32
GPSCOMM Critical Design Report Taylor Hughes Andy Merritt Adrian Migacz Adam Preeo

GPSCOMM Critical Design Report

  • Upload
    kapila

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

GPSCOMM Critical Design Report. Taylor Hughes Andy Merritt Adrian Migacz Adam Preeo. System Layout. GPS. RS-232. RF Transceiver. RF Transceiver. RF. RS-232. RS-232. 68HC11. 68HC11. LCD. SPI. RS-232. GPS Delorme. Laptop Station. RF Link to Field Unit. Transceiver. HC11. - PowerPoint PPT Presentation

Citation preview

Page 1: GPSCOMM Critical Design Report

GPSCOMMCritical Design Report

Taylor Hughes

Andy Merritt

Adrian Migacz

Adam Preeo

Page 2: GPSCOMM Critical Design Report

System Layout

68HC11

LCDSPI

68HC11

RF Transceiver

RS-232

RS-232

GPS

RFRS-232

RF Transceiver

RS-232

GPS Delorme

Page 3: GPSCOMM Critical Design Report

Laptop Station

Laptop ComputerGPS

Receiver

HC11

Transceiver

RF Link to Field Unit

Page 4: GPSCOMM Critical Design Report

GPS / Laptop Link

DeLorme GPS receiver communicates with Serial port on Laptop. GPS data uses the Rockwell GPS Protocol. GPS data updates every second. GPS initialization procedure takes about 30 seconds if there is a “clear” view of the sky.

LaptopComputer

GPSUnit

Page 5: GPSCOMM Critical Design Report

RF / Laptop Link

Data from transceiver is also in RS232 format, so it can be read in on another serial port.

Data coming from transceiver to laptop contains the NMEA Protocol Data from field GPS unit.

HC11 used to coordinate data between multiple field units and laptop.

LaptopComputer

HC11Transceiver

Page 6: GPSCOMM Critical Design Report

Serial ConnectionsThe base station will use two serial port connections to

communicate with external devices for data collection.

Local GPS connection – The local GPS unit uses the Rockwell Protocol for transmitting GPS data, therefore the incoming byte-stream must be parsed to extract the Rockwell GPS data.

Receiver Connection – The receiver will also be connected to the base station by a serial cable. The GPS unit located on the field unit uses the NMEA format for transmitting GPS data. So, the base unit must also be able to parse the incoming byte-stream for NMEA GPS data. The base unit will also send data to the receiver of the serial connection.

Page 7: GPSCOMM Critical Design Report

Base-Station HC11 Pseudocode

HC11 initialization procedure

LOOP (while not signal.STOP)

{

FOR(1 to Number of Field units)

{ Read in data from Field Unit N

Send data from Field Unit N to Laptop }

Receive data from Laptop

FOR(1 to Number of Field units)

{ Prepare all data for Serial Communication

Store Data in memory, indexed by field unit number

Send data for Field Unit N to appropriate Transceiver }

}

Page 8: GPSCOMM Critical Design Report

Laptop StationSend initialization to GPS unitsLOOP (while not signal.STOP)

{Read in data from local GPS receiverExtract relevant data from local GPS dataFOR (1 to Number of Field Units){Read in data for GPS receiver N from HC11Extract relevant data from GPS data N}Perform CalculationsSend data to field unit over RF linkUpdate GUI with current GPS data}

Page 9: GPSCOMM Critical Design Report

GPS Communication Demonstration

Page 10: GPSCOMM Critical Design Report

GPS Parts List

U-Blox RCB-LJ GPS receiver board

U-Blox ANN Active GPS Antenna Connects to RCB-LJ

Page 11: GPSCOMM Critical Design Report

GPS Schematic

Data sent from GPS in NMEA TTL serial protocol

Must send initialization sequence

Page 12: GPSCOMM Critical Design Report

ANN Active GPS Antenna Schematic

Page 13: GPSCOMM Critical Design Report

Transceiver Parts List

Low Power Radio Solutions2 Easy Radio 900TRS FM transceivers

Easy Radio Development KitAntenna Initialization and Interfacing board

Page 14: GPSCOMM Critical Design Report

900TRS Schematic and Timing Diagram

Data transmitted serially on 914MHz

Data sent/received, encoded/decoded

Sent out on RS232 and into MAX233

Page 15: GPSCOMM Critical Design Report

GPS and Transceiver Interfacing

GPS transmits NMEA protocol HC11 via TTL serial connection 9600 Baud

HC11 interfaces with the transceiver via MAX233 serial connectionTransceiver interfaces with base station via RF link 914 MHz(user programmable) 9600 Baud(user programmable)

Page 16: GPSCOMM Critical Design Report

Current GPS and Transceiver Data Flow

GPS Receiver MAX233 Transceiver

Data flow converted

to and from TTL and RS232

GPS data converted to

NMEA protocol and

setup to transmit

Data encoded/decoded and Tx/Rx at 914MHz. Data

sent out at RS232 protocol

Received data sent to memory on microcontroller

Data sent and Received from base station

Initial data flow for testing purposes. Final data flow will include HC11

Page 17: GPSCOMM Critical Design Report

Micro-controller Data Flow

HC11

PROM

SRAM

EPROM

Xilinx

GPS Data

Transceiver Data

Memory Mapping

Xilinx Boot CodeHC11 Code

Data Storage

Page 18: GPSCOMM Critical Design Report

Microcontroller DataMotorola 68HC11 MCU (52-pin PLCC)

8-bit Data Bus, 16-bit Address Bus

64k Addressing Space

SCI (Serial Communications Interface)GPS and Transceiver data

SPI (Serial Peripheral Interface) LCD interface

Page 19: GPSCOMM Critical Design Report

MCU Characteristics

Operating Voltage Range

5.0 (V) +/- 10%

Current Drain/pin 25 (mA)

Operating Temperature -40 to 105 (°C)

Supply Voltage Range -.3 to 7 (V)

Page 20: GPSCOMM Critical Design Report

Micro-controller Components List

Component Part Number FunctionMicro-controller Unit Motorola HC11 Controls data flow

Clock ECS 2200B Sets operating frequency of MCU – 8Mhz

SRAM HM6264LP-15 External Memory – Store coordinates of base station and mobile units – 8k x 8

FPGA Unit Xilinx Spartan XCS10,

XV1800 PROM

Maps data to memory

EPROM TI27C256 Stores boot code - – 32k x 8

Page 21: GPSCOMM Critical Design Report

CPU

1 uF

1k

VCC

Data Bus

U6

74HC373

OE1

1Q2

2Q5

3Q6

4Q9

LE11

5Q12

5D13

6D14

6Q15

7Q16

7D17

8D18

8Q19

1D3

2D4

3D7

4D8

U4

MC68HC11E9

VRH52

VRL51

PA331 PA430 PA529 PA628 PA727

PB042 PB141 PB240 PB339 PB438 PB537 PB636 PB735

PC09 PC1

10 PC211 PC312 PC413 PC514 PC615 PC716

PD020 PD121 PD222 PD323 PD424 PD525

E5

VDD26

XT8EX7

RST17

IRQ19

XIRQ18

MODB2

PA034PA133PA232

PE043PE145PE247PE349PE444PE546PE648PE750

AS4 MODA3 R/W6

pullup resistors ~4.7k

123456789

10Address Bus

U5A

74HC14

1 2

VCC

10M

.1 uF

Control Bus

ECS-2200 4MHz

U5A

74HC14

1 2

Page 22: GPSCOMM Critical Design Report

HC11 timing diagrams

Page 23: GPSCOMM Critical Design Report

External EPROM and SRAM

U1

27C256 EPROM

A010

A19

A28

A37

A46

A55

A64

A73

A825

A924

A1021

A1123

A122

A1326

A1427

CE20 OE22

VPP1

O011

O112

O213

O315

O416

O517

O618

O719

U2

HM6264A SRAM

A010

A19

A28

A37

A46

A55

A64

A73

A825

A924

A1021

A1123

A122

D011

D112

D213

D315

D416

D517

D618

D719

OE22

WE27

CS120

CS226 10k

1 2345678910

VCC

Address Bus

Data Bus

Page 24: GPSCOMM Critical Design Report

Memory Mapping and Layout

Memory Mapping/CS for external devices

AS, R/W’, E pins from MCU

Decoder and Logic programmed in Xilinx Project Manager

Tentative Memory Layout

0H

FFFFH

B600H 512 Bytes EEPROM B600H - B7FFH

512 Bytes Internal RAM 0000H - 01FFH

Reset Vector FFFEH - FFFFH

64 Byte Register Block 1000H -103FH1000H

External SRAM 2000H - 3500H2000H

External EPROM 3000H-A600H3000H

Extra EPROM, interrupt vectors, I/O for external devices C000H-EFFFH

C000H

Page 25: GPSCOMM Critical Design Report

Xilinx FPGA

JTAG

U5

XC4410/LCC84

I/O28

PGCK1/A16(I/O)13

PGCK3(I/O)57

RCLK/BUSY/RDY(I/O)70

SGCK4/DOUT(I/O)72

SGCK2(I/O)29

PGCK2(I/O)35

PGCK4/A1(I/O)78

SGCK1/A15(I/O)10

SGCK3(I/O)51

I/O18

I/O19

I/O20

I/O23

I/O24

I/O25

I/O26

I/O27

I/O38

I/O39

I/O40

I/O44

I/O45

I/O46

I/O47

I/O48

I/O49

I/O50

I/O62

I/O68

TCK(I/O)16

CS1/A2(I/O)79

CS0(I/O)60 A0/WS(I/O)77

RS(I/O)66

CCLK73

PROG55

TDI(I/O)15

TMS(I/O)17

A3(I/O)80

A4(I/O)81

A5(I/O)82

A6(I/O)83

A7(I/O)84

A8(I/O)3

A9(I/O)4

A10(I/O)5

A11(I/O)6

A12(I/O)7

A13(I/O)8

A14(I/O)9

A17(I/O)14

HDC(I/O)36

DONE53

TDO75

MD032

MD130

MD234

D0/DIN(I/O)71

D1(I/O)69

D2(I/O)67

D3(I/O)65

D4(I/O)61

D5(I/O)59

D6(I/O)58

D7(I/O)56

ERR INIT(I/O)41

LDC(I/O)37

U6

25640/SSOP20

DO1

TDI4

CLK3

VCC20

TDO17

OE/R8

CEO13

CE10

TMS5

GND11

TCK6

CF7

Vcco19

VCCVCCO

Page 26: GPSCOMM Critical Design Report

HC11 Field Unit Pseudocode

Initialize HC11 -Define addresses of external componentsLOOP(While not signal.STOP){ Read in GPS Data from GPS to Memory Read GPS Data from Memory and Send over RF-Link

to Base Station Read LCD Data from RF-Link and store in memory Read LCD Data from Memory and send to LCD via SPI}

Page 27: GPSCOMM Critical Design Report

Power Components

TTL – RS232 Voltage ConverterMAX233

Converts TTL and RS232 logic

Voltage Regulator7805CT

Steps 12 volts down to 5 volts Supplies all components on mobile unit

Page 28: GPSCOMM Critical Design Report

LCD

                                  

                        

4x16 character display from Crystal fontz

Serial SPI interface. This will interface with HC11

SPI requires ASCII protocol

to Note:

Slow LCD reaction time – update speed about 16ms = 63Hz.

Clock runs at max frequency of 18 kHz

Backlight takes 5V, 600mA- need separate source

Page 29: GPSCOMM Critical Design Report

LCD - SPI timing diagrams

Page 30: GPSCOMM Critical Design Report

Division of LaborAndy Merritt

Adam Preeo

Adrian Migacz

Taylor Hughes

GPS Board

X X

Transceiver X X

Memory Mapping

X X

Micro Controller

X X

Base Station

X X

LCD X X

Page 31: GPSCOMM Critical Design Report

Schedule

Page 32: GPSCOMM Critical Design Report

Parts Price List

LCD Screen - $75

Transceivers - $200

GPS Board - $160

Miscellaneous - $10

TOTAL - $445

Opportunity to Work in the basement of the Engineering Center - PRICELESS