourGOis“intrinsicallysafe”,,whilebeinghighlysolubleindistilledwater,butisinsolubleintapwater,thusbeing“intrinsicallysafe”forthisspecificapplication.Inadditiontothisevidence,wedecidedtotestanypossiblereleaseofGObyinsertingthecompositesamplesinacommercialwater-filtercartridge55andflowingcirculatingwater(bothmQandtapwater)throughthecartridgeat2L/hfor100hours.

Figure5.a)PhotoofmQwaterfilteredfor100hthroughthePSU-GOfiltercomparedtostandardsolutionofGOinmQwateratdifferentconcentration.b)UV-Visabsorptionspectraofwaterfilteredfor100hthroughthePSU-GOfilter,comparedtocalibrationsamplesofwatercontaminatedwithdifferentamountsofGO.

Page 12: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

ThefilteredwaterwasthenanalyzedtodetectpossibleGOtracesbeyondsuchlimit.Forbettersafetyassessment,weusedtwoparallelGOdetectiontechniques:UV-visabsorptionanddynamiclightscattering.WecomparedthefilteredwatertostandardsamplesconsistingofmQwatercontaminatedwithknownamountsofGO.WeperformedUV-visspectroscopyonwaterre-circulatedfor100hoursthroughfilterscontainingPSU-GO-MWandPSU-GO-OVpowders(FigureS11,ESI).Detectionlimit,estimatedwithcalibratedGOsolutions,wasabout1ppm.Figure5showstheimagesoftherecirculatedwater,aswellastheUV-visspectraofthefilteredwater(redline)andofcalibrationsolutionshavingaconcentrationrange0.25-10ppm.ThecomparisonindicatesthatanyGOpossiblyreleasedinfilteredwaterwasbelow1ppm.RecentworkindicatethatsafelimitsofGOconcentrationtoavoidtoxiceffectsarebetweenfewtensandfewhundredsof10-1000ppm(foracompletereviewonthisimportanttopicseeref.56.GOlimitsforaquaticorganismsareintherange40-2000ppm.57Experimentsintapwaterwerealsoperformedshowingtransparentsolutionevenafterconcentrationofthesample(FigureS15,ESI).

Figure5.a)Photooftapwaterfilteredfor100hthroughthePSGOfiltercomparedtowatercontaminatedwith10ppmofGO.b)UV-Visabsorptionspectraofwaterfilteredfor100hthroughthePSGOfilter,comparedtocalibrationsamplesofwatercontaminatedwithdifferentamountsofGO.ThefilteredwaterwasthenanalyzedtodetectpossibleGOtracesbeyondsuchlimits.Forbettersafetyassessment,weusedtwoparallelGOdetectiontechniques:UV-visabsorptionanddynamiclightscattering.WecomparedthefilteredwatertostandardsamplesconsistingofmQwatercontaminatedwithknownamountsofGO.WeperformedUV-visspectroscopyonwaterre-circulatedfor50hoursthroughfilterscontainingPSGO-MWandPSGO-OVpowders.Detectionlimit,estimatedwithcalibratedGOsolutions,was0,5-1ppm.Figure5showstheimagesoftherecirculatedwater,aswellastheUV-visspectraofthefilteredwater(redline)andofcontaminatedcalibrationsolutionshavingaconcentrationrange0,25-10ppm.ThecomparisonindicatesthatanyGOpossiblyreleasedinfilteredwaterwasbelow1ppm.DynamicLightScattering(DLS)measurestheauto-correlationfunctionofphotonsscatteredbynanoscopicobjectsinsolution,andweusedittodetectthepossiblepresenceofsmallparticlesornanosheetsreleasedinwater(seedetailsinESI,Figs.S4-5S13-14).Itsapplicationtonon-spherical

Page 13: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

objectsisnotstraightforward,butithasbeensuccessfullyusedforthecharacterizationof2-dimensionalmaterialssuchasgrapheneandBN.58-60DLSdetectionlimitforGOnanosheetswas5ppm,asdeterminedwithcalibrationsolutionsofGOwithknownconcentration(seesection13,ESIfortheDLSspectrogramsandmeasurementdetails).).DLSmeasurementsperformedontapwaterre-circulatedfor100hoursthroughfilterscontainingPSGOPSU-GO-MWandPSGOPSU-GO-OVpowdersdidnotshowanypresenceofcontaminantsinthesizerange1nm-10mmforconcentrations>5ppm,confirmingthatnosignificantamountsofGOnanosheetswerereleasedbythecomposite.withinthelimitofdetectionrange.Forcomparison,blankPSPSU-GOcompositeswithnoMWorOVstabilizationtreatmentwouldinsteadreleaselargeamountsofdebrisandcontaminantswhensuspendedinwater,visiblebynakedeye(FigureS2inS3,ESI).Thisdemonstratedemonstratestheefficacyofthemicrowaveprocessingtostabilize,atlowtemperature,thecompositematerial,whilekeepingitsadsorptionperformancehigh.Attemptstoconcentratethesampletofurtherenhancethedetectionofcontaminants,bothbyultracentrifugationandvacuumevaporationfailed(FiguresS16-S17,ESI).ConclusionsTheprevioussectionsdatadescribedabovedemonstratethattheproposedapproachiseffectivelyastableandcost-effectivePSU-GOcompositecouldbeobtainedbyfixingathinlayerlayers(ca.10sheets)ofGOonthePSPSUgranules.Theprocessiseasilyup-scalable,relyingonlyonwaterprocessingandmicrowavesorconventionalheatingactivationofalreadyproducedmembranes,withouttheneedofadaptingalreadyexistingproductiontechnologiesandplants.Inparticular,microwavetreatmentsarealreadyextensivelyusedonlargescaleinindustry.Thestabilizationeffectofthetreatmentappearsveryeffective,yieldingnoareleaseofGObelowdetectionlimituponextensivetesting(2L/hfor100h)asdemonstratedbytwodifferentindependenttechniques.ThesynergiceffectofGOandPSUcanbedemonstratedbycomparingtheadsorptioncapabilityofthePSU-GOcompositevs.theperformanceofbulkGO(seealsotableS5andS11inESI).ThefinaleffectivesurfaceareameasuredforRhodamineremovalbyPSU-GO-MWis143m2/g,morethan10%oftheareameasuredinpureGO,evenifonly5%ofGOispresentinthecomposite.AsimilarestimatecanbedoneforOFL,wheretheperformanceisca.9%ofbulkGO,forthe5%loading.Theexcellentperformanceobtainedinremovingthetargetcontaminantsfromtapwatercanbeattributedtotheuniquepropertiesof2Dmaterials.BothGOandPSUcancapturewaterorganiccontaminants;however,theirmeso-structureandcapturemechanismisdifferent.WhilePSUfeaturesa3Dnetworkofmeso-andmicro-channels,GOfeaturesastackedstructurewithnanometricspacing,whichchangesuponmoleculeintercalation(seeXRDdatainESI).Toworkatbest,suchGOlayeredstructureshouldbefullyaccessiblefromsolution,i.e.arrangedasthinlayers,avoidingstrongaggregationorbulkclustersascouldhappeninbulkgraphiteoxidepowders.Thestructuredescribedhere,madeofthinGO2Dcoatingsonamechanicallystable3DstructureofPSUmicrochannels(figures1andS2)isthusidealtoensurethatallGOcanactivelycontributetothecontaminantremoval.Remarkably,theGOcoatingdoesnotmodifysignificantlytheporousstructureofthePSPSU.Thestandardmeasurementsofsurfacearea,basedonweakphysisorptionofN2moleculesingas,givesasimilarSSAbeforeandafterthecoating.However,theinteractionofthecompositewithorganicdyesmoleculesinsolutiongivesamuchhighereffectiveareaofinteraction,whichvarieswithsurfacechemistryandtargetmoleculestructure.QuantitativeanalysisindicatesthattheadsorptionprocessfollowsaBETandLangmuirmodel,andthatthereasonofimprovedperformanceisduetothefew-layersstructureoftheGOnanosheet,whichgivesahighereffectiveareaavailableforadsorptionvsstandardbulkpolymer,duetointercalationofthecontaminantsinbetweenthesheets.Suchprocessis

Page 14: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

notobservedinstandardsurfaceareameasurementusingadsorptionofnitrogengasandissimilartowhatwaspreviouslyobservedinlayeredmineralslikeclays.Respecttootherlayeredmaterials,theGOnanosheetshavebetterprocessability,beingsolubleinwater,andaversatile,tunablesurfacechemistrywhichcanattractcontaminantswithp-p,VanvanderWaalsorhydrogenbondinginteractions.SuchmaterialWhilemicrowaveshavebeenusedextensivelytoexfoliateorfunctionalizegraphene,theiruseto“fix”GOonapolymersubstratehasnotbeenreportedbefore(patentsubmitted).Suchmethodcanbeappliedonmicroandultrafiltrationmembranesalreadycommerciallyavailable,aswellasscrapsderivingfromtheirpreparation,withouttheneedofadaptingindustrialproductionsystems.ThePSU-GOcompositeexhibitsthusanoriginaladsorptionmechanism,interestingforfundamentalscience,aswellaspromisingpotentialapplicationincommercialfiltersforwaterpurification,atopicoftimelyimportance.FurtherworkisongoingtobetterevaluatetheindustrialfeasibilityofPS-GObasedfilters(patentsubmitted).AcknowledgementsTheresearchleadingtotheseresultshasreceivedfundingfromtheEuropeanUnion'sHorizon2020researchandinnovationprogrammeunderGrapheneCore2785219–GrapheneFlagshipandtheSwedishResearchCouncil(projectJanus2017-04456).ConflictsofinterestTheauthorsdeclarenoconflictsofinterest.References1. Y.Zhou,O.G.ApulandT.Karanfil,WaterRes.,2015,79,57-67.2. Y.Shen,Q.L.FangandB.L.Chen,EnvironmentalScience&Technology,2015,49,67-84.3. G.Ersan,O.G.Apul,F.PerreaultandT.Karanfil,WaterRes.,2017,126,385-398.4. O.G.Apul,Q.L.Wang,Y.ZhouandT.Karanfil,WaterRes.,2013,47,1648-1654.5. Z.Q.Niu,L.L.Liu,L.ZhangandX.D.Chen,Small,2014,10,3434-3441.6. F.Perreault,A.F.deFariaandM.Elimelech,Chem.Soc.Rev.,2015,44,5861-5896.7. B.Beless,H.S.RifaiandD.F.Rodrigues,EnvironmentalScience&Technology,2014,48,10372-10379.8. L.H.Jiang,Y.G.Liu,S.B.Liu,G.M.Zeng,X.J.Hu,X.Hu,Z.Guo,X.F.Tan,L.L.WangandZ.B.Wu,EnvironmentalScience&Technology,2017,51,6352-6359.9. F.F.Liu,J.Zhao,S.G.Wang,P.DuandB.S.Xing,EnvironmentalScience&Technology,2014,48,13197-13206.10. F.Wang,Y.Wang,W.W.Zhan,S.R.Yu,W.H.Zhong,G.SuiandX.P.Yang,Chem.Eng.J.,2017,320,539-548.11. L.Gan,H.Li,L.W.Chen,L.J.Xu,J.Liu,A.B.Geng,C.T.MeiandS.M.Shang,Colloid.Polym.Sci.,2018,296,607-615.12. H.C.Bi,X.Xie,K.B.Yin,Y.L.Zhou,S.Wan,L.B.He,F.Xu,F.Banhart,L.T.SunandR.S.Ruoff,Adv.Funct.Mater.,2012,22,4421-4425.13. Y.Q.Chen,L.B.Chen,H.BaiandL.Li,JournalofMaterialsChemistryA,2014,2,13744-13744.14. J.P.Zhao,W.C.RenandH.M.Cheng,J.Mater.Chem.,2012,22,20197-20202.15. R.Rezaee,S.Nasseri,A.H.Mahvi,R.Nabizadeh,S.A.Mousavi,A.Rashidi,A.JafariandS.Nazmara,JournalofEnvironmentalHealthScienceandEngineering,2015,13.

Page 15: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

16. H.Q.Wu,B.B.TangandP.Y.Wu,JournalofMembraneScience,2014,451,94-102.17. J.A.Prince,S.Bhuvana,V.Anbharasi,N.Ayyanar,K.V.K.BoodhooandG.Singh,WaterRes.,2016,103,311-318.18. M.Miculescu,V.K.Thakur,F.MiculescuandS.I.Voicu,Polym.Adv.Technol.,2016,27,844-859.19. X.Y.Zhu,K.J.YangandB.L.Chen,EnvironmentalScience-Nano,2017,4,2267-2285.20. J.Alam,A.K.Shukla,M.Alhoshan,L.A.Dass,M.R.Muthumareeswaran,A.KhanandF.A.A.Ali,Adv.Polym.Tech.,2018,37,2597-2608.21. S.Bolisetty,M.PeydayeshandR.Mezzenga,Chem.Soc.Rev.,2019,48,463-487.22. C.Santhosh,V.Velmurugan,G.Jacob,S.K.Jeong,A.N.GraceandA.Bhatnagar,Chem.Eng.J.,2016,306,1116-1137.23. P.Westerhoff,P.Alvarez,Q.L.Li,J.Gardea-TorresdeyandJ.Zimmerman,EnvironmentalScience-Nano,2016,3,1241-1253.24. M.P.Wei,H.Chai,Y.L.CaoandD.Z.Jia,J.ColloidInterfaceSci.,2018,524,297-305.25. N.Oger,Y.T.F.Lin,C.Labrugere,E.LeGrognec,F.RataboulandF.X.Felpin,Carbon,2016,96,342-350.26. J.Abraham,K.S.Vasu,C.D.Williams,K.Gopinadhan,Y.Su,C.T.Cherian,J.Dix,E.Prestat,S.J.Haigh,I.V.Grigorieva,P.Carbone,A.K.GeimandR.R.Nair,NatureNanotechnology,2017,12,546-+.27. C.J.Madadrang,H.Y.Kim,G.H.Gao,N.Wang,J.Zhu,H.Feng,M.Gorring,M.L.KasnerandS.F.Hou,AcsAppliedMaterials&Interfaces,2012,4,1186-1193.28. W.Gao,M.Majumder,L.B.Alemany,T.N.Narayanan,M.A.Ibarra,B.K.PradhanandP.M.Ajayan,AcsAppliedMaterials&Interfaces,2011,3,1821-1826.29. Y.ShenandB.L.Chen,EnvironmentalScience&Technology,2015,49,7364-7372.30. W.K.Chee,H.N.Lim,N.M.HuangandI.Harrison,RscAdvances,2015,5,68014-68051.31. M.Zambianchi–nchi,M.Durso,A.Liscio,E.Treossi,C.Bettini,M.L.Capobianco,A.Aluigi,A.Kovtun,G.Ruani,F.Corticelli,M.Brucale,V.Palermo,M.L.NavacchiaandM.Melucci,Chem.Eng.J.,2017,326,130-140.32. M.Zambianchi,A.Aluigi,M.L.Capobianco,F.Corticelli,I.Elmi,S.Zampolli,F.Stante,L.Bocchi,F.Belosi,M.L.NavacchiaandM.Melucci,AdvancedSustainableSystems,2017,1,#1700019.33. T.Laaninen,EuropeanParliamentaryResearchService,2018,PE625.179.34. V.Geissen,H.Mol,E.Klumpp,G.Umlauf,M.Nadal,M.vanderPloeg,S.vandeZeeandC.J.Ritsema,InternationalSoilandWaterConservationResearch,2015,3,57-65.35. S.Schulze,D.Zahn,R.Montes,R.Rodil,J.B.Quintana,T.P.Knepper,T.ReemtsmaandU.Berger,WaterRes.,2019,153,80-90.36. D.Pierleoni,Z.Y.Xia,M.Christian,S.Ligi,M.Minelli,V.Morandi,F.DoghieriandV.Palermo,Carbon,2016,96,503-512.37. D.Pierleoni,M.Minelli,S.Ligi,M.Christian,S.Funke,N.Reineking,V.Morandi,F.DoghieriandV.Palermo,ACSAppliedMaterials&Interfaces,2018,10,11242-11250.38. V.Palermo,I.A.Kinloch,S.LigiandN.M.Pugno,Adv.Mater.,2016,28,6232-6238.39. M.Melucci,E.Treossi,L.Ortolani,G.Giambastiani,V.Morandi,P.Klar,C.Casiraghi,P.SamoriandV.Palermo,J.Mater.Chem.,2010,20,9052-9060.40. A.Kovtun,D.Jones,S.Dell’Elce,E.Treossi,A.LiscioandV.Palermo,Carbon,2019,143,268-275.41. A.J.Ebele,M.Abou-ElwafaAbdallahandS.Harrad,EmergingContaminants,2017,3,1-16.42. K.X.Sun,S.N.Dong,Y.Y.Sun,B.Gao,W.C.Du,H.X.XuandJ.C.Wu,J.Hazard.Mater.,2018,348,92-99.43. H.Y.Guo,T.F.Jiao,Q.R.Zhang,W.F.Guo,Q.M.PengandX.H.Yan,NanoscaleResearchLetters,2015,10.

Page 16: Graphene oxide polysulfone filters for tap water ... · microwaves, and we exploited this opportunity in the past to achieve fast, environmentally free functionalization of GO.39

44. K.S.W.Sing,D.H.Everett,R.A.W.Haul,L.Moscou,R.A.Pierotti,J.RouquerolandT.Siemieniewska,PureAppl.Chem.,1985,57,603-619.45. A.Ebadi,J.S.S.MohammadzadehandA.Khudiev,Adsorption-JournaloftheInternationalAdsorptionSociety,2009,15,65-73.46. A.Schlierf,H.F.Yang,E.Gebremedhn,E.Treossi,L.Ortolani,L.P.Chen,A.Minoia,V.Morandi,P.Samori,C.Casiraghi,D.BeljonneandV.Palermo,Nanoscale,2013,5,4205-4216.47. M.J.McAllister,J.L.Li,D.H.Adamson,H.C.Schniepp,A.A.Abdala,J.Liu,M.Herrera-Alonso,D.L.Milius,R.Car,R.K.Prud'hommeandI.A.Aksay,Chem.Mater.,2007,19,4396-4404.48. J.C.Santamarina,K.A.Klein,Y.H.WangandE.Prencke,CanadianGeotechnicalJournal,2002,39,233-241.49. G.-J.Su,S.-X.Yin,L.-J.Wan,J.-C.ZhaoandC.-L.Bai,Surf.Sci.,2004,551,204-212.50. J.T.J.Freitas,C.C.deMelo,O.Viana,F.F.FerreiraandA.C.Doriguetto,CrystalGrowth&Design,2018,18,3558-3568.51. V.PalermoandP.Samori,Angew.Chem.Int.Ed.,2007,46,4428-4432.52. E.Treossi,M.Melucci,A.Liscio,M.Gazzano,P.SamorìandV.Palermo,J.Am.Chem.Soc.,2009,131,15576-15577.53. R.R.Nair,H.A.Wu,P.N.Jayaram,I.V.GrigorievaandA.K.Geim,Science,2012,335,442-444.54. G.Romanelli,A.Liscio,R.Senesi,R.Zamboni,E.Treossi,F.Liscio,G.Giambastiani,V.Palermo,F.Fernandez-AlonsoandC.Andreani,Carbon,2016,108,199-203.55. Medica,https://www.medica.it/.56. A.Bianco,Angew.Chem.Int.Ed.,2013,52,4986-4997.57. J.Zhao,Z.Y.Wang,J.C.WhiteandB.S.Xing,EnvironmentalScience&Technology,2014,48,9995-10009.58. K.Kouroupis-Agalou,A.Liscio,E.Treossi,L.Ortolani,V.Morandi,N.M.PugnoandV.Palermo,Nanoscale,2014,6,5926-5933.59. A.Catheline,L.Ortolani,V.Morandi,M.Melle-Franco,C.Drummond,C.ZakriandA.Penicaud,SoftMatter,2012,8,7882-7887.60. M.Lotya,A.Rakovich,J.F.DoneganandJ.N.Coleman,Nanotechnology,2013,24,#265703.