15
Die Ressourcenuniversität. Seit 1765. TU Bergakademie Freiberg I Department of Energy Process Engineering and Chemical Engineering Reiche Zeche I 09596 Freiberg I Germany I Phone +49(0)3731/39-4511 I Fax +49(0)3731/39-4555 Email [email protected] I Web www.iec.tu-freiberg.de Department of Energy Process Engineering and Chemical Engineering Development of a Kinetic Fluidized Bed Gasifier Model for Application in Flowsheet Simulation Matthias Gootz, Supervision: Prof. Dr.-Ing. Bernd Meyer Lars- Erik Gärtner Prof. Dr.-Ing. Christian Hasse Leipzig, 13.11.2012

Gootz

Embed Size (px)

DESCRIPTION

adeasda

Citation preview

  • Die Ressourcenuniversitt. Seit 1765.

    TU Bergakademie Freiberg I Department of Energy Process Engineering and Chemical EngineeringReiche Zeche I 09596 Freiberg I Germany I Phone +49(0)3731/39-4511 I Fax +49(0)3731/39-4555

    Email [email protected] I Web www.iec.tu-freiberg.de

    Department of Energy Process Engineeringand Chemical Engineering

    Development of a Kinetic Fluidized Bed Gasifier Model for Application in Flowsheet Simulation

    Matthias Gootz, Supervision: Prof. Dr.-Ing. Bernd Meyer Lars- Erik Grtner Prof. Dr.-Ing. Christian Hasse

    Leipzig, 13.11.2012

  • 2Content I

    I. Introduction

    II. Model development

    III. Model validation

    IV. Simulation results

    V. Conclusion

  • 3Introduction

    Gasification Coal for power generation and chemicals production Commercially available technology

    Flowsheet simulation with Aspen Plus Implementation of gasifier model into larger flowsheet

    simulation

    Coal gasification kinetics Determined by physico- chemical effects Implementation with user- defined subroutine in

    FORTRAN77 Kinetic entrained flow gasifier model with subroutine

    already developped at TUBAF

    I

  • 4Introduction

    Main objectives Development of fluidized bed gasifier model using the

    continiously stirred tank reactor model (RCSTR) Comparison of two kinetic rate equation types:

    Langmuir- Hinshelwood (LH) N- th order

    Reasons RCSTR suitable for representation of fluidized bed gasifier Few literature on gasifier simulation with RCSTR and LH

    kinetics available LH more suitable than n- th order equations over broad

    operating ranges

    I

  • Model development: Kinetics

    5

    II

    Heterogeneous reactions

    N- th order Langmuir- Hinshelwood

    Homogeneous reactions

    Physico- chemical effects Pore diffusion Surface area evolution

    C + O2 CO22C + O2 2CO

    C + H2O CO+ H2C + CO2 2CO

    2CO + O2 2CO22H2 + O2 2H2O

    CH4 + 2O2 CO2 + 2H2O CO + H2O CO2 + H2

  • Model development: Aspen Plus

    6

    II

    High- Temperature-Winkler- GasifierPilot plant Wesseling

    Freeboardzone

    Fluidized bed

    Coal

    Air/ O2Steam

    Char

    Drying, Devolatilization RYield

    RCSTRGasification

    Volatiles

    Char

    Products of combustion

    SolidsGas

    SsplitSeparation

    Recycled solids

    Unconverted char, fines, ash Rawgas

    Combustion of volatiles RGibbs

    Char decomposition RStoic

    Air/ O2

    Generation rate of components

    CalculatorProperties, user input

    Generation rate of components

    SteamAir/ O2

    Solids

    Gasification RCSTR

    Kinetics Subroutine

    Separation

    Unconverted char,ash

    Recycle

    Rawgas,fines

    Coal

    Freeboard zone

    Fluidizedbed

    Air/ O2Steam

    Air/ O2Steam

  • 7Model validation: Case setup and results

    LH: T XC

    N-th order: T XC

    Validation case setup Pressurized air/ steam gasification of Rhenish brown coal [1] Gasifier temperatures and synthesis gas composition given

    III

    Observation Low XC at high reactor

    temperatures for LH simulation

    Simulation validation

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    LH N- th order Literature

    X

    C

    T

    i

    n

    C

    Cases

    T DensebedT FreeboardXCXC

    [1] Hamel et. al. Modeling of pressurized fluidized bed gasification in comparison with experimental data from a commercial scale and pilot scale HTW-gasification plant. Proceedings of 4th International Symposium on Coal Combustion, Beijing(1999), pages 411 420, 1999.

  • 8Model validation: Results III

    LH: CH4 CO2 H2O CO H2

    N-th order: CH4 CO2 H2O CO H2

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    LH N- th order Literature

    S

    y

    n

    g

    a

    s

    c

    o

    m

    p

    o

    n

    e

    n

    t

    s

    i

    n

    m

    (

    S

    T

    P

    )

    /

    h

    Cases

    CH4CO2H2OCOH2

    CH4CO2H2OCOH2

    Interpretation Energy balance is solved for lower temperatures

    (Aspen Plus: Standard Enthalpy of Formation is used)CO HR,0 = -111 kJ/mol [2]CO2 HR,0 = -393 kJ/mol [2]

    Simulation results

    [2] Chemgapedia: Standardbildungsenthalpien einiger Verbindungen. http://www.chemgapedia.de/vsengine/supplement/Vlu/vsc/de/ch/11/aac/vorlesung/kap_8/vlus/thermodynamik_thermochemie.vlu/Page/vsc/de/ch/11/aac/vorlesung/kap_8/kap8_4/kap8_4a.vscml/Fragment/faed7b2f1d262b91a3e6062626e0d88c-34.html. Accessed 11.10.2012.

  • 9Model validation: Langmuir- Hinshelwood

    0

    2

    4

    6

    8

    10

    12

    14

    0 0.1 0.2 0.3 0.4

    R

    e

    a

    c

    t

    o

    r

    h

    e

    i

    g

    h

    t

    i

    n

    m

    Concentration in mol/mol

    CH4H2OH2COCO2O2

    CH4H2OH2COCO2O2

    III

    Observations: Homogeneous reactions should proceed faster C- CO2 and C- H2O reactions too slow Inhibition by CO

    Low conversion due to inhibition, but high temperatures due to fast combustion

    0

    2

    4

    6

    8

    10

    12

    14

    0.00001 0.0001 0.001 0.01 0.1 1Rh in kmol/(ms)

    C- O2C- H2OC- CO2H2- O2

    Densebed

    Freeboard

    C- O2C- H2OC- CO2H2- O2

  • Model validation: N- th order

    10

    0

    2

    4

    6

    8

    10

    12

    14

    0 0.1 0.2 0.3 0.4

    R

    e

    a

    c

    t

    o

    r

    h

    e

    i

    g

    h

    t

    i

    n

    m

    Concentration in mol/mol

    CH4H2OH2COCO2O2

    CH4H2OH2COCO2O2

    III

    Observations: Char oxidation slower than with LH kinetics C- CO2 and C- H2O reactions are faster

    Faster endothermic reactions cause high conversionat low temperatures

    0

    2

    4

    6

    8

    10

    12

    14

    0.00001 0.0001 0.001 0.01 0.1 1Rh in kmol/(ms)

    C- O2C- H2OC- CO2H2- O2 Freeboard

    Densebed

    Freeboard

    Densebed

    Freeboard

    Densebed

    Freeboard

    Densebed

    Freeboard

    C- O2C- H2OC- CO2H2- O2

  • Simulation results: Variation of air feed stream

    11

    IV

    Observations: Higher air feed stream raises gasifier output results,

    but output parameters are still underpredicted

    Conclusion: No advantages of LH equations over n- th order

    equations in present simulation

    N- th orderLH

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    300

    400

    500

    600

    700

    800

    900

    1000

    -10% -5% 0% 5% 10%

    X

    C

    T

    i

    n

    C

    Change from original air feed stream

    T DensebedT FreeboardXCXC

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    300

    400

    500

    600

    700

    800

    900

    1000

    -10% -5% 0% 5% 10%

    X

    C

    T

    i

    n

    C

    Change from original air feed stream

    T DensebedT FreeboardXCXC

  • 12

    Simulation results: Range of application (LH)

    Combustion of volatiles in separate Gibbs reactor Less air used for coal gasification than in reality Unrealistic distribution of gasification agents between zones

    IV

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    -400

    -200

    0

    200

    400

    600

    800

    1000

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    X

    C

    T

    i

    n

    C

    Fraction of air fed to combustion xComb

    T DensebedT FreeboardXCXC

  • Conclusion

    13

    V

    Gasifier model Use with different reaction kinetics data and rate

    equations possible Failure to satisfyingly predict gasifier output

    parameters

    LH and n- th order simulation No recommendation can be made for present simulation

    Improvements necessary Suitable rate parameters (from orginial coal) for

    heterogeneous reaction kinetics Revision of homogeneous reaction equations External volatiles combustion needs to be transferred to

    RCSTR

  • 14

    Conclusion

    Future developments

    Adjustment to different fluidization regimes

    Combination RCSTRs withPlug Flow Reactor

    Extension for use of fuelblends

    V

    [3] D. Kunii and O. Levenspiel, Fluidization Engineering, second ed., Butterworth-Heinemann, 1991.

    [3]

  • 15

    Conclusion

    Thank you for your attention.