20
Mark L. McConnell, James R. Ledoux, John R. Macri, Matt Orr, and James M. Ryan Space Science Center University of New Hampshire Durham, NH X-Ray Polarimetry Workshop SLAC / Stanford 9-11 February 2004 GRAPE A Balloon-Borne Gamma-Ray Polarimeter (50-300 keV)

GRAPE A Balloon-Borne Gamma-Ray Polarimeter · 2004. 2. 21. · (CsI or LaBr3, calorimeter) flat panel MAPMT front-end electronics or or from other MAPMTs ADCs event builder pulse

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Mark L. McConnell, James R. Ledoux, John R. Macri, Matt Orr, and James M. Ryan

    Space Science CenterUniversity of New Hampshire

    Durham, NH

    X-Ray Polarimetry Workshop SLAC / Stanford 9-11 February 2004

    GRAPEA Balloon-Borne

    Gamma-Ray Polarimeter (50-300 keV)

  • GRAPE Science Model (SM1)Gamma-RAy Polarimeter Experiment

    Scattering Elements• 280 element array of plastic

    • each 5 mm square by 5 cm long • optically isolated

    • read out by a 5-inch PSPMT• Hamamatsu R3292 PSMT

    Calorimeter Elements• 4 element array of CsI(Tl)

    • each 1cm square by 5 cm long• read out by a MAPMT

    • Hamamatsu R5900 MAPMT

    Position-Sensitive PMTHamamatsu R3292

    Plastic ElementsBC-404

    CsI(Tl)Array

  • On-Axis Performance

    4

    3

    2

    1

    0

    Effe

    ctiv

    e A

    rea

    (cm

    2 )

    3 4 5 6 7 8 9100

    2 3 4 5

    Energy (keV)

    101.6 mm 88.9 mm 76.2 mm 63.5 mm 50.8 mm 25.4 mm

    Effective Area vs. Depth

    Simulations (based on a modified version of GEANT3) have been used to characterize the design.

  • On-Axis Performance

    7

    6

    5

    4

    3

    2

    1

    0

    Figu

    re o

    f M

    erit

    (rel

    ativ

    e)

    3 4 5 6 7 8 9100

    2 3 4 5

    Energy (keV)

    76.2 mm 50.8 mm 25.4 mm 63.5 mm 88.9 mm 101.6 mm

    Figure-of-Merit vs. DepthThe figure-of-merit

    incorporates an estimate of the increased

    background as a function of detector volume.

    Optimum Depth for this design is ~3 inches

    FoM =µ100 !A√

    Vdet

  • Off-Axis Performance

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Mod

    ulat

    ion

    Fac

    tor

    706050403020100Angle (Degs)

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    Effective A

    rea (cm2)

    Modulation Factor Effective Area

    7.62 cm depth @ 200 keV

    The GRAPE design offers significant response even at large off-axis angles.

    This makes GRAPE an attractive design for polarization studies of transient sources

    (Gamma-Ray Bursts).

  • Science Model ComponentsThis photo shows the 5-inch PSPMT, the array of

    plastic scattering elements and the MAPMT/CsI assembly.

  • GRAPE SM1 Lab Set-Up(drawing not to scale)

    Photons partially polarized by scattering off a plastic

    scintillator.

    0.8

    0.6

    0.4

    0.2

    0.0

    Pola

    rizat

    ion

    Frac

    tion

    18016014012010080604020Scatter Angle (degs)

    60 keV 662 keV 1200 keV

    PMT PSPMT

    662 keV, unpolarized

    288 keV, partially polarized

    POLARIZER POLARIMETER

    plastic

    scintillator

    array

    CsI

    array

    MAPMT

    137Cs

    Also provides electronic tagging of each photon.

  • Correction of SM1 Data

    140012001000

    800600400200

    0

    Coun

    ts

    350300250200150100500

    Azimuthal Scatter Angle (degs)

    GRAPE - SM1

    Polarized Data(corrected)

    The response to anunpolarized beam is used to correct for geometric

    effects.

    1.41.21.00.80.60.40.20.0

    Coun

    ts

    350300250200150100500

    Azimuthal Scatter Angle (degs)

    GRAPE - SM1

    Unpolarized Data(normalized) 356 keV

    140012001000

    800600400200

    0

    Coun

    ts

    350300250200150100500

    Azimuthal Scatter Angle (degs)

    GRAPE - SM1

    Polarized Data(raw data) 288 keV

  • SM1 Results at 0° Incidence

    Runs taken with the incident beam having apolarization angle that differs by ~90°.

    1000

    800

    600

    400

    200

    0

    Corre

    cted

    Cou

    nts

    360300240180120600Azimuthal Scatter Angle (degs)

    GRAPE Science Model (SM1)0° Incidenceφ = 40° ± 2°

    700

    600

    500

    400

    300

    200

    100

    0Co

    rrect

    ed C

    ount

    s360300240180120600

    Azimuthal Scatter Angle (degs)

    GRAPE Science Model (SM1)0° Incidenceφ = 134° ± 3°

    Polarization = 62 (±3)% Polarization = 73 (±6)%

  • SM1 Results at 30° Incidence

    1400

    1200

    1000

    800

    600

    400

    200

    0

    Corre

    cted

    Cou

    nts

    350300250200150100500Azimuthal Scatter Angle (degs)

    GRAPE Science Model (SM1)30° Incidence

    ∆φ = 0°

    1200

    1000

    800

    600

    400

    200

    0Co

    rrect

    ed C

    ount

    s

    350300250200150100500Azimuthal Scatter Angle (degs)

    GRAPE Science Model (SM1)30° Incidence

    ∆φ = 90°

    Runs taken with the incident beam having apolarization angle that differs by ~90°.

    Polarization = 63 (±4)% Polarization = 73 (±7)%

  • GRB SensitivityWe have estimated the polarization sensitivity of a long-duration balloon payload consisting of a planar array of 36 GRAPE modules, covering less than 1 m2 of area.

    Frequency based on BATSE 4B catalog.

  • Solar Flare SensitivityThe solar flare polarization sensitivity for various energy bands. These data assume a balloon-borne

    array of 16 GRAPE modules.

    30

    25

    20

    15

    10

    5

    0

    Min

    imum

    Det

    ecta

    ble

    Pola

    rizat

    ion

    (%)

    6005004003002001000Energy (keV)

    X1-Class Flare

    X10-Class Flare

  • GRAPE Science Model (SM2)Gamma-RAy Polarimeter Experiment

    Single module with MAPMT and FEE electronics.

    0 %Generating EPSF... 1 %Generating EPSF... 2 %Generating EPSF... 4 %Generating EPSF... 5 %Generating EPSF... 7 %Generating EPSF... 8 %Generating EPSF... 9 %Generating EPSF... 11 %Generating EPSF... 12 %Generating EPSF... 14 %Generating EPSF... 15 %Generating EPSF... 16 %Generating EPSF... 18 %Generating EPSF... 19 %Generating EPSF... 21 %Generating EPSF... 22 %Generating EPSF... 23 %Generating EPSF... 25 %Generating EPSF... 26 %Generating EPSF... 28 %Generating EPSF... 29 %Generating EPSF... 30 %Generating EPSF... 32 %Generating EPSF... 33 %Generating EPSF... 35 %Generating EPSF... 36 %Generating EPSF... 38 %Generating EPSF... 39 %Generating EPSF... 40 %Generating EPSF... 42 %Generating EPSF... 43 %Generating EPSF... 45 %Generating EPSF... 46 %Generating EPSF... 47 %Generating EPSF... 49 %Generating EPSF... 50 %Generating EPSF... 52 %Generating EPSF... 53 %Generating EPSF... 54 %Generating EPSF... 56 %Generating EPSF... 57 %Generating EPSF... 59 %Generating EPSF... 60 %Generating EPSF... 61 %Generating EPSF... 63 %Generating EPSF... 64 %Generating EPSF... 66 %Generating EPSF... 67 %Generating EPSF... 69 %Generating EPSF... 70 %Generating EPSF... 71 %Generating EPSF... 73 %Generating EPSF... 74 %Generating EPSF... 76 %Generating EPSF... 77 %Generating EPSF... 78 %Generating EPSF... 80 %Generating EPSF... 81 %Generating EPSF... 83 %Generating EPSF... 84 %Generating EPSF... 85 %Generating EPSF... 87 %Generating EPSF... 88 %Generating EPSF... 90 %Generating EPSF... 91 %Generating EPSF... 92 %Generating EPSF... 94 %Generating EPSF... 95 %Generating EPSF... 97 %Generating EPSF... 98 % Sheet #3 Layer #1 1 X: 138.49mm Y: 104.32mm X: 73.24mm Y: 91.15mm 73.44mm Group of 69 objects

    flat-panel PMT

    FEE

    plasticelements

    Calorimeter Elements• 4 element array of CsI(Tl)

    • each 5-mm square by 5-cm long• read out by same flat-panel MAPMT

    • Hamamatsu H8500 MAPMT

    CsIScattering Elements • 60 element array of plastic

    • each 5-mm square by 5-cm long • optically isolated

    • read out by a flat-panel MAPMT• Hamamatsu H8500 MAPMT

  • SM2 Module Logic

    inorganic scintillator(CsI or LaBr3, calorimeter)

    flat panelMAPMT

    front-end electronics

    or

    or

    fromotherMAPMTs

    ADCs

    event builderpulse

    heights& hit IDs

    coincidence

    sparseeventdata

    gate

    plastic scintillator bars(photon scattering)

    TextTextTextText

    The single MAPMT provides independent signals for both the

    scattering and calorimeter elements.

    Eliminates additional mass in front for

    calorimeter readout.

  • Large Area Arrays

    0 %Generating EPSF... 1 %Generating EPSF... 2 %Generating EPSF... 3 %Generating EPSF... 4 %Generating EPSF... 5 %Generating EPSF... 6 %Generating EPSF... 7 %Generating EPSF... 8 %Generating EPSF... 9 %Generating EPSF... 10 %Generating EPSF... 11 %Generating EPSF... 12 %Generating EPSF... 13 %Generating EPSF... 14 %Generating EPSF... 15 %Generating EPSF... 16 %Generating EPSF... 17 %Generating EPSF... 18 %Generating EPSF... 19 %Generating EPSF... 20 %Generating EPSF... 21 %Generating EPSF... 22 %Generating EPSF... 23 %Generating EPSF... 24 %Generating EPSF... 25 %Generating EPSF... 26 %Generating EPSF... 27 %Generating EPSF... 28 %Generating EPSF... 29 %Generating EPSF... 30 %Generating EPSF... 31 %Generating EPSF... 32 %Generating EPSF... 33 %Generating EPSF... 34 %Generating EPSF... 35 %Generating EPSF... 36 %Generating EPSF... 37 %Generating EPSF... 38 %Generating EPSF... 39 %Generating EPSF... 40 %Generating EPSF... 41 %Generating EPSF... 42 %Generating EPSF... 43 %Generating EPSF... 44 %Generating EPSF... 45 %Generating EPSF... 46 %Generating EPSF... 47 %Generating EPSF... 48 %Generating EPSF... 49 %Generating EPSF... 50 %Generating EPSF... 51 %Generating EPSF... 52 %Generating EPSF... 53 %Generating EPSF... 54 %Generating EPSF... 55 %Generating EPSF... 56 %Generating EPSF... 57 %Generating EPSF... 58 %Generating EPSF... 59 %Generating EPSF... 60 %Generating EPSF... 61 %Generating EPSF... 62 %Generating EPSF... 63 %Generating EPSF... 64 %Generating EPSF... 65 %Generating EPSF... 66 %Generating EPSF... 67 %Generating EPSF... 68 %Generating EPSF... 69 %Generating EPSF... 70 %Generating EPSF... 71 %Generating EPSF... 72 %Generating EPSF... 73 %Generating EPSF... 74 %Generating EPSF... 75 %Generating EPSF... 76 %Generating EPSF... 77 %Generating EPSF... 78 %Generating EPSF... 79 %Generating EPSF... 80 %Generating EPSF... 81 %Generating EPSF... 82 %Generating EPSF... 83 %Generating EPSF... 84 %Generating EPSF... 85 %Generating EPSF... 86 %Generating EPSF... 87 %Generating EPSF... 88 %Generating EPSF... 89 %Generating EPSF... 90 %Generating EPSF... 91 %Generating EPSF... 92 %Generating EPSF... 93 %Generating EPSF... 94 %Generating EPSF... 95 %Generating EPSF... 96 %Generating EPSF... 97 %Generating EPSF... 98 %Generating EPSF... 99 % Sheet #2 Layer #1 1 X: 138.49mm Y: 106.32mm X: 30.37mm Y: 78.62mm 154.33mm Group of 5 objects

    Large area arrays can easily be fabricated.

    Inter-module events will increase the effective area.

    Large areas could be used as an imaging

    detector plane.

  • Lab Testing of SM2 Module

    The H8500 provides an 8 x 8 array of anodes on

    a 6-mm pitch.

    Now in Progress

  • SM1 vs. SM2 Array

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    Effe

    ctiv

    e Ar

    ea (c

    m2 )

    3 4 5 6 7100

    2 3 4 5 6 71000

    2

    Energy (keV)

    SM1 (PSPMT) SM2 (MAPMT)

    Effective AreaSM1 vs. SM2 Array

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0M

    odul

    atio

    n Fa

    ctor

    (µ10

    0)3 4 5 6 7

    1002 3 4 5 6 7

    10002

    Energy (keV)

    SM1 (PSPMT) SM2 (MAPMT)

    Modulation FactorSM1 vs. SM2 Array

    These simulation results compare a single SM1 module with a 4-element array of SM2 modules.

  • 10

    8

    6

    4

    2

    0

    Figu

    re o

    f Mer

    it

    3 4 5 6 7100

    2 3 4 5 6 71000

    2

    Energy (keV)

    SM1 (PSPMT) SM2 (MAPMT)

    Figure of MeritSM1 vs. SM2 Array

    SM1 vs. SM2 Array

    Despite the lower modulation factor, the FoM of the SM2 array exceeds that of the SM1 module.

    The SM2 array provides :~25% greater sensitivity~30% smaller footprint~75% smaller volume

    close-packing

  • LaBr3 Scintillator

    1400

    1200

    1000

    800

    600

    400

    200

    0

    Cou

    nts

    200150100500Total Energy Loss (keV)

    LaBr 3 (∆E/E = 9.5%) CsI (∆E/E = 25%)

    GRAPE Energy Resolution(simulated)

    Another important advance, in terms of energy resolution, will come from

    the use of Lanthanum Bromide in place of the CsI.

  • Project Status

    First science model successfully tested.

    Now testing an improved design based on flat panel multi-anode PMT.

    Engineering balloon flight of SM2 array in 2006.

    Development of a full balloon payload for ULDB...

    ... a bunch of GRAPEs