108
s. - -“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3 . COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium, Statistical Nuclear-Model Code for Calculation of Cross Sections and Emission Spectra scientific laboratory of the university of California LOS ALAMOS, NEW MEXICO 87545 /\ An Affirmative Action/Equal Opportunity Employer P. G. Young E. D. Arthur UNITED STATES DEPARTMENT OF ENERGY CONTRACT W-7405 -ENG. 36

GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

s. - -“ *, -.-..,.- .-.

LA-6947GI(2-14 REPORT COLLECTION

13EPRODUCTKMNC3. COPY

GNASH:

IUC-34C

Issued: November 1977

A Preequilibrium, Statistical Nuclear-Model Code for

Calculation of Cross Sections and Emission Spectra

scientific laboratoryof the university of California

LOS ALAMOS, NEW MEXICO 87545

/\An Affirmative Action/Equal Opportunity Employer

P. G. YoungE. D. Arthur

UNITED STATES

DEPARTMENT OF ENERGY

CONTRACT W-7405 -ENG. 36

ABOUT THIS REPORT
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images. For additional information or comments, contact: Library Without Walls Project Los Alamos National Laboratory Research Library Los Alamos, NM 87544 Phone: (505)667-4448 E-mail: [email protected]
Page 2: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Thisworkwassupportedby theUS DepartmentofEnergy,DivisionofphysicalResearch.

?rmlwl m Ihc IIniwd Stale- d’ Amcdc~. Avwldhlcr!,lmF1.!i.nd Tcchnkd !nlormutitmSMVIW

US. lkp.rtm~nl of C.nmwceS28SPm R,syd Ru,dSpmw!lcld.VA 22161

Wcrniit’hc s 3.(NI 126.1S0 7.1s M 1-27s 10.7s 376400Onl.llx 4 on 151-17s 8.00 276-300 1I .00 4014251116.0S0 4.50 176.200 9!00 301.3M 11.7s 426450051.(175 S.2S 20!-22s 9.2S 326-3S0 12.OU 4s147s076-IIJO 6.OO 126.2S0 9.s0 3s1.37s 12.s0 416.S00101.12s 6.S0

13.00 SOI.S2S13.2S $.26.S5014.ofl 551-s7514so S76400IS.ofl 601.uP

1. Add S2.50 for each additional100.pw inclementfrom 601 PWS up.

Th!s report W.S prepared u an wco..t of work sp.m.m.dby tic fhmttd S1.1.s Govmnm.nt. Nmlh.r the Umted Slut..“IX th. United St. tes IXp. rtment of Energy. nor ..Y .f Ihcir.mpl. yees. nor .IIY nf their ccmtr.ctors. subcumr.. tors. orthclr empiaye.s. makes .nv w.rc.nly, r, pres ,Ir tmnll.d. or.sminws .ny 1.s.1 h.bilily .r rerp. nnb!l, ty fur the .cc. r.c Y.mxnpletenew. or . .. ful”.s ,,f .IIY Inform.tton, app. r.tus.

omdu.t. .r process IIIW’IOSWI, .r tepr.w.ts that IU .s. wmdtlnot mfrl”n. I),,, .lc IY owned risht..

1s.2s1s.5016.2S16.s0-. 1

Page 3: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

‘~ASH : A PREEQUILIBRIUM,FOR CALCULATION OF CROSS

P. G. Young

STATISTICAL NUCLEAR-MODEL CODESECTIONS AND EMISSION SPECTRA

by

and E. D. fl.rthur

ABSTRACT

A new multistep Hauser-l?eshbach code that includes correc-tions for preequillbrium effects is described. The code can cal-culate up to 60 decay reactions (cross sections and energy spectra)in one computation, thereby providing considerable flexibili~y forhandling processes with complicated reaction chains. Input parametersetup, problem output, and subroutine descriptions are given alongwith a sample problem calculation. A brief theoretical descriptionis also included.

INTRODUCTION

The preequilibrium,

method by which reaction

(neutron, gamma-ray, and

tions can be calculated.

complicated sequences of

statistical nuclear-model

and level cross sections,

code CNASH provides a flexible

isomer ratios, and spectra

charged–particle) resulting from particle-induced reac-

The code uses Hauser-Feshbachl theory to calculate

reactions “and includes a preequilibrium correction for

binary channels. Gamma-ray competition is considered in detail for every decay–

ing compound nucleus. Each calculation can handle decay sequences involving up

to 10 compound nuclei, and each decaying compound nucleus can emit a maximum of

6 types of radiation (neutrons, gamma rays, protons, alphas, etc.). Angular-

momentum effects and conservation of parity are included explictly. Each resid-

ual nucleus in a calculation can contain up to 50 discrete levels, whereas its

continuum region can be represented by up to 200 energy bins. The incident-par-3

title types that are permitted are neutrons, protons, deuterons, tritons, He,

and 4He. These particles and gamma rays can also be emitted from decaying com-

pound nuclei. Angular distributions are not calculated; that is, isotropy is

assumed in the center-of-mass (cm.) system.

Page 4: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Figure 1 illustrates input data

used in GNASH calculations and provides

a summary of the major output features.

The input includes cards that specify

the reaction chains to be followed, the

incident energies to be included, and

the model and parameter options to be

used in the calculation. Optical–model

transmission coefficients are input for

all particle types included, and the

energy levels, spins, parities, and

branching ratios are provided for all

residual nuclei in the calculation.

A complex decay sequence involving

multiparticle and gamma-ray emission,

typical of the ones that can be handled

in a single calculation, is shown in

Fig. 2. The sequence is for neutrons

incident on59

Co with sufficient energy

to cause (n,5n) reactions to occur, and

has been used to calculate proton- and

alpha–production cross sections for neu–2

trons up to 40 MeV in energy. The

heavy arrows in Fig. 2 indicate the main

reaction chains that were followed. A

part of this calculation is included in

this report as a sample problem. Other

examples of calculations with GNASH ap-

pear in Refs. 3-8.

INPUI C.$RDS(REACC1O!4 CIIAINS,INCIIWKT LYERCY,MODEL OPTIOSS, STC. )

REACTION CNOSS SKTIONSLKVSC.’ACTIVATIOX X-SCC.

[

TNANSM1SS1OMDISCR=E CA.?IA-RAY X-SEC

cOEt-F1crs.NTslSONER XA11OS

GNASH

MASS and CR~ CNAffiED-TARTICL~

STATE SPIN TABLE ONOIVIOLV.L AYO

Fig. 1.Input and output features of theGNASH code.

n+,%o

%

Fig. 2.Sample decay chain for n +

59C0

calculations.

The GNASH code, developed for a Control Data Corp. (CDC) 7600 computer, uses

49 000 words of storage and up to 290 000 words of extended-core memory (depend-

ing on the problem) for storage of parameters used in a calculation. As an op-

tion, the code can use auxiliary files of transmission coefficient and energy-

level data or obtain these data directly from cards.

Included in this report are descriptions of the theoretical expressions used

in the calculations (Sec. II), mechanics of the calculation and important sub-

2

Page 5: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

routines (Sec. III), input

supplemental data or files

VI) . Section VII contains

parameters and options for streamlined setup (Sec. IV),

needed (Sec. V), and output produced by the code (Sec.

a summary discussion, and the code listing and a sam-

ple problem are given in Appendixes A–E.

IT.. THEORETICAL BACKGROUND

A. Calculational Expressions

The statistical portion of the code includes angular-momentum and parity ef-

fects explicitly and generally follows the formalism of W-d.9

In this section,

we give a brief description of the expressions used in the calculation. Preference

9 should be consulted for more detail.

For the calculations of complex reactions involving several particles and

compound nuclei, we assume that the reaction proceeds in stages with only one

particle emitted at each step. Each newly formed intermediate nucleus, produced

by particle decay of the previous compound nucleus, then disintegrates (if ener-

getically possible) with probabilities determined from I1auser-Feshbach theory for

binary reactions.1

The composition of nuclei involved in a calculation is as follows. At 10W

excitation energies, discrete levels of energy E, total angular momentum J, and

parity T are included. Generally, experimentally determined values of E, Jm,

and branching ratios are used for these levels. For higher excitation energies

where discrete-level information may be lacking, a continuum level-density ex-

pression is used. For this purpose, the continuum region is divided into energy

bins of width AE.

The population of continuum bins P(n+l)

(UJIT)in the (n+l)th compound nucleus,

formed by particle disintegration of the nth compound nucleus, is given by

/z ~(n)a (U’J’T’,UJm)

P(n+l)(UJT) = dU ‘ ~(n)(ufJ!T!) ~(n+l)(u~n)r(u’J’lT’)

. , (1)

J?~?

where ~(n) (U’J’TT’) is the population of continuum energy bins in the nth compound

nucleus after gamma-ray cascades have been considered, U is the excitation energy,

p is the level density, and a defines the type of radiation

compound nucleus to form the (n-1-l)thnucleus.

pound nucleus is determined from its formation

The population

cross section,

emitted by the nth

of the first com-

which can be found

3

Page 6: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

from the appropriate sum over transmission coefficients taken at the cm. energy

c of the incident particles,

(2J -1-1)P(l) (UJT) ‘+ (2I + I)(2i + 1)

xxTR(E)f@(u - B) . (2)

Ics k

Here k is the relative-motion wave number, l(’lTT)and i(mp) are the spins (parity)

of the target nucleus and projectile, and J(?T) is the total angular momentum

(parity) of the compound system. The quantity fk is a parity operator given bY

fg = 1/2 In+ (-l)%TTPI, TL(E) is the transmission coefficient having orbital

angular momentum R, s is the channel spin, and B is the binding energy of the

incident particle in the compound nucleus. The partial decay widths used in Eq.

(1) for reaction channel a have the general form

(3)

s P.

for widths involving transitions from continuum bins in the compound nucleus to

continuum bins in the residual nucleus. Here the parity operator fk has the form

fR = l/217T7T’+ (-l)Lmal, where Ta is the parity of the emitted particle, and Ba

is the binding energy of the emitted particle.

Similar expressions hold for the population of discrete levels:

\x ~(n)P(n+l)(EAJAnA) = dU’

~ (n) a (U’J’T7’,EAJA7TA)(U’J’m’)

r(u’J’7T’) 9J?m?

(4)

where the partial width for continuum to discrete level transitions has the form

Here the sums are taken over channel spin s and orbital angular momentum 1.

The total width appearing in the denominators ofl?qs. (1) and (4) is then the sum

over continuum bins (UJm) or discrete levels (EAJAmA) of the a~propriate partial

width ra(U’J’m’,UJn) or ra(U’J’m’,EAJAmA) for each reaction channel a.

For many calculations of interest, nonstatistical or preequilibrium effects

become important; therefore, a simplified preequilibrium expression formulated by

Braga-Narcazzan10 11

and based upon the exciton model of Griffin and Blann12 has

4

Page 7: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

been used to correct reaction and level-excitation cross sections as well as

spectra for preequilibrium effects:

()daCfinv(&)m&OR n

az x

(U/E)n-2 (n +l)2(n- 1) “opreq lM[2g4E3 n=3

(6)

In this expression E and U are the excitation energies of the compound and resid-

ual nuclei, respectively; ~ is the incident-particle reaction cross section; m,

inv(E) are the mass:E, and 0 Icinetic energy, and inverse cross section for the

outgoing particle; g is the average single-particle level spacing from the

Fermi-gas model; and n is the number of particles and holes (n = p + h) in the

compound nucleus. The sum extends from the initial exciton number 3 to ~, the

limiting value attained when equilibrium is reached.

We assumed that the absolute square of the average matrix element of resid-

ual two-body interactions had the form IMl2 = KA-3E-1 (A is the mass of the

nucleus involved), determined by Kalbach-Cline.13

The normalization constant

K was obtained from fits to various sets of data, including both spectra and in-

tegrated cross sections (for example, see Refs. 14 and 15), The code evaluates

the normalization factor using the expression

.=l!!&A“ (7)

We determined the value of ~ for neutron- and proton-induced reactions to be

0.0005 ~ 0.0001, in agreement with the Braga-Marcazzan value of 0.00045.10 Our

result corresponds to K = 150 + 30 MeV3, which can be compared to the value of—

100 ~ 35 MeV3 obtained by Kalbach-Cline.13

To provide flexibility in the code

for calculation of preequilibrium emission , we made the normalization factor

dependent on the type of particle emitted. Thus, effects such as the possible

existence of preformed particles can be included. When the outgoing particles

are neutrons and protons, the a values are known fairly reliably, but those for

outgoing alphas are less accurately known. Because of the lack of experimental

data on d, t, and 3He emission, even more uncertainty in a exists for these.

The total preequilibrium component, obtained by summing over each outgoing

particle channel involved in the decay of the first compound nucleus, then de-

termines a fraction by which the total compound-nucleus reaction cross section is

reduced. Because the preequilibrium model used in the code does not include ef-

fects of spin and parity, we assumed that the preequilibrium component had the

same spin and parity distribution as the statistical population component.

5

Page 8: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

B. Supplemental Quantities: Transmission Coefficients and Level Densities

To provide particle transmission coefficients, external optical model rou-

tines or codes must be used. GNASH accepts transmission coefficients in the

coMNucl’ form (see Sec. V) as a function of total angular momentum J and converts

them to TL using the expression

[ 1‘L(c) ‘(21:1) @+l)Tl,L+s ‘gT9,k-s “

(8)

To provide gamma-ray transmission coefficients, either the Weisskopf approx-

rnation1718,19

or the Brink-Axel giant dipole resonance form can be used. Specif-

ically, the Weisskopf approximation for El transitions yields

El E3TE1(u,u’) = Cw

Y’

whereas the Brink-Axel form gives

E121TE1(U,U1) = C –—E2 0.013A

BA ?T~2c2 y r

E2r2

Y

(E; - E~)2 + Ey2r2

(9)

9 (lo)

Here Ev= U-U’, r is the giant dipole resonance width (I’= 5 MeV), and ER,

the re~onance energy in millions of electron volts, is given by E =R

~OA-~/3.

El ElThe normalization constants CW andCBA are obtained from the ratio of the

average experimental gamma-ray width cry> to the observed resonance spacing <D>

for s-wave neutrons through evaluation of the expression (at the neutron binding

energy EB)

(11)

where TE1 is computed using either the Weisskopf

In the code, gamma-ray cascades through E2,

or Brink-Axel forms.

E3, Ml, M2, and M3 transitions

are permitted also. Transmission coefficients for these are computed using the

Weisskopf form (= E 2R+l), and the ratios CE2/CE1, ‘3 ‘1,Y3 El are de

Yc /c .... c /c

17

termined from the Weisskopf estimate~’ or are input directly during setup of the

calculation.

6

Page 9: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

The level-density expressions are those of Gilbert and Cameron20

21with the

pairing and shell parameters of Cook. A Fermi-gas level-density form is used

at higher excitation energies,

K exp (Z=) (2J +1) exp [-(J + l/2)2/202] ,p(E,JIT) = ~l/4u5/4

a 2+cr3(12)

and is matched to a

energies

constant temperature expression used for lower excitation

. (2J+ 1) exp [-J+ 1/2)2/202]p(E,Jm) =~exp [(E - Eo)/T] . (13)

26 (J3

The definitions for the quantities in l?qs. (12) and (13) are given in Ref. 20 and

will not be repeated here. The experimentally determined number of levels up to

a particular excitation energy are used (where possible) to determine parameters

for the constant-temperature expression so that a good match is made. The level-

density parameter a is either input directly into calculations or determined

using the Gilbert–Cameron prescription

a/A = 0.00917 [S(Z) + S(N)] + C , ‘ (14)

21where S(Z) and S(N) are shell effect terms and C, a correction term, depends on

whether the nucleus is deformed

III. CODE SUBROUTINES

To explain the workings of

scription of its subroutines is

MAIN - The main control routine

(c =20 -

0.120) or spherical (C = 0.142). .

the GNASH code and to aid in its use, a short de-

given here. The code listing is in Appendix A.

of the program. It reads in data describing in-cident-particle and target types, problem and decay chains involved, etc.

(see Sec. IV), and calls subroutines LEVPREP, TCPREP, and SETTJP for initialproblem setup. At each energy for which a calculation occurs, SETUP2 andSPECTRA are called. After the calculation, DATAOUT is called to provide asummary of the results.

LCSPACE - Sets up extended-core-storage (ECS) locations, zeroes extended-core lo-cations, determines parent reactions,fers.

and creates population-storage buf-

CHAINS - Called if automatic setup of chains is desired.

Page 10: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

ENERGY - Determines masses, separation energies, and ground-state spins and parit-

ies from the GROUND2 data file (Appendix B).

XMAGIC - Determines whether a nucleus is “odd” or “even,” according to the Gil-

bert-Cameron20

level-density prescription.

LEVPREP - Prepares a binary level-data file ordered properly for the calculationfrom an input binary-coded decimal (BCD) level file or cards. Stores J?Tdata in extended-core arrays.

TCPREP - Reads in transmission-coefficient data, eliminates J-dependence of spin1/2 arrays, reorders spin O and spin 1 arrays, determines the number ofnonzero coefficients, and stores transmission-coefficient data in ECS.

SETUP - Provides general setup information by deternr”.ningaccumulated separationenergies for the decaying nuclei, identifies incident particle as well as

secondary particles and photons, determines whether a residudal nucleus iseven or odd, sets up JITarrays, and initializes level densitities andGilbert-Cameron level-density parameters.

SETUP2 - Provides setup information for each incident energy in a calculation.Sets up energies, determines integration end points, and generates incident-channel transmission coefficients.

SPECTRA - The main subroutine of the program in which the widths (total and par-tial) and population increments used to compute the spectra are calculatedfor all compound nuclei and decay reactions occurring in a specified decaychain. Figure 3 illustrates the treatment of the decay sequence in whichgamma rays and particles may be emitted from one or several compound nuclei.Through several nested DO loops, the entire reaction sequence is handled.The outermost loop sums over decaying compound nuclei involved in the reac-tion sequence. The second loop sums over energy bins in the decaying com-pound nucleus. The third loop provides flags that indicate whether total

decay widths should be calculated (first execution) or whether populationsof continuum-continuum or continuum–level transitions should be calculated(second execution). A fourth loop su~ over reaction types occuring in thedecay of a continuum bin in the compound nucleus. Thus, all decays (eithergamma-ray or particle) are handled in the same manner. The decays to con-

tinnum bins or discrete levels in a particular residual nucleus are thenobtained from sums over the fifth loop. If preequilibrium effects are to be

included, PRECMP is called to modify the continuum and level populationscomputed above. The GRLINES subroutine is then called to compute discretegamma-ray cross sections and to add these cross sections to the computedgamma-ray spectra.

21LEVDSET - Provides pairing and shell corrections from the tables of Cook et al.

to be used in the computation of level densities using the Gilbert-CameronFermi-gas level-density expression. Calls GILCAM to provide information forthe Gilbert-Cameron constant-temperature level-density expression.

GILCAM - Where possible, computes energy matching parameters for the Gilbert-Cameron constant-temperature expression using input data that describe thenumber of levels present up to a given excitation energy.

8

Page 11: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Loop over all decaying nuclei

El.

L

Loop over energy bins *(UJTT)compound nucleus I

Width-summing loop

{

M=l+rtot

M= Z+p

Loop over decay reaction types

~oop over continuun bins ~’(U’J’T’)of residual nucleus 1’

M= 1 compute

r~ot(I,~) = rtot (I,+) +r(I,$:I’$’)p(I’~’)AE

M= 2 compute

DP = r(I$:I’~’)p(I’~’)P(I$)AE/& (1$)

P(I’~’) = P(ItI)’)+DP

rE2. Loop over residual-nucleus discretelevels @’(E’I’m’)

M= 1 compute

rtot(I,~) = rtot (I,V) +~(1*:1’*’)

L- ‘=2c0mputePL(I’$’) = PL(I’$’) + r(I~:I’@’)P(I~)/rtot(It))

Close D loop

Close B and C loops

Close A loop

Fig. 3.Schematic flow diagram for the SPECTRA subroutine.

9

Page 12: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

LCMLOAD - Computes transmission coefficients, level-density values, and Yrast

values on an integration energy mesh for each nucleus involved in a par-ticular segment of the decay chain.

GAMSET - Sets up the gamma-ray cascade calculation, determines Weisskopf or Brink-Axel parameters, and computes gamma-ray transmission coefficients.

WEISSKF - Normalizes Weisskopf or Brink-Axel gamma-ray strength expressions tothe input values of (2n<I’>)/<D>determined from s-wave neutron resonancedata.

INCHSUM - Performs sums over s and !2of the incident channel for a given compoundnucleus spin and parity.

SUMER - Adds computed population increase into spectra and level-populationarrays.

GRLINES - Computes discrete gamma-ray cross sections;integrated cross sections.

DATAOUT - Main output subroutine. Depending on which

sums spe~tra to obtain

print options are selected,widths, individual and composite spectra, cross sections, discrete levels,gamma-ray data, and level-density parameters can be printed.

ISERCH - Determines the parameters necessary for the interpolation routine.

PRECMP - Determines preequilibrium contribution, renormalizes compound-nucleuscross sections, adds preequilibrium contribution into calculated particlespectra, and modifies continuum and level populations to account for pre-equilibrium effects.

INTERI?- Main interpolation routine.

IV. MAIN CODE INPUT

We attempted to

separation energies,

PARAMETERS

keep the GNASH input as simple as possible. Thus all masses,

and ground-state spins and parities are taken from a data

file (GROUND2, listed in Appendix B), which accompanies the program. The masses

in the file are either the 1971 adjusted experimental values of Wapstra,22

or in-

terpolated or extrapolated values from fits to the measured masses using the semi-23

empirical relations of Garvey et al. The ground-state spins and parities are

based on experimental measurements.24

If J or 7Tis unknown, a value of 99. aP-

pears in the file. Unknown spins and parities are flagged during execution, and

Jm = O+ (even A) or Jm = 1/2+ (odd A) is used in the actual calculation.

The input parameters required for the main GNASH code are described in

Table I, and a sample input is given in Appendix C. The following sequence of

input data cards is used:

10

Page 13: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

(A) (2 cards) FORMAT (8A1O): TITLE(N), N= 1, 16

(B)

(c)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(1 card) FORMAT (514): IPRTLEV, IPRTTC, IPRTWID, IPRTSP, IPRTGC

(1 card) FORMAT (514): INI?OPT,KLIN, KTIN, NIBD, LMAXOPT

(1 card) FORMAT (614): NI, NMP, LGROPT, LPEQ, NJMAX, ICAPT

(1 card) FORMAT (4E1O.3) : ZAP, ZAT, DE, FSIGCN

(1 card) FORMAT (114) : NELAB

(l-3 cards) FORMAT (8E1O.3): ELABS(N), N = 1, NELAB

(0-70 cards) Reaction-chain data. The form and complexity of this segmentdepends on the particular input option chosen, as follows:

(1) INPOPT = 1, 2, or 3 (O cards)

Reaction chains are set up automatically.

(2) INPOPT = -1 (1-10 cards) (DO loop I = 1, NI)

FORMAT (8E10.3): ZACN(I), XNIP(I), SWS(I), [ZZAl(IP),1P = 2, NIP]

(3) INPCIPT= O (2-70 cards)

(a) Outer DO loop I = 1, NI

(1 card per I) FORMAT (5E1O.3) : ZACN(I) , XNIP(I) ,CNPI(I), CNPIP(I), SWS(I)

(b) Inner DO loop 1P = 1, NIP

(l-6 cards per I) FORMAT (5E1O.3) : ZA1 (IR), XNL(IR) ,A(IR), XNLGC(IR), ECGC(IR), where IR is a running re-action index that defines a unique I, 1P for each re-action sequence.

(l-6 cards) (DO loop MP = 1, NMP)

FORMAT (8X, Al, 11, E1O.3): LMGHOL(MP), LG, RE1(MP)

(O-1 cards) Input depends on LPEQ parameter, as follows:

(1) LPEQ = O (O cards)

(2) LPEQ = 1 (1 card)

FORMAT (6E1O.3): [ALPHAI.(IDx), IDX = 1, 6]

TABLE I

MAIN INPUT PARAMETERS FOR GNASH

Parameter Description

TITLE Two cards of Hollerith information to describe the problem beingcalculated.

IPRTLEV Print control for discrete-level data. Set IPRTLEV = O(1) to omit(include) print of discrete-level information.

11

Page 14: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

TABLE I (cent)

Parameter Description

IPRTTC Print control for transmission coefficients. Set IPRTTC = O(1) toomit (include) print of input transmission coefficients. Set IPRTTC>1 to print input values and interpolated transmission coefficientsat every (IPRTTC-l)th energy on the basic integration energy mesh.

IPRTWID Print control for reaction decay widths. Set IPRTWID = O(1) toomit (include) print! of decay widths for each reaction channel onthe basic integration energy mesh.

IPRTSP Print control for calculated energy spectra, as follows:

IPRTSP = O

. 1

. 2

. 3

to omit print of all calculated energy spectra.

to only print composite spectra for each radiation typein the calculation, that is, composite spectra foremitted gamma rays, neutrons, protons, etc.

to print individual spectra from each decay process in-cluded in the calculation, omitting the compositespectra.

to print both individual reaction and composite spectra.

IPRTGC

INPOPT

Print control for level-density information. Set IPRTCC = O(1) toomit (include) print of level-density parameters for each residualnucleus in the calculation. Set IPRTGC > 1 to print parameters andcomputed level densities at every (IPRTGC-l)th energy on the basicintegration energy mesh for each residual nucleus.

Input control for designating the input option chosen to specifythe reaction chains followed in the calculation. The followingoptions are available:

INPOPT = O is the most general input option available for speci-fying the reaction chains and the various parametersassociated with each chain. For example, it permits(but does not require) input of level-density parametersfor each residual nucleus in a calculation. See descrip-tion of card input for details of reaction-chain input.

= -1 also permits general specification of reaction chainsbut uses automatic features to simplify input. Withthis option, the code uses a built-in level-density pa-rameterization apd automatically determines parentage ofeach decaying compound nucleus by assuming that allprevious, unassigned reactions leading to a given com-pound nucleus contribute to its initial population ofstates.

12

Page 15: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

(cent)

Parameter

KLIN

KTIN

NIBD

LMAXOPT

NI

NMP

LGROPT

LPEQ

NW

TABLE I

Description

to automaticallyinitial compound

follow the neutron chain from thenucleus. A total of NI (see card

no. 5, Sec. IV-D) compound nuclei are included, andeach is permitted to decay by emission of gamma raysand neutrons.

same as INPOPT = 1 except each compound nucleus is per-mitted to decay by emission of gamma rays, neutrons,protons, and alpha particles.

same as INPOPT = 2 except that the product nuclei thatresult from proton and alpha emission are themselvesallowed to gamma decay.

Input fileset for= blank or 8 for

Input fileset forinput, = blank or

discrete energy-level data (= 5 for card input,input on disk or tape file 8).

transmission-coefficient data (= 5 for card10 for input on disk or tape file 10).

Number of large-core buffers set up for storing state populationsin reaction products that will further decay. The default valuefor NIBD is 10, which is also the maximum dimension.

Control for limiting the number of transmission coefficients(TO) included in a calculation by requiring that (2R + l)T >

.%* ~o-]LWiXOPT]

‘o. The default value is LMAXOPT = 5.

Number of compound nuclei that are permitted to decay in the re-action chain (maximum of 10).

Number of gamma-ray multipolarities permitted in radiative decays(maximumof 6).

Control for indicating the model desired for calculating gamma-raytransition probabilities, as follows:

LGROPT = 1 for the Weisskopf approximation.

= 2 for the Brink-Axel approximation.

Preequilibrium control. Set LPEQ = O(1) to omit (include) pre-equilibrium processes in the calculation.

Maximum number of values of total angular momentum permitted inthe calculation (dimensioned for 40, which is also the defaultvalue). For even-A cases, Jmax = NJMAX - 1; for odd-A cases,J . (2 *NJ~- 1)/20max

13

Page 16: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

TABLE I (cent)

Parameter

ICAPT

ZAP

ZAT

DE

FGSIGCN

NELAB

ELABS (N)

ZACN (I)

XNIP(I)

SWS(I)

ZZA1 (1P)

CNPI(I)

14

Description

Gamma-ray cascade control for initial compound nucleus:

ICAPT = O to omit full gamma-ray cascade calculation in the initialcompound nucleus (all subsequent compound nuclei do in-clude the full cascade).

= 1 to include the full gamma-ray cascade in calculation inall compound nuclei.

1000 * Z + A for the incident particle or projectile, where Z isatomic number and A is the (integer) mass number.

1000 * Z + A for the target nucleus.

Energy increment for the basic integration energy mesh (in millionsof electron volts). A maximum of 200 energy steps is permitted.If the chosen value of DE is too small, the code automatically fn-creases it to satisfy the 200-step limit.

Constant multiplier applied to all calculated quantities (defaultvalue is 1.0).

Number of incident neutron energies included in the calculation(maximum of 20).

Incident particle energies in millions of electron volts for thecalculation.

1000 * Z + A for each compound nucleus that is permitted to decay(I is the index that specifies the decaying compound nucleus.)

Number of decay channels included for compound nucleus ZACN(I).The minimum value is 1., and the maximum is 6. The fixed-pointvalue of XNIP(I) is NIP in the code, and the decay index 1P runsfrom 1P = 1 to NIP for each compound nucleus.

Value of the gamma-ray strength function for s-wave neutrons,2T<I’Y>/<D>, that is used to normalize the gamma-ray transitionprobabilities. A negative value of SWS can be used to directlyinput a normalization factor of ISWS(l)I. In the case of theBrink-Axel approximation, SWS(I) can be set equal to O. to indicateuse of a built-in, constant normalization factor.

1000 * Z + A for the radiation emitted from ZACN(I) by decay intochannel 1P. Note that ZZA1(l) = O. (gamma ray) is assumed in allcases. Other possible values are 1., 1001., 1002., 1003., 2003.,and 2004. (maximum of 1P = 6).

Parentage designator that indicates the previous compound nucleusindex I whose decay leads to the formation of ZACN(I).

P

Page 17: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Parameter

CNPIP(I)

ZA1 ( IR)

XNL(IR)

A ( IR)

XNLGC(IR)and

ECGC(IR)

LMGHOL(MP)

LG

REl (MP)

A.Lmfu (IDX)

TABLE I (cent)

Description

Parentage designator that indicates the previous decay index 1Pthat leads to the formation of ZACN(I). P

Same as ZZA1(IP) described above. Note that the running reactionindex IR defines a unique I, 1P for each reaction sequence..

Number of discrete levels to be included in the calculation forthe residual nucleus formed in reaction IR. If XNL(IR) = O., thenthe total number of levels input in the Level-Data File (describedin Sec. V) is used.

Level-density parameter, a, for use in the Gilbert-Cameron20

form-ula for the residual nucleus formed by reaction IR. Set A(IR) = O.to use built-in values [see Eq. (14)].

Number of discrete levels, XNLGC(lR), at excitation energy ECGC(IR)that are matched in the code to the Gilbert–Cameron formula for thecontinuum level density. If both these parameters are set equal too.9 then the total number of levels input in the Level–Data File isused.

Hollerith E or M to designate the MPth radiative transition as elec-tric or magnetic.

Multipole order of the MPth transition.

Ratio of the strength of the MPth transition to the strengthEl transition. Set REl(MP) = O. to use a built-in value.

of the

Preequilibrium normalization constants [see Eq. (7)] for reactionsinvolving emitted neutrons, protons, deuterons, tritons, 3He, and4He for IDX = 1 through 6, respectively. Set ALPHA1(IDX) = O. touse the built-in. values.

v. ADDITIONAL INPUT PARAMETERS

A. Discrete-Level Data

Following the main input, a separate subroutine (LEVPREP) is called to input

discrete-level data. These data can either be selected from a general data file

on disk or magnetic tape (KLIN = 8) or they can be input directly on cards for

the cases required (KLIN = 5). In either case, the overall ordering of the in-

formation must be for increasing ZA (1OOOZ + A). The discrete-level input param-

eters are described in Table II, and input for the sample problem of Appendix C

is given in the first part of Appendix D (pp. D-1 through D-5). The following

15

Page 18: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

sequence of cards (or card images) is required for each residual nucleus requir-

ing level data:

(A) (1 card) FORMAT (18, 15, F12.6): ID, NL, F

(B) Outer loop on levels (DO loop N = 1, NL)

FORMAT (16, F12.6, 2F6.1, E12.5, 16): NX, EL(N), AJ(N), AT(N), TAU, NT

(C) Inner loop for each level (DO loop K = 1, NT)

FORMAT (12X, 16, 2F12.6): NF, P, CP

Parameter

ID

N-L

F

NX

EL (N)

AJ(N)

AT(N)

TAU

NT

NF

P

CP

TABLE II

DISCRETE-LEVEL INPUT PARAMETERS

Description

1000 * Z + A of the nucleus whose levels are being input.

Number of levels being input.

For card input, set F = -1. for the last nucleus (highest

ID) for which level data is input. Otherwise, set F = O.

Level number (= N), that is, N = 1 for the ground state,N = 2 for the first excited state, etc.

Energy in million electron volts of the Nth level; that is,EL(1) = O.

Spin and parity of the Nth level. The sign of AJ(N) indicatesthe parity. For example, -O. is interpreted as a Jr = 0- state.

Isospin of the Nth level (if unknown, it is set equal to 99.0).AT(N) is not used in the calculation at present.

Half-life of the state in seconds (if unknown, it is set equalto 99.0 or 0.0). TAU is not used in the calculation.

Number of gamma-ray branches from the Nth level to lower levels.

Level number indicator for a level to which a gamma-ray tran-sition is occurring.

Gamma-ray branching ratio for the transition defined by N + NF.

For bound states, ~P(N+ NF) = 1. For unbound states, ~P(NNF NF

+NF) = the total probability for decays other than particleemission.

Probability that the transitions characterized by P(N + NF)are gamma-ray transitions. If, for example, there is a 20%probability that electron conversion is the decay mechanism,then CP = 0.80.

16

Page 19: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

TABLE III

TRANSMISSION-COEFFICIENT INPUT PARAMETERS

Parameter

NPART

BCDTC(8)

XBCD

NE

NN

K

ETC(J,ID)

TDUM(L)

Description

Number of particles for which transmission coefficientsare input.

Seventy-five columns of Hollerith descriptive information.

Alphanumeric particle identifiers, as follows:

_NEUTRON, _PROTON, _DEUTERON, _TRITON, _HE-3, _ALPHA;

that is, a blank column precedes each identifier.

Number of energies included in energy grid for transmissioncoefficients.

Number of coefficients input at each energy in the COMNUCformat.

Optional card counter. Can be used to check ordering ofcards.

Energy grid for transmission coefficients. The index

J specifies the energy and ID is an internal identifierthat specifies the particle.

Transmission-coefficient array. The index L runs from1 to NN for each energy on the grid. The coefficientsare collapsed to remove J-dependence and are stored asfunctions of energy for each particle.

B. Transmission Coefficients

Transmission coefficients for the projectile and outgoing particles are in-

put in the subroutine TCPREP, following the discrete-level data input. Again,

these data can be provided on a disk or magnetic tape file (KTIN = 10), or di-

rectly from cards (KTIN = 5). We have adopted the format used by COMNUC16

for

transmission coefficients, and data for the various particles can be input in

any order. The input parameters are described in Table III, and transmission

coefficients for the sample problem follows the level data in Appendix D (pp. D-6

through D-14). The following sequences of cards (or card images) is required:

(A) (1 card) FORMAT (14, 1X, 7A10, A5): NPART, [BCDTC(I), I = 1, 8]

(B) Outer loop on particles (DO loop N = 1, NPART)

(1 card perN loop) FORMAT (42X, A1O, 12X, 214, A8): XBCD, NE, NN, K

17

Page 20: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

(C) Input energy grid for particle N (internal identifier = ID). (DO loopI = 2, NE, 6)

(l-5 cards perN loop) FORMAT (6E12.2, A6): [ETC(J,ID), J = I, I +5

(D) Input transmission coefficients for particle N. Outer loop on energy(DO 100P I = 2, NE), inner loop on NN (DO loop J = 1, NN, 6)

,K

(l-7 cards per energy, depending onNN) FORMAT (6E12.2, A6): [TDUM(L),L=J, J+5],K

VI. CODE OUTPUT

The code output from the sample problem described in Appendixes C and D is

given in Appendix E. The amount of detail included in the output depends upon

the values of the parameters IPRTLEV, IPRTTC, IPRTWID, IPRTSP, and IPRTGC, de–

scribed in Table I. The problem output, the result of a typical setup used at

the

(1)

(2)

(3)

(4)

(5)

18

Los Alamos Scientific Laboratory, consists essentially of six parts:

Input data (pp. E-1 and E-2), including the parentage indicators, masses(XMR), separation energies (S), and buffering information automaticallydetermined by the code. Note that the number of discrete levels (NLEV) andthe level-density parameters (A, NLGC, and ECGC) have not been determined yetunless they were input directly into the calculation. Also note in the col-umn at the far right that the number of population-storage buffers is theminimum possible (4) for this particular calculation. Buffer No. 1 is re-used in the decay of the ZA = 27059 nucleus for storage of the ZA = 27058level populations. The buffer numbers set to zero indicate residual nucleithat are not allowed to further decay in the calculation.

Timing information (p. E-3), printed as the code progresses through themain computer loops in subroutine SPECTRA, and normalization constants forthe gamma-ray transition strengths (input directly in the example).

Binary reaction cross sections (p. E-4).

Calculated cross sections, average energies,radiation from individual reactions (pp. E-5for the various species of emitted radiationreactions to discrete states, and gamma rays

and secondary spectra of emittedand E-6) and composite spectra(p. E-7). Cross sections forfrom de-excitation of excited

states are included in the spectral listings. Above each spectral column

appear the integrated level decay, level excitation, and total productioncross sections and average emitted energy for the particular reaction. Mul-

tiparticle cross sections such as (J and a can be deduced from then,2n n,np

integrated cross sections. The energies associated with the emission spec-tra are midpoint values from the integration energy bins. Both the spectral

energies and cross sections are given in the cm. system of the recoilingnucleus plus particle or gamma ray. For medium or heavy mass nuclei, thec.m.–to–laboratory transformation factors are essentially unity.

Discrete-level excitation and gamma-ray de-excitation cross sections (pp.E-8 through E-15). The gamma-ray de-excitation cross sections only appear

.

Page 21: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

(6)

for the decaying compound nuclei and in those cases the level and gamma-rayproduction cross sections include cascade effects.

Summary of the parameters used in the Gilbert-Cameron level-densityformulas (p. E-12). The quantities EO [E in Eq. (13)] and EMATCH [energywhere Eqs. (12) and (13) are matched] are”determined from the number of dis-crete levels at excitation energy ECUT and the level-density parameter a .The neutron and proton pairing corrections (PN and PZ) and shell correc-tions (SN and SZ) are listed, together with the neutron-separation energies(S) for each residual nucleus. The quantity SAC is the “accumulated separa-tion energy,” that is, the energy of each decaying compound nucleus relativeto the first compound nucleus.

VII. DISCUSSION

The transmission coefficients given in Appendix D, which were used for the25

sample problem, were calculated from the Wilmore-Hodgson global optical param-26.

eters for neutrons, the Bechetti-Greenlees27

parameters for protons, and the Igo

parameters for alphas. The gamma-ray strength normalizations, which were input

directly for the sample problem , were originally determined by normalizing the

calculations for each compound nucleus to values of 2T<ry>/<lD cf approximately

25 X 10-4

for the Co isotopes and 2 x 10-3 -4

and 3 x 10 for’6 5’Fe.Mn and

Note that the sample problem results are for illustrative purposes only. A tighter

integration mesh and more careful selection of model parameters would be advj.sable

for a serious calculation. Additional examples of n +59

Co reaction cross-

section calculations are compared to experimental data in Figs. 4-7. These re-

sults were obtained with the global optical parameters described above, but with

a tighter integration mesh in GNASH than the one in our sample problem.2-8

Thus far the validation of the GNASH code has been for incident neutrons

or protons with energies mainly below 25 MeV. At energies above 25-30 It&V, the

binary reactions are dominated by the preequilibrium component, and calculations

become increasingly sensitive to the accuracy of that approximation. At incident

energies below -100 keV, use of GNASH becomes inefficient because of restrictions

on the integration step size. Caution should also be exercised in using global

parameter sets for generating transmission coefficients; we think the discrepancy

between calculated and measured values of the59

Co(n,a) cross section in Fig. 6

resulted in part from inadequate optical parameters for alpha particles.

For complicated reaction sequences or higher energy calculations, computa-

tional times can be excessive. Because computational times are very problem de-

pendent, the following parameters, which are most important in determining the

19

Page 22: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

t

l-l 0 i0.5–

NONELASTIC

I I I I I I I I I5.0 D.” 15.0

b

AA,

I .0~

INELASTIC

0.1

0.05- I I I 11.0 2.9 3.0 4.0 5.0

En (MeV)

Fig. 4.

Comparison of calculated nonelasticand inelastic neutron cross sectionsfor 59C0 with various experimental da-ta. The solid curves represent theGNASH calculations.

0.10 I I I I I I

0.09-

0.08-

0.07–z; 0.06-

g “,”~_Lllu)~ 0.04-mo~ 0.03-

0.02-■

0.01-

18 20 22NEUTRCN ENERGY (MeV)

Fig. 5.Calculated and measured values of the59Co(n,p) cross section. The solidcurve represents the GNASH calculations.

0.4

0.4T

0.35-z

g ().30–

i=~ 0.25–U2

~ 0.20– *OoE #VO.15 – t

am

0.10–

0.05

5 7 9 II B 15 17 19 21 23 25

I

NEUTRON ENERGY (MeV)

Fig. 6.Calculated and measured values of the59Co(n,a) cross section. The solid

curve represents the GNASH calculations.

20

Page 23: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

times, should be chosen carefully: energy-bin width (DE), the maximum number of

total angular momentum states in the compound nucleus (NJ14AX),the criteria for

limiting the number of transmission coefficients (LMAXOPT), and the number of de-

caying nuclei (NI) in the calculation. In addition, the gamma-ray cascade cal-

culation for the initial compound nucleus should always be turned off (ICAPT = O)

unless the spectrum of capture gamma rays is specifically required. A summary of59

running times for n + Co calculations to 40 MeV using the reaction chain of

Fig. 2 is shown in Fig. 8. For these calculations, the following parameters were

used: DE = 1 MeV, NJMAx = 40, NI = 5, and ICAPT = O. When they were performed,

the option for limiting the number of transmission coefficients had not yet been

implemented, so in effect the results were obtained with LMAXOPT = 15. The times

given in Fig. 8 can therefore be significantly reduced (-35%) without accuracy

loss by using the LMAXOPT parameter.

ACKNOWLEDGMENT

The authors wish to thank D. G. Foster, Jr., for providing the data file

that contains ground-state masses, separation energies, spins,and parities.

o~8 12 16 20 24

En (MeV)

Fig. 7.Calculated and measured (n 2n) and(n,3n) cross sections for 59C0. Thesolid curves represent the GNASH cal-culations; the triangles indicate the(n,3n) measurements.

1 1 I I I 1 1

NEUTRON ENERGY (MeV)

Fig. 8.CDC 7600 central-processor time forGNASH calculations of n + 59C0 reac-tions out to 40 MeV. These times canbe further reduced by careful limita-tion of the maximum order of transmis-sion coefficients used in the calcula–tion. See text for details.

21

Page 24: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

REFERENCES

1. W. Hauser and H. Feshba.ch, “The Inelastic Scattering of Neutrons, ” Phys. Rev.~, 366 (1952).

2. P. G. Young and E. D. Arthur,,,59

Co + n Calculations Up to Neutron Energiesof 40 MeV,” Trans. Am. Nucl. Sot. ~, 503 (1977).

3. E. D. Arthur and P. G. Young, “A New Statistical Preequilibrium Nuclear ModelCode,” Trans. Am. Nuc1. SOC. ~, 500 (1976).

4. P. G. Young, “Nuclear Models and Data for Gamma-Ray Production,” NationalBureau of Standards Special Publication 425, Vol. I, p. 149 (1975).

5. E. D. Arthur and P. G. Young, “Calculations of (n,2n) and (n,3n) Spectra andCross Sections,” Proc. of the Int. Conf. on the Interactions of Neutronswith Nuclei, Lowell, Mass., CONF-760715-P2, p. 1452 (1976).

6. L. R. Veeser, E. D. Arthur, and P. G. Young, “Cross Sections for (n,2n) and(n,3n) Reactions above 14 MeV,” accepted for publication in Phys. Rev.(1977j.

7. E. D. Arthur and P. G. Young,Particle Spectra on Stainless(1977) .

8. E. D. Arthur and P. G. Young,

“Calculation of 15-MeV Neutron-Induced Charged-Steel Type 316,” Trans. Am. Nucl. Sot. ~, 503

“Cross Sections in the Energy Range from 10 to40 MeV Calculated with the GNASH code,” presented at the Sym. on NeutronCross Sections 10-40 MeV, Brookhaven National Laboratory, May 3-5, 1977,Proc. to be published.

9. 1[.ml, “Calculations of Reaction Cross-Sections on the Basis of A Statisti-cal Model with Allowance for Angular Momentum and Parity Conservation,”Acts. Phys. Austriaca~, 245 (1970).

10. G. M. Braga-Marcazzan, E. Gadioli-Erba, L. Milazzo-Colli, and P. G. Sona,“Analysis of Total (n,p) Cross Sections Around 14 MeV with the Pre-equilib-rium Excitation Model,” Phys. Rev. ~, 1398 (1972).

11. J. J. Griffin, “Statistical Model of Intermediate Structure,” Phys. Rev.Lett. ~, 478 (1966).

12. M. Blann, “Extensions of Griffin’s Statistical Model for Medium-EnergyNuclear Reactions,” Phys. Rev. Lett. ~, 1357 (1968).

13. C. Kalbach-Cline, “Residual Two-Body Matrix Elements for Preequilibrium Cal-culations,” Nucl. Phys. A21O, 590 (1973).

14. D. Hermsdorf, A. Meister, S. Sassonoff, D. Seeliger, K. Seidel, and F.Shahin, “Differentielle Neutronenemissionsquerschnitte OnM(Eo;E,o) bei 14,6

MeV EinschuBenergie fiirdie Elemente Be, C, Na, Mg, Al, Si, P, S, Ca, Ti, V,Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Se, Br, Zr, Nb, Cd, In, Sn, Sb, I, Ta, W,Au, Hg, Pb, und Bi,” Zentralinstitut fur Kernforschung Rossendorf Bie Dres-den ZFK-277 (1974).

22

Page 25: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

15. S. M. Grimes, R. C. Haight, and J. D. Anderson, “Measurement of Sub-Coulomb-Barrier Charged Particles Emitted from Aluminum and Titanium Bombarded by15–MeV Neutrons,” Nucl. Sci. Eng. ~, 187 (1977).

16. C. L. Dunford, “A Unified Model for Analysis of Compound Nucleus Reactions,”Atomics International report AI-AEC-12931 (1970).

17. J. M. Blatt and U. F. Weisskopf, Theoretical Nuclear Physics (John Wiley &Sons, Inc., New York, 1952).

18. D. M. Brink, thesis, Oxford University (1955).

19. P. Axel, “Electric Dipole Ground State Transition Width Strength Function,”Phys. Rev. 126, 671 (1962).

20. A. Gilbert and A. G. W. Cameron, “A Composite Nuclear-Level Density Formulawith Shell Corrections,” Can. J. Phys. ~, 1446 (1965) .

21. J. L. Cook, H. Ferguson, and A. R. DeL. Musgrove, “Nuclear Level Densitiesin Intermediate and Heavy Nuclei,” Aust. J. Phys. ~, 477 (1967).

22. A. H. Wapstra and N. B. Gove, Nucl. Data Tables ~, 265 (1971).

23. G. T. Garvey, W. J. Gerace, R. L. Jaffee, and I. Talmi, “Set of Nuclear-Mass Relations and A Resultant Mass Table,” Rev. Mod. Phys. ~, S1 (1969).

24. F. Ajzenberg-Selove and C. L. Busch, University of Pennsylvania, “NuclearWallet Cards,” distributed by the American Institute of Physics (Dec. 1971).

25. D. Wilmore and P. E. Hodgson, “The Calculation of Neutron Cross Sectionsfrom Optical Potentials,” Nucl. Phys. ~, 673 (1964).

26. F. D. Bechetti, Jr., and G. W. Greenlees, “Nucleon-Nucleus Optical-Modelparameters, A > 40, E < 50 MeV,” physe Rev. 182, ~190 (1969)0

27. G. Igo, “Optical-Model Analysis of Excitation Function Data and TheoreticalReaction Cross Sections for Alpha Particles,” Phys. Rev. 115, 1665 (1959).

23

Page 26: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

APPENDIX A

PROGRAM LISTING

COPY3F u ?ILI!$PROM P8L71 LASL Identification No. LP-0778

PROGRAM QNA3H(INP, ~SETStINP ,0UT,F8e76SOUT,FSET80FSET9,1 FSET1O,FSEll l,FSEY12,FSI!Tlj)

GAMKIA.RAY, NEUTRON, AND AsSbRTED SPECTRA FROH HEAVY NUCLEI

FS!!T8 z INPUT LEVEL DATi IF CARDS NOT USEOF9ET9 s INTERNAL BINARY LEVPL OATA FILE (KL)FSEllk!= INPUT TRANSMISSION cOEFFICIENTS IF CARDS NOT USEDFSET1lS LEvEL fjcRATcH FILe . AvAILABLE FOR PUNCH OR DISc O/PFsET13x :NPuT GROUNl)-STATE !4As9 EXCESS, .9PINo ANO PARITY

MAIN 2APRe7771MAINMAIN :MAIN 6MAIN 8MAIN 9MAIN 10APR07772MAIN 11~AIN 12

IPRTLEv82! TO OMIT PRINT OF DISCRETE LEVFL INFORMATION MAIN 1SIpRTTC sfi TO OMIT *RINT OF ANy TRANst41SsION CoEPFIcIEN?g MAIN 14IPRTTC -l TO PRINT IIP iRANsMIsSION coEFFIclENT3IPRTTc~GE;2 TO PRINT TRANSMISSION COEFFICIENTS AT EvERy tIPR7Tc9i)l:~l ~~

TH ENERGY’ ON THE BASIC INTEGRATION ENERGY MESH MAIN i7IPRTWIO=O TO OMIT WIDTH PRINT MAIN 18IPRTSP an TO OMIT SpECTQA PRINT MAIN !9IPRTSp =1 TO PRINT COMPtiSITE sPECTRA ONLY MAIN 20IPRTSP =2 70 PRINT INDIvIDUAL SPECTRA ONLY MAIN 21IPRTSP =3 TO PRINT COMPOSITE AND INf)IVIDUAL SPECTRA MAIN 22IPl?TGc S0 TO OMIT PRINT OF LEVEL DENSITY PARAMETERS MAIN 23IPRTGC, S1 10 PRINT GILnrRT-CAFERON LEVFL DENSITY PARAMl!TIiRS MAIN ?UIPRTGc.GE.2 To PRINT LEVEL 0ENSITIE3 AT EvERY (IPRTGC-11 TH ENEROyMAIN 25

ON THE 8ASIc IN?EORATION ENERGY MESH MAIN 26INPOPT=-1 MANUALLY READ IN REACTION CHAINS SUT CODE AUTOMATICALLY MAIN 27

ASS!GNS PARENTAGE, CNPI(I) AND CNPIP(I] ARE ASSUMED TO MAIN 28BE ALL UNASSIGNED HIGHER REACTIONS THAT PROOUCE ZACN(I) MAIN 29

INpOpTSa MANuALLY I/p REACTION CHAINS ANO PARENTAGE Indicators MAIN 30!NpOpTCl AUTOMATICALLY FOLLbW NEUTRON CHAIN WITH G,N OEcAVS MAIN 31INpOPT=2 AuTOMATICALLY FOLLOW NtUTRON CHAIN WITH G,N,P,A DFCAYS MAIN 32INPOPT*3 AuTOMATICALLY FOLLOW NEUTRON CHdIN WITH G,N,P,A DECAYS, MAIN 33

ANO PICK UP GAMMAS FRON P AND A DECAYS t4AIN 3AISWS(II x + TO NilRMALIZE S=MAVE STRENGTH TO SkS(I) MAIN 35SNS(I) x 0: TO IJSE UNNORMALIZEO GAMPA RAy TRAfJsITIoN pRoBABILITIESMAIN 36

. AS ADJUSTED B’f RE1(l) MAIN 37SWS(I) = - TO MuLTIPLY GAMHA TRANSITION PROBABILITIES BY MAIN S8

ABs(swS(I)) MAIN S9

FOn~ATt201U)HAIN 49MAIN 41

FORYAT(lP, IJE1O:3)FORMAT(BA1O)

MAIN AAZMAIN 43

FnRMATI IHI.8Al(4,[IH ,8A~0j MAIN 44FoRt4AT(8x, Al#Il,lP,7Elci:)) MAIN 45

6 F0R3AT( lP, Etn;3,1i_4x,6E13. 31 HAIN lAbFORMAT(/ 9H IPRTLEv:12, 3X, 7HIPRTTC812*3X, 8HIPRTW!DMAIN 47

\=I?,3X, 7MIPRTSP=12, 3X,?HIPRTGCa12) MAIN 48FORMAT( 8H INPoPT=12, 3x,5HKLIN=12P3x~ 5HKTINb!203X~SHNIBD=12J 3Xc1 8HLMAXOPTs12,/)

J!JL26771JUL26772

9 FORNAT(/4H NIx,13, 3X,UHNNP=,12,3X, 7HLGROPts?12.Sx# kAjk1 5HLpFS=12S 3x, 6HNJflAx=13,3x, *1cAPT=*12)

10MAIN

FORMAT(/ SH zAP=F5.@, 3x,4HZAT=Fb.0# 3Xp3HDE=F6;3fUH MEV~1

MAIN.3X1 [email protected] AMUt3X? SHSPsF6.314H t4Ev~3Xs

2 8HECUiOFF:F502,UH MEV)MAIN

11MAIN

FnRMAT( 5H ACNZF7.315H /MEV#3xJ 7HfsIGcN1441Nl=F7,3, 3X, bHDEFCN=F2,LI,3X, 7tl!lPINT =F5,1,3X, UHPIT?F3;O) MAIN

12 FO~flAT(/* I ZACN NIP PARENT#, 9X,*sMldAVE*, 8X,*IP*, 4X,*2A1*,HAIN1 QX*ZA2*, SX, *ktiQbt8X, *9n,4ti, ●N~EV DEF A2FE~*/~ ● - w.;;- --i

NLGC ECGC BUFNAINx 1P*,

3MAIN

* STRtNGTHS ENERGY *= man, *, MAIN

96;:33545556575859bti

A-1

Page 27: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

131

151617

18

1925

c

4 * WWwmw (AMU) {MEv) .n ● -Q (/tltv) .dpmm (Mcv) NUMRMAIN bt

5ER*) MAIN 62FOR~AT( 13,F7,0, FU,0~F7.@, F6,fl,2X, lPE10PS,0p~F7;S) MAIN 63

4 FORMAT (U6X.15, F7:fl,F8,n, F6.3,F10.3.ZF5..0, F8.3,F5. Ocf10.3?17)FORMAT(I U6H XNDFX

MAIN 6fAL .,PARITY MULTIPOLARITY RA710 70 El) MAIN 6S

FORMAT( IU,2F6,fl,9X~Al~ 11#i3X,G11s4) MAIN 66FORMAT(//* WE.ISsKOPF APPRoXIMATION uSED FOR GAMMA-RAY TRANSMIg910NMAIN 67

1 COEFFICIENTS*)FoQnAT(/1

MAIN 68● AXEL APPRoXIMATION uSED FOR GAMKA-RAY 7RANSMIS!JIONUAIN 69

1 COEFFICIENTS*I MAIN 70FORMAT(I 26H INcIDENT ~NERGI~S (MEV) s,lP,lflElJ3.3#/26X,10F10;3) MAIN 71Y0RHb7(I/5x*COLL19MILb2Z0 cLOSED FIIRM USED FOR ABsoLuTE CAL or p~EMAIN 72

1-EIJUILIORIUH CROSS SECTION *//,* PRE=EQIJILIBRIUM NORMALIZATION CONMAIN 732STANTS ARE / d,6A10~/39x,*(INPUT) ●*lP06E10.3t/39X,* lUSED) ●? MAIN 7U3 6E!Q.3) 14AIN 75

F(lRYAT(//~fjx~MAIN 76

THE LAB ENERGY IS *GI1,u* MEV *//l UAIN 77FORMAT(20AU) MAIN 78FORMAT(lX,2@AU) nAIN 79COMWON RHO(&@, 20g],T(30C2@O),P(80) ,sp(201i, 6) tPPftJ0)zSpp(200t 7) RHO 2

l, SPNGN(200), pL(13n,6),G(200, 6),RH6FTR(4n) RHOcoM!4fiN/LcINoEx/TpBLC,IBLc, IzEROLC, ISPLC, IPLLC, IEGLC, ISGLC,ITCLC, LCNDEX :

ISTCLC, IRHOLC, ITLC,IELLC, IAJLC, IATLC, NIDIM~NIPDIM?NIBDIM~ NGRDIMILCNDEX 3: NIDt31M,NIF?OIM LCNDEX UCOMMON/TCOEF/ETC(2S,6),TC (25,30), BCD(7), XSPIN(7),NLDIM, TCOEF 2

lNPART, NF.E(6), No(6),NTC( b), IZAIO(7) 0XMASS(7)~NEEOIM, NLEIN(6c25)s TCOEF 3.2N1.E(6, 20$1), JRAST(2@@,6) TcOEF uCO~MON/LEVELl/EL(50),AJt50) ,AT(50),XNL(60), ELMAX(60) cNLEVDIH LFVEL1 2

!tEG(2u@) #SG(21J0), NGRAYSt6@) LEVEL1 3COMMON/8ASTCl/NI,XNIp(ln) ,NIR, LR(6,10), ZAl(bE),ZAi!(60) ,xH2(6018 BASIC1 2

1 ZACN(lO), CSGR(60), CSTOT(6O) ,cSL&V(60),CSIO(8) JEAVIO(8) ,EAV(601 BASIC1 3CO~fiO~/P4SlC?/TITLE(i6) ,ELAB,DE,Z AP,ZAT,XMT, NKKM(lO),CNPI(lO), BASIC2 2

1 cNPIP(Io) .s(60),sAC(l@], IDl(6n), IOP, IOF2(60),!R(JF(60 10)J flASIC2 32 ECM,Up, NK~AX,NJHAX,NKK( 6a), NKOIM, TCP(3a),0~oP(U9) IA(60)/A2(60)t fl.AsIci? 43 ~Rt40(6)#xJT* NPt3PMAx, NTtt?(6),NJDIU, IOECN(lO), NKKCN(l@)SECON, f3ASIc2 5u JPI(u!7, Z), XMP,XJP,PIT,NLP, xNLP, KL, 105TAT(7), SIC,CSL, CSH,PIL~~(3@) BASIC2 b5tICAPT, PLf3UF(5t7, 10)tINPOPT, TKEEP f3AsIc2 7COMHON/GAMMA/NUP,LGROPT, SWS(IE), GML(6),GMP(6),RE1 (6),LMGH0L(6)c GAUPA

1 TGR(20B, 6), wKcoN, CAXEL,CAXEL, ERAXEL~E%SwSC lO)JwKNoRM GAMPA $COMMON/PREEQ/LPEQ,SIGP,PREfJI (fJ), C51C1(6), N11T(b)cALPHA(6) PREEQ 2

COMMON/pREQl/EPSIG(20@,h) ,NLEv,NPIT,NIT PREO1 ~COM~ON/FITTING/ACN,FSIG~N, SIGPEQ FIT71NG2CgMPON/PRNTOLJT/lPRTLEv,lPRTTC, IPRTMLD, IPRTHID, IPRTSP,IPRTGC PRNTOUT2CO~~ON/LEVDEN/0EF(6n),XNLGC (60) lECGC(60),UcUTOFFc D~FCN~ TGC(60)S LCV@EN 2

1 E0GC(60), EHATGC(60)~PAIR( 6@), XMR3(60), XNLLN(b0)~SZ (!00),SN(150), LEVDEN 32 PZ(190),PN(15E’!) LEVDEN OCOMMON /SPNPAR/ SPIN,PARITY,KGliO LEvDEN 5

MAIN 92DIMENSION ALpHAl(6) MAIN 93DIMENSION zZAj(6),ELABS(20) MAIN 94OIMENSION 71Npu(20) MAIN 95DATA BCD/lL3H NEUTRDN ,1OH PROTON

1 lnH iiE-3tlOH DEUTERON olOH TRITON 8 MAIN 96

e!OH ALPHA ~lOH GAMPA-RAYI MAIN 97DATA IzAIo/l,lnel,lnf12,j0n3,2nf13t i?OeQvql MAIN 98DATA KX, KL. K?, KGf?O, IHOLF,IHbLM, /5,9,7,1301uE01HM~ lJIAiN 99OA?A XMASS/1.0L?f366t!tl,FIf1782$,2. I?IIUIFZ, 3;@160S0,3,016030, U,C102b03, MAIN 100

j 0,/ MAIN 101DATA XSPIN/0.5,n.5,1.0,fl,5,@.5, fl.@,O.fll MAIN 102DATA NKD!M,NJDIM,NEEOIM,NLDIM,NLEVDIM/2L30, 40~25vS0~$01 VAIN j03DATA NIDIM, NIPOIM, NIBOIMjNGRDIM, NIDDIM\ MAIN lflb

1 108 8F sun, 71 MAIN 105DATA ALPHA>5!h~wflU, 5.BE~0U,3&l~@Ea0Z, 5F-03/ MAY77 1OATA N1TTls~3,3,3,3p3/ MAIN lf17

A-2

Page 28: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

c

3i3s

301

cc

100

MAIN I@OExAi7M(ib,cxMA9sj w ZAqlO~O,*FLOAT(IPiX(ZA/1000, 11+ExM4s31931,5D2 t4AxN 109

MAIN llflMAIN 111

TAPE 12 = BUFFER XNPUT MAIN 112MAIN ~i3

wRITE(6?3z) MAIN 114FORMAT(IH1) MAIN \iSREAD(KI,33) ZINPU MAIN 116IV(EOF,KI) 300.301 MAIN 117h’RITE(6,3U) ZINPU MAIN 118WRITE(12,33) ZINPU MAIN 119GO To 35 MAIN 120CONTINUE MAIN 121

MAIN \22NOW TAPE 12 x INPUT MAXN 123

MAIN 124KIC12ENDFILE KI

MAIN 125MAIN $26

REWIND KI MAIN \.?7MAIN 128

MAIN INPUT 9E,C110N MAIN 129Ext4N c, ENERGYtl;O) MAIN 130READ(KI,3),.TITL~ MAIN 131IF(EOF, KI)iOaO. 101 MAIN 132kR11E(61U) TITLE MAIN 133RllAo(KI, l) IPR7LEV, XPRT?C, IpRTWID,IPRTSP, !PRTGC HAIN 134RFA~(KI,l) INPOPT, KLIN,KTIN,NIBO,LMAXOPT J(lL.2b773IF(NIf+D,GT;t7) NIBDIM=NIBD MAIN 136XF(KL!N.LTrt) KLIN=8 MAIN 137IF(KTIN,LT,l) KTIN=1O MAIN 138IF(KLIN.NE.8) KLIN=12 h~Rf17773lF(KllN.NE~l~)KT1~:12 APRa777aWR11E(6,7) IPRTLEV, IPR7TC, IPRTklID~IPRT~P, IPRTGC MAIN 139URITE(6,8) INPOP?,KLIN,KTIN, NIBD,LMAxOPTEPSILON=1,CIE*9

JUL2b774JU~2b775

IF(LMAxoPT~GTivI) JUL2b77bLMAXOPTS*~MAXOPTIF(LMAXOPT.NE.0) EP91LON=’jO,*&LMAXOPT JUL26777READ(KI,,l) NI, NMP, LGROPT, LpEO,NJMAx~ IcApT MAIN 141IF(NJMAx.Eo~n) tJJMAX=NJDXM MAIN 1U2f?l?AD(KI,Z) zAP,ZAT,OE,FgIGCN MAIN IIJ3UCIJTOFF = E!,l MAIN lUUREAD(KI,l) NELAB MAIN 145REAo(KI,2) (ELAB!J( I),IFi,NELAB)EXMT

MAIN ld6= ENERGY(ZAT) MAIN 147

XJT 8 SPIN tiAIN 148PIT s PARITY MAIN 1U9XMT s ExAcT14(2AT,EXMT) MAIN 150SIC = EXMT + ~NERGY(ZA~) o ENCRGY(ZATiZAP) MAIN 151IF(Fs16cN.Eo10.) FsIGcN~l~e MAIN 152:R=@ MAIN 15300 19Q I=I,N?IF(INpOPT;FCJ.0) READ(KI,2)2ACN(X),XNIP(X),CNPI (X),CNPXP(I),SWS(I) !:i: :::ZZAl(l)~@. MAIN 156IF(INpOPT.LEp=I )REA0fKI,2) i~cNt I), xNIp(I),SWSC I), ti2At (xp1,1Ps2,6)MA1N \s7IF(xNPOPT.GE.1) cALL CHAINStI,IR) HAIN ~58

ZAC E 2AcN(I)ExMC

MAIN $59= ENERGY(ZAC] HAIN 160

ExSKS(I) s ENERGY(ZAC-l;O) + EXMN - EXMC MAIN 16iNIp=xYIP(I~ MAIN 162DO IPU IPv1,NIP MAIN 163IRxIRtl MAIN 164LRtIP,!)oIR HAIN 169

A-3

Page 29: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

XNL(IR)sO, MAIN 166A(IR)=O. MAIk lb?XNLGC(IR)SO, MAIN 168EcGc(IR)=I!I. MAIN 169

IF(INpOPTpKO:0)RFAO(KI,2~ZAl (Il!),XNL(IR),A(IRltXNLGC(IR) ,EtGC(IR) MAIN 170IF(INPOPT.I.E.-1) ZAi(IR)=ZZAi(IP)ZA2(IR) ?-ZACNii)DZAl(IR)OEF(IR) = XMAGIC(ZA2(IR))

ZAR = ZA2tIR)CXPR s ENERGY(iAR)XMZ(IR) s EXACT!!(ZAR,EXMR)s(IR) : EXMR + ENERGYCZA’i(lR)~ w EXHC

104 CONTINUENIRIxIRCALL LCSPACEAcN=A(l)DEFCNaOEF(i)Wl?ITE(b,9) NI, NM$,LGROPT, LPE(),NJHAXd ICAPT!4RITE(6,10) ZAP, ZAT~DE,XMT,SIC,WCUTOFFWRITE(6,11) AcN, ~SIGCN,DEFCN, XJT~PITWRITF(6, 19) (ELA8s(I), I~l ~NELA5)wRITE(h,12)

:~I+;!6!l\;!!ZACN(I)8XNIPf l).cNPI (x)lcNPxp(I) 8sws(2) tEXSWS(I)NIPzXNIP(I)00 lflb TP=llNIPIR=LR(IP, I)IFI=IBuF(IP, I)IF(IB.GT;N16D!M) IBsIBoNI13DIM,

106 wRITE(6,1u) IP,zA1(IR) ~zA2(IR) ,xM~CIR) sS(IR) tXNL(IR)t1 DEF(IR) . A(IR) SXNLGC(IR) cECGC(IRICIS‘!F(LGROpTjEO;l) WR17E(6,17)IF(LGROPT.EO.Z?) WR1Tc(6,18)MRITEtb,15)DO Ilfl MP=l,NMPREADfKI,5) LMGHij~(Mp) lLG,REltNp)eIF(LMGHOL(Mp) ;EfitIHOLE) GMP(MP)P?l;OIF(LMGHOL(~P) .~Q.IHoLM) ~14P(~plyl.~IF((LMCHOLtMp) .EQ.IHOLE). ANo. (LG.I!Q. ;);AND.(RC1(MP) ,EQ.00))

1 REl(MP):l:O

110

i02201

cc

cc

cc

cc

‘GML(MP)=LGWRITE(6,1b) HP, GML(MP), GHP(MP),LMGHOL(MP) ILGcRElfMPlIF(LPEQ:EQ:l )READ(KI,2)ALPHA 100 2al IDX=1,6IF(ALPHAl (IDx);N~.0.)202# 201ALPHA(IDX)=ALPHAl (IoX)CONTINUEIF(LPEO.EQ:l) WR17Et612~) ~BCDtXDX), IDXsl~b)#ALPHAlt ALPHA

READ LEVEL INFORMATIONCALL LEvPREP(KI.INsKL)

REAO TRANSMISSION COEFFICIENT DATACALL TCPREP(KTIN, EPSILON)

SET UP FOR CALCULATIONCALL SETUP

INCIDENT ENERGY LOOP00 2n0 IELAB=l,NELASCALL SECOND(TKEEP)ELAB=ELA5S(IELAB)CALL SE7UP2

MAIN 171RAIN 172MAIN 173VAIN 17UMAIN 175flAIN 176MAIN 177tlAIN 178MAIN 179MAIN 180MAIN 181MAIN 182MAIN 183MAIN 184MAIN 185MAIN 186MAIN ]87VAIN 18RMAIN !89MAIN 190MAIN 191MAIN 192HAIb 193MAIN 194HAIN 19SIIAIN 196MAIN 197MAIN 198HAIN 199t441N 200MAIN 201t4AIN 202MAIN 2@3MAIN 2(4uMAIN 205MAIN 2flbMAIN 207MAIN 2n8MA[N 209MAIN 2!0MAIN 211MAIN 212MAIN 213MAIN 210MAIN 215MAIN 216MAIN 217MAIN 218JUL26778MAIN 220HAIN 221MAIN 222MAIN 223VAIN 22UMAIN ?25MAIN 226HAl~ 227MAIN 228

A-4

I

Page 30: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

: CALCULATE SpECTR&ICALL SPECTRA(ACN,FSIGCN)

: PRINT AND WRITE OUTPUT RE3ULT9CALL DATAOUT

198 CONTINUE199 CONTINUEc2Q0 CONTINU!I

Go To iflnl@OO STOP

ENDSUBROUTINE 1.C8PACE

cc SET UP LCM STOR4GE, ZERO ARfiAY, AND VARIA8LE STORAGE BU?FERSc

COMMOhl. qHOtUO, 2flflYqT(3fl,?00) ,ti(8(il, SP(2(?0?6),PPt80) *SPp(200~ 7)!,spNGM(2nO),pL(51?,6),G(200, 6),RHOF7R(40)CO~~MON/BASICl/NI,XNIP(lO) ,NIR,LR(6, 10~,ZAl(60),ZA2 (6n),XN2(60),

1 ZACN(lO), CSGR(63), C9TO?(6O) ,CSLEV(60),CSID(8), EAVID(8) ,EAV(61?)

14hlv ?29MAIk 230MAIN 231MAIN 232MAIN 233MAIN .234MAIN t?j5MAIN 236MAIN 237MAIk 238MAIN 239MAIN 24@MAIN 241LCSPACE21.CSPACE3I.cSPACFLULcsP~cE5RHO 2RHOBASIC1 :RASIC1 3

COMMONILCINDEX?IPULC, IGLC, SZEf?OLC, 13PLC, !PLLCtIEGLCp ISQLColTCLCp LCNOEX 2i ISTCLC, lRHOLC;ITLCO IELLC, IAJLC, IATLc, NIoIH, NIPDIM,NIBoIM, N6RDIM,LCNDEX 32 NIODIH.NIRDIM LCNDEX uCONMON/iC6EF/ETc(25?b),TC(23, 30),BCD(7),XSP!N(T) tNLDIU, fcULF 2

lNPART, NEE(6), Nh(6),NTCt6) ,IzAID(7),xMASS(7), NEED1M, NLEIN(6~25)~ TcOEF 3I?NLE(6, 2n’a), JRAsT(213n,6) TCOEF UCOMUO~J/LEVFLltFL(5a),AJt5P) ,AT(50} txNL(601,ELMAX(6TI)~ NLEVDIM LLVEL1 2

l, FG(2u@), SG(24q), NGQAySt6fl) LEVEL1 3CCIMMON/RASIC2/TITLE(16) .ELAFI, Of?,ZAP,zAT*XMT, NKKM(lO), CNPI(1O), BASIC2 2

1 C~~pIP( l@) .S(60),SAC(lCI~t !O\(6@), IDP, IOE2(60)t IBuF(6, l@)o BASIC2 32 ECfl,LIP, NKMAX, NJHAX,NKK(b$3) ,NKDIMc TCp(30)jQMDP(4@)~A (60)~A2(60), 0ASIC2 43 NRHO(6),XJT, NPOPkAti~MTC2(b) #NJRIM# IOECN(ln),NKKCN(lO)CECON/ BASIc? 5u JPI(4a, P), xt4P,MJp,PIT,NLp, ~NLP,KL, 10sTAT(71, sIc,CS~, csH~PILLL(30)nAsIC2 65, 1CAR7, PLf3(lF(5k3, 10)IINpoPT,TKEfp BASIc2 7OIMENSICIN SCRUF(fJPnO), IJJ(lPJ), IPJJt 10) LCSPAC12EQUIVALf!NCE t9c8uF.RHO)

cLCSPAC13LCSPAClfJ

c SET LCM STORAGE INDEXES LCSPbC!5NIR0:M=Nfolt4*NIP0XM LCSPAC16lPE!LCq@ LCSPAC17IGLC=IPBLC$NJDIM*NKDXM*N18DIM*2 LcSpAC18IZEROLC=IGLC+~KCJIM*NIROIM LCSPAC19IsPLc:IzEROLC+8m00 LcsPAc20IPLL(=IsPLCtNKDIM*NIRDIN, ~cSPAC2iIEGLC=IPLLC+NLEVDIM*NIROIM LCSPAC22ISGLC=II!GLC+NGRI)IM*NIRDIMITCLc=IScLC+NGRPIM*NIRDIM

LCspAC23LCSPAC2U

IRHnLCsIYCLC+NEEDIM*NLOIfl# (NIODIM-1) LCSPAC25ITLC:IRHOLC+~KOIM*NJOI~*NIPDIM LCSPAC26!ELLC=ITLC+NKOXM*NLDIM*NIPOIM 1.CSPAC27IAJLC=IFLLC+NLEVCIIM*NIROIN LCSPAC28IATLc:IAJLc+NLEvDIM*NIRoIt4 LcSPAC29LCMOIM=IATLC+NLEVOIM*NIROIM LCSPAC30WRITE(6,1) LCMDIM LCSPAC31

1 FORMAT(* LCV SPACE REQUIRED (EXCLUl)ING D!$C BUFFl?RS) IS *p17) 1.CSPAC3ZWRITE(6,2) NIBoINsNKoIM LcSPAC33

2 FORMAT( * NUM$ER OF LCM BuFFERS IS h412/ * MAXIMUM NUMBER OF ENI!RGLCSPAC34lY BINs IS *,10) LCSPAC35

c LCSPAC36c SET UP LCM ,?ERo ARRAY [CSPAC37

DO 10 K=1,}OOL310 SC9UF(K)C0.

LCSpAC38LCSPAC39

A-5

Page 31: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc

408409410420

cc

6264

66

I/lLft~f?fRfjLCtlpr3c12finCALL ECWR(SCBUF, INDEX,NPTS81CRR)INDExuINDEx+NPTsCALL ECHi?(SCBUF, INDEX8N$TS,IERR)INDEx=JNO~X+h’pTSCALL ECWR(SCBUF, INDEX,NPTSCIERR)XNDEX=!NDFX+NPTSCALL EcwQ(sCRUF, !NDEXIN$TS,IERR)CALL ECRO(SCBIJF, IZEROLC,unOO, !ERR)INDCX=INDEx+NP~S.CALL 2C14R,(SCBUF, INDEX,400@, IERR)IF(INPOPT.GE.(1) GO TO 020

DETERMINE PARENT REACTIONSL9uFoPl=tCNPI(l)=l;,CNpIp(l)=l.IF(NI.LT.Z) GO TO 020DO :lt? 1=~.NICNpI(I)=@CNpIp(I)=;;I~ZI.\DO 409 IMu1,I111=11-IF+i :.IF(ZACN( I)’.EQ.ZACN(II)) Go TO U1ONIP = X~IP(II)IF(NIP;LT;;) GO TO 409DO Ontl IIP~2,NIPIR=LR(ITp,}I)IF(ZA2( IR).NE;iACNjI)) GO TO 008CNpI(I) = 11 + lt70.*CNPICI)CNPIP(I)= !lp+I@fI,*CNPIP(I)lF(LBUFOPT~EQ.2) Go TO U1OCONTI~l)ECONTINUECONTINUECONTINUE

SET UP POPULAiI@N 3TORAGF BUFFERS TOR LkMCALL ECRD(!EUF, IZEROLC,bO,IERR]cNPI(l)sl:::~p(i)ai~

DO 7n Jc1,NIIB=IB+IIIccNPI(J)

IIP=CNPIP(J)DO 62 JJzl,10JJX=1P**(JJ*2)JJx2=JJx/inOIJJ(JJ)SM00(IIqJ3X)/JJXZIPJJ(JJ):MoD(IIP,JJX)/JJX2IF(II/JJX;LT.1) GO TO 64CONTINUENJJ=JJDO 68 I=l,JNjP~XNIP(I)DO 68 IP=l.NIPDO 66 JJ=l.NJJIF((I. NE. IJJ(JJ) ),OR;{IF~NE, XPJJ(JJI)) Go TO 66IBUF(IP,I) =IBCONTINUE

LC8PACU0LCSPAC411.cspAc42LC9PACU3LCSPAC4ULCSPACU5LCSPAC46LCSPAC471.CSPAC48LCSPACU9LCSPAC5RLCSPAC51LCSF’AC52LCSPAC531.csPAc5uLCSPAC5SLCSPAC56LCSPAC57LCSPAC58LC9PAC59LCSPAC6PLCSPACbiLCSPACb2LCSPACb3LCSPAC64LCSPAC651.CSPAC6bLCSPbCb7LCSPbCb6LCSPAC69LCSPAC7nLCSPAC71LCSP4C72LCSPAC73LCSPAC74LCSPAC7SLCSpAC7bLCSPAC77LCSPAC7BLcSpAC.79LCSPAC8i3LCSPAC81LCSPAC82LCSPAC83LCSPACB4LcSPAC851.CSPAC86LCSPACB7LCSPAC88LCSPAC69LcsPAc9nLCSPAC91LCSPAC92LC9PAC93LCSPAC94LCSPAC95LCSPAC96LCSPAC97LcSPAC98LCSPAC99LC$PA100LCSpAlOlLCSPAlOZ

A-6

Page 32: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

hll7n

:

72

ccc

11

12

:;

22

23

c(jNTINIJE LCSPAID5CONTINUE LC9PA10fJ

Lc8PAl@sEOUATE (N,C) REACTION BuFFE#S TO PARENT NuCLEUS BUFFERDO 72 l=\,NS

LCSpAl@bLCSPAl@7

IJ=[NPI(l)I!P=CNPIP(I)

LCSPA108

II=MOD(II,IBO)LCSPAlf19L.csphiia

II~=MOD(IIP, lOn) LCSPAtllIBuF(l, 1)=18UFCI!POI!) LCSPA112CONTINUE 1.csPAI13RETuRNEND

LCSPA114LCSPA115

SuBR0U71NE cMAINs(I,IRX) cHAINs 2cHAINs 3

CONSTRUCT OPTIONAL AUTUHATIC ReACTION cHAIN sEOuENcEs cHAINS UcHAINS 3

COMMON/RASXci/NI,XNIPt~Oj ,NIR, LR(6.10),zAL(&al, zA2(60! ,xN2(60)8 BASIcl i?1 ZACN(l(4),CSGR(bO), CSTOT(60) ,CSLEVt6n),CSID(8) tEAv10(8) pEAv~60) BASIC1 3COMMON/BASIC2/TITLE(lb) ,ELA8,DE~ZAp# ZAlP~MT* NKKM(i@),CNPI( lkl), BASIc2 2

1 CNpIp(lO) .S(6n), SAC(lO), IDi C613). IPPt IOE2(613),1RuF(6, 10)t BASIC2 32 EC~t UD, NKMAX, NJMAX,NKKf601 ,NKDIM, TCp(3a), 0MOptAJ@),A (60),A?(60), B4SIC2 43 NPHO(6),XJTI NPOPMAX,NT C2(6),NJI)1 t~, IOECN(ln), NKKCN(lP)~FCON, BASIC? 54 JpI(uo, 2) .xMP,xJP,prT,NLP, kNl P, KL,lOSTAT (7)jSIC~CSL, csH~PILLL( 3a)BAsIC2 6581CAPT,PL13UF(13q, i0),INPOpT, TKCEP BASIC2 7CO~~ON/LEVf)EN/f)EF(6@),XNLGC (60), ECCc(60),UCUTOFFODEF’CN? TGC[60)~ LEVDEN 2

1 EOGC(60),FMATGC(60),PAIR (60), XMR3(60),XNLLN(6tl), SZ (100),SN(150), LEVt)f?N 32 PZ(l@0),PN(150)

COMvCiN lSPNPAR/ SPIN,PARITY,KGRDCO~MON/LFVFLl/EL(50),AJC5@) ,AT(50) 0XNL(60),ELMAX(60) ,NLEVDIM

l, EG(2uO), SG(2UO). NGRAYS(6@)COHMON/GAMMA/NMP,LCROPT, SWSC1O), GML(6),GMP(6)~REl (6),LMQH0L(6)~

1 TGR(200, 4)jk’KcoNIcAXEL, GAxEL~ ERAXEL, tXSWS(l@)~WKNoRMOIMFN.$ION 7AX(fJ)DATA ZAX/0.,1,.1001,#20eU:lX1=1ZATOTqZA?iiAtSMS(I)*O.IR=IRXGO TO (lj,~2,~3),I~PoPTZACN(I)aZATOT-XI+l.O@OlxNIP(r)=20 ,CNpI(I) =X170199999cNPIP(:)sZ.GO TO 5@ZACN(I) =ZATOTaXIi\:OOOlXNIP(I)=4. .CNPI(I)ZXI:0;Q~9Q9CNPIP(J)C20GO TO SOGO TO {21,22,2S, ;1,22,23,21,220 23#t?1)e!xII=(I-J)/3ZACN(I)cZATOTiXI!XNIP(I)=U,tNpItI)KIm;cNPIP(I):~.GO TO S@ZACN(I! :z#CN(I:l!=2AX(3)CNPI(I)=I=}CNpIP(I)=SoXNIP(I)=l:GO TO 50ZACN(I):2ACN( I;~I-~AX(4)

LEVOEN 4LEVDEN 5LEVEL1 2;:;;:1 3

GAMMA :cHAINsllcHAINSi2cFlA1Ns13CHAINS14CHAIN9i!JCHAINS16CHAINS17CHAINS18CHAINS19cMAIh320cHAINS21ct4AINS.?2ct4AINsi?3~HAIL’cS~(4cHAlNs~5CHA1NS26CHAINS27CHAINS.28CHAINS29cHAINs3@CHAINS31CHAYNS32c14AINs33cHAI~s34CHA1N335cHAINs36CHAINS37CHAINS38C}{A1NS39CHAINS40

A-7

Page 33: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Cw:(:]t!fi?

cHAINs41cNP:P(I)m~. CHAINS42XNIP(I)S1. cHAINSfA3

50 NIPsXNJP(l) CHAINS4UIZAXZACN(~)ZACNCI)%IZA

CHAIN9U5CHAINS46

00 54 TPBI,NIP CHAINS47IR=IR+l cHAIhIS48

ZAl(IR)XZAX(IP\ CHAINS495U CONTINUE C}{AINS5!3

RETURN CHA1NS51END CH41NS52

FuNcTION ENERGY(ZA) ENERGY 2c ENERGY 3c ***** ENERGY LOO$tfI UP VALUES of GROuND-STATt? t4AsS EXCE8S (~EV)o **ENERGY 4c ● **** SPIN, ANo PARITY, MIS$ING DATA PRODUCE A FATAL ERROR. $*ENERGY 5c ENCRGY 6

COMMON /9PNPARt 3PIN,PARITY,KGRD Ei(E17Gy 7

oIHENsIoN Ia($\), 11(11), I~(ll),JO(ll) ,JI(12) ~K0(121#ENER(2055) ENERGY 8DIMENSION PAR(3) ENERGy 9DINFNSION sPINPAR(20551 RcDGRO 1DATA PAR /lH-,lH ~lH+/ ENLRGY10OATA INpGRO/1/ 6CDGf?02FORMAT(28HU***** GROUND;6TAiE DA7A FOR Ib,19H NOT IN TABLI! *****) ENERGY12

i FcQNAT(12,2H/2 Al)3 FORMAT(12,

ENERGYISAl) CNERGY!4

fA FORMAT(2X Al)s

ENERGY15FORMAT(5X*;+t~; GROUNO ~TATE OF *F6.0$ .1S INCOMPLETELY DESCRIBEDRCDGRO 3

Xa SPIN,PARITY = ●Fb.Z#2~*F6,2P 2X*++++**) BcDGRD u6 FORMAT(5X,*+++t;*, ~8X?? ,ASSIGNMENTS CHANGED TO, SPIN?PARITY s BcI)GRD 3

1*F6,2, 2X, F6,2,2X,*+++++*I) 13cD6RD 6c ENERGY18

c FIQgT CALL cAuSES I)ATA to BE READ IN ENERGY19IF(INPGRo;EO; 123U5) GO TO !0 ENERGY2WREbO (KGRo,ltlO) Ig,Il,Iz#JO,Jl,KO

10C4 FOR~AT[~Il~)8cDGRD 7BcI)GRD 8

REAo(KGRO, l~i)ENERifll FCRHAT(6E13,6)

8CDGRD 98cDGRDlfl

REAII(K6RD, lf12)sP!NPAR ficDGRI)ll102 FORMAT(8FtC3.3) 0coGRD12

REWIND KGRD BCDGRD131NPGQ5 = IZ3U5 ENERGY22

10 IF(ZA) u@,15,2a ENliRGY23

c ENEQCY2Uc Zsfl, A=O IS CONSIDERED A PHOTON, ENERGY2Sis FNFI?Gy a $PIN s 0, S PARITY u wl; ENERGY26

c ENERGYi?7S RETURN

c FINo RFQUEsTED NUCLEUS N APPROPRIATE TABLE20 12A = IFIX(ZA). JS J s lZAl!OOO

IA z IZA - lflOfl*JZ S N s IAY JZNz s N m Jz S N~ u NZ - JZDO 30 Kz1,ll $ IF(JZ,GE;Jl(K+i)) 00 TO 30

ND F Il(K),y 1 S I n NZ- NOIF(12(K).LT.0) I n N2 - NOIK : In(K) SJCJZ-J1[K)+$IN = KO(K) + I + (J:l)*IKIF(I;GT.O.AND, I,LE.IK) GO TO 50

3fl coNTINuEcc REOUEslED IsOTOPE IS NOT IN TABLES40 PRINT i, 12A s STOP 7776

c50 CONTINUE

S GO TO 40

ENERGY28ENENGY29EN17RGY3flENERGY31ENERGY32ENERGY33ENERGY34ENEPGY35ENERGY36ENERGY37ENF’RGY38ENERGY39ENERGYu0E)IERGYU1ENERGV42OCDGRl)Iu

A-8

Page 34: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

209

cccc

c

EHFRCYZENEP{ IN)IF(sPINPAR( !N),GF,990P, )SPIN=SPINPARf IN)=9900eIT(SPINPARf IN)tGF,9900, )PARITY*99,If fSPINPAR( IN).GF,?9tiV,)G0 TO ~00IF(SPINpAR( IN)pGEP inO,)PARITY=l .IF(SPINPAR( INj.GE. lnO.)SPIN=SpINPAR( IN)=lQIO,

IFt9pINPARf IN)tLT,O, )PARITYC=I,I?(SP!NPARtIN) .LT.0,)SPlNm8PXNPAR(IN)+i00;CONTINUEIF((PAR17Y’.NE.99.) .AND. CSPIN.NE0996]) RETURNPRINT 5, ZA,SPIN,PARITYIF(PARIJY,FQ,99.) PAR!~ =+!,,

iIF(SP!N,EO.99,) SPIN90. 5*(\.-(@io)**IA)PRINT 6,!!PIN,PARS?YRETURN

ENDFuNCTION )(MAGIG(ZA)DIMENSION xMAQ(lO)OATA NMAG/81, XMAO/2;~0:820,,28,0%0,#82,0 12b,~18b,lIts[Atldoti, s Z=IZAaZA*Z*IL!08,ANC6WZIF(Z,LT;5U:)G0, T0 15IF(ANOLTPi3b,)G0 TO 19XMAGIC=i.00 10 Nm!$,8CISAB3(Xt+AG(N):ZlC2=A13!3(XMAG(N)*AN)IF((Ci:LT;3,3):OR, CC2,L?,3aS} j 00 70 1SCONTINUE

BCOGRD15BCOG~DlbBcOGRD17Bc13cRl)leBCOGQD19BCOGRD20BCOGRD21BCOGRD22BCOGRD23ecDGR02u8CoGRD250COG17026BCDGRD?7BCDGRD28BCOGRD29ENERGY58xMAGIC 2XHAGIC 3JUI.29771xtiAGIC 9XMAGIC bxMAGIt 7JUL29772JUL29773xMAGXC 8JUL2977UxMAGIC10XMAGICltXMAGIC12XHAG1C13

RETURN XMAGIC14XMAGICBO; XMAGIC15RETuRN XMAGIC16END XMAGIC17SUBROUTINE LEvPRFP(K1oK2) LEVPREP2

LEVPREP3PREPARES BINAR~ LEVEL OATA PILE ON KF? FROM I/P,BCO FILE Kl, ALSO LEvpREp4STORES ENERGY ANO J=PI DATA IN LCM ARRAY8 ELLC(N,IP,l) AND LEVPREPSAJLC(N,2P~I) LEVPREP6

LFVPRFP7?ORMAT(18, 15,Jfl~;b?18) LEVPREP8PORMAT( :b,Fi2;6, ?f$,ilci~:g Ibc2aXs18)

iLEVPREP9

F’0RMATC6X,216, .2F12.6,E1$,5, 13, !2xs18j LEVPRF1OFORM$Ttl/ ● LEvEL DATA fOR IZAW*lS,* NOT fOUND, U8E GROUND 8TATE LEvpREli

10NLY.*) LEVPRE12LEVPRF13

COWHON/SPNPARlfJPIN,PARITy, KCRD LEVPREi4COMMON/LCINOEX/IPBLC,JGLC, IZEROLCI ISPLCr IPLLCcIEGLCt ISGLC~ITCLcC LCNnEX t?

1 I$TcLC, IRHOLC, ITLCOIELLC, !AJLC, IATLC,NXDIMSNXPOIMc NIf3DIM,NORDIM,LCNDEX 32 N1OOIM?NIRO!M LCNDEX 4COHMON/LFVELl/FL(58)lAJjSn) tATISO),XNL(bO)#ELMAX(bO) sNLEVOIM LEVEL1 2

l,EGCF40), SG(240).NGRAY$( bn) LEVEL1 3COMNON/t3AS2Cl/Nl,XNXP(18) ,NIR#LRtb~ 10).ZAl (b0)#%A2fb@) sXM2(6a)0 BASIC1 i?

1 ZACN(10),CSGRf60)#csToT(6Q) sCsLEV(60)OCSID(a)OEAvIoC81 0cAvC6@~ BASIC1 3COVMON/PREol/EPsIG(200,b),NLEV~NP!T~NIT PREQ1 2DXt4ENSXON 2ATABt60100UMMVt l~0) APR0777S

APR07776OCTERMINC REOUIRtO ZA tA6LtK3a~1

APR07777APR07778

00 17 N*l,NIR APR07779ZATAO(~)~ZA2tN) APR07710CALL 80RTlCN1R,6,~ATAS,DUMH$) APR07711NTAB s \ APR077i2

A-9

Page 35: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

1816

19cc

21

2223

2425

262728

29

CSTOT()) p,iATABfl)IF(NIP.EQ.1) GO TO 16DO 18 Nz2,NIRIF(ZATAB(N) .EQ!ZA7AB(N-i)) tO ?0 18NTAB x NTAf3-+ ~CSTOT(NTA8) = ZATAB(N)CONTINUE00 19 Nu1,NTA13ZATAB(N] s CSTOTiN)

SELECT LEVEL DATA F08 REQUIRE~ 2A!)IF(Ki.EQ.81 REWIND K1READ(K1, l) 13, NL.F,ApAE#LDATEKIEOF = IoqHEcK(Kl, l)IF(KIEOF.GT:U) GO TO 29ISET = 2DO 21 Ns\,NTAEl1ZA2 G Z$TAB(N)IF(ID.EQ.IZA2) XSET P 1CONTItJUEGO TO (22,>3), 19ETWRITE(K3,11 ID, NL,FtA,AEoLOATEDO 28 N=l,NLREAo(Kj,zj NX, EL(N) tAJ~N), AT(N)lTAIJ, NT,IsGO TO (2U,?S), ISETWQITE(K;,21 NX,FL(N), AJ?N)jA+~N)~?AU# NTI18IF(NT;LT:l) GO TO 28DO ?7 K=t,NTREAD(K1,3) .LL, Nf, P,CP~AMR,Ll,L~t ISGg TO (26,?7), ISETWRITF,(K3,31 LL, NF,P~CP, AMR~Ll,L2tISCONTINUECONT,INUEIF(F.GE.0:) GO +0 20K1 = K3REWINo K2

DETERMINE BINARY FXLE IN 0R8ER OF REACTION CHAINREWINO K2DO li3131R?i,NIRIZAZ= ZA2(IR)PEwINO.K!READ(K1, l) 10,N4,F,A, AE,LOA?EKIEOFCIO$HECI((KIF1)

IF(KIEoF.LE,4)-GO TO 50h’RITE(6,u) IZA2XNL(IR) c i;~NLL s 1EL(1) = 0’,AT(1) = 99!TbU a 99:NTsOLDATE s 0EDUM = ENERGY(iA&(IR))bJ(l) S PAPITy*~PINIFtZAl(IR)tNE,O.) GO 7h 4SWRITE(KZ) IZA2,NLL,LDATEWRITE(K2) EL(l), AJ(l)~At(l)~TAucNf(IO TO 45.ISET=~IF(ID.EQ; Y~A2).IsET=lGO TO (31,}2),!SET!F(XNL(IR).LT,9:5) XNLiiR)ONL

APP$7713APRQ1771aApRP77i5APRf1771bAPR077i7APR077j84PRP77j9APR07720APR@7721APRB7722APR0772JAPR0772UAPRQ~7~5APR0772bAPR@]727APR07728APRI?7729APRa7730APRf1773iAPR07732APRL37733APRa773AlAPR@~l~5APR~773bAPR07737APR07730APR07739bPRv770e4PRV774!APRfi7742APR07743APRfi7744APR07745APRf1770bAPR077Q7APR@7748APRk17749APR07750LEVPRE20LEvpRE2iLEVPRF22LEVPRE2U ,LEVPRE25LEVPRE.Z6LE’JPur?7LEVPRE28LEVPRE?9LFvPRF.3nL.EVPRE31LEvpRE32LEVPRE33LEVPRE34LEVPRF35LEVPRE3bLEVPRE37LEVPPF38l,FvPRf39LFVPREUOLFvpREulLEVPRE42LEVPRFfJ$Ll?VPREU4LEvpRE45

A-10

Page 36: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

32

15

36

37

38A10

45

lee

1000

c~

3u

5

b

:910

c

cc

NLMAhxwLtIRjNLL=~INfi(NL, NLMAX)xNL(IR) ~ NLL

SF(ZAl(IR):NE:O:) GO 70 32WRITE(K2) !D,NLL,LOATE00 U@ ~=l,NLREAD(K1,2) ,NX,eLtN) lAJtN),At(N)?TAU~ NTs13GO TO (35,3$),Js~T,IF ((ZA1(IR) .NE.O.).ORL(N.GTO NLL)) GO TO 36wRITE(K2j FL(N), AJ(N)tAT(N)~TAUt NTIF(NT.LT.1) Go To 40DO 38 K=l,NTI?EAD(K1,3) LL, YF, P,CP,AMR,L1,L2119CO TO (37,38), ISETIF(N.GT.NL\.) GO:TO 38IF(ZAl(IR).EQ:a.) wRITEcK2) NF,P,CP,A14R,L\lL2CONTINIIECONTINUPGO TO (45,\0),l~~TlNDEX=IELLc+( IR.i)*NLEvDIMCALL FCWR(EL, JNf)~X,NLL,XERR]INDEx=xAJLc+ (IR.i)*NLEv~IMCALL ECWR(AJI ~N()~X,NLL,IERR)!NDExxIATLc+ (IR-I)tNLEvoIMCALL ECMR(AT, INDEX,NLL, IERR)ELMAX(IR)XFL(NLL)CONTINUEEND FILE K2RFWINo K2RETIJRNwR1TE(6,U) IZA2STOP~Nl)SU(3ROUiINE TCPREP(K1OEPS:LON)

FORMAT(AJ2X.A10t 12X,21UOA6)FORMAT( tp,AE12.s,I$)

L?VPRC4bLEVPRE47LEVPREU8LEVPREU9LEvPRE5t3LPVPRF511.EVPRE5ZLEVPRE53LEVPRE5U1.EVPRE55LEVPRE56LEVPRE57LEVPRLS8LFVPRE59LEVPRF60LEVPRF611.EVPRE621.EVPRE63LFVPRE6ULevPRE65LEVPRE46LEVpRE67LEVPRE68LFVPRFb9LEVPRE70LEVPRE71LEVPRE72LEVPRE73LEVPRE7ULEVPRE75LEVPRE76LEvPRe77LEvfJRk7eJUL26779TCPREP 3TCPREP UMAY77 2

FoRMAT~lu, lX,7~10,4Sl TCpREP 6fORYAT~// 1X,A19.*TRANSMISSION tOEFFItIENT DATA OUT 0? ORDER, CAR07CpREP 7

1 NO* 16,* i- ARORT JoB*) TCPREP 8FORMAT(//lX,APARTICLE IIjENjIFIER tiAlO,~ No? Recognized IN TRANSM:SlcPREP 6

lSION COFFICIEN? DATA :: ARORT JOB*) TcPREP10FORMAT(// ● TRA~l$MISSION cOEFFICIENT OATA * / 1US1X~7A1P11A5)FORtiATt

TCPREP1l● ID=* 1?~3Xt*NE:*13*3X~ ●VLs*13~3X~*PARTICLE @*AlO) TCPQEP12

FORMAT(/ ~ ENERGY =* ?7:3,* f4EV*) TCPREP!3FORMAT~ * TRANS:COEfs, A, IP,10E12P5) TCPREPIUFORMAT( * SPLINE OATA ●~lP,10E12,S) TCPRCP15

TcPREP16COMMON/LCINDEX/IPBLC,IGLC, IzEROLC, ISPLC, IPLLCtIEGLC# ISGLCtXTcLc, LcNOfX 2

1 ISTCLC, IRtiOLC, ITLC,IELLC, IAJLCOIATLC, NIDIM,NIPDIM, NIBDIM, NGROIM,LCkDEX S.2 NIDDIM,NIROIM LcNDEX UCOMMON/LEVELl/tL~5a),AJ~5@) ,AT(5n), XNL(60),ELMAX(60) ,NLEVDIM

l, EG(2uQ), SR(2Un), NGRAYS;6@)LEvEL\ 2LEVEL1 3

COMMON/TCOEF/ETC(~5?6), TC(25,3n),BCD(7)tXSPINt7) tNLDIMc TCOEF 2lNPART,NF E(6),NO(6),NTC (6), IZAID(7), XMASS(7),NEEOIH, NLEIN(6#29)# TCOEF 32NLE(6, 200),JR4STf20a,6) TCOEF 4COHMON/PRNTOIJT/IPRTLEV,~PRTTC, IPRTMLD, IPRTWID, IPRTSP,IPRTGC PRNTOUT2DIMENSION TDuM(62), EICDTC(8) TCPREP21

TcfJREP22MAIN PARTICLE LOOPIF(KI’.Ef?~ ~fl)REwINO K1

TCPREP23TCPREP2U

READ(K1, 3)NPARTCBC!)TC TCPREP2SWR1Tf!(6,6) NPART,BCDTC TCPREP26

A-11

Page 37: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc

22ccc

2013GI

cc

cc

3S635

cc

at?U8Sa

6b70

A-12

DO 100 Nw1,NPAR7KP=~READ(K1, l) )(BCD,NE,NNIK

IDENTIFY 11P PARTICLEDo 2n Ioal,bIFCX6Cf).EQ.8CO(ID)) (30 To 22CONTINUEMRITE(b,5) XBCOSTOPNEE(ID)E NE

REAb ENERGY ARRAYDO 3fl \u2,NE06KP=KP+lIIJxI+~READ(KI, 2) tETC(#0.ID)SJaIC IU)SK?oRMAT(2ax.6Ei2.S, A8)CONTINUE

MAIN ENERGY LOOPDO 8fl I=2,NE

READ TRANSMISSION COEFF~CIENi DATADO 35 Jx1,NN,6KpEKP+lJueJ+IjREAO(K1,2) (TDuM(L)oL~J,JU)CK00 336 L=J,JU,IF(TDUM(L) .LE.~:OE:lU) iDUM(L)=@tCONTINUE

CONTINUEIF((ID:EO;3) .0R:(ID,EQ;6) ) GO TO 60

ELIMINATE 3q0EPtNOENCE OF SPIN 142 ARRAYSTCtI,l) = TD(JM(l)00 50 J=2,NN~uXL = (Jw1)12 ; M00(Jt20~} ~ ~JJ=Jw1DO 48 JLx1.2JJ=JJ+llF(JJ.OT;NN) 00 70 70XL=XL+lFflLPzxL+l.~OiIF(LP.LE.NLDIH~ GO TO 40LpzLP_\

GO TO ?OIF{(JJ+2):LE:NN) GO TO i~TC(I,LP) = TDuM(JJIGO TO 48TC(I,LP) m ((xL+l. )*TDuMtJJt2) o XLWTDUMfJJJ~/(ts*xL+l,~CONTINUECONTINUEGo To 70

RE.ORDER SPIN 0 AND SPIN 1 ARRAY300 66 Lml,hl~J= F*L-MOD(L,2],IF(J.GT;NN) GO TO 70LP=LTC(I,LP) s TOUM(J)coNTINuE

7cPHrP2TTcPREP28TcPREP29TcPREP3f!TCPREP31TCPREP32TcPf?EP33TCpRFP3aTCPREP35TCPREP36TCPREP37TCPREP38TCPREP39TCPREPfJOTcPREP41TCPREP42TCPREP43TcPRFPOUTCPREPU5TCPREP06TCPREPU7TCPRLPU8TcPREPfJ9TcPREP5flTCPREP51TCPRLP51?TcPnEP53TcP~EP54TCPREP5STCPRFP56TCPREP57TCPREP58TcPl?EP59TCPREp60TcPREP6tTCPREP62TCPREP63TCPREP6UTCPREP65TCPREP6bTCpPEP67TCPREP68TCPREP69TCPREP7@TCPRFP71TCPRkP7?TCPREP73TCPREP7UTCPRE-P75TCPRE-P76TCPREP77TCPREP78TCPREP79TCPREP80TCpREP81TcPREPn2TCpREp83TCPREP80TcPREP8STcfJREP86TcPRFP87TCPREPt34TCPREP89

Page 38: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

88

c

25cc

83

0284

cc

cc

90100

CONrlNUENO(ID)=LPSET ~C AQRAy TO iERO FOR ZERO INCIl)fNT ENERGYETC(l~ID)Zt?.DO 25 Ls1,LPTc(l,L):@o

FIND NUMBER OF’ NoN-ZERO COEFFICIENTS00 84 ~Iu2,NEI : NE-11+2DO 8.2 ~X=JqLPL = LP-1.X+lIF(TC(I, l)) 82,82,83)(LcLRATIOS (~.*xLti:)*TC(IZ~)/TC(IC 1)IF(RATIO,GT,EPSILON) CO TO A)UCONTINUENLEIN(IO,Iml) s LNLEIN(ID,NE) s NLEIN(ID,NE=l)

STORE TRANSMISSION COEFFICIENT DATA IN LCMNPTS=LP*NFEDIMNTC(ID)= NPTSIkDEx=!7CLC+( I0-I)*NEEDXM*NLDIflCALL ECWR(TC, INDEX,NpT9,1ERR)

PRINT OPTIONIF(IPRTTC:LT:l) GO TO 10$300 90 I=l,NEWRITE(6,8) ETC~I.ID)LP = NLEIN(ID,J)k’RITE(6,9) (TC(IIL),L=~jLP)CONTINUECONTINUE

TcPNfP90TcPRZP91TCPREP92TCPRFP93TCPREP9UTCPREP95TCPREP96TcPRFP97TCPREPQ8TCPREP9QTCPRE1OOTCpRElOiJUL2671OJUL26711JIJLZ6712JUL26713TCPPE103TCPRE104TCPRE1057CPRE1Q6TCPRE107TCPRf!108TCPRE109TCf’RFll@TcPRE1llTCPRE112TCPRE113TCPRE114TCPRE116TCPRE117TCPREi18TCPRE119TcPREli?OTCPRF121

RETuRN

1000 :;;;E(6,u) X8CD,KP

ENDSUBROUTINE SETUP

cfORMAT(// * PARTICLE WIfH IZAS*15,* NOT FOUND, ABORT J0134*)

c’

TCPREli~TCPRE123TCPRE12UTcPRE125SETUP 2SETUP 3sETUP 4SETUP 5

COMMON/LCINDEX/IPE!LC,IGLC, IxEROLC, IsP1.C, XPLLC~IEGLCt ISQLCtITCLCt LCNDEX 2t ISTCLC, IRHOLC, XTLCO?ELLC,IAJLC, IATLc,NxoxM? NrPo2M,NIBoIM, N6RDXM,LCNDEX 3z NInDIM,NIRDIM LCNDEX 4COMMON RHOkU@, 2f40), T(3tl,200),Pt80) ,Sp(200tb) ~PP(80)OSPPt200~ 7) iHO 2

lcSpNGN(?130),pL(50,6),G(200a$) ,RHOFTRCUO) RHOCOMMCN/TCOLF/ElC(25,6),TC (?~,30), BCD(7)~XSPIN(7)S NLDIM, TCOPF ~

lNPART, NE E(6),No(6).NTC(6) ,IZAID(7), XMASS{7),NEEDIM, NLEIN(6,25)c TCOEF’ 32NLE(6, 20m),JRASTtZ0@,6) TCOEF uCO~MON/LEVELl/EL(50),AJ(50) ,AT(5Q), XNL(60), I?LMAX(60) ,NLEVDXM -

l, EG(2uo), SG(240).NGRAYS~ 60)LEVEL1 2LEVEL1 3

CO~~lON/RASICl/NI,XNIP(lfl) ,NIR,LR(6~ 10),ZAl(60)~ZA2 (6E),XM2(60)0 BASIC1 21 ZACN(lO),CSGRrAO).CSTOf(60) ,csLEv(60),csID(8),EAVIDt8) cEAV(69) E)ASIC1 3COMMON(8ASIC21TITLE( 16), ELAIt,DEt ZAP,ZATVXMTt NKKM(la), CNPI(lO), BASIC2 Z

1 CNpIp(l P) .S(60). SAC(\n), IOi t60), IDP, IOE2(6(3),IBUF(6, 10), BASIC2 32 ECH, lJP,NKMAX, NJNAX,NKK(60) ,NKDIMj TCp(30),0MDP(40), A (60)tA2(60), BASIC2 43 NRHO(6),XJT, NPOPHAX, NTI?2(6),NJOIM, IOECN(lO),NK~CN( la)tECONtt3A9 IC2 54 JPI(u9, 2) .xNP.xJP,PIT,NLP, iNLp, KL, lDsTAT(7),sfc, CsL, CSMCPILLLC313) BASIC2 65~ICAPT, PLB(lF(50, 10)fIAPflPT, TKEEP BA51C2 7COMMOV/LEVDEN/0EV(6i3),XNLCC (60),ECGC(6a),UCUTOFFjllEFChI# TGC(60)s

1 E@GC(6a),EMATGCi60),PAIRf6i?) ,XMR3(60), XNLLN(60),SZ(100) ,SNt150), L% :2 P2(158),PN(150) LEVOEN U

A-13

Page 39: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc

1s

lb

17

1820

cc

30

S2

cc

S6

38

39UB

cccc

.50cc

60cc

COY~ON /SPNPAR/ SPINaPAtiITY,KGRC)

FIND ACcuMuLA7Eo SEPARATION ENERGIEs FOR THE DECAYING NUCLEI00 15 I=l,NISAC(I):O.D@ 20 I:l,NIIIZIDO 18 Jal,NI1x=11II=CNPI(JX)IF(II,LT.i\ GO TO 20lIp=C~PI~(rX)IF(II.LT.1oo) GO TO i711=11/lo13IIp=IIp/100GO TO lbCONTINUEIR=LR(IIP, II)SAC(I) = SAC(I) + i(IR)CONTINUE

IOENTIFY INCIOENi PARTIcLE00 30 1C)=1,712A a ,ZAPIF(IZA.EQ; X2AID(ID)) Gil TO 32CONTINUI!GO TO 1000lDP=II)XJP=XSPIN(~DP)xMP:XMAsS(IOP)CSL z ABS(XJT=X#Pl;l’wOCSH = XJT+XJPtO.001

IDENTI:Y S~CONDARY REACfION PARTICLt?S AND PHOTONSDO 36 ID=l.7IDSTAT(IO):ODO 40 IR=l.NIRIZA= ZA1(IR)00 38 ~0=1,7IF(!ZA.EO; !ZAIO(IO)) Go To 39CONTINOEGO TO l@O@IDSTAT(ID)=lID1(IR)=IO

IOENTIFY RESIDUAL NUCLEI AS To ODO,OR EVEN AIOEt?=i FOR 000, IOE2=2 FOR EVENWA Rl!SfDUAL NUCLEUS

DO 50 IRR1.NIRIZAZ ZAP(IR)IAZ MoD(IZA, lOgfl)IOE2(IR)= (3+(-I)**IA)12

II)ENTIFY OECAYING COtlPOUND NUCLE!I AS TO 000 OR EVEN00 bO Ial,NIIZA= ZACN~l)!As V00(12A,1f3g0)IOECN(I)? (3+(=l)**IA)/2

SET UP J-PI ARRAYSJJs@

DO 82 J=l,NJMAXDO 82 IPIzI,2

LCVOEN YsETUP 1SSETUP 14SETUP 15SETUP 16sETUP 17SETUP 18sFTUP 19sETUP 20sETUP 21SETUP 22rjFTUP 23sETUP 20SFTUP 25SETUp 26SETUP 27sETUP 28SETUP 29sETUP 30SETUP 31SETUP S2SETIIP 33SETUP 34SET(JP 35SETUp 36sETUP 37SETUP 38sETUP 39sETUP 40SETUP UI9ETUR 42SETUp 43sETUp fJUSFTIIP lJ5SETUP U6sETUP U7sETUP U8sETUP 49sETUP 50SETUP 51sETUP 52SETUp 53SETUP S4sETUp 55SETUP 56sETuP 57SETUP 98sETUP 59SFTUP 60sETUP blsETUP 62SETIJP 63sETUP 64SETUP 65SETUp 66SETUP b7sETUP b8SFTUP 69SETUP 7fIsETUp 71SETUP 72SETuP 73sETUP 74

A-14

Page 40: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

82

84cc

9flc

JJsJJ+ i

JPI(J,l?I)IIJJDO 84 Lal,NLDIMLLELw1

PILLL(L)=(:l)A*LL

1N1T14L12t LEVEL DENSITIEs AND GIL~cAM pARAMETER~DO 90 IR=\,NIRA2(IR)= A(IR)IF(XNLGC (IR).L~;~;) XNLGC(IR)SXNL(~R)IF(ECGC(IR).LEpO. ) EcGccXR)= EI.MAX(IR)XNLLN(IR)=ALOG(XNLGc( IRl)XMR3(IR)= xM2(YR) **0.33333333

SETUP ?sSETUP ?tJsETUp 77SETUP 76SETUp 79sETUP 8CISETUp 81SETUP 82sETUP 83SETUP 8USETUP 8SsETUP 66SETUP 87sETUP 88

RETURN iiiiP ii1000 WRITE(6,1) IZA SETUP 90

STOPEND

sETUP 91SETUP 92

SUBROUTINE SETUP2 SETUP? 2SETUP2 3

SET UP INCTDEM7 ENERGY DEPENDENT QUANTITIES sFTUP2 4iETLJp2 5

COMMON/8ASlcl/NI,XNIP(,lO) ,N1R,LR(6, 10],ZAl [601,ZA2(6til 0xM2(60)8 BASIC1 21 zACN(lO), CSGR(6Cl], csT(lT(6n) ,cSLFV(6CI),CSII)(S), EAVID(R) ,EAV(60) 8ASIC1 3COM!40N/BASIC2/TITLE(16) ,ELA@, DEoZAP,ZAl~XMTS NKK14(la),CNPI (10), BASIC2 i?

1 CNPIP(I?), S(6m),SAC(10) tIDl(60) sIDP, IOE2(6@111BuF(61 10)# BASIC2 32 ECM, UP, NKMAX, NJMAX,NKK(6P) ,NKDIM, Tcp(30),QMDP(40)o A(6i3)~A2(6FI)? BASIC2 43 NRHO(6),XJT, NPOPMAX, NTC2(6),NJI)IMS IOECN(lO) ~NKKCN(l~)tECONP llASIC2 54 JPI(uO, 2), xMP,xJp,PIT,NLP, gNLp, KL, IDsTAt(7),sIc,c5L, csH,p1LLLC3vJ)BAs1C2 6S, ICAPT,PL8UF(50,1 O),INP6PT, TKFEP BASIC2 7COMMON/LCINDEX/IPOLC,IGLC, 12EROLC, ISPLC, IPLLC, IEGLC, IS13LC,ITCLC, LCNDEX 2

1 ISTCLC, IRHOLC, ITLC, IELLC, IAJLC, IATLC, NIDIM,NIPDIM~ NIBDIM, NGRDIMILCNI)EX 32 NIDDIM,NIRDIM LcNDEX UCOMMON/TC@EF/ETC~25~6) c?C(2!J, 3@) ~FJCO(7)~XSPIN(7) tNLDIM# yCOEF i?

lNPART, NFE(6),NO(6),NTC (6), IlAID(7), XMASSi7)PNEEDIMS NLEIN(6,2S), TCOFF S2NLE(6, 2uk?), JRASTC20a,6)COtlMON/LEvELl/EL(50),6J~5pI) ,AT(50), XNL(60)lELMAX(60) ,NLEVDIM

l,EG[2U0), SG(a24fl), N6RAYS(6U)

SET UP ENERGIES AND DETERI.IINE INTEGRATION END POINTSFCM= (XMT/(XMT+XMP))*ELABuP E EcN+sIcXMU = xMT#xMP /~)(t4T+xMP)ECON = fl.650999/(XMlJ*ECM*t2,*XJp* [.)*(2,*XJT+l,0)lEKMAX=O.00 77 I:l,NINKKM(I)=FINIp = XNIP(I)DO 77,1P=laNIPIR=LR(IP,I)NL= XNL(IR)INOEX=rELLC+ (lR=l)*NLEVDIMCALL ECRD(EL, I~DEX,NL,:ERR)EK = UP=SAC(I)_s(IR)EKMAX = AMAX1(EK,EKMAX)NKK(IR)c (FK-tLtNL))/DC i 0:SNKKM(I)=FAxO(NKK( IR),NKKFl( 1))IF(IP;EQ:l) NKKcN(I)=NKK(IR)CONTINUENKHAX=EK~AX/DE ; 0:5IF(NK~AY.LT; NKDIM) GO TO 79XDU=NKDIM-1DF s EKMAX/XDU

TCOEF ULEvELl 2LEvELl 3SETUp211SITUP212$ETIIP213SETUP21USkTUP2159ETUP216SETIIP217SETUP218SETUP219sETtJP22nSETUP221SETIJP222SETIJP?Z3sETUP22USETUP.225SETUP226SETI.JP227sETUp2285ETUP2?9SETUP?3F4StTUP231SETLJP?32SETUP233SETilP2348ETUP23S

Page 41: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

GO YO 7S79 NPOPWAX=NKHA)(~NJDIM*z

cc GENERATE TRANSMISSION COEFFICIENTS FOR INCIDENT CHANNEL

NExNEE(IOP)NPTs:NTc(II)P)INOEX=ITCL~+ (IOP-i)*N2CDfM*NLOfflCALL ECRO(TC, IND5XfNPTS,IERR)K= ISERCH(ECY, ETC(!,IDP),NC, AA,A5~A6)NLPzNLEI$J( IOP,K+l)XNLP=NLP-1 .

DO 85 J=l,NLpCALL INTERPfETC( lPIDplPfCti,J), NE,2,PCMcYOUT)IF (YOUT.LT;O’.) YOUTaO.

85 TCp(J)=YOUT

3E7UP23bSEYUp23?sEYUP238sETUP239gETUPZOOSCTUP241SET11P2U2SETUP243sETUp2f44sETUP2U5SETUP.246sETupi?47SETIJPZU8sETUP2U9sETUP250

RETURN SETUPi?51tND $ETUP252SUBROUTINE SPECTRA(ACN, FSIGON) SPECTRA2

SPECTRA3C,O~MON/LCINOEX/IPBLC,IGLC IzCROLC, I$PLC, IPLLC,IEGLCC ZSGLCo17CLCP LCNI)EX 2

1 ISTCLC, IRHOLC, ITLC,IELL\,IAJLC, lATLC, NIDIMJNIPDXMINIBDIHJ NGRDIM,LCNOtX S2 NIODIM,NIRDIM LCNOEX 4CQPMON PHO(UP, 200), T(3U,2Pfi).P(80) ,!jP(Zt10,6) JPP(80),SPP(200t 7) RHO 2

l,SpNGN(2m0),pLt5~, 6),G(200. 6),RHoFTR(U0) RliOCOMMON/TCOEF/ETc(25,6), tc(2s,3Ft),BcD(7) cxS6XN(7) tNLDIMc TCOEF :

lNPART, NEE(6), N(I(6),NTC(6) ,IzAID(7), xMAss(7)#NEf!DIH, NLEIN(6#25)# TCOEF 32NLF(6,2n0), JRAST(2P@,b) TCOEF 4coMMON/LEVELl/EL(5fi),AJ~5L3) ,AT~5L3), xNL(60),ELMAX(60) ,NLEVDIM LEVEL1 2

l, EG(?uo), SG(24fl) .NGRAYS(60) LEVFL1 3cflMHoN/pAsIcl/NI,xNIP(\@) ,NIR, LR(6,10), zAl(6t?),ZA2(60) ,Xt42(60]o BASIC1 2

1 zAcN(lO), CsGR(60), csT0T(60) ,cSLEV(6@),CSID(8),EAVID(8) ,EAV(60) BASIC1 3CoMPON/BASIc2/TITLE(16) ,ELAB, DEoZAp,zAT,xMTt NKKM(lO),CNPI(l@)j BAS1C2 2

1 CNpIp(l@) SS(6@l#SAc(10]S Iolf6@), IDP#IOE2(60)~IRuF [6cln)~ BA91C2 32 ECM, llp,NKMAX, NJMAX,NKK(6CI) ,NKDIN, TCp(30),QMDP(Ufl), A (6C)IA2(60)t BASIC2 43 tJRHo(6)0xJT# NpoPMAx, NTc2(6),NJDIM~ IoEcN(lO), NKKcN(lnl #EcoNlBAsIc2 54 JpI(4cI, 2). xHP,xJP,pIT,NLP, fiNLP, KL, IDs7A7(71, sIc,CSL, c9H,PxLLL(30)eAsIc2 65, lCAPT, PLBIIF( 5n,10)PINPkPT, TKEFP BASIC2 7COMMON/GAHMA/NMP,LGR0p7,SWS (le), GML(6)j cMp(6)0RE1(6)# LPGHoL(6)0 GAM14A 2

1 TGR(2C0, 6),MKCON, CAXEL,GAXEL, ERA%ELo gxSwStln),wKNoRM GAMMA 3COMMON/PRFEQ/LPEQ,SIGR,PRE 01 (6),CSIGIf6),N1TT(6), A1.pHA(6) PREE.(J 2COMl~ON/SUMPLKl/KP,KDC?p, lDo KNGN,Jp12tN#Dp~IK SUMBLK12COHMON/SUMBLK2/XJCN,PICNt JPICtJ,ECONJ, MP~J2tL?CTGRL, 1LEvtxJ2/ SUHELK22

I TTOT(SO) SUMRI.KI?.3DIMENsION sCBuF(80n0)p nECON(2), XJfNx(2),pI (~)#sc8uF2(80) SPECTR14EQUIVALENCE (SC13UP,RHO) SPECTR15DIMENSION 18TAG(10), IBTAG2(10) SPECTR16COMMON/TOTALS/SIGTOT(ln) 9PECTR17

SPECTR18DATA PIP,PIl!l~,~,lvXJINIIUO.5,=1 ,OltPIl+l.a#ml,OV+l,fli SPECTI?19DATA OECON/1.0,3.0/ SPEC7R20

SPECTI?21SPLIN (8,C.D,E) m B*A5 ; C*A6 w AA*(O*A5iE*Ab+D+E)CALL SECONQ(TIHE)

SPECTR22

DTIME=TIME-TKEEP9PECTR2SSPECTR24

wRITE(6,3) OTIME,TIME SPECTR25FORMAT(lH1. *sTART OF 8fiEcTRA SUBROUTINE.*P JUL19771

!* TINE FRoM START OF TH1s ENERGY UXF9,3,* SECONDS, TOTAL ELAPSED TSPECTR7721MI? =*F9;3.* SEcONOS;*l SPECTR20

SPECTR29SET UP LQVFL DENSITY PARMETERS SPECTR30CALL LEvOSET(ACN,A,A2) SPECTR31

SPECTR32ZERO LARGE- AND 3MALL*C0RE ARR~Y8 SPECTR33

A–1 6

Page 42: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

uscec

2

bO

cc

1

62

CALL rCRP;::nllF, lZFl?ULCOmPFO, ILVR)

CALL ECWR(3C?!JT, IPLLCISOOOI!ERR)CALL ECRD(SPP, IZEROLC, lUnP, IERR)CALL ECRO(SPNGN, IZZROLC,NKMAX, ?ERf?)N80P0:NPOPMAX,8000DO 51 Nz1,NIOIMNPTS=NKDIM*NIPDIMIWOEx:IsPLC+ (N-I)*NPTSCALL ECWR(SCBIJf, INf)EXINPTS,IERR)INDEX=IC1.c;(Nsl )*NPTSCALL ECWR(SCtlUF, INOEXINPTS,IERR)

S1 CONTINUt

3r’r.cll?3f+8PCCTN13SPEC7R34SPECTR3?9PECTR38$PECTR39SPECTR40SPECTRU1$PECTR42SPECTR435PECTR44SPECTRUS

Do 45 IB=i,jO iPEiTRiiIBTAG(IB)qOIBTAG2(IB)=0

SPECTRU7sPECTRU85PECTRU9

MAIN LOOP TO sET UP DEC~YINO NUCLEX sPEcTR5n

SIGR:t3;SPECTR51SPECTR52

CALL ECRO(SIGTOT, IiEROLCclO, IERRl sPECTI?S3DO 500 X=\,NICALL SECON@(TIMFi

sPECTR5fA9PECTR55

DTI~F=TIHE-TKEFP sPECTRSb~~ITE[6t2) I~oIIflEsTIMC SPF.CTRS7FORPAT(/* START OF I=*I~,P LOOP,*~ gPECTRS8

1* TIME FROH START 0F,TH19 ENERGY fJ*F9,S,fI StCONDS’, TOTAL ELAPSED TSPECTR59E’I~E =*F9;3.* sECONDS,*)JCECNZ

sPECTI?60IOFCN(I) SPECTR61

NKCN= NKKcN(I) SPECTR62IF(NKcN:LT:l) GO TO 60 SPECTR63IF((IcAPT,Eo.O)’.AND. (I;EQ. l)) NKCNQ1IBCNSIEUF(i, I)

SPECTR6USPECTR65

IF (16CN:GT.NIBDIM) IOCNSfBcNmNIBDIM SPECTR66NIPs !(NIP(I) SPECTR67NJDIMz=2*NJoXM SPECTR68NJMAX2=2*NJMAX SPECTR69

5PEcTR7flZERO ARRAYS ANO cHECK BuFFERINGNPTS=NKDIH:NIP

SPECTR71SPECTR72

INOEX=IZEROLC 5PECTR73CALL ECRD(SP, INDEX,NpTS,IERR) SPECTR7UCALL ECRD(G, fNf)EX,NpTS,IERR) SPE’CTR75NPTSSNLEVDTH*NIPDIM sPi!CTR7bCALL ECRD(PL, INOEX,NPT3,1ERR) SPECTI?77CALL ECRD(sCBuF, INOEX?8F10P,IERR)DO 64 IPG1.NIP

SPECTR78

If3=IBIJ~(IP, I)SPECTR79

IF (IB.LTO1), GO,TO 645PEcTR80

IF(IBTAG(I~).GT.n) GO TO bUSPECTR81SPECTR82

IBTAG(I13~*tIF(IB.LE.NIBOIM) GiI TO 62

SPECTR83SPECTR84

[email protected] SPECTR85IF(IBTAG2( I13);CT’.0) GO TO 6P 5PECTRQ6wRITE($, l) I,~P,IB SPECTR87FORMATt//* -w--THE REACTION XS*12,+, IPMfi12,* !3 ATTEMPTING TO REUSPECTR88

lSE BUFFER NUMBER 19=*12,* BEFORE THAT BUFFER HAS BEEN EMPTIED,*// SPECTR69Z* ----AfjoRT Jo8:~) 9PECTR90STOPCONTINUE

SPECTR91SPECTR92

IN0EX:IP8LC+ (IB0~jiNJDfM*2*NKDIM SPECTR93CALL FCWR$SCBIJF, INOEX,6~t30,XERR) SPECTR94IF (NRFIOCI.LT.1) GO TO 6UINDEXaINDE,xt800g

SPECTR95SPECTR96

A-17

Page 43: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

CALL F~HR(f3CBUF, !NDCX~N~000,1ERR)64 CONTINUE

IBTAG2(I~CN)Sl66 IF (NKC~.L7,1) Qh 70 Sk?rj

cCoPpUTE lRANSMXSSION COEFF1CICNT8 ANO LEVEL DENSITIES ON

: INTEGRATION ENFRGY ME3H AND LOAD INTO LCMCALL LCHLOAD(I)

cc SET UP GAMMA-RAY CASCADE CALCULATION; DETERMINE wtlS9KOPF OR AXELc PARAMETERS AND cOMPUTE GAMMA RAY TRANSMISgfON cOl?PF1cIENtS

CALL GAMSET(I)ccc

cc

101cc

Gc

c

MAIN LOOP OVER ~NITIAL ENERGY OF DEcAYING COtIIPOUNO NUCLEUS

UCNS UP-SACtI)~DEDO UL?W K=l,NKCNUcNzUcN*oEJMAxCNxJRAST(K.1}CALL ECRD(TTOT. IZEROLC,NJMAX2,1 ERR)IK=I+K

SET UP TRANS~I!j$~ON COEFFICIENT +0 WIDTH CONVERSION FACTORSINDPX=IRHIYLC+(K-l)*NJDIMCALL ECRD(RHOFtR. INOEX, NJMAfi,IERR}DO 101. JCN=l,JMAXCNRHOFTR(JCN)= l;/(RHOFTR~JCN)*b:28j18531 )

INITIAL12E,POPULiTION OF ALL sTATESINDEX=IPBLC+fK=i)*NJDIfl~2+t IRcN-l)*NJDIM*~*NKDIflCALL ECRD(PP, INOEX,NJOIM2,1ERR)

WIOTH SUMMING LOOPDO Jnfl Msl,i?

LOOP OVER REACfION TYPE8 FOR TH~ DECAY8DO 300 IP=llNIP

IR=LR(IP,I)IDsIOI(IR)KNGNa~ -IF((K;NE. 1).AND.cID.EQ.1) .ANO. (X.EQ, l).AND.(IDIC1? .EQ,7)) KNGN*lJoE2= IOP2(IR)XJI=XSPIN(XO)

cc TRANSFER LEVEL O!!NSITIf$8, T~AN$M,3$816N COEFFzcIENT$. LEVELc ENERGIES, AND LEVEL SPINS TO SCH.

lF(ID.EO;7) GO TO 1E12NPTS= NTC(IO)INOZX=ITCLC+ (If)wi) *NLDtM*NEt!OIHCALL ECRD(~C, }NOEX,NPTSzIERR)IF(NKK(IR).LT.1) GO TO 10.2NPTS3NTC2(?P)INDEX=JTLC+NKDXM*NLOIMA~ IP~ 1)CALL ECRO(T, INDEX,NPTS,IERR)

102 NK2Z N~K(xR)IF(NK.2.LT;!) GO TO 103NPTS= NPHOCIP)INDEx=TI?HoLc+NKD~M*NJD!F*t !$-1)CALL ECRD(R}40, 1NDEXtNPTS101ERR)

103 NLEV2=XNL(!R)INOEX=IFLLC+( IR=l)*NLFVD!MCALL EcRD(EL, INDEX,NLEV281ERR!

gPFcTl?9TSPECTR98SPf!CTR99sPEcT100SPECTlOlsPEcT102SPECT103SPECTlOfASPECTI135SPECT1L36sPEcTlf17SPECTI085PECT109sPECTl103pECTlllSPECT112SPECT113SPECTi14SPECT115sPEcTlt6SPECT117SPECT1113sPFCT)!9$PEcT120SPECT1219PECT122SPECT11?3SPECT12fISPECT125SPECT126SPECT127SPECT128SPECT129SPECTISnSPECT131sPECT132SPECT133SPECT134SPECT13SSPECT136.5PECT137SPECT13S5PECT139SPECTIUOSPECT101SPECT142sPEC11U3SPECT!UUSPFCT1U9spECT\46SPECT147sPfiCTiU89PECT149SPECT150sPECT151SPECT152SPECT153sPECT154SPECT155SPECT156SPECT157SPECT158SPECT1!$9

A-18

Page 44: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

INDEX-i4JLC+(IR-l)*NLEV~!~ SPECT160CALL ECRD(AJ, INDEX,NLEV201ERR)

c9PECT1619Pf!cT162

c MAIN CONTINUUM~TO-C0N71NUUM c0Hpu7AT10N SECTION WW_***-=a-m------WSPECT 163cc RESIOUAL NUCLEUS l!NERG~ LOO#

KLOW=K+,lIF(KLOW,GTINKaj GO To 2a0KO=ODO 195 KPsKLOW,NK2KD:KO+IXNLE a N1.EtIP,KO)=lJMAX2SJRAST(KP, IP)XJMAXZaJMAXzxJMAx2exJMAx2-tl:2slt(oEcoNiJoE2)+ 10)+0,01XJCN= XJI~lI(JOEC~)INCHKEV=I+K+M+ IP+KP

: ZERO INITIAL P0PuLATION9 IN RES!DUAL NUCLEIJMAx22c2~JtIAX2IF (M,EO.Z) CALL ECRO(P, !~EROLk, JMAX22,1ERR)

ci LOOp OVER OFCAYING COMPOUND NUCLEUS SPIN,PARITY

00 188 JCN=l,JMAXCNXJCNSXJCN+i;OECONJ~ ECON~(~O~XJCNil,@)~FSIGCN00 189 IPIcN=l,zPICNa PI(IPICN)PIPI = PT1*PICN. .JPICNSJPI (JCN, IPICN)

cc SET UP INIT14L POPULATION FOR LO=O CA$if

IF(INCHKEY;GT,6) GO TO ~17CALL I~lCHSUM(5)PP(JPICN):OPSIGR=SIGR+OP

117 IF (PP$JPIcN);j.T; l:E-300) GO To 180IF (ID.NE,7) GO TO ld~

cc CAMMARAY lRANsITION SE?TION =- CONTINUUM TO CONTINUUM

00 13tI MPZ!,NMPLG= GML(MP)PIL=pILLL(LGil)XJ2S ABS(XJCN-GML(MP) )-~;OxJ2H=xJcN+GM1.(Mp]+O,OEilxJ2H=AMINl fxJ2H,xJMAx2)00 i28 JJ$ai,lflOnxJ2=xJ2+i.nP!2= pIC~*GWP(MP)*P!LJ2=xJ2~l,@lIF(XJ2.G,T~XJ2H) G0,T0 liOIP12 = 1.501~P12/2.JP12 = JPI(J2,1P12)

cc CHECK FOR a TO 0 TRANSITION$

IF(xJ2+xJCN;LT:0:l) GO TO 1.20GO TO (112,12L4) M

cc ADD CONTINUUH GAMMA WIOTH TO TOTAL WIOTH SUM112 DT= TGR(KD. MP)*RHO(J2,KPI*OE

TTOT(JPICN)=TTOT(JPICN)+DTG(K, IP)=G(K, IP);OT*RHOFTR(JCN)GO TO 128

9PECT1649PEC7165sPEct166SPECT1675PECT168SPECT169SPECT170SPECT171SPECT172sPECT1739PECT!7USPECT175sPECT176!3PECT177SPECT178SPECT179spECTi80SPECT181SPECT182SPECT183SPECT184SPECT18S6PECT186SPECT187SPECT188SPECT1898PECT19EISPECT!91sPE.cT192SPECT193!3PEcTi94SPECT19SSPECT196SPECT197SPECT198SPECT1995PFcT2C10sPEcT201sPECT202SPECT203sPECTi?OUSPECTZ05SPEtT2flbSPECT207sPECT208sPECT2f19sPECT.21OSPECT211SPECT212sPECT21S5PECT21UsPECT215SPECT2168PECT2!7sPtcT,218SPECT219SPECT22PISPECT221sPECT222

A-19

Page 45: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

ccc

1.20126128130

cc

140

cc142

lbfl16616817018J3

ccc

190

COMPUTE CONTINUUM GAMMA PoPuLATION INCREMENTS FOR LOOPS OTHERTHAN THE FIRSTOP = PP(JPICN) *TGR(KD, MP)*RHO(J?, KP]*DE/fTOT(JP!CN)CALL SUMER(l,oE)CONTINUEcONTINuEGO TO 160

PARTIcLE Transition SEcfloN -o cONT!NUUM To cONTINUUMXJ.2= xJINIfJOE2).00 170 J2uIDJ!4AX2XJ2ZXJ?+l.~SZ~ ABS(XJ2*XJj)~l:fiS2HX xJ2+xJl+0.flt?l00 168, 1S2=l,lf10@S2* s2+lpil.IF(s2.GT.s2H) GfY.7~ 170L2L=Aes(xJcN~s?)+l .miL2HZXJCN+S?+1.CI1.L2H=~Ipo(L2HtYLE(Ip#Ko))IF(L2L.GT:12H) GO TO 16800 166 L2SL2L,L2HP12=PIPI*P?LLL(L2)IPI?= l,5fi\-P12/2.JP12= JPI(.12,1P12)GO TO (142.150) U

ADD CONTINUUM PARTICLE PIoYH TO TOTAL WIDTH glJM07= T(L2, KD)*RHofJ2#KP)yDETTOT(JP!CN) =TTOT(JPICN)+DTG(K, IP)=G(K, IP)$DT*RHOFTR (JdN)GO TO 166

COMPUTE CONTINUUM PARTIcLE POPULATION INCREMENTS FOR LOOPS OTHERTHAN TliE FIRSTCONTINUEIF(TTOT(JPICN), LE.O.IGO TO 1660P=pp(JPIcN)*TCL2, KO)*RtiO(JP, KP)*OEITTOT(JPICN)CALL SIJHERtl~OE)CONTINUECONTINUECONTINUECONTINUC

8PCCT223sPECT22USPECT22SSPECT226sPECT227SPECT2?J3sPECT2299PECT?3PIsPEcT23iSPECT232sPECT233sPECT?34SPECT239sPECT?36SPECT?37SPF.CT238SPECT239sPECT2JA0sPFcT2fJ$SPECT2U2SPECT2U3sPECT2JJUSPECT2U5sPECT2U6SPECT247SPECT?U8SPECTZJJ9sPtCT25aSPECT251S~ECT252gPECT2S3SPECT.25USPECTi!5SsPECT2S6SPECT257sPECT25BMAR77 1MAR17 2HAR77 3SPECT260SPECT261SPECT26?SPECT263SPECT26U

Wvw-o-wW--.www--.,WWWwWmWmWWm-VVwmm-.-~wwmwWW-WVWwm-Wp--VWD.Vw=---sPEC 126SSPECT266

TRbNsFER8AC~UM~LATED PbpUL#?IoN 70 LCM BUFFER SPECT267IF((~.Fo. l),OR. (IBUF(IP,II.EO, O))GO TO 196 sPkCT2611IB=IBUFJIP}II

If(IB.GT.NIBOIM) IB=IBiNIPOIM

sPECT269sPEcT2713

INDEX=IP8LC+(KP-1)*2*NJDIP+ C18-1)*2*NJDIM*NKOIM sPEcT271CALL ECRO(SCBUF2( l)tINDEX,JMAX22, IERR) SPECT27200 19n J=l*J~Ax22 SPECT273SCBUF2(J) = SCRUF2tJ) i PtJ) SPECT27aCALL ECWR(SCBUF2( l),INOEX,JMAX~2, IERR) SPECT275coNTINUF SPtCT276CONTINUE SPECT277U2MAXs UCN=S(IR) sPECT278

SPECT279MAIN COFJT1NUUt4~T0-LEVEL COMPUTATION SECTION’ ----9DO---9wsPECT280--wsPECT280

SPECT281LOOP OVER DISCRETE STATES OF THE RESIOUAL NUCLEIDO 280 Nal,NLEv2

sPEcT2@zSPECT21)3

A-20

Page 46: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

X~~SA13$(AJ~N))P12!w sIcq(!,O,AJ(N))EC2 = ~2MAxmEL(N)IF(EC2,LE.n;O) GO ‘TO ?83KC) m ECZ!DE + C!’,SIF(KD.LT.1) KOml

cc GAMMA RAY SECTION Y- CONTXNUUM TQ LEVELS

IF(ID.NF.7) 60 TO 24000 2JFI MPzl,NMpLG = GMLfMP)PIL=PILLLcLG+l)PIcN s PIL~GMP(MP)*p12IPIcN = l;501-~ICN/i!.XJCN = ABSrXJ2=GML(MP) )<l;0XJCNHJ XJ2+GML(flP)+0.00100 i!2n JJCN=lfl@k?OXJCN a. XJCN+lOOJCN=XJCN+l:O1IF ((JCN.GT.JMAXCN):CIR;(XJCN:Gf:XJCNH] ) GO ?0 230ECONJaECON*(?; *xJCN+l, f!)*PSIGCNJPIcN = JP1(JcN,JPICN)IF(x3CN+xJ2,LT10. i) GO fO 228G(l TCI (?au,2a6),LGROPT

294 TGRL=wKCON*WKNORv*REl (MP)*Ec2** (2*LG+1)GO TO 210

206 TGRL = 1.b>u92BEw3*CAXEL*REI(MP)*GAXEL*EC2**4/ ((ERAXCL**21 -Ec?**2)**2 + (Ec2*GJXEL)**2)TGRL=lGR~swKcoN

210 IF (NOEQ.2) GO TO 220c

ccc21?0

2262282s0

cc240

ADD Ght4Mh WIDTH +o TOTAL HIDTH sUMOT=TGRLTTOT(JPICNIFTTOT(JPICN);DTG(K, IP)=G(K, IP)+DT*RHOFTR(JCN)GO TO 228

coHpuTE LEvEL POPULATION INCREMENT FROM CONTINuUM-70-LEVgL 7RAN0SITIONS IN OTHER THAN THE fIRST LOOPIF(TTOT(JPTCN):EO;b,) $h TO 228DP = PP(JPICN)*TGRL/TTOT(JPICN)CALL SUMER(2,DE)CONTINUEc@NTINuEGO TO 280

PARTICLE TRANSITION SECTION :- CONTINUUM TO LEVELXJCN= XJINT(JOECNIKt a ISERCH(EC2,ETC( 10~O),NEE (IO),AA~A5~Ab)XNLE = NLEIN(IO,KE+l)-IDO 27a JCN~I,JMAXCNXJCNm XJCN+l.?ECONJ=ECON*(2.AX~C~+l.0)*FSIGCNS,?= ABS(XJ2-XJj)-l.0S2H= XJl+XJ2+fl.flfll00 26! IS=l,iOf10s2=s2fl.0IF(S2,GT’.SZH)G~ T0,270L2L=ABS(XJCN-$?)+ l.01L?H:XJCN+S2+1.L31L2H3MIyfi(L?H,N1.EINtID8KE+i ))IF(L2L.GT.L2HI GO TO 268DO 266 L2PL2L,L2H

8PEC128U9PECT285SPECT286SPECT287SPFCT28RSPECT289gPECT2Q0SPECT291spECT2928PECT?QSSPECT29QSPCCT295SPECT296SPECT2973PF.CT298SPECTZ99SPECT3@0SPEC.T301sPECT3ti2SPECT303SPECT30USPECT3n5SPECT3B6SPECT3f17SPECT3@8sPLcT3f195PEcT3ioSPECT311SPECT312SPECTS13SPECT3149PECT315SPECT316SPECT317SPECT!.18SPECT319SPECT329SPECT321SPECT3.22SPECT3?3SPLCT324!)PECT325sPECT326sPECT327sPECT328SPECT329SPECT330SPEC7331SPECT332SPECT3333PEcT3311SPECT335SPECT336SPECT337SPECT338SPECT339sPECT3U0SPECT3U1SPECT342SPECT343SPECT34USPECT3U5SPECT3U6

A-21

Page 47: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

PICN=PI l*P12*PILLLtL~) 9PECT347IPICN * !.5P1-PICN12. 9PECT3U8JPICN a JoT(JCN,~PICN) 9PECT3U9CALL !NTERP(ET~( l,ID)lTC(l,~2), NCE(ID), 2,EC?!JTLEV) SPECT350IFfTLEV,LT:O. )TLEVUO. SPECT351GO TO (242,250) M sPECT352

P SPFCT3’33 I

ccc250

260266268270l?8n

c285

c

ADD PARTICLE WIDTH TO ToTAL NIOTH SUM IDTS TLEv

SPECT3!3iSPECT355

TTOT(JPICN)PTTOT?JPICN);OT SPECT356SPECT357G(K, IP)aG(K, IP);OT*RHOFTR (JtN)

GO TO 266 ~PEcT358SPFCT359

CCIYPIJTE popuLA~loN Increments FOR PARTIcLEIwLgVEL TRANSITIONS AFTERSPECT360THE FIRST LOOP SPECT361IF(TTOT (JPICN)’.EQ.0.) G~ TO 266OP

SPECT362= PP(JP!CN)*TLEV/TTOT(JPICN) sPECT363

CALL SUMFR(2,0E) SPECT360CONTI~iUECONTINUE

SPECT3b5

CONTINUESPECT366sPEcT3fJ7

CONTIN[!E SPECT368. ...--.- .. ...--..-.-*.m-m.W.W~w9m-wnW*--u0w-----W-wwmw--*--WW*--O-9PF C73h9CONTINUE SPtCT37ti

SPf!CT371i CLOSE U ANO 1P LOOPS; SPECT372300 CONTINUE SPECT373

c SPECT374c CLOSE K LOOP; TRANSFER iP AND PL TO LCMi SPECT375400 CO~TINIJE gPECT376

NPTS= NKDIM*NIp SPECT377IF(I;EO: l: AND:LPEQ;EQ, l)cAL~ ,PREcMP SPECT378INDEX=ISPLC+NI(OIN*NIPDIM* (1-1) SPECT379CALL ECWR(SP, INOEX,NPTS,IERR) SPECT389INDEX=IGLC+( I-l)*NKOIM*NIPOIM SPECT381CALL ECWR(G, INDEX,NPTS,IERR) SPECT3S2NPTS=N~P*NLEVOIfl 9PECT383INOEX=IPLLC+ (I-l I*NLEvDIM*NIpOIM sPEcT3e4CALL ECWR(PL, INDEX,NpTS,IERR) sPECT385

c SPECT386c CL(lsE I LOOP SPECT3875f30 CONTINUE

CALL SECCINO(TIME)SPECT388sPECT389

OTIMEZTIME-TKLEPWRITE(6,U)

SPECT390D,TIME,TIHE SPECT391

4 FORMAT(/* END OF I LOOP IN 9UBROUTINE SPECTRA,*, sPECT3921* TIME Fl?op sT/IQT OFTHIS ENEI?GY s*F9,3,0 SECONDS, TOTAL ELAPSED TSPECT39321tiE =*F9:3,* SEcONDS.*) SPeCT39fJ

cc

sPECT395COMPUTE DISCRETE GAMMA-dAY CROSS SECTION9 AND ADO TO SPECTRA: SPEC?396CALL GRLINES SPECT397

cRETURN

SPECT398$PECT399

END SPECTOOO-..SUf3R0UTINE LEVDsl!T(AcN, A,A2)

cLEVD5FT2LFVD9ET3

COMMON/LEVDEN/DEP(60)~XNLGC (60) IECGC(69),UCUTOFF?DEFCN, TGC(69)C LFVI)EN i?1 cnGC(6@),FMATGc(60),PATR(60) ,XMR3(60),XNLLN(60),9z( l130) ,SN(\50), LEVI)FN 32 pZ(100),PN(150) LFVDFN 4coMMON /sPNPAR/ sPIN,PARITY,KGRD LEVDEN 5COMMON/BASICl/NI,XNIP(lPl ,NIR,LRt60j0),2Al C6@)rZA2(60) ,XM2(60)t BASIC1 2

1 ZACN(lP),CSGR(6fi), CSTOi(6a) ,CSLEV(6n), CSIO(8),EAV1D(8) cEAVC6a) 8ASIC1 3COHMON/LCINOEX/IP8LC,IGLC, IzEROLC, ISPLC~IPLLCc IEGLC~ ISGLC~ITCLCO LCNDEX 2

A-22

Page 48: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

1 13TCLCt lR~OLC, XTLC, ItLLC,IAJLC, IATLC, lIJIDIMINIPD!M, NIE!DItf,NGROIti, ~CNl)f.X I2 NIDDIM,NIRDIM, LCNDEX 4DIMENSION DEFCONC2~C A(l)CA2(l) LEVDSET7

cDATA

:OATA

1 n:,2 .043 ?0,,4 ,68,s .6’?DATA

cccc

TABLES OF COOK ET. AL. AAEC/TM392LEVOSE78LEVDSFT9LEVDSE10

?z/Ij*fI;,2:u6#0;9$. q?,0;91;62#0, al;b20 fl,Plm8S#0;el;73e LEVDsEll.~5en.rl.5utn;~l,Z8#0,26~ 0,68t@. 19P l.39~-,@SPl,52,-, 0Fvl;17s LEvDSL12lP?U,8,29, lP@Q, .Zb,l;l~,;23, 1. 15pT,I?i8, 1,35,fl,34,1,95, ~2Bvl;Z7LEVDSE151.@5,a.,1/,.0:,l,p,,2P\:4, ,?3tl. ,-,2,1; 19,.~9, ,97,0, ,,9Z, ,11,LEVDSE14.~5t.68,=.$2, .7y,tflq, m69, .fll,,72, B*, .4, P14,,73,W,,PL16,, 17fi LEVDSF15fl.,.79,0. ,,99,npP.Pi.-p n6~,b9,-.21,7J~-,i~,. 7210,~,77e2*0,1 LEVDSE16PN/lle@,,2mb7,@P,l:8,@, ,1.b7,0, ,fe86,~,,2,04,8P ,1 .b4, fl,,1.lJlJ,Ltvn5P17

1 0>, !,$u, fl:,~.3,ff,, l.27,0:, 1:2~, ;08Bl,4!t-.D8, 1,5,-,@S, 2,24,w,47, LEVDSE182 lt43,:. 15,1.uu~rf1691 ,36f.2Sa la5?~y,16,!, u6,0, ,,93, ,fl~#,62J-oS~ LEV1)SE193 lPfJ2, .13, 1.52.-.6SP,W,08,8, l,~9f-, 47, 1,25,-,Q4, ,9?,.e8, 1,65~-. lltLEVDSF2fl4 1,26,9~06. l;f16,@,z?, l. 55t W.B7,1. 3?,0,j, l,2,= ,278,92,-; 35, 1,19~0;lLEVDSF 215 1.f15, :.25tl.b],*.21, .y, -.21 .;7u,-P38~ p72p~.3U~ .92~-.26r.9UJ001~ 1.EVDSE22b .bS@:.36*%83,rl!~f67~ >f15, ~P..Sl, l.~4*.33V. b8~-.~7#, 81,,@9#,75p LEVOSE237 ,17, .8b, .lU,l.1,-.Z2l.@4, -.47, ,48, .a2,,88,,2U,,52, ,27,.41,-,05/ LEVDSE2UOATA (PN(IL),IL>l?6,15n)/ 1EVDSE25

x; 3!#:15# :67#n;t.blf@;#; 78,0. 0,67#n,~:h?# fl.#;79#--- —

1 B., .6,;0u..1.EvflsE26

+4f?r0bt, 45, ,f19,.26p-.228 .39,m.OS,.39/ LEVPSE27OATA SZ/lfltfl,,=2,91,wU;~7,y5:7?,m7. 8,-8, :7,w9,7,w10, 1,-IU,7, ●ll,38LEvDSC28

1 ,m12:n7, 012.5~,-13,2U,ol 3.93, vlU, Tlo~15.531*16. 37~w17,361wlfi,60 LEVDSE292 -18P 7,-18:01,-17,~7,-~~.~8,- 16,6?*16, 75,-16,5P-16,3S? ●16,221 LFVnSE303 -lbp41,-lb, 89,-lb.43,mt6P 68,- 16:73,-17. U5,-17P?9~ ●i?,40,-17.82, LEVDSE31O =18,62,-18:27,-19;39,- ~9.9!,* 19.lU#-18,26~=l?. UV-lb.42~-15077* LEVDSE32S -14; 37,-!~. 91~w~3:l,wj3. 11,. ll,U3~=10;8p,-l@,751 ~lflP62e~10,4i~ LEVDSE336 -l@,21, 09t85,y9rf17,-9pR3, _8:bl,wh: 13,=7p46,*7pU8, e7,~, -7, 1S,-7,0bLEVDSE3Q7 ,-b,7~,y6: 64,~btbU#*7,b8, 9?.89,-6t U!,e8f U9,=7P88,-bP 3,n5, U7,1WU,78LEVbSE358 8-4r37,-4: 17fi9u.j3~-4. 32,-4:5Sv-5.flUfi-5.20Vwb. Vbo~6.28~-b,t37e LEvDSE369 -7,2fl,-7.?~,2?0./ LEvrlsE37OATA SNliO*fl. ,6,8,7,53,i:>5, 7;2i,7:U0, ~,07t0,94,Q.8 l~lO.b, ll;39~ LtvDsF38

1 12,5fJ, 13,68, 1u,3U,14,1~, 13,,83B 13.5, 13.~12.13~ 12, b,13,26~14,13~ LEVDSE392 ld.92,15,52, ~6,3B,17,16,1 7,55, 18,03, 17,S9,19,03,18, 71, 18,5, jfl,99,LEVDSE403 18,U6,10.25, 17;76,17,3@,16e 72, 1S.62,1U,31!, 1S.88,1>,23, !3.81,14.9,LEVDSE414 14F86,1!i.76, 1h>2,17r62, 17, 73, 18P16,18;67,19,69, 19p51,20, 17p 19.1J8,LEVDSE 42S 19,98, 19$ f13,~flp2,19.72, 19.~7, i9.20,10.U4,17,6 1,17. 1,1$..l6vl5,9# 1.EVDSEU36 15.33, 14~76~!3P51J,12. h5,1Rp6S, 10pl,8.89,10..29, 9.79#ll,39ell,72P LEVDSE447 12.43, 12,96F1J.US,13,$T, 12,96, l~. 11, 11,92, 11.,10.8, ~t7.4Z#10,3V, LEVDSE458 9;69,9.27. 13.95,8.57,8.v2, 7,59, 7.33, 7,Z3,7.f15,7,42, 6.75,6,6,6,38/ LEVDSF46DATA (S~l(IL)~IL=~/1,15~]/ LEVOSE’U7

X b;36,6.d9,b~25,5./3s~S, u?, u:53t4, 3t3,39t2.35e 1,66#.t31D (.EVI)SEU81 0P U6#:.96.-l .69r-2,53# =3.,lb~-l,87D~.Ul~~71 ,la66~2~62, 3:2203;7bt LI!VDSF492 4,1,u.06,U:63,5.f19t5,18,5.17,5,1~5,fll,IJ.97~5,09#S.03,4.9305,28~3 5.fJ9,[email protected],s.301

LEVPSE50

0A7A 0FFt0NlB,lti2tfl,120;LEVDSE51LEPDSF52LFVDSF53

CCIMpUTE I?4CU LEvEL DFNS~TY RELATIVE TO ACN USING GILBERT-CAMERON LEVDSE!J4FORMULAS FOR LEVEL DENSITY LEVDSE55

IOEFCN= DEFCNil:OllZACN* ZAC~(i)IbCN=MOD( IZACN, IOOO)IZCN= lZACN/l@flnINCN= IACN-IZCNxAC~= !ACNACNGCS4XACN*(0:Oa917*(S~( X2CN)iSN(INCN)) + OEFCON(IOEFCN))IF(ACN.tQ.Fi;) ACN8ACNCCA2(l)eACNDO 60 IRGI,NIR.IDEF z DEF(IR)+l.01

LEvOSF5bLEVDSE57LEvOSE58LEVDSE59LEVDsEbOLEVI)SE61LEVDsEb2LEVnSEb3LEvDSE64LEVDSEb5i.EVbSEb6LEVDSE67

A-23

Page 49: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

s~

ba

c

c

Uaus50

1

I~A = ZA2{!R]IA= MOD(IZA,1000)IZ 8 Iz4/imOOIN ~ IA-IZ)(A n 1AIF((A(IR)’.iT:O’. ):OR,(I8;cR: 1)) GO 76 50AGC s XA*(Q,0a917*(SZ(Iz)+SN(IN) ) t DEFCON(IDEF])DAGC n AGC-ACNGCA2(IR) m ACN+DAGCPAIR(IR) a PZ(TZ)+PN(IN)CALL G!LCAM(A2(IR),IR)CONTINUERETURNENDSUBROUTINE QILCAM kAsLR)

LEVDSE68LEVPSF69LEVDSE70LEVDSE71LEVDSE72LEVDSE73LEVDSF7ULEVDSF7SLEVDSE7bLEVD3E771.EVDSE74LF,VD3E79LEVDSE80LEVDSE81GILCAM i?GILCAM 3

COMMON/LEVOEN/0EF(60),XNLGCi60) ,EC6C(60),UCUTOFF,0EFCNCTGC t60)0 iEVoEN z1 ErnGC(60),EqA7GC~60),pA1R(6D] ,xMR3(60),XNLLN(60),$Z(100) ,SN(lSO), LEVOEN 32 PZ(lO@),PN(l$O) LEVDEN 4COMMON /SPNPAR/ SPIN,PARITY,KGRO LEVDEN 5DIMENSION OE(AI) GILCAM 5

GILCAM 6DATA NDE,DE/U~l:.O:l~O;hlO@;flOll GILCAM 7EC=ECGC(LR) GILCAH 8CONST s 5,n571*xMR~(LR) GILCAM 9E s 0, 1+PAIR(LR)+2.251A GILCAfl1000 50 I:l,NI)E GILCAM1lDo 40 J=l,sQO GILcAf412U = E-PAIR(LR), GILCANi3

GILCAH14T = l;/(SORT(A(U)-l;5/U)EOl = E$-T*XNI.LN(LR) GILCAM15Ear? s E+T*rALOG(CON$T*SQRTiA*U**S) /7)-2,*SQR7tA*u)) GILCAV16DEL2 =~01-FB2 GILCAM17IF(I*J.EQ:I) S)GNO ❑ SIGNC1:.DEL2) GILCAM18SIGN2 = ~IG~(l.,0EL2) GILCAM1’3IF(SlGN2.NE,SIGNO) GO Yb 4!3 GILCAM20DELI = 0FL2 GILCAM21ES E + OE(I) QILCAM22CONTINUE GILCAM23E x E-DE(I) GILCAM24CONTINUE ,,.. GILCAli25DELA=AB3(D~L~-D~i2) GILCAM26IF(DELA.GT. 1,0~-}@O) GO TO 100 GILCAM?7E?O.l+PAIRtLR)+2.25/A GILCAM28EMATCHZE GILCAM29U=E-pAIR(LR) G1LCAM30T=l;l(SQQTCAIU)-1.S/u) GILCAW31PRINT i,LR JuLt9772FORMAT(I* *+++,,GILCAM SUpROU,TINE UNA8LE 10 MATCH DISCRETE LEVELS WJUL19773

11TH LEvEL DENsITY FUNCTION l’OR RESIDUAL NUCLEU8 IN REACTION IR q*?JUL1977U2 13,* ++++*/) J11L19775Gn Tn tfll oILcAt435

100 EiA+~H-C-E + DE(NDE)*(DEL~/(DELl-DEL~))U z Et4ATCH - PAIR(LR]T s l;/(SOR1(A/Y)-1.5/u)

101 Ea= EC -T*xNLLN(LR)E’MATGC(LR)CEMATCHTGC(LR)MT s FaGCtLR)SEORETURNENDSu8R0UTINf! LCMLOADtI)

cc cQMPUTE TRAN$M1sSION CO&FFIljIENT$’ AND LEVEL DENsITIES ON

GILcAt436GILCAM37GILCAM38QILCAM39GILCAMUOGILCAMUiGILCAM42QILCAMU3LCIILOAD2Lct4LOAD3LCIJLOAD4

A-24

Page 50: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc

1

2

7c

cc

INTCGRATION f!NCRQY MESH ANO LOAD lNTO LCM LCMLOAD5LCHLOA06

FoRf4AT(//~ TRANsMISSION COEFFICIENTS ON SUBSET OF INTEGRATION ENERLCMLOAD7lGY GRIP*) LCMLOAD8F3RUAT(/ # IOs*I~, 3X,*pARTIcLE s*Al@,3x,*:w*12, 3X,*IPIa*12, 3X, 1.CMLOAD9

1 *IPZ*13, 3X, *NK=*14,3X, *NLS*13) LCMLOAIBFORVAT(I ●OENERGY =* F7’.3,* MEV*,5X,*JMAX INDEX =*13) LCHLOA1lFORWAT( IP, lflCl?:5) LcMLoAl~

FORuAT(// * LEVEL oENsITIEs ON 9Ut39ET oF IN7EGQAT10N ENERGy GR1D*)LcMLOA13FORMAT(/ A 10:*12, 3Xo*PARTICLE mAA10t3x,* I=*X2S3X~@IP=* 12t3X~ LCflLOAlfA

1 *IR=*13, 3x, *NI(=*IU, 3X~~NJHAX:* 13) LcHLob15FORPAT(/ # ENERGY =*F7.3,A MEv*,5X,*LMAX INDEX a#13) LCMLOA16

LCMLOA17COMMON/LCXNl)EX)IPBLC,IGIC, IIEROLC, ISPLC, IPLLC~IFGLC, ISGLC, ITCLC, LCNDEX 2

i TsTCLC, IPHOLC, ITLc,lELLC,IAJLC, lATLc,NloxM,NxpcI!m,NIBDIH, NGRDIM,LchOEx 32 NI~OIN,NIRl)IKi LCNDEX UCCIMNON RHO(U0,Znr),T(301 2g0),P(t10),Sp(200, 6)CPP(8?) pSPP(200~7)

)RHO 2

l, Sp~GN(2tlt3),PL(5C3, 6),G(, @D,6),RHOFTR(4Fl) RHo 3COMMON/TCOFF/ETC(25,6), TC(25,3@), BCD(7),XSPIN(7) cNLDIt4, TCOEF 2

lNPART, NEE(6), NO(6),NTC(61 ,IzAIr)(7), xMASS(7)~NEERIM~ NLtIN(6~25)c TCOEF 32NLE(6, 2nO),JRAST(2n~#6) TCOEF 4CONMON/LEVFLl/FL(50),AJ~50) ,AT(50), xNLf60),ELMAX(60) ,NLEVDIM

l, EG(2ufl) #SG(2Ufl), NCQAYS(6G)LEvCLl 2LEV$L1 3

COM~ON/RbSICl/NI.XNIP( t?), NIR,l.R(6c 13),ZA;(60) ~ZA2(60),XM2(6a)~ BASIC! 21 ZACN(l@), fSGR(6C4) .CSTOT(60] ,CSLFV(60),CSID(9), EAVID(8) ,EAV(60) f3ASICl 3COMMON/8ASIC2/TITLEt16) ,FLAR, DE,ZAp,ZATtxHTC NKKP(lO),CNP!(lO)S BA.31c2 2

1 CNpIp(lO), S(6@),SAc(10)# 11)1(60), ICP,IOE$(60)~IBUT (6,10)~ BASICii 32 ECH, UP, NKMAX, NJMAX,NKK(60) ,NKDIM~TCP(30),0POP( U0) cA(60),A2(60)c BASIC2 43 NRHO(6),X.?T, NPOPMAX, NTC2(b)~NJDIV~ IOFCN(lO), NKKCN(1O),ECON, BASIC2 S4 Jpl(ua, 2), xMP,xJp,p11,NLP, !iNLp, KL, IDsTAT(7),src,csL, CSH,PILLL(30) 84slc2 65, 1cAPT,PL@(lF(50, 1fl)?1NPoPT, TKEEP BASJC2 7COMMON/LEVnEN/DEF(60),XNl. GCf60), ECGC(60),UCUTOFF, DEFCN,TGC(6@)o LEVOEN 2

1 EOGC(60),EMATGC(60),PAIR( 60), XMR3(6(3), XNLLN(60)tSZ (i@0)~$N(:5B), LEVDEN 32 PZ(1OO),PN(15O) LtVDEN UCOMMON /SPNPAQ/ SPIN,pARITY,KGRO LEVDEN 5COMMON/PREQl/EPSIG(200,6) ,NLEv,NPIT,NIT PREQ1 2COM~ON/PRNTOUT/IPRTLCV, IPRTTC, IPRTMLOcIPRTWID, IPRT3P, IPRTGC PRNTOUTz

LCPL0A27SPLIN (O,C.O,E) a B*A5 ; C*A6 - AA*(D*A5+E*A6+D;E) 1.CMLOA28

LCMLOA29NIP=XNIP(I). LcMLOA3EDO lf10 XP=l,N1$IR=LR(IP,I)

LCMLOA31LCMLOA32

IPRT=lNKsNKK(IR)

LCMLOA33

IF(NK.LT.1) GO lb lno

LCMLoA3U

10= ?D!(IR)LCMLOA35

OEUZ.SLCMLOA36

If(InE2(TRl;GT:i] 001:0LCHLOA37

IF(ID.GT.6) GO TO 501.cMLOA38LCMLOA39LcMLoA4fl

COMPUTE ANIj STORE +ffAt.JgMIssxoN co~FFIcl~N”fs 1.cMLoA41NL~ NO(ID)NED NEE(ID)

LCtlLot42LCMI.0AU3

NPTS= NTC(TD) LCMLOA44lNDEx=!TCLC+(ID-ll#NEEDIf4*N~OIM LCMLOAAA5CALL ECRD(TC, INDEX,NPTS,IERR)FK= 0,

1.CMLOAU61.CMLOAU7

DO UU K:l,NK LcNL0448EK= EK+OEKf=

1.CMLOAU9ISERCH(EK, ETC(ll!OI,NE,AA, A5~A6) LCMLOA’3t4

NL = NLEIN(!D,KE+;)NLE(IP,K)=NL

LCHLOAS1LCMLOA52

A-25

Page 51: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Uuc

us

52S155c

Ub48

ccso

707a

. . .. .. . . ...

IF(I:EQ~lLANOjID~LE,6)U5t 55KLM=fuP-SAC(i)-S(IR))/DE+17. ~EK=a.DO 51 K=l,KLMFPSIG(K, ID)=O.EK=EK+OFKE=ISERCH(EK, ETC~l,ID),NE, AA,A5?A61NLcNLEIN(ID,KE+l)

00 52 L=l,NI.CALI. INTERP(ETC(i, IO)tTC(l,L), NE,2,EK,Y0UT)T(L,K)=YOUTIF(T(L, K) .GF.; l:)f(L#K)IE~:IF(T(l., K) .LEgQ~)T(L~K)sp..EPSI~(K, ID) SEPSIG(Kt ID)+(2:* CL_l)+l.l*TtL/K)C@~TINUECONTINUECONTINIJETRANS~ISSItiN. COEiFICICN? PRINT OPTIONIF[IPRTTC:L7:2) GO TO 48wRITE(6#l)WRITE(6,2) IO, BCO(ID) rI,IP#IRSNKo NLKPRT=IPQTTC-1DEFTR=KPRTEK = DE*(l:-OEFTR)DO 46 Kzl,NK/KPRTEK=EKtOF*DEFTRNL = NLE(IPsK)WRITE(6,7) EK,NLWRITE(6,4) (T(L,K),L=1oNL)KPTS=NK*NLDIMNTC2(IP)XNPT9INOEX=ITLC+NKDI!4*NLDIMi IP~l)CALL ECMR(T, INDEXtNPTS~IERR)

CI)MPLJTE AND sToR~ LEVEL DENsITIES AND YRASTSEKMAX= ~P-sAC(~)-SCIR)XIEFFG7. U7656E-3*XNR3(IR) **SEKs=DE00 en K=iONKEK=EK+OEEXX EKWAx-EKU = EX*PAIP(IR)US= AMAXl(ll,llC~TOFF)

SJMAX=SQf?TtZ.*US*XIEFF)JMAx2msJMAx+flEJMAx2zMINatJt4AXSa NJ~AX)JRAST(K,IP1:JMAX2SIG22 = !?.1776$SORT(A2~ iR)*US)*xNRi( IRI**2IF(EX,LE .E~ATCC(IR)) GO TO tOAuRT= SORT(A2(IR)*U)RHOE = ExPt2.*AuRT)/(10:llU2*XMR3( IR)*U*AURT)GO TO 72 -RHOF = EXPC(EX:EOGC (IR))1TG6CIR)) li$:*TGt(!R))XJJ=-l;OIF(IOE2(IR),EO;1) XJJEWO;900 76 Js1,JHAXZ

Lc~LOh!13LC14LOA54LcF?LoA5!jLCMLoA5bLCBLOA57LcHLOA58LCMLOA59LCflLOA60LCULOA61LCMLOA6ZLCMLOA63LcPLflA611LCMLOA65l_cMLoA66LCHLOA67LcM1.oA68LCMLOA691.CVLOA7(4LCMLOA71LCMLOA72~cHLoA73LCMIOA7ULCVLOA75LCMLOA761.CRLOA77Lct4LOA78LCPI.0A791.CHLOA80LCMI.0A81LCt4LOA82LCPLnA83LCMLOA84LCMLOAB51.CMLOA86LCVLOA87LCMLOA88LcMLOA89LcHLoA9?lLCFLOA91LCMLOA9ZLCMLOA931.CMLOA9U1.CMLOA95LCMLOA961.cMLoA’37Let.11.oA98i.cMLoA99LCMLO1ODLCMLOl@lLcMLolf12LCMLO1O3LctlLOlOULcMLO105LcMLola6LcMLO!07LCMLO108LcMLolf19LCflLOllfiLCMLOI1lLCM10112LCML0113LCHLollULCMLOilS

A-26

Page 52: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

)fJJaxJJ+lOfl76 RHO(J,K) a RHOF*($.OXJJ+lC0]*FXP(e(XJJi0:5)h*2/81G22) /81G2289 CONTINUE

: LEVEL DENSITY PRiN7 OPTIONIF(XPRTGC;LT;~) 00 TO 8UwRITE(6#5)WRITE(6,6) ID, EjCO(IO) cI,IPOIRINKcNJMAXKPRT=lPRTGc-1DEFTR=KPRTEKY-I)E*DEFTRD(I 62 K:l,NK,KPQTEK=EK+OE*OEFTREX:EKMAX-CKJMAX2~JRAST(K,iP)WR!lEf6,3) FX,JflAX2

82 WRITE(6,4) (RHO(JIK), JG!#JMAx2)8Q NPTS=NK#NJ@IM

Nl?liCi(IP)=NP1’9INDEx=IRHOLc+NKDtM*NJDIM*~ XPa;)CALL ECWR(RHO, !NDEX,NPTs,IERR)

100 CONTINUERETURNFNCSUBROUTINE GAMSET(I)

~CHIOllbLCML0117~cnLol18LCML0119LCML0120LCML0121LcMLO\221.ch’8Lo123LcML01241.C141.0125LCML0126

LCHlt0127Lct4LOl?8LcfiL0\29Lc14LOi30LCHL0131LCML0132LCPL0133LcriLot34LCRL0135LCML0136LCML01S7LCM1.f)138LcU~oi39GAMSFT i?

c GAMSET Sc SET UP GhMMA:RA$ CASCADE CALCULATION; DETERMINE WEISSKOPF OR AXEL GAMSET Uc PARAMETERS ANo cOMPUTE GAMMA RAY TRANSMISS1ON COEFFICIENTS GAMSET 5c GAMSET 61 FORMAT(// * GAMMA-RAY TRANSMISSION COEFFIC1rNTS*, lBX~*IZ*120 GAMSET 7

1 3x** IP=*12#3x,*!Ra*139 /.* ENERGY*, 10(6X,AltF1.0,4X) ) GAMSET 8i? FORMAT(F8.3, 1P,10(lX,Ell .4)) GAMSET 9

c GAMsEtl@COMMON/BASTc!/NI,XNIP(im) ,NIR,LR(b, iO),ZAl tbFll,ZA2(b@) ,XN.2tb0), BASIC1 i?

1 ZACN(l@),CSGR (6tl),CSToT(bB) ,CSLEV(60), C$10(8),EAv10(8) 0EAv(6@) BASIC1 3COflMON/8ASlC2/TITLE(16) ,ELARsOEs ZAPczAT~XMT, NKKM(\G4),cNPI( 10), BASIC2 2

1 CNpIP(lO), S(6fl)#SAc(l@~S IDl(60) #IOPOIOE 2(6@)CIflUF (6#~9)c BASIC2 32 EcM/lJP,NKMAx,NJMAX,NKK(60) ,NKOIM, TCp(30),0MDP(40), A (60),A2(60], BASIC2 U3 NRtiof6)*xJT# NPOPMAX, NTC2(61,NJDIM, IOFCN(iO), NKKCN(l@) lECONt8ASIC2 5u JPI(uO, 2), xMp,xJP,PIT,NLP, XNLP,KL, IllSTAT(7), SIc,CSL, csH,PILLL(30)BASIC2 65, 1CA~l,PL8UF (5fi,10)~INpOpT, TKEEp f3AS!C2 7cOl!MoN/LEvOEN/DE~(~a),xNLGc (60), EcGc(40),ucuTOFF, DEFCN, 7Gc(60)l LEVCEN 2

t E0GC(6n), EMATGCt60),PAIR(69) ,X~R3(60), XNLLN(60),S2[it10) ,SN(155), LEVDEN 32 PZ(1QO),PN(15L3) LEVOEN OCOMMON /SPNPAR/ SPIN,PARITY,KGRll LEVOEN 9COMPON/GALIMA/Nt4P,LGROPT, SWS(lO), GML(6),GHPC6)1RF1 (6)1LMGHOL(6)C GAMVA 2

1 TGR(200,6)lWKCOV~CAxEL,GAXEL/ ERAXEL8EXSWS( 10),WKNORM GbMNAcoMMoN/PRNTnljT/lPRTLEV,IPRTTc, IPRTMLo, IPRTWID, IPRTSP,IPRTGC PRNToUT:OIPENSION ROUMt2) GAHSET16OATA GAKkL15.R/,ROli;ZS1 GAMSLT17

c GAMSET18NIPaXNIP(I) GAHSET1900 50 IP=l,NIP GAMsET~17

1P= LR(Ip, I) GAt’!sET21!0= Iol(Jq)IF(IO.EQ.7) GO TO S2

GAMSET22GAM9ET23

Sa CONTINUF GbNSET2fJRETIJRN GAMSET25

52 CAXEL=O;Oli*XMi( IR) GAHSFT26ERAXFLS8~;n/XMR3C!R) G4PgET~?WKNORtlS1.0E=8 QAMSET28CALL wEISSKF(I.Ip,IR) GAMSET29

NRITE(6,10) IIWKCON GAMSET30

A-27

Page 53: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

1~ F(lRMAT(/* f)AMMA dAY STl?fNfJTM NORt4A1~2AT10N CONOIAN1 / !~*t1 12,*, CONSTANT 9*lpF12.4!

7n RATIO x 4:087~8/((R0*XM2tIR~*XMQ3( 1R)1**2)DO 75 MP=l.NMP1. = GHL(MP]IF(GMP(Hp).LT;O:) GO TO 7SIF (L.LT.2) GO TO 7flIF(REl(MP):EO,O.) RE1(HP)=1;OED6

74 ROUM(L)FRE1(MP)75 CONTINUE

00 78 MP~l.NMPL : GML(MP)IF((GMP(MP);GT:O:):OR, (REl(HP):G+.O; )] GO To 78RE1(PP) z RATIO*RDUM(L)

78 CONTINUENK= ~KK(IR)EG=fl,Drl 90 KDS1,NKEG=EG+OFDO 9FI uP=l,NMPL u GML(MP)GO TO (81,82),LGROPf

ei TGR(KD, MP)zWKCON*WKNoRMOREltHP)*5G**(2*Lil)GO TO 9c!

82 TGR(KD, MP)J\.63u9Z8tW3?~AXEL*RE l(MP)*GAXEL*EG**U/1 ((ERAxEL**2-EG**2)**2+(EG*GAXEL) **2)‘TGRiKD, tiPjsTGRkKD, MP)*NKCbN

90 CONTINUELc TRANSMISSION, CtiEFPICIENT PRINT OPT!ON

IF(IpRTTC.LT,2) GO TO $qoWRITE(6,1) I, IP, IR, (LMGHOL(MP),GML(Mp) ,MP*ltN~p)KPRT=IPRTTC=IoEFT~sKPRTEGcO,on QU Kr)=l,NKt~PRTEGTEG+t)E*DEFTRWRTTE(6s21 EG, cTGRiKDt VP)cMPqlSNMp)

94 CONTINUElt3B RETURN

ENDSUBROUTINE WEIsSKFkItIP,IR)

cc OBTAIN NflRMALIZATION FAcTOR FOR UEISSUOPF APPROXIMATION FROMc INPUTTED sTRENGTH FIJNCTIONP

fjAMOfJl!lflAH3fT32GAMSET33GAMSET30GAMSET35GAMSET36GAMSET37GAMSET38GAMSET39GAMSETuOGAH3ET41GA~sET42QAHSETU3GAMSETQ4GAHSET4!iGAr4sETu6GAr4sETl17GAMSETU8GA14SET49GAMSFT58GAhSETSlGAMSETS2GAMSET53GAMSF.T54GAMstT55GAMSFT56GAMSLTS7GA14SETS8GAPSETS9GAM$ET60GAr4sET61GAMSET62GAtisET630AMSET6UGAMSET65GAt4sET66G4MSFT67GAM9ET68GAMS[T69GAHSET79GAMSET71WEISSKF2wEIssl(F3MEISSKF4WFISSKF5WEISSKF6

COMPON/LCXNDEX)IPBLC#IGLC, IyEQOLCt XSpLC)IPLLC~IEGLCt ISGLCtIICLCc LCNDFX Z1 ISTCLC, IRHOLC, ITLC~IELLC~IAJLC, IATLC,NIDIMj NIPDIMINIBDIM, NGRDIMoLCNDE% 32 NlDOIM,NIR131M. LCNnEX 4

COMMON, RHO(UO, 200),T(3a,2L30) ,P(80),sP(.200,6) tPP(80)~SPPt20a~ 7) RHO 21,spvGN(2Pn),PL(90, 6),G(~00, 6),RHoF7R(401 RHO

COMHON/LEVELl/EL(50),AJC50) ,ATC501, xNLC6a),ELMAx(60) ,NLEVOIM LIZVEL1 :1, EG(2UC) .SG(240), NGRAY9C60) LEVEL1 3coNMoN/BAsIc2tTITLEt16), ELA8.DEtZAPtZATt xHTt NKKM(lOl,CNPI(lO), BASIC2 2

1 CNpIP(10),S(6n), SAC(101 ,IDl(601~IOPI IOE2(6fi)~IBUF(6C 10), BASIC2 32 ECM,UP, NKMAX,NJMAXt NKKr6n) ,NKpIWtTCp(30) #nMop(U@) #A(60)?A2(60)~ BAS1C2 U

3 NRHO(6),XJT, NPoPMAx, NTC2(6),NJDIM, 10ECN(lO), NKKCN(lO)~ECONIBAS IC2 5u JPI(UO, Z), XMP,XJP,PIT,NLP, xNLP, KL, IOSTAT(7)0SICICSL, CSH~PILLL(3t71 BASIC2 6!3,1CAPT,?LBUF(50, 10),INPbPT, TKEEp 0ASIC2 7coMMON/TCo~F/ETC(25,6), TC(25, S@),~c0(7),x5p1N( 7)#NL01M, TCOEF 2

lNPART, hEE(6), N~(6),NTC(6) ,IzAID(7),XMASS(7) INEED1MC NLEIN(6t2511 TCOEF 32’hLE(6, 2Pn), JRAST(2fl13,6) TCO~F 4COMMON/GAMMA/tJMP,LGROPT,9WS (10), GML(6), GMP(4),RE1(6) ,LMGHOL(6)S GAMMA 2

A-28

Page 54: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

c

2a

25

3ncc

cc48

cc

5032

cc

cc

cc

60

IF(SWS(I) )2t30t5,30HKCONE-SWS(I)RETURNHKCON=l.RETIJRNGAMcOVcI .634928Em3RcAxEL*GAheL

SET WKCON=$,, IF txSWtI> IS E!XIA~ TO 0.IF((EXS~S( l) .GT:O.),ANDO(NKK( IR).GE;l)) GO TO 48WKCON=l.0RETURN

READ IN l-EVE~ DENSITIES AND DISCRETE LEVELSNPTS=NRHO(IP)INDEX=IRHOLc+t iPWt)*NKD M*NJDIM

JCALL ECRD(RHO, INDEX~NPT oIERR)NLEVZ=XNL(IR)INOEX=IFLLt+( IR&i)*NLEVDIVCALL EcRO(.!!L, INDEX,NLEV2,1ERR)IN@Ex=IAJLc+ (IR-I)*NLEvmHCALL ECRD(AJ, INDCX,NLEV2,1ERR)

FINO INITIAL K FOR INTEGRATIONNK:NKK(IR)EKMAX=UP-SAC( I):S(IR)Ex*EK~Ax+oFDO 50 K=l,NKExsf’x:oEIF IEX.LT;EXSWS(I)~ GO TO S?CONTINUEKLOW=KEXLOWXEX

INTEGRATE OVER cOMPOUND NUCLEU8 SPINS?PAR!TIESslJH:@;:PICOMPZ-P!TXJCN=ABS(XJT~XJP].1:0XJCNH=XJT+XJP+~4@l00 103 JJCN’sl, lciOOXJCNsXJCN+},OJcNsxJcN+I.01IF((XJCN.GT;XJCNH) .OR;(JCN.QT, NJtIAXj) GO TO 110

INTEGRATE OVERIF:N$L STATE $PINStPARITIE9xJ2zAi3s(xJcN-1 .)al.0XJ2H=XJCN+l.0100 98 J~2zI, la0aXJ2=XJ2+l:t7JzzxJ2+).cj)IFt(XJ~.GT.XJ?H) .OR.CJt.GT.NJMAX) ) GO +0 100J22J=2.*xJ2+0.01

INTEGRATE ilvER cONTINUUM EN?RGIEiEX=EXLCIW+DEDO 70 KP=K\OW,NKIF(JRAST (KP,IP)’.LT.J2) GO TO 75Ex:EX-DEED=EXSWS(I)-EXGO TO (bB,fji?),LGRoPTSFTR=WKNORM*ED*It3GO TO 70

fjAt4tJ& $

WC1S!iK13wEISSK!4wEISSKISWEISSK16wlIIssKt7wEIS9K18wEISSK19wEISSK20WEISSKr?lwEISSKZZwEISSK23WEISSKi?UwEISSK25WEISSK26wEISSKi?7WEISSK28wEISSK29wEIS$K30WEISSK31WEISSK32WEISSK33wEISSK3UWEISSK35wEISSK36WEISSK3?WEISSK38wEIss~39tiEISSKUOHEISSKU1wEISSKU2WEISSKU3WEISSK44WEISSKU5WEISSK46WEISSK47MEISSK48WEISSKU9wEISSK50WEISSK51WEISSK52l’(ErssK53WEISSK5UWEIS$K55wEISSK56‘WEISSK57wFISSK58WEISSK59wl!ISSK6flWEISSK61WEISSK62wEISSK63WEISSK64MEISSK65wtIssK66WEISSK67wlirssK68wEISSK69wl!IssK70WEISSK71WEISSK72WEISSK73WEISSK74

A-29

Page 55: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

627075

cc

76

cccc

s?TP=GAMcoN*ED**u/((ERAxEL**2-ED**i!) ●*2+(ED*GAXEL)**2)SUMeSuW+DE*RHOtJ2, Kp)*SFTRCONTINUE

INTEGQATE OVtI? oJSCRETE STATESIF(NLEv2.LT.1).GO TO 90DO 80 ~xl,NLEv2IAJ2Ja2,g*ApS(AJ(N)) +O;nlIF(J22J.NE.IAJZJ) GO TO 80PIAJ z sIGN(l:C,AJ(N))IPIAJ = PIAJ+sIG~(@, lIPIAJ)IF(IPIAJ.NE, IPIcOHP) GO TO lJOEO s EXSh’S(I) -EL(N)IF(ED.LE.0:) GO 70 90GO TO (76,78),LGRIYPTsFTR=~KNoRM*ED**3GO TO 79sFTR=GAMcoN*ED**u/((ERAxzL**2=ED**2)**a+ico*GAxEL) **Z)SUUXSIJM+SFTR

CONTINUECO~lTINUECONTINUEWKCON x !jWS(I)/gUMRFTuRNENOSubroutine INCHSUMCMM)

PERFORM SUMS OVER s ANO (. OF INcIDENT cHANNEL FOR GIVEN cONIPOUNDNuCLEUS SPJN ANo PARITY

co14~oN RHO(Uo, ZgQ), T(3@,2fi0),P( 80),sP(2n0,b) lPP(80),SPP C200,7)

WE’1831!T!!WEISSK76wC!S3K77WEIS9K78WEISSK79WEISSI(8awEISSK81WEISSK82WEJ5SK83NPIS9K84WEISSk85NEISSK8AWEIS3K87wEIssK8ewEISsK8QwEIsSK9014EIssK91wFISSK92WEISSK93WEISSK9UWEISSK95NEISSK96WEISSK97WE16SK98WF ISSK99INCMSUM2INCHSIJM3INctlSUM4INCHSUM5INCHSuM6RHO 1?

l, SpN$N(2flfI),pL(5fl, b),GC~0CI, 6),RHoFTR(u0) RHO 3CO~~~ON/BASIC.2/TITLF(16), ELAD, DE,ZAP,ZAT?XMT, NKKM(lFI),CNPI (1O]S BASIC2 2

1 cNPIp(\a), s(60),sAc(!n), IDl(6n), IDP~10F?(6~)?!8u$ (6,10)t BASIC2 32 FCM,IJP, NKMAX,N JUAX?NKU(6P) ,NKPIM pTCP(30) lQWDP(fJ0)~ A(6n)#A2(6@)~ BASIC23 NRHO(6),XJT0 NPOPVAY, NTC2(6)tNJDIH. IOECN(lO), NKKCN(lO)~ECON~BAS IC2 5u JPI(upI, ~), xt4p,xJp,pIT,NLp, )(NLp, KL, IDsTAT(7), sIc,CsL, CSHCp1LLL(3@) BAS1CI? 65, lCAPT. PLBIJF(50, lD), INPOPT, TKEEPCONHON/nAMMA/NMP,LGROpT,SWS (10), G14L(6),GM P(6),RE1(6) ,LMGHoL(6)#

1 TG?(200,6)/WKCflN,CAxEL,GAXEL ,ERAXELt EXSwS(lOltKKNoRMCOM~DN/SUMRLKl/KP,KD,IP, ID, KNGNIJPI?IN,DPIIKCOtiMON/Sll!.iRLK2/XJCN,PICN, JPICN,ECONJ~MP, J2,L2,TGRL, TLEV,XJ2~

1 TTOT(8n)coMMoN/pR~EQ/LpEQ,sIGR,pREQI (6),csIG1(4], N1T?(6],ALpHA (6)14XX (MH.1)/~ + tCs z.csLOP=O.PICoMP=PIT*PIcyLPICOMPcPICOMP+SIGN(O. l,PICOMP)DO 6fl ISp=l, l$300Cs=cs+l,flIF(CSwcsH)2mn, ;0P17m

200 LpLzA8S(xJCN=~!l) +l.01LP~zXJCN+CS+l.01LPI+=HINP(LPH, NLPjIF(LpL-LpH)201,2L31,6E

~tll c@NTINuEDO 55 LP=LPLOLPHLPPI=PILLL(LP)IF(LPPI-LPICOMP) 5S,202,S5

.2a2 CO~JTINUE50 DP=ECONJ*TCP(LP) + Dp

55 CnNTINIJE

BASIC2 7GAHMA 2GAMMA 3SIIPHLK129UMRLK22slJMBLKi?3INCHSU12INcNsil13INc}{SIJ\U1NCH$U15INCH91J16INCHSU17INCtiSUi8INCHSU19INCHS(IZBINCHSIJ21!NCHSU22INCNSU23INCHSU2UINctlsll~5INCHSIJ26INCHSL127INCHSU29INChSU29INCHSU30INCHSIJ31

A-30

Page 56: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

6VI7m

c

:

c

s!

5.?58

7@71?6162

cccc

1

c

cc

CnNTINUERI?TURNENDSUBROUTINE SUMERCNN~DE)

ADD Population INcRCMEN; :~f~ POPuLAT~oN ARRAY AND IN7i) SPECTRA

CO~MON RHO(UC!, 2n0), T(3U,~0@),P(80) ,sp(2@0,61 )PP(801cSPP(200t 7)l, SpNGN(2nO),PLf50, 6),G(~n0, 6),Rl+OFTR(40)CO~MON/SIJVRLKI/KP,KD,IP, ID, KNGN,JP12,N,0P,IKCOVMGN/TOTALs/SxGTOT(iO!

GO TO (51,52),NNP(JPTZ) s P(JPI~)+DPGO TO 58PL(N, IP) E PL(N,IP)+DP0S= DPII)ESP(KO, IP) a SP(KD, IP)+O$SPP(KD, IO)S SIJP~KD, ID)+DsIF(lK-2)70,70,72SIGTOTt IP)aSIGTOT(Ip)+DPGO TO (61,62),KNGNSp~~GN(KO) 8SPNGNtKD)+OSRFTURNENDSUBQOUTINF GF?I.INES

CALCULbTE Discrete, GAMMA-l?Ay CROSS gP!cTIoNS AND SUM SPECTRATO GET INTEGRAL CROSS SECTIONS

lwHf!u3tINCH$UJ3:NcHslJ3u!juMER ~SUP.ER 3SUMFR 4SUVER 5RHO 2RHO 3SUMfjLK12SUMER 89UMER 9sUMER lDsUPFR 11SUMER 12SUMER 13SUMER 14SUMER !SguF!l?R 16SUPER 17(lUMER 18sUMER 19SIJMER 20s(lMER 21SUPER 22GRLINFS2GRLINES3GRLINFS4GRL.INES5GRLINES6

FORMAT(t/* LEVEL OATA OUT hF OROER~ zAa*15,2X, *zA2=h15,4X,*NLm*13, GRLINES71 0x,*LOATE=*17.* ABoRT JOB;*) GRLINf!s8

GRLINES9COMMON/LCINOEX/IPBLC,IQLC, IzEROLC, ISPLC, $PLLC,IEGLC, ISGLC,ITCLC1 LCN@EX 2

1 ISTCLC, IRHOLC, ITLC, I?LLC, IAJLC, IATLC,NIDIMj NIPOIMtN1801Mt NGRO!H,LCNDE% 32 NIDDIP,NIRDIM LCNDEX 4COMMON RHO(40, 200), T(30,2C30),P(8~l ,SP(i!@0,6) ~PP(80)8SPP(2001 7) RHO 2

l, SpNGN(2@fl), PLCS0,6)OG(Z00,6) ,RHOFTR(40) RHO 3COVMON/LFVELl/EL(!jt4),AJi5@) ,ATt50),XNLt60) 8ELMAXt60) ,NLEVDIM LEVEL1 2

l, EG(2fIfl), SG(2UO). NGRAYS(6P) LEVELt 3COVYON/RAsIcl/NI,XNIP(lfl] ,NIR, LR(6,10), ZAlib@),ZA2(6@) ,xM.?(6g)# BASIcl ~

t ZACN(10),CSGR(6(3),CSTOT(b@) ,cSLEV(6~),CSXI)(8) oEAV10(8) ,EAV(60) BASIC1 3COMMON/BASIC2/TITLF(16) ,FLAfl,f)E~ ZAP,ZAIPXMT, NKKM(10),CNPI(1O), BASIC2 i?

1 cNpIp(l@), S(60),SAc[lCl) ,101(60), IDP, ICIE2(60)j IBUF (6?1010 BASIC? 32 ECM,UP, NKMAX,NJPIAXsNKK(6@l ,NKOIM,7CP(3$3),QMDP(Ua) ?A(60) ,A2(6B)03 NRHO(6)*XJT*

BASIC2 4NPOPMAX, NTc2(6),NJoIM, IOfICN( 10), NKKCN(lO) tECONtBA91c2 5

4 JPI(dfi, ?), xMP,xJP,PIT,NLP, xNLP,KL, IDSTAT(7), SIC,CSL, cSH,PILLL (30)BA91C2 65, lCAPT,PLBIJF (5t3, !O), INPOpT, ?KEEP BASIC2 7DIMENsION NTT(50), IG(5n,UO),NFf(5n, 40),PR(S0t 40),CPR(50,40) GRLINEISEQUIVALENCE (IO, dHO), (NFF,RMO(lIlO!)) ,(PR, T), (CPR,T(11101)) GRI.INE16

GRLINE17MAIN CALCULATION LOOPS GRLINP18CALL ECRD(PLBUF, ~ZEROLC,5n0,1ERR) GRLINE19CALL ECRI’)(CSGR, IZEROLC,NIR, IERR) GRLINE20CALL ECRO(CSTOTq IZEROLC,NIR,IERR) GRLINE21CALL EcRD(EAV, IZEROLC,NIR,IERR) GRLINE22CALL ECRD(CSLEV, lzEROLC,NIR, !ERR)REtiXtJD KL

GRLINE23

06 100 131.NIGRLfNE2uGRLINEi?5

NIP=XNIPIT) GRLINE26NPTS=NIP*NLEVD$M GRI.INE27INOEX=IpLLc+ (I-I )*NLEVOIfl*NTPOIM CRLINE28CALL ECRO(PL, INOEX,NpT9,!ERR) GRLINE29

A-31

Page 57: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc

UL3

cc

50

S8bn

6670

NPT!!u !fX!):oIa NI?!NDEX=IS~LC+(IQl)*NKOIP*NIPDIMCALI. ECRD(SP, INf)EXSNpT3,1ERRlDO 10E IPU1ONIP!R= LR(IP,I)NLEV2 s XNL(IR)

ADD PARTICLE-INDUCED POPULATIONS 70 STATES THAT GAMMA DECAY19=IRUF(,IP,I)IF(16.LF.alGo TO 90DO 40 N=1,NLEV2PLBIJF(N, IB) E PLBUFtNt IB)+PL?N#Ip)ID = IDIJII?)IF(IO.NE.7) GO TO 90

COHpUTP OISCRETE GAMMA cROSS sECTIONSIZA2=ZA2(IR)READ(KL) ]zA,NL,LDATEIF(IZA;Ef3.IZA2) GO TO hWRITE(6,1) IZA, IZAi?~NL#LDATESTOPNG:ODO 6U N=l,NI.PL(N, Ip) x PLBIJF~N, I13)REAO (KL) EL(N), AJfN), AT(N),?AIJoNTT (N)N1=NTT(N)IF(NT.LT.11 GO TO 60DO 58 KNsl,NTNG=}JG+lIG(N,KN)sNGREAD(KL) NFF(N, KN)sPR(N,KN), CPR(Nt KN)tA!4RsLL1tLL2CONTINUENGRAYStTR)sNGNGR=NGDO 70 NN=2,NLNENL=NN+2NTzNTT(N]IF(NT,LT,l) GO ~0 70DO 66 KNz1.NTNGsIG(N,KN)NF=NFF(~J,KN)EG(NG)=EL(N)-E~{NF)OP=PL(N, IP),*PR(N,KN)PL(NF, IP)=PL(NF,IP)+DPOP=DP*CPR(N,KN)SG(NG)= DPcsGq(:R) xcsGR(jR)ff)PKDs EG(NG)/OE + 0.5IF(KD.LT.1) KO*lOS z DP/l)ESP(KO,IP) x SPtKDtIp! + I)s9PP(KD,IO) a SPP(KDs!D) + DSCONTINUEINOFX=IECLC+( IR_i)*NGRO~MCALL ECWI?(EGC I!4QEXONGpCIERR)INffEx=XSCLC+( IR=ll*NGRDIMCALL FCkR(SG, I~OEX,NGR,IERR)NPTS=NIP*NLEVO~MINOEX=IPLLC+ (I-l) *NLEVOIM*NIPDIMCALL EtwR(PL, INDEX,NpTS,IERR)NPTSS NKDIM*NIPINDEX=ISPLC+( I-l )*NKOIM*NIPtIIMCALL ECWR(SP, INOEX,NpTS,IERR)

nnl.1’1[ Jv0RLINF3~GRLINF~2t)RLINE33GRLINE3UGRLINE35GRI.INE36GRLINr37GRLINF38GRLINE39GRLINE40GRLINE41GRL!NEU2GRLINE43GRLINtUUGRLINEUSGRLINEU6cRLINEU?GRLINEU8GRI.INE49GRLINF.50GRLINE51GRLIRE52GRLINE53GRLINE5aGRLINE55GRLINF56GRLINE57GRLINE58GRL1NE59GRLINE60GRLI~E61GRLINF62GRLINrb~GRLINE6UGRLINE65GRLINE66GRLXNE67GRLINE68GRLINE69GR1.INl!70GRLI$JE71GRLINE72GRLI~E73GRLINF74GRLINE75GRLINE76GRLINE77QRLINE78GRLINE79GRLINF8tJGRLINE81GRLINE82GRLINF83GRLINF84GRLINEE5GRLINE86GRLINER7GRLINE88GRLINE89GRLINF90GRLINE91GRLINE92

A-32

Page 58: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc9fl

92

0c

9AA100

cc

188

11(9

120

ccc

;

3

;678

9

10

11

SUM INDIVIDIJAL sPECTRAEDsg.NK:N~K(fR)DO 92 Ksl,NKt4Ax

ED=ED+DEEAV(IR) =EAV(IR)iED*$p(K, !P]CSTOT(IR)C CSTO~(IR)+Sp?Kt IP)IF(CSTOT(IR) .GT,O,) EAvfIR)sEAv(IR)/csTOT(IRjCSTOT(IR): CS70T(IR)*DE

SUM LEVbL POPU~ATIONS FPOM CONTINUUM AND LEVEL TRANSITIONDO ’34 Na!,NLEv~CSLEV(IR)S CSLEV(Il?)iPLtN, IP)CONTINUE

SUM cOMPOSITE SPECTRA00 ll@ 10={,7CSID(IO):O.EAvID(!o)=n,Eo=o.IF(IOSTAT( ID)’.LT:1] GO TO 11000 1P8 K=l.NKt4AxE!)=ED+DEEAVID(ID)=CAVID( r0]+ED9SpP(K, xD)CSID(IO)= cSID(IP)+SPP(K, IDIIF(CSID(ID);GT;O.) EAVID(!D)nEAVID(Iti)/C31D(ID)CSIO(IO)= CSID(IO)*DECONTIN{JEC31D(@):fl,FAVY~(8)=0:EDe@ODO 1.29 Ksl,NKVixEo=Ef)+I)EEAVID(8)=EAVIO(81+EO*SPNGN(K)CSID(8)SC9}O(I))+SIJNGN(K)IF(cs!o(8).GT:ti:) EAvIDc8)c@AvIDi8!/c810c8)CSIf)(i3)=CSIOt81*OERETURNENOSUBROUTINE DATAOUT

MAIN OUTPljT ROUTINE

FORMAT(lN~, lOX,kR A D I A T I 0 N W I D T H S* /)FORMAT(1HI,1O%,*S P E C t R A FROM I ND I V I DU A L

1 R C A C T I ONS* /)FoRMAT( 16x,lrlfA6,F5,0))FORMAT(46, AlfI,18ClX,A10))FnRMAT(A lo, A7,1P, t@[Ela.3, !!i))PORt4AT (15,F10,3,2X, lp,10 (E1O.3O1X))FORMAT(l’Hl,3UX,*c o M P O s I T EFORMAT[lH!. lUX,*O I S C R E t C

$plIc TRA*z)LEVEL IN FORMAT

10N* .)

oHLItJF’?!GRLINFf)AIGRLINe95GRLINE96GRL1NE97GRLINE98GRLINg99QRLINIOOGRLINl@lGRLlN102GRLIN103GRLIN\nfAG?LINlf15GRLINlti6GRLIN107GRLINlF18GRLIN109GRLINl10GRLIN1llGRLIN112GRLIN1lSGRI.IN1lUGRLIN1lSGRLIN116GRLIN117GRLIN118GRLIN119GRLIN12DGRLIN121CRLIN12ZGRLIN123GRL1N124GRLIN125GQLIN!26GRLIN11?7GRLIN128GRI.IN129GRLIN130GRLIN131GRLIN132DATAOUT20ATPOUT3OATAOIITUDATAOUT5DATAOUT6DATAOIJT70ATAOUT8oATAnllT9I)ATAOUILIDATAolJllOAT40[)12DATAOU13

1 DATAOU14DATAOU15

FORMATill 3H ls12,3X, 3HIPS12. 3~,3HIRS12, 3x,4HZAl*#PAJ~0,3X~ UHZA2vF5DATbOU161.P,3X, 1QHSEPARATION ENERGY zF7,3,UH MEV,3X, 31HACCUMULATE0 SEPARATIDATAOI11720N ENFRGY zF7;3,UH MEV) 0ATAOU!8FORMbT( 31)M NUMRER OF LEVEL IN REsIDuAL NuCLEUS =13,3X,2ZHNU14BER 0DATAOU!9

lF GAMMA RAYS =13,3X, ●RES!OLIAL NUCLEUS, ID =*15) oATAllu20FoRf4AT(// ~ LEVEL LEVEL SPIN, Production NUMBER OF FINOATAOIJ21

lAL FINAL TRANSITION COND!TIONAL GAMMA GAMMA PRODUCTION DATbOU222*I No lfNERcY PARITY CROSS SECTION TRANSITIONS LEVDATAO{1233EL ENERGY* PROBABILITY PROBABILITY NUMBER ENERGY CROSS SECTIOOATAOIJ24

A-33

Page 59: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

.

UN* 1 (MEv) (BARNS I NOOATAOIJ2S5 (~EV): (MEV) (BARNS)*) DATAOU26

12 F@RMAT(/ IU,Flfl;U,r7;lt~~,lPEl~,4# !li) DATAOU2713 FO~MAT(U5X. 110.F10.4,FlI .u, F13.U,18~F10,~~ sx#!PE! t~b! DATAOU2814 FORMAT(lR!, IOX,*L E V E L DE NS I 7 Y PA RAM ET ERJUL1’?776

1$* ) DATAOU30

1s FORMAT(/ ● ! 1P If? IZA1 12A? A TEMp EO EMATCHlECUT LEvELS PN

0ATAOU31Pi! SN Sz $ S4C * / DATAOU32

1? (IHEv) (MEV] (MEV) (MEv) (DATAOIJ333MEv) AT :cIJT (MEvj (PEv) (REV) ~MEV) (MEV) (MEV)* ) DATAOU3U

16 FORVATf313,F5:@, F7.0, lX, 2F7, S, SF8.3,F6.?,1X, UF8. I?~2F9.3) DATAOI13517 FORMAT(* NHMRFR OF LEVFLS !! RESIDUAL NUCLEUS P*113//t

1* LEVELDATAoU3b

LEVEL sPIN, IsO- ,PRODUCTION*/ DATAOU572* No ENERGY PARITY SPIN CROSS SECTION*I DATAOU383* (MEv) (BARNS)*/) I)ATAOUS9

18 FORMAT( IU, Flt?;U,2F7,1,3~t 1PE11:4) DATAou4f3219 FOQ~ATtlH1.8A1a,/lH 08A10) DATAOUU1220 FORMAT(/* LAB NEI)TRON ENERGY u*lPE1l.O.* MEV*/) DATAOUU2221 FORMAT(/* RINARy REACTION suPMARIES (COPPOUND NUCL~U3 ONLY)*.// DATAOU43

1* REA~T~~N . SIG144,~~/* PROOUCT (f3ARN9)*o/ oATAOUUUZ* -.” . .. . . -W.***:T9*)

222DATAOUU5

FoRMAT( lx,Aln,2x, lPE11. u) DATAOU46c 0ATAOU47

COMti(lN/LCINDEX/lPRl.C, IGIC, IZEJ?OLC, ISPLCPIPLLe, IEG1.Ct ISGLC~ITCLCt LCNI)FX 21 ISTCLC, IRHOLC, ITLC,IELLC, IAJLC, IATLC,NIDIM, NIPDIM, NIBDIM,NGRDIMILCNDEX 3i? NIDOIM,NIROIM LCNDEX UCOMMON RHO(4@, 2(10), T(3n,200),P(8al ,SP(20FJ,6),PP(80),SPP(20a~ 7) RHO a

l,SpNGN(2n9),PL (50,6),G($~n, 6),RHOFTR(40) RHOCOMMON/LEVELl/EL(5Zl),AJ(St?) ,AT(50), xNL(6FI),ELMAX(60) ,NLEVOIM LEVEL1 :

l/EG(2Ufl),SG(24n),NGRAYS (60) LFvELl 3COMMON/8ASICl/NI,XNIP(!o) ,NIR, LR(6,1a),ZAl (60),ZA2(60) ,XM2(60)S BASIC1 2

1 ZACN(1CI),CSGR(6PI),CSTOT(60) ,CSLFV(60),CSIO(ll), FAVID(8) ,EAV(60) lJASICi 3COPMON/RASIC?/TITLF(16) ,ELAB, DE,ZAP,ZAT,XMT, NKKM(lO), CNPI(lO)o BASIC? 2

1 CNPIP(1L7), S(6I7),SAC(1O) ,101(60), IDP,10F2(6L?), IBUF (6,10]~ f3ASICZ 32 ECM,Up, NKMAX, NJMAX,NKK(6?) ,NKDIM, TCp(3@),QMop(40)# b(fJ0)rA2C6k_f)t BASIC2 43 NRHo(6)#xJT, NP13PMAx# NTc2(6)#NJDIt4# IOECN(ln) CNKKCN(lO),ECONo flASTC2 !3u JpI(40, 2), xMP,xJP,PIT,NLP, iNLp, KL,lOsTAT (7),sIc,C5L, csH,PILLL(30) BAsIC2 65, lCAPT, PLRUF(SC4,10 ),Il:Pi)PT, TKEEP BASIC2 7CO~MON/PRNTOllT/IPRTLEV,IPRTTC, IPRTMLD, IPRTWIO, IPRTSP,IPRTGC PRhTOUT2COMMON/LFVDEN/DFF(6F)IXNLGC (601 tECGC(60),UCUTOFF~ OEFCN0 TGC(60)r LEVPEN 2

1 F0CC(60), F*ATGC(60),PAIR (6m), XMR3(60), XNLLN(6@),SZ (l@0),SN(150), LEvOEM 32 p.2(lPfl),PN(15n)COMMOV ISPNPARI SPIN,PARITY,KGRD

LCVnEN uLEVDEN 5

DIMENSION SCRUF3(2FI0, 1O),HK(2),HGAM(2) ,HLEV(2), 14TOT(2), ZADUM(60) , 0ATAOU591 ScBUF0(2nfl, 6,ia),BLANKt2) ,BC02(8)OHEAV(2) I)ATA01156C(lMMON/PREEQ/LPEQ,SIGR,PREOI (6), CS1G1(6) ON17T(6)#ALpHA (6)COMHON/TOTALS/SIGTOT(lnJ

DATAOU57DATAOU58

EOUIVAI.ENCF (R~O, SCRUf3), (RHO(l, 511,9c13UF4) DATAfJIJsQDIPENsION MTA~$n), SPX(2CI@), iE(~G10) DATAOlJ6001MFN310N INT(l),NBT(l) DATAOU61DATA MTA/18,18,17,17,16.16,US 9101 E12,B,0,000,0,0v0Ps2s i!8s0eGJv0,0~ 0ATAOU62

X105, 33, 1f14,22, 34,0,tl, lf13,0,0.8,!f17,08106,14*0/ 0ATAOIJ63DATA Cl, Ll,L.2, NR,MC10,,0,0,1 ,11 DATAOU64

c DATAOU65DATA BC02/i_OH NEIJTRON ,1OH PROTON ,lOH DEUTEl?ON~laH TRITON ,0ATAOU66

1 10H HELIIJfl-3,1L?M HELIUM-U11OH GAMMA-RAYllOH G?NEUTRON/0ATAOU67DATA HIIJIO,HMEV, HSIG,H@ARN,HBMEV, HDAsH, Hl(,HGAM,HLEV,HToT, HzACN,

1 HzAl,HzA2/tOHDATA~u68

WIDT~.,~@H (MEv) ,l@H2,1OH

SfGMA elOH (BARNs)DATA0u69(B/MEV).la}l ---------, 6ti K ,1OH ENFRGY ,1OM LEVEL DECOATAOU70

38 7H~Y C/SE,lflU LEVEL E%C,7HIT C/S=,lOH TOTAL PRo#7HD, CISVt 0ATAO[J714 6H ZACV=,6H ZAla,6H 2A2=I,BLANK/IOH #lntl I DATbOU72DATA HSPEC/10H SPFCTRUM/,HEAV/lEH AVG:ENERG,7HY {MEV)I DATAOU73DATA HNON/lflHNONELASTIC; DATAOU7U

A-34

Page 60: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc EN~QGY ~N~ flINARy cR()$s sg?T1oN PRINT

DA7AOU75DATAOU76

NXP=XNIP(I).00 25Q, lP=i,NI#

0ATAOU77

2S0 SIGTOT( !n)sSIGTOT( l@)+$~Gyof (:P)DATAOU78

WR1TE(6,~19) TITLEDATAOU79DATAOU80

WR1TE(6,220) ELAB DATAOU81WRITE(6,221) DATAOU82PRITE(6,22~) HNONtSIGTOi(ln)DO 26cl !P=l,NIp

DATAOu83

IR=LR(IP, I)DATAOU8UDATAOU8S

lPz1ol(IR) DATAOIJ86260 WPITE(6,227) RCOi(ID) ~SIGTOT(IP)

IF (LpEQ.NE. l)Go TO 246DATAOU87

WRITE(6??44)0ATAOL188

DO 249 IP=I,NIPl)ATArl[189oATAOu90

IR=LR(IP,I)IDcIID1(IR)

c)ATAr)u91

NK=NKK(IR)DATAOU92f)ATAou93

IF(NKPLT;l)GO TO tU9 DATAou9tlIF(ID.EQ.7~G0 To 249 DATAnu95WRxTEC6, 247)IP.Iq,flco2i iD)SNIT7( ID)lALPHA(10)0 ~$lG1(ID) pPRE@ItID) DATAou96

246 FORvAtt//ll5X*;-m*-* PREwEQUILIBI?IUM suMMARy .wD--+.~/]2U7 Fok’}fAT(/5x*!P, ~

DATA01197●13t2Y*ID n *13~2X*OU,TGOING PARTICLE s *A10/5XDATAOU98

X*INITIAL, ExcIToN NuMBER ❑ *13~SX*PRi!Q NORMALIZATION q *E1U;513X*DATAOU99X COMPOUND x-SEC(8ARNS) s *EIu.5~5X* PREEQ X~SliC(BARNS) n *ElU,5/DATAOlf10

52

cc

54

58

xlCONTINIjECONTINUE

WIOTH PRINT OPTIONIF(IpRTw10~L7’.1I Qo To 60NPTS=NKOIM~6*N1 -.

CALL ECRD(SCBUFU, XOLC~NPTS,lERR)IcTP@DO 58 Iz1,NI~Ip= XNIP(I)DO 56 IPs1.NIPIR~LR(IP, I)ZAC)Ut4(II??S ZACN(I)ICTFICT+lDO 52 Kz1,NKMAXSCH1M3(K,IFT) s SC6UFfJ,(K,jP,I)IF((ICT;LT. 10):AND. (IR.LT.NIR) ) GO 70 58IRH=IRNICTXICTIRL=IRH-NIcT+l

PRINT WIOTHSMPITE (6,1)WRITE(6,3) (HzAcN,ZAOUM~ II),II=IRL, IRH)WRITE(6,3) (H2A1. igAl(lT), IIaIRL#IRH)WRITE(6,3) (HZA2. ZA2(IJ) ~11=IRL#1RH)WRITE(6,U) RLANK. (HCIAS14, 11=IRLOIRH)WRITE(6,4) HK, (HwID811:IRL,IRH)WRITE(6,U) 13LANK( l) tliMEv~(HMEV, II:IRLC IRH)EK=uP+l)ED(l 5U Kc1,NKMAXEK=EK-DFWRITE(6,6) K,EK, CSCBUF3(K~Il)l IIal oNICi)ICTC8CONTiNUE

DATAO1O1DATAOif12DATAoln3DATAOlflUl)ATAolm5DATAOIL36DA7Aola7D4TAoln8DATAoin9D&TAOl100AT401i!DATAOii2DATAOI13DATbOJIUDA7AOI15DATAOii6DAT40!17DATAOI16DATAoli9DATAo120QATAoi2\DATAoi22D4TAO123DATAO124DATAO12!5DATAO126DATAO127DATAO128DATAO129DATAfl13004TAo\31DAtAOi32oATArl1330ATA013UDATA0135~A7holJ6DATAn137

A-3.5

Page 61: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cbU

62

cc

64

6879

cc

7080

cc

lNDlyInuA~ S~rCTRA PRINT oPtloNIF(IpRTSP,LT,t) GO TO 7tIIcTcnDO 68 IS;,NINIP= XNIP(I)NPTSS NKDI~*NIPINDEX=IS?LC+ (I-i)*NKDIf+*NIpDI~CALL ECRO(SP, INDEX,NPTS,IERR)DO 68 IP=l.NIPIR z LR(IP.1)ZADUM(IR)SZACN(I)ICT = ICT+lDO 62 K=l,NKMAXSCPUF3(K, !CT)= SP(KpIPjIF((ICT:LT: l@):LND; (IR.LT:NIR] ) GO TO 68IRHaIRNICT=IcTIPLEIRH-NICT+l

PRINT CROS9 SECTIONS ANo SPECTRAWRITE(6,2)WRITE(6,3) (HzAqN, 2ADUMfII),II*IRLC IRH)WRITF (6,3) (HZA1, ZAlcII), II=IRL,IRH)WRITE(6;3) iH2Ai; ZA2i II);Ii=IRLtIRH)WRITE(6,U) BLANK, (HDASH, II=IRLSIRH)KRITE(6,U) f4LANK, (HSIG,II=IRL,IRH)WRITE(6,U) BLANK, (HPARtJ, II=IRL, IRH)WRITE(6,5) HGAtJ, tCSGR(II) tII=I~LtIRH)WQITE(6,5) HLEV, (cSLEV( II!~II=IRL#IRH)WRITE(6,5) HTOT, (cSTGT( II),II=IRLt IRH)HRITE(6,U) BLANK. (HDAsH, TI=IRL,IRH)wRITE(6,5) HEAV, (EAv(II), II=IRL, IRH)WRITE(6,U) BLANK, (HDASH, II:IRL,IRH)WRITE(6,U) HK, (HS?G, II=IRL,IRH)WRITE(6,4) BLANKil) lHMEv, (HRHEVFI!EIRLo IRH)EKxfl;DO 64 K=l,NK~4AXEKsEK+DEWRITE(6,6) K, EK, (scBuF3iK# II),IIaloNIcTlIcT:t4CONTINUEIF((IPRTSP:NE; l):ANO; (IPRTSP;NE, 3)) GO TO 80

PRINT COMPOSITE SPECTRAWRITF(6,7)WRITE(6,U) BLANK, (BC02(ID)t!D:lt8)WRITE(6,U) BLANK, (H$PEC.:D=1C8)lllRITE(6,a) BLANK, tHoAsH,IIlst98)WRITE(6,0) BLANK, (HSIC ,ID=~,8)WRITE($,a) 13LANK, (HBARN, ID=!#P) swRTTE(6,5) HToT, (CSID(If))~ID=l #8)WPITE(6,4) 13LANK, (HDASN, IP=!,8)WRITE(6,5) HEAv, cEAvIo(ID)81D=l#8)WRITE(6,U) BLANK, tHrlA9H,ID=l#8)WRITE(6,U) HK~ (HSIG ,10=1,8)WR!TE(6,U) BLANKil )~Ht4Ev~(HBHEVt Io=l s8)EKGO.DO 7fJ Kz1,NKHAXEKzEKtDEWRITE(6,6) K,~K, ($PP(K, ID),IDzi17) ,spNGNtKlIF(IPRTLEV:LT,l) GO To 90

PRINT OIScRETE LEVEL AND GAh!HAmRAY DATA

l)A!An~\nr)ATAo139DATAO140DATAOIU1DATA01U2DATAoi43oATAOlu4DATA01U5OATA01U6DATAfY147DATA01U8DATAOiU9DATAO150DATAoi5iDATAO152DATA0153DATA0154DATL0155DATA0156DATA0157DATA0158DATA0159DATAfJ160DATA0161DATAn162DATAfl163llATAo16uoAT40165DATA0166DATA0167DATA0168DATA0169DATAO\70OATA0171DATA0172OATAOi730ATAO174DATAC1175DA1A0176t)ATAo177IJATAO17UDATAO179oATAO~80OATAO181DATAO182DATAO!83f)ATAo18uOATA0185oATAoi86DATAo187DATAO188oA7AOi09DATAO~90l)ATAoi9iDATA0i92DATA(l1930A7AO194DATAO~950ATAO196DATAOi97DA’TAO198DATAO1990ATA02f10

A-36

Page 62: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

81

8i

84868899

cc

qa

wPITr(h,llI DATAI)20!REWIND KL OATAO?MZDO 88 Ifil,NI DATAQ2D3NIP= XNIP(I)NPTs= NfP*NL~vQIM

DATA02040ATA0205

IMDEX:IPLLC+( I-l)*NLEVDIN*NIPDIM 0ATA02E16CALL ECPD(PL, INDEX,NPTS,!ERR)D(I 88 IP=I.NIP

DAT’AOZ07DATb@2f18

IF((PL( l, IP);E(l:O, ).AND:(NKKCN( 1).LT,l)) GO TO 88 DATA02n9IR= LR(IO, I) DATAo21@NLEV2: XNL(lR) DATAOZII~RITF(6,9) I~IP, IR, ZAl(IR),ZAZ(IR) ,S(IR),SAC(II DATAl12~~:F(IDI(IR):EO;T) GO TO R2 0ATAo213WRITE(6,17) NLEV~ D4TA0214INDFX:IELLC+( IR.l)*NI.EVT)IM DATA0215CALL ECRD(EL~INOFX, NLEV2,1ERR) DATAf1216INDEX=IAJLC+ (IR-l)*NLCVOIM 0ATA0217CALL FCRO(AJ, !NOEX,NLtV?, IERR) DATA0218INDEx=IATLC+ (IP-l)*NLEVOIM oATAO?19CALL ECRD(AT, INDEX,NLEV2,1ERR) DATAOI?20DO 61 N:1,NLEv2 DATA0221WRITE(h,18) N, EL(Nl, AJ(N),A~(N)tPL(N# 1P) 0ATA0222GO TO 86 0ATA0223REAf)(KL) IjA,NL,LOATE 0ATA022UNGR = NGRAYS(IQ)INDEX=ICGLC+( IR-lI*NGRDXM

DATA02250ATA0226

CALL EcRD(EG, INDEX.NGR,IERR) oATA0227INDEx=IsGLc+( IR-l)*NGRoIM I)ATAOZZ8CALL ECRD(SG, INDEX,NGR,TERR) 0ATAO?29wRITE(6,1a) NLev2#NGR#IzA I)ATAO?30WRXTE(6,11) 0ATA0231NGzt? DATA023200 86 Nc!,NL 0ATA0233REA@(KL)EL(N),AJJ~ ATT~TAu,NT DATA023UHRITE(6,}2) N,zL(N) ~AJJ,PL(NolP)~ NT ljATAL1235IF(NT,LT.11 GO TO 86 DATA023600 OfA K:l,NTNGSNG+l

DATAOZ370ATA0238

REA@(KL) Nr,PROB.CPROB, aM!X,LLISLL~ DATA0239wR17F(6,131 NF,EL(NF),PnOB,CPROB,NG,l!G~NG) ~SGtNG) DATAo2u0CONTINUE 0ATA0241CONTINUEIF(IpRTGC.LT;i) GO TO 1(IO

OATA02U2OATA0243DATb0244

PRINT GILBFRT-cAMERON PARAMETERS OATAOZU5WPITE(6,14)wRITE(61151

0ATAO?46DATA0247

DO 98 Tcl,N1 DATA0248NIP= XNIP(Y) DATA0249DO ~8 IP=l,NIPXR= LR(IP, I)

DATAo250DATA0251

IZA= ZA2(1R) OATA025ZIAz WOO{IZA,iflflO) OA7A0253IZ= lZA/lflnR DATA025UINs IA-IZ OATA0255WRITE(6,16) 1, 1P, SR,ZA1(IR),2A2(IR) ,A2(!R),7GC( IR),E0GC(IR) 8EMATGCOAT40256

i(IR)l ECGC(IR),XNLGC( IRI~PN( IN),P2(12),sN[ IN)~S2(12)~ 9(XR)09AC(II oATAo257100 CONTINIIF DATAOZ58

RETURN DATA02S9END DATb0260FUNCTION 18ERcH (X,EE~NE,A,iloAZ)

cISERCH 2

cISERCH 3

FrNO ParameterS NEcEgsARy FOR SpLINE iNTERPOLATION ISERCH 4

A-37

Page 63: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cccccc

1

c

c

5n

ccc

x c ENERGY AT WHICH FuNCT~ON 19 TO BE EVA~UATEfJEE - APRAY OF FUNCTION eNERGIE9NE - NuMtlER OF ENERGIES STORED IN El!A,A1,A2 - SPLINE INTERPOLATION PARAMETERS

FORMAT(//* SPLXNE FUNCTION !SERCH OUT OF RANGE. K 9oIMENsION EE(NE)

~Ffl

IP((xOLT.PF( l)).OR.(XOGT.EE (NE))) GO TO 50KS!

10 IF(xi~T.~E(K)) GO TO iOIF (X.~T.EF(K+i)) GO TO 40K = U +,iIF(K.LT,NE) GO TO 10K :K-1GO TO 4?

20 IFtK,ECJ,l) Go TO 40K1GO=TO iO

40 H = EE(K+l) a EEkK)M! z x-. E;(K) -H2 s EE(K+l) m xA= Hi?*H1/6.AI s Hi/HAZ z H2/HISERCH u K

RETIJRNIF(X;GT;EEtNE)) K=999WRITE(b,l) KtNERETURNENDSUBROUTINE PRIICMP

13[WCH 5ISERCH 6ISERCH 719ERCH 8ISERCH 919ERCH10

*14,sH NEwIu)ISERCH1lISERCH12ISERCH1319ERCt+iUISERCH15ISLRCH16IgERCHl?ISERCH18ISERCH19IsERcH20ISFRCH21ISERCH22ISERCH23ISERC}{2UISERCH25IsERclt?6ISLKCH27IsERcH2eIsERCH29ISERCH30ISERCH31ISERCH32ISERCH33ISERCH34ISERCH35ISERCH36ISERCH37ISERCH38PRECMP 2PRECMP 3pRECMP OPRECMP 5

COMMON/LCINDEX/IPBLCIIGLc, IiEROLCo ISPLCo IPLLCtIEGLCt ISGLCPIlcLct LChDEX 2

1 ISTCLC, IRHOLC, !TLCcIELLC,IAJLC, IATLC, NIDIMt NIPDIM~NIBDIM,NGROIM, LCNDEX 32 NIOOIM,NIROIM LChDfX U

COHMOW RHOtU@,?flfl),TISfl, 2nfl),Pt8Bl ,sP(2@ti,6) ~PP(801nSPP(2@0, 7) RHO 2l, SpNGN(2@O),PL(50,6) ~G(2nt?S 6),RHoFTR(40) RHOCOY!ION/TCOZF/ETC(~5,6) ,TC(26, 30),BCD(7),XSpIN( 7)~NLD1M, TCOEF :

lNPARTINEE (6),NO(6),NTC(6) ,IzAID(7) #xMAss(71#NEEDIM# NLEIN(6825)I TCOEF 32NLF(6; 2fl@); JRAST(2@0,6) TCOEF OcoM~ON/LEvFLl/EL(5P),AJ(50) ,bT(SO),XNL(60),ELMAX(60) ,NLEVDIM LEVFL1 2

l, EG(2UO) #SG(2un) #NGRAysib?) LEVLL1 3COMMON/BASTCl/yI,XN!p(lP) ,NIR, LR(6,10) .ZAl(60),ZA2( 60),XM2(601# 8ASIC1 2

1 ZACN(ln) .CSGR(6fi), CSTOT[60) ,CSLEV(60),CSID(8) ;FAVID( B),EAV(6n) 13ASIC1 3CO~MON/RASIC2/TITLE(16) ,ELABsnF~zAp~zA?#x~Tt NKKM(lO),cNPI(lO), BASIC2 2

1 cNPIP(lm), 5(6n),sAC(In), IOl(6n), IOP, IOF2(60),18UF (6,10)~ BASIC2 32 ECM,lJP, NKMAX, NJMAXtNKK[6@) ,NKDIM# Tcp(3P119MDp(u0)c4 ~60)~A2(6m)l BASIC2 us NRHof6)#xJT# NPoPkfAx# NTc2(6),NJoIM# IOECNtlR), NKKCN(lO)~ECON, EIASIC2 5u JPI(Ua, 2), XMP,XJP,P1T,NLP, kNLp, KL, IDSTAT(7)131C,C9L, csH,PILLL(30)eAsIC2 65, lCAPT. PLPUF(5P, IO),IFJPOPT, TKEFP BASIC2 7COMVON/PRFEO/LPEO,SIGR,PREOI (6), C61GI(6), NITT(6)1ALPHA (6) PREE.Q 2CGMMON/PR~Ql/EFsIG(zfitl, f)),NI.Ev,NpIT,NIT PREO1 i?COHWON/FITT!NG/ACN,FSIGCN, SICPEO FITTING2DI~ENsIf)N sPZ(2q@) PRF.CMP15DIMENSION PREfl(20fi), PREQID(6,2a01 ~SPZID(6~200) PRECHP16

DIMENSION PPREP(8tI),PREP(80) PRECI+P!7NIPEXNIP(!) PRECMP18

A-38

Page 64: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

6

22000

3006

303000

xan.*Yvl?;00 2Uaf! IPs!~NIPKMAXeNKMAXIR=LR(IP, l)IO=IDl(I~)IF(ID;FQ.71G0 To 2000NKcNKK(IR)XF(NK.LT~l)GQ 10 2g00Ec(KMAX+.5)*OEPII=3.)u159GGG= b.*ACN/PIIe*~bAbaXHT+l.NFTN=SORT( lo5*GG~*E)XVO=XMASS(JO)*YMT/(XMT+XMAS$iIo) )ALPHls( 14.+SIC)*ALmtiA( ID)bLPH=bLPHj/EPcoN=sIGR*(z;*xsPIN(IO); l;)/(ALPH*12,*PII**2)PcoNaPcoN/(AAA*E**3)NIT=NITT(ID)FMAX=NKMAX,ECR=SAC(l)+S(IR)KGR=EGR/DEKLR=(IJP-SAC(\)-S(IR))/DE+O.500 2 I=l,KLMus(KLM-!+.5)*DEPREO(I)=kl.DO U N=NIT,NFIN,2PRFO(I)=DREO( I)+EPSIG(I, lD)@tcNoi)*tN+i)**2)*tU/E)**(N~2)CONTINUEPREO(I) SPREQ(I)*PCONIF(SPp( I, ID).LE:Gi.lpREQt 11=0.PREoIO( ID, I)=PREO(I)x=x+PREQ( I)SY:YtSPp(I~ID)CONTINUECONTINUE

IF (Y;LE’.O’.)PRINT 3006FRACT!a!;

IF((x.GE. Y);ANI); ~X:GT.l:E:99) ) FRACTIFY/XFoQMAT(///25xfi --w** SPEcTRUM SUM 00, NO PRECMP w*-wwfil/})

IF(Y;LE:O;?GO TO 3FI07FRACT=(lp-X/Y]IF(FRAcT.LE.o. )FRACTEO.XSX*OESY=Y*DE

00 3a08 IP=l:NiPIR=LR(IP, l)%ID:ID1(IR)NK=NKK(IR)IF(ID:Eo. ?!OR;NK;LT;l)GO 70 3000U=n,SPREOI (IO):n.S’CSIGI (IDjxO,KLM=(i.IP-sAC(l)-S(IR))/OE+@.$00 3@ IIE1,KLHPREQ(II) =FRACTi*PREQIb( 10,11)PREflID( IO, II)=PREQ(II)YY:FRACT*SPP (I!,IO)Z=YY+PRFQ(II)IF(SPP( 11, lO):EG.0.)z=O.U=U+OE13C4=KYbX-I!SPZ(II)=ZsPZIO(If), II)C~

PRF91(ID) ;~REfi( !I)*OE+PREQ! CID!CSIGI(IO) =YY*OE+CSIGI(ID)CONTINIIE

CONTINUE

plif~!w\9PRl!CMPZOPRECMPi?lPRECMP22PRECMP23PRECHP24PRECMp25PRECMP26PRECflP27PRECMP2BJUL2977SPRECMP3flJUL2977bPRECMP32PREcr4P33PRECHP34PRECMP35PRECMP36PREc~P37PRECMP38PREcf’lP39PRECMPU@PRECMP41PRE(’HpU2PRECMP43PRECf~PdUPRECMPU5PRECMPU6PR?!CMPU7PRECMP48pRl?cMPu9PREtPP50PRECMP51PRECMP52pREcMP53PRECMP5UpRECHP5SPRECMP56PRECMP57pRECMP58PRECMP59PRF.CVP68PREc~P6!PRECMp68PRtCHPb9PRECMP70PREC~~P71PRECMP72PRECNP73PRECPP74PRLC~\P75PRECMP76pREcMP77PRECMP78pREc~P79PREcMP8nPRECHP81PREtMp8?PRECHPB3PRECMPRUPRECPP85pRECMP8bPRECMP87

A-39

Page 65: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

cc NORMALlzAION O? PREEQc

DO 10flFI !P=l#NIPIR=LR(]P, l)sIO=ID1(IR)NKzNKKfI~)IF(I0.E0.7 .OR.NK.LT,l)G() Tp feooKLF=(uP-SAC(l)-S(IR))/DE+fl.$DO 31 I=l,KLM

31 PREQ(I)=PRE1310( ID,!)c

-NK2sNKK(IR)

c MOD OF cONfINUUMcc

NKCNP1ccc

2s0

i98

299S@o

399

400999

11080

81

401402

.IB=IBUF,(IP~i)IF(I13.EQ.a)GO TO 999DO UC4C4 Kal,NKcNKD=PI

KLOW=K;lIF(KLow-NNj)25@, 250p400DO 399 Kp=KLoW,NK2KD=KD+lJt4Ax,22a2:*JRAsT(KP, IP)INDEX.IPBLC+(KPOi)*2*NJDIM+( IBol)*2*NJDIMaNKDIMCALL EcRl)(PRFPt I), INDEX,J)4Afi22B IERR)DO 300 J8!,JMAX22PPREP(J)=PREPJJ)IF(SPp[KO, lD).LE:0:)299, 298CONTINUE

PREOF=(FRACT+PREQtKD)/~Pp (KD,ID))PREP(J) =~REP(J\*PREQFCONTINUECONTINUEcALL FCWR(PREP( 11,1NDEX,JMAM22, IERR)~:~TINUE

CONTIN(J!4coNTINuENLFVFXNL(IR)INDEXZIELLC+(:R:l)*NLEVOIHCALL FCRn(~L# INOEX,NLEV,IERk)

UUCN=UP=SAqfl)UU.?MAXZ(IUCNCS( !R)DO 80 II=l,NLEVEcc2=uu2~Ax-ELr II)KKDmEC~z/DC+B;~IF(SPP(KKD, IO).LE.O,)GO TO 110PL(II,IP):PL(II,IPl*(FRACT+PR~Q(KKD)/3PP(KKoI 101)

CONTINUEcoNTINuEIF(IBuF( IP, l);FQ:O)GO TO 8i

~~lTINuEDO bgl I=l,KLMsP(I, IR):sPZIo( lD,I)SSpP{ I, ID)FiSPZIDtIO,I)

CONTINUECONTINUE

ptfl ! 1~1.lln

PR!5CMP89PREcHP9@PRECMP91pREct4P92PRECMP93PRECMP9UPRECMP95PRCCMP96PRECPP97PRECMP98PREct4P99PRECMIB1pREct41azPRECM103PRECH!OUpRECNiOsPRECM106PRECM108PRECM1C9PRECMl10PRECMI!IPRECM112PRECH113PRECN1lUJkJL29777JUL29776PRECH116PRECM117PRECtlll13PRECM119PRECM120PRECM121PRECu122PI?ECM123PREcH12flPRECH125PREcMli?6PRlICM127PRECM128PRECM129PPECM~30PRECM131PR12cM13i?PREct4133PRECM13UPRECM135PRLCM136PREC14137pREcM138PRECM139PRECMIUaPRECH101PRECM1U2PRECM1U3PRECPl!U4PRECM\U5PRECM1U6PRECMlf17PRECN1U8PRECf41U9P2ECM150PREct4!51

A-40

Page 66: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

li?no30k?7

ccc11

13

15

;:1’?

.21

23

252627

;31

100

101

356cc4041

a9

seccc

CONTIWJFCONTINUERETURNENDSUBROUTINE :NTERP(X,Y* NPTS,NY~RUS~XINl YOU7)DI’4ENSION x( l), Y(l) JDELTAClfi}tA(lO)

SEARCH FOR X(l)

DO 19 Is1,NPT8IF(XIN-X( T))lS. 17,1911:1-NTERMs/2IF(I1.GT.O)GO TO 2111=1GO TO 21

YOUT=Y(I)00 TO 61

CdNTINUEIl=NpT9wNTERM.giI12=11+NTERMS:1,

IP(NP?S.GE!12)C0 To 3112=NPTSIlaI~.NT~qMs+lIF(I1.GT.G))GO TO 31

11s1NTERMS=12.11+~

EVALUATE OBVIATIONS OATAC(JNTINUEDENoP=x(J l+l).xflljIF(f)ENOM.E(J.n; )100, iOlYOIJTSY(II)

GO TO 61CONTINuE

DFLTAx:(xIN-X(Il))/OENOMDO 35 I=l,NTERMg1x=11+1-1OELTA(I)S(X(IX)-X(Il))/DENOM

CONTINUE

AccuM COEF A

A(l)sYtII)DO sn ~=2,NTERMSPROOZ1.sufi=O. ,IMAx=K.1IXMAX=I1;IMAX00 49 1=1, !MAxJ.KwIPROO=PROO*(DELTA(K)MDELTAtJ) )

6uU=suM-A(bI)~pROD

CONTINUEA(K)=SUM;Y(IXMAX)/PROD

CONTINUE

ACCIJM S(JM OF ExPANs:ON

suM=A(~)DO 57 ?=2,NTERMsPRODZ1.IMAxsJ.1DO 56 Ial,IPhx

PRECM192PRECM1S3PRECu154PRECM155INTERP 2INTERP 3INTFRP 4INTERP SIkTERP 6INTFPP 7INTFRP 8INTERP 9INTERP10INTERP1lINTERP12INTERP13lNTE’RPlfJINTERPISINTERP16INTERP17INTERP\8INTERP19~NTERP~OINTFRP21INTERP22INTERPZ3INTITRP2UINTERP23INTLRP26!NTERP27INTERP28INTERP29IN7FRP30INTERP31INTLRP3?INTERP33INTERP3UINTE17P35INTFRP36INTERP37INTtRP381NTERP39INTERP40lNTERPU1INTERPu2INTERP43INTERPUU:NTERP45INTERP46INTFRPU7JNfitRPA18INTFRP49INTERP50INTERP51INTERPS2INTERP53INTCRP5UINTERP55INTERP56INTERP57INTERP581N7EQP59INTF.RP6fl

A-41

.

Page 67: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

PRODSPROO*(DELTAX~DELTA( !))56 CONTINUE

!3UU=3UM+A(J) *PROD57 CONTINUE60 YOUT=SU~61 CONTINUE

RETuRNEND

XNTERP61INTERP621NTERP631NTERP64INTFRP65INTERP66INTFRP67INTlIRPfJ8

IA-42

Page 68: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

APPENDIX B

GROUND2 : GROUND-STATE MASS, SPIN

11 18 ;9?6 ;: 16 -4

AND PARITY llA’TA FILE

30 i?~ 26 29-3 93U 4 3

13 13 -b~ 25 -59 U3 10-17 22 .3.$ 3258

30 9J33 5:18

-3UIll

lfl11 7 8

7 1:li8 5:

2:8: & 92

.198 3!:J:

5;;157!

709 919 ln79 12871681 1863 2055

~lP~PVFE+07 ~19fiOF0F+$7 , It?Qt3t30E!tV7 ,10t?flf10E+07 ,10CJ0P0E+L37 ,807169E+Ql~161U3~E+02 ,~42\5fE+02 ~322868E+0? ,4k73585E+t32 ~fJ$L13c12E+02 ,lVt3880C+07plenuonE+n7 >lF?onnflF+z7 .72E1922E+01~3UVOflfiE+f12

.13i363E+f12 ,149500E+I?2 ,25900t3E+02,06@@OSE+t?2 ~s85f16kJF+02 *763387E+02 ~10t3C3t?CE+07

~lflVPI?flE+D7,lFli?0131?E+k37

p~0~317Ete2 ~2Q20qtiE+f31 ~1139t113E+L42 ~17!j’973E+f12 ,26111oE+O2~31657tiF+F~ .511Ql?6F+Gi~ ~b.2!9131E+D2!l16t3PflE+02

~iPQW?$AE+t37 .lGlVfl(?0E+!27 ,25130C?E+@2~!uflfi75Etf12 ~IU9086F+~2 .2Q9U75E+P2 ~2U9660E+@2 ,353$30flE+02

~434c3i?PE+Pz ~67.?tiQCIF+E12 ~IPP@C3C?E?R7 ,,311f17f40)E+f12 .18375~Et02 ,1577f13E+f12,U9fJ180F+01,5a741~Et32

~l134RlJE+02 ,IF?60~lE+02 ~2a!77t3f+f12 ,21J950@E+@~ ,3572(3C4E+fi2,u75554F+(’2 ~z7QU$t7F+@Z ,229227E+02 ,12U157F+92

~86b795E+0j,lZV5?3E+f12

,1337PIuE+02 ~~65b20F4@2 .2423f?0E+02 ~29UlflflE+02 ,47552UE+0i!,3559?6E6P2 ~2~912rnF+f12 ~j57f127E+F2 l$?b5%2E+02 ~I100illk?EwE15~31?1995E+Bl

,312527E+01,?8735FIF+R! ~!3693(3E+i32 :17Sh@k?E+@Z ~283t193E+t32 ,/J14!392E+L?2

~25u5nfiE+P2 ,173uugE+$12 ,531457aE+fl! ,?863?2E+c31 ~l(4it3t34E+~PI ,56835@E+01,7871w$Etnj ~132740E+f12 ~i6350L3E+F2 ~Z5fl(152E+k32 ,328972E+U2 ,2310bk3E+ti2,eo$1859E+fll ,?FJ611oE+OI -pU73b613E+01 ●p807396E+F?~ -p7621J96E+f10 ,333230E+01/38@&@clE+01 .lt167r4PE+@2 ~1373LllE+C12 .p3U2073E+f12 ~1766C30Et02~19518cF+cll

,lfi6930E+@2*872fiy4F+t3fl -p141jblQE+01 ap1569~@E-@l -,U59960E_f11 ,1282800E+01

,579U32E+CII ,tO$f17!?E+f12 ~P3712@f+t12 .16~8CJIVIE+02 ~53190f!E+711 ,17521F!E+01-.7QlJ17flF+t71 Wp57312C!E+~l -,8P251PE+F41 -,515GiGIt4E+f41 -,59J18C!@F+$31 w,19S576E+DI-:026066C?flV .g253598F+f12 ,,12Q8flvE+02 ,680flanE+t!l ●,,2i83P0E+01 =,5i8290E+01-P952q90E+01 -P~4161GlE+@l w,9356@?E+t31 -,751Gv3nE+@1 =,658tif10Et(Jl 0,337215E+01~1751flflE+P2 ~1091i@E+f12 ~t>f33996E+PG3 -gS47?LIBE+01 w.139313E+F12 w,1319i5E+02.

-P16213UE+m2 -p~fJ55U7E+142 -P15L417ElF,+f12 W0125529E+Q12 .,126582E+@~ ,180561PE+0Z.677ClP@E+f11 -.u89960E-01 =th9123@E?fll -.12Z@88E+02 -,171950E+02 ~,168ti88E+02

●;182133F+@~ -p\589aaE+@2 -Plb72UmF+B2 -P1292U3E?f12 ,1076FiRE+02 #38i?3neE+ol-P71u70PE+OI -,f23P.5uE+92 WP?ia911F+fi2 -P21B933E+02 w.244313E+02 w,229479E+fi2W*24PQIVE+C2 w.21(?451E+02 -P?ne3nUE+p2 ,@38U67E+01 ,21nflP4L+[~n =.715Un0E+01-:1695PflE+@~ -r?F12L?39i!+f12 -P?4L1396E+@2 -.2u384?E+02 -.2633713E+02 -,2u83@OE+Ia2-fL?a9132Eff12 -P2n89?5F+f12 -:159162E+ml =P315000E+Ul -F:4@650E+02 -,18998Rk+PZ-.26nlU3EtC12 -P?65!t60F+L32 -~29929?E+@2 -,288456E+P2 -,3C?6659E+BZ -.269G17?!E+k32D,26863~E+Fi2 ~J752~uF+0n -p72@ClEU!E+@l -,132630E+02 m,21@@~4E+B2 w,21JU384E+132-:29P13fiEtm2 -p~9’321@E+02 -P317615F+02 -p298~FVE+02 -P298W2@E+D2 -,275480E+02WP911GIn@flr+OI w,l133950E+f12 -P2381J9Uf*@2 -P3023P5F+@2 =,3k19U74F+t42 *,34714UE+L42-.332flPOE+P~ w.35C13Q2E+02 WP330661E+t32 -,3442D@Etf12 -,3i890PE+R2 m,3274h3t+l?2-p29118P6F+f12 -a3GlU73@E+@2 -Fi125R0Etf12 -,17317flE+02 -P2U7984E+02 -,2137920E+t4?-~338?53E+02 -,335341Etn2 =P355583E+02 *p35r321UF+02 -.36582UE’+B2 =,358V5BE+f12-,366110E+~2 w,35U26@E+n2 ●P357W4GlE+02 -m333870E+172 w~1323fl12E+P2 *,22f123klE+02u.27285flF+t12 *.3U8Q57F+IZ12 -t351371E?02 ●,385381E+U2 *P38399@E+02 =,01L163bE+t12-pUG!Fje63E+(t~ wp4313R~E+0z ep1123U3n?+O~ .,,ufJ22~0E+02 -aU121?2PE+@2 w,395?8mE+fl~=q2fI1185E+@2 w.2t3521@E*f12 -,286ulL3E+$l? yp32ic7W+02 Wp361?9flE+fj2 =,37f)14VE+02-,UlP631EtF12 -,417584E+F!2 vFuU32fi9F+C3~ w,llUti96V.F+f12 w,4655r?ilEtt32 ●,4u54st!E+02:TU3227QE+P12 -,;995R2E+C!2 Wp?flZ779E*f12 w,251?!fIE+t32 ●.2932@flE+02 w,375u8tIE+tf2mp39flf197F+02 =puU12513F+02 =P14U9292E+02 *,U8U856E+132 w,485573C+f12 =,514336F+02=FlJ9739CE43~ *.u9U7CCE+02 -pU65b6mF+g2 ●PU!36353k+f12 w,2k?06j2E+02 w,273Z95E+02-,319n7’2E+02 -P37971uF+P2 =,IJ20048E?22 -,(JIJu7P2E+E2 -,479561E+OZ ●,[email protected]?197UE+a2 -,5ilJ3b9E’+02 -,51?613[+32 -,U993@0E+(?2 -.4933P1E+92 0,46n9@4t+tiz●P2U21118F+F12 m.33SlS2t+02 -,~U50P@E+U2 yg4281boE+Q2 -,U53889E+02 ●,502557L+OZ-PS1UG6?F+02 -:5511~5nE+02 -,,~52938F+?2 -,569323E+02 -t551210[+t3? =,5526602’+(!2-,S?U~91E+f12 -.52081SEt02 w~>88ti37E+n2 -,3JU957E+f12 w“,3772148E+g2 *,lJ262ubE+02=,94B2uP2F+Pz D.507gsoE+82 WfY46865L+0~ =g55557?E+f12 -P577~E0E+f12 -,569f187E+a2-,5762f!FEtR2 w,5b@63flE+02 w,557332E~f)2 Wp5295@5E+02 *.Z96617E*02 -,37U329E+t42-.U13293E+02 -.U8333QE+0~ a.$ti9U2flE+F~ n,502517E+C12 w.57&784~+G42 c,606k194E+02

B-1

Page 69: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

B-2

Page 70: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

B-3

Page 71: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

wpltl’14’)kJt+flf mp7?5uql!ftn? ●,!?Ilq(of+ni! =, flll’$tllr+t~? •,ho!~~klt+tl? ~,hqhh?h}+u~?9p6hfl@2W.+a$ -,7016%zL+P2 ●p 138t5E+I12 ~,7UU2ME+02 ●,75S770E+02 w,7787bhL+@2-p77~75~E+02 -.77~86PE+f12 =t?b?ltPE+02 w,7636nnE+02 ~;7U71Qf!Ett!? _b7Ub?9@E+02WP7?f3b3Pf.402 -,755U7FiE+fi2 Mp7171)Pt+@2 9,7181f!flE+02 -,7@@72@E+f12 -,b94blVE+a2●P6725P0E+k12 -p65920cr+02 -Pfi353F+OE?n2 -~t121724F+0z -,!392U27Etf12 ●,57fJ75tlt+@2-~539323E+02 -96.?q867E+O? =f6b759@E+P2 -,b~13y3E+@t2 -;718800E+02 w,7i?88@@E+02m,7588qOE+02 ●,751580E+02 w.76207fiE+0~ ~,75072VE+G12 -;757?R0E+gZ -,7Ulb$0E+0~=~7fJb91PE+f12 -P731P6flt?+02 -;t3b91aC+n? -,72@b5Clk+?Z w,72!32ut3E+BZ -,708210E+f12-.7Cb8?flE.+f12 -.68S53BE+02 -p&793iIL3F+@2 =,b5U911@E+02 _,6U29Vk!E+BZ ●,b2t!V7UE+02-P6PU32?E+G32 -.571bUPk+kl~ -pqS376UE+V2 -Yba5U78E+@2 -,62U9@iE+C2 -,66U29QE+F32-Pb778@?E+P2 -.705bnOEtP2 =P7PK9110E+Q2 -,713750E +w2 -,71?b00F+@2 -;715578E+02-,7n87jnE+02 WP7131C!PE+V2 ~Pf@290k3E?F12 U. 712?@GjEt0Z -,70,2ZtiCE+02 w,70757vE+02-:b9114@OF+m2 -~b95Q3@e+f12 -:~7Pl\CIE+@2 -P674ti5tiE+~2 -,h5b9@EE+(3Z -,b4k7klt3E+@2-pb?59n3E+@~ -,607@L15E+t?!2 -PS7?338E+t32 ●,562V81E+fl.2 =,52955uF+flZ =t5~211qE+a2-,623QU2E?@2 -.bU21b5EtP2 -.6779PnE+f12 W.b74fiF’nEtC2 -P6910FOE+02 -,bP5520t+@Z-,.7fla57GE+v2 -,b9~9@flE+t?2 -;7P3+b@E+f12 ~,b91ZlflF+t2 ~,7fiQ91aE+n2 w,b939uvE+flZM~70384~E+@2 ●P69!38cE+0~ -r69ba8ClE+@2 -,680270E+a2 -,68151EE+02 w,6b3510E+a2-Pb593UflE+0Z =.63577$?E+02 9,6Z56;flEt02 =Ob01U8bE+02 ●.5882S9E+QZ! M,558282E+Q2-+53f17u5E+02 -P557699E+fl~ =;f381145?F+02 -,,b158n@E+q2 w.62BI?PflE+?2 -,bS5009E+f12=.b367FlPF+EZ ~P6U83?OE+@2 w.bUS980E+f12 -P6’;8?f10E+f12 -.b539fltiE+k12 -,668900E+02-~66UU7rF+D2 WP67UU@flE+f12 =,b67?8tlf.+t3~ -,b721fl@E+ti2 -.659810E+k~2 -,b63U2RE+@2-}bU9550E+Q? ma6UR730E+(42 w.~3auuPE+(32 -,62Z98@E+02 ●.692f30UE+02 ●,587Sti~k+02w~5639F!JE+0? *p5UUlh3E+f12 w;515466!+P2 =.531q7Pl!+82 ~,5790flF3E+~2 =.582aflf4F+02-,bOU3PPE+142 =.6f125flnE+02 9P621JJPWEtn~ ●g62fllmUE+02 -.6369VRE+M2 w,6?99k4UE+t12=.bU91@flE+02 -.b43U0t+E+02 =pb593f10t+@2 -p651bl?lE+02 -.b62990E*02 *,6913ufik+U2-.fY591PRE+f12 WP6U5PlflE+Ii42 -,0UqPUPE+a2 -.b32b@F?E+@,2 -.62Q68CE+02 -,6t899aE+f12-P60P910E+02 Wp577PflCE+f12 ~P~6U8(40F+f12 -.534?0flE+@2 w;521f177E+@2 =.5@9@a0E+02-,5193nPC+0.2 w.53900flE+f12 -P5Uf198flE*P2 ?f15b31flEE+02 -.566qflUE+P2 W058!900E+P2-P5831flaE+a2 QP601UnmE+@2 ~,bfl13nWE+(~2 =p61h4flFIE+02 m.61b013UE+02 Wa62717VIE+@2-,.b19sb~E+fl% -~b.?93bflE+R2 wP61tlb9PEt02 -.b2521flE+MZ =.61Z7EEE’+P2 -,b125ik3E+0i?W~59773@E+02 =.5q19n2E+02 -~s73b90E+132 ●p5b21S0E+fi2 =,538700F+M2 u,5228fIOE+0i2w,uQ34a3E+Pz wpU7\PGiaE+q2 -,~@fjl@RE+flz w*561112w3E+F12 -p53@7f112E+02 e,5321naE+02-.5531fif!E+02 -.5514Q@F+t12 Dp$733t?CIEt@2 ●P571u$3$3E+E? -,593flV@E+0i? w,59n2DfiE+@2-pb?8bflPE+@2 -p6@!8U@E+02 -,hlbG90E+f42 -P60566vE+a2 UI~61549@E+01? *.6f1344mE+flZ-,bP741nE+f12 -,g592137vE+f12 -P~9239@E+02 w,575350E+02 *,5b933PF+02 w,5U6810E+@Z●P530f35pE+0~ =P5a975ClE+B2 -.4947qnE+i32 -OS16b33E+02 -P367Q97E+02 -,38373@E+@2wpU2b9@flEi7j2 -,4393nqF+P2 =r&b310nF+Q2 -.U71100E+@2 -,U894@QE+f12 ID,Q953n0E+0t2=.51(~lJ$17t+n2 -,q22QFoF+02 -P5U2?RUE+Q2 -.54Uh@fiE+U2 -,56180tE+02 ~,sbl10@t+@2-P575f19?E+P2 *.5719flmE+f12 -P58P7uCE+V2 -,573i?1PE+fl? -,5789P8E+02 =,5b7U0flEtti2m,5bi!u53F+32 -.5556?PE+02 WP55!U9PE+132 -p5337PflE+02 w.523710E+n2 -,5@17t3PE+a2●P4910t30E+n2 -.46U7n01F+82 -,31?6~7E+m2 =~3Ub71flE+02 9.39@SCiaE+02 *,4218Q01?+n2-PU27404E+f12 -,u523DoE+02 -t455U@3E+02 ?,U82(3@0E+l?2 -OUt3b200Ftt32 -,51060BE+02-~51V13?OE+f12 -.53U1OOE+O2 =P~320nQE+n2 w,,55190flE+fl12 -,5U7@P0E+02 -,561EQflE+@2-P5529PflE+g2 =.5b340mE+02 -P5525flDF+02 =P557b00E+02 -.545420t+@2 ~,5U5590E+f12-P52!348mE+n2 -,5?a220E+@2 -F53u5t10E+02 :P497bbnE+fl? -,U73890E+02 -,4S9flntIE+a2=,u3?19PE*Q2 -P?77361E+n2 -,.3R76$iE+02 -t32K957E+02 *,348350E+ki2 w,3137f310E+n?.-.u152P3E+v2 w,U2Ub@aE+02 -FuURtl!7PE+fiZ -FfJ5blPflE+flZ -.U78EQflE+ti2 -,U819f10E+n2-,.5@10@gE+f12 -.5m12mCIEt02 -,q1590@E+02 -.5134flfiE+F12 -;5235@t!E+[42 -,5176UOE+02-P523Q@aE+?12 ~~51ub9PE+n2 -r~171?0Et02 -,50510QE+t42 -,503310E+n2 -,U138fJ00E+02WPIJ8U12$?E+02 -.UbUn;flE+f12 -pU5Z5914E+t72 DmU2637BE+02 w,U131)@0E+F12 -,31358QVE+$!2-~2U9P25E+@2 ●y281628E+L?2 -.293871E+@2 -,327fl~4L+P2 -;3778paE+V2 -,Uflb!@flE+U2-~UlUPflflF+@2 w,l1399fII’?E+P2 ●;u43@09E+@2 ~,46bO@aE+02 wpUbS900Ett42 Wn485UFlilE+@2w,gU83539E+t3i -t498btlPE+@2 =Pu934flflE~02” -~93UbCPE+@2 -,U971~0E+02 =,5E102flL3E+02-$U9239flE+Ci2 -pli9b5flflE+f12 -flIR2290E+@2 -,08?fll!OE+@2 -.U6S270F+02 -,45b670E+0.2-+U33453E+C12 w,u2U75@E+432 -P3987PClF+02 =P3863U0E+f12 -,354fJf10E+@2 W,2U6629E+02-P2433U2E+@2 *p2bP315E+0i? -P337fJamE+02 -p 3U990nF+@2 -,375flf10E+R2 -,38uHak3E+U2-fUt469@G3E+rj2 Wefi12UmLIC+tj2 -fU3!5g0?+02 -,U31J6C?C3E+E2 wnU5f14@3E+@2 -,449b0@E+@2-pU611UL3f’ff12 *,Q57bPfiE+(4~ mpa65UfiOE+02 -,U51361?0E+32 -a4643tlaE+U2 -a4S3U8@E+U20PU577161E+C12 *m44f16~pE+f12 mtbJ77UpE+0z -gd1881flE+@% =P411810E+L12 -,389830E+U2-P379U2PE+!32 -pT5U9n0F+V2 -P3U46V@E+f12 -.318G85F+02 -,106713E+n2 =,226k12bf.+02=,.2Qbti@flF+f12 -.326clnoC+t32 ●:3349PEF$@2 -t361uf13E+02 -.3b75@aE+V2 -.39f1602f+@2-P393UC4qF+g2 mplJ13bIl(?F.+Oz DP1~14!BO?+(?2 -,429bOOE+02 =.U27Unk3E+@? *,b396a3k+02w.434f10UE+02 ●.u4250pE+Eil 9.a3370flE+fi2 -,Uq1580E+02 -,42759CE+02 -,4295821E+02

B–4

Page 72: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

B-5

.

Page 73: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

B-6

Page 74: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

B-7

Page 75: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

9v99,fJltimlfli?.5tilw10fl.50f4

9999,(1909999,170n

Inu,saa10u,5k30

9999,V0a9Q99,ftFl@

\flfl,50C3-94,5U0

9999,000101?,5floIt12,5013la3,5c!0

9999,f3L10lPd,500lflv,snn1U1,5L4CI

9999,f100ln2,5nc3IP3,5E0

9999,Pf109999,Pi7~

Iev,stioi0i,5t30

9999,t?U0I02,SP0

9999,0a09999,flf10

101,5009999,ea0

102,5f109999,Bf10

lf12.500w96,5fiG!

9999,n00102,5130

9999,09810r3,sPElw96,5S40

9999,VOP102,5P0102,5fl13

9999;FI14L7-96,5(40

9999,t4@17lt32,5m0102.500

99~9,Pf10-96,500-98,500

9Q9Q,tf10QW97~5ti0~tif,5f10

9999,00@9999,Li@Fl

-98,500m97,50U

9Q99,0k)U99@i?,500

-96,S089999,f100

B-8

Page 76: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

B-9

Page 77: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

w99,50Ulf41,5Ba

9999.00a9999,1aflt39999,floi39999,PnP9999,f3Pfl9999,@0fl9999,17@a9999,0nfi9999,enn9999,F10fl9999,nanQ999.L?OO

la2,5t109999,9nn9999,ti009999,flnf!9999,a00

=96,!$Qq9999,0@0

l@z’,5@a9999,Ba0

100.5009999,nPn

w97,5009999,PO0

102,5009999,P00

W98p5ti09999,0kla

i03,5009999,0f!fi

103,5009999,@009999.nnn9999,Pf109999.@OO9999,00Q

[email protected],V@09999,fiF10

B-10

Page 78: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

APPENDIX C

SAMPLE PROBLEM INPUT FOR

N + CO-59 ,Hwl AhJo HE-u pRi)Duc710N w-

ApRIL 78 iq7Y- -- sTANoARn #ARhMETER91003

-1 1.2 12 u ;

M&CN PROGMM

10 TO 40 MEV RUNS

53211. 27059: 1.

114.

c-1

Page 79: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

230s2 7i n.2 .0172

3 .de1

u .1U16

s .tu;a

:6 .U366

1.23

7 .79351

2UP55 25

i .:;01

3 ,s21

iu ,572

5 .88511

l?5ns2 3

APPENDIX D

SAMPLE PROBLEM SUPPLEMENTARY INPUT:DISCRETE-LEVEL DATA AND TRANSMISSION COEFFICIENTS

99. 3?. 99, 0406763: 99. 99, 0

2P 99. 99. 1.1 1P 99. 99 99

99, ;;. 1,1 :; 99. 99 vi

99. :;. 1,2 :: ig 99. 99 99

3 99, 990 2,1 ;17 !. 99P 99 993 .+83 1. 99* 99 99

27 99. 99. s,1 ,.u8 i, 99P 99 992 ~31 lp 99P 99 99u .21 99. 99 99

2. 99. :G. 2,9 ,89 1, 99? 99 991 .2 1. 99* 99 99

99. Q9. 092976*lps 99. 99. 0-n.s 99, 99,

1 1. 9:; 99 99-2. F 99, ;:. .2,

,6 1s 99p 99 99; .U 1. 99. 99 99

-1.5 99. 99* 1,3 1. 99. 99 99

-2.5 99, ;:. 1.u 1. 1. 99. 99 99

99.f16!flt300 99.nflt)atjn w@,00f!Of10 929760

3

25e53

:

3

25k’15u

25:55

230S2230S22305223fd5i?2305223!75223n5223E15223tt5223f151?23G)5Z.2’3f4522305223@5223f1522395223052

Zllcjss2fJf1552u0552463552fIL3552un552405Si?ut?ss2UB5524ci55

25052 ~2517s225V522s052251352

2SI?5325053l?5t15325VJ’5325f153t?5kls3

2S05U

D-1

Page 80: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

25t15S.2505S2505S2505S25f15525055?!5U55250552505525f45325@55.25055251a5525@552505525055

25m5625n5625C45b2505625056

250S8

26Q155268552bf15526a5!3.26m55260552605526@5S26f1552b@5526E155260552605S26055260552605S26~552bf15526055~bGi55r?bn55

260562bf15b2btt5b26056260562bti5b2b~5b26@5626056268S626@5626f156260562b@S62605626056 .

D-2

Page 81: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

8

9

l@

11

12

13

14

15

16

17

18

19

Zn

21

22

23

2U

25

26

27

28

.fv&LIE+t12 99 992

,Q9n0~E+02 99 99.99@09E+l?2 99 99

.99i0@E+@2 99 993

.Q~PclnE+02 99 99

.99tiflt3E+02 99 99

.90~flflE+02 99 99

2.99klnPE+f12 99 99,9901?0E+f12 99 99

1.99000E+fi2 99 99

2.99171f40E+f12 99 99.99n014E+f12 99 99

.&n0E+m2 99 993

.Q9~OflE+F12 99 99,9QQ!7flE+0z 99 99.9914t3fiE+t32 99 99

3,99vOPE+B2 99 99.9900tiE+U2 99 99.99i70~k+@2 99 99

2.990BflE+~2 99 99.9913fluE+@J2 99 99

2.99f13VE+l?2 99 99.99fiQFiE+02 99 99

4

.99&W+02 99 993

.99@D~E+V2 99 99

.99P14FlE+a2 99 99

.Q9001?E+02 99 99

.99imE+m 99 491

,99flC40f+02 99 993

.99aflt7E+t?i 99 99

.q9@Pt?E+m2 99 99

.990f10E+B2 99 992

.99nqvEtf12 99 99

.9900flE+f12 99 994

.99r4tiQE+f12 99 99

.990FJREt02 99 99

.99LWOE+02 99 99

.99@0FE+02 99 993

.9908flEt02 99 99

.99flBtiE+f12 99 99

.99flfiDE+~2 99 993

.’99@~k!E+142 99 Q9

?b?l~b~605626ES626P5b26(45626fi5b261?56260562605626f15b26ti5626@Sb2bk156260562fJV562605626056266)5626L?562bt15626n562605626C’15626C1562b(~562635626n562bR56260562bV5626c+5626F15626056Zbf15b2605b26c35626t15626056260562605626F15626056261$5626V5b26f156260S626ti562605626@56Z6@5626t456260S62605626(45626056260562605626$IS62bCIS626PS626k!S626135626356

D-3

Page 82: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

29

31

32

33

3fJ

3

u

5

U

s

6

7

1!

9

3

1 u2.782@n0

0,

.99:flf!E+02 99 992

.9913~PE+02 99 ‘?9

.9bc30BE+02 99 992

.9980(3E+132 99 99

.990n0E+02 99 991

.99@00E+02 99 991

.99B0@E+02 99 99u

.9930t4E+02 99 ‘?9

.99n9eE+13z 99 99

.99c10PE+QJ2 99 99,990L3flE+P2 99 99

1.99@RflE+Q2 99 99

.99~fi0E+02 99 99

2h05b2605626v15626P56t2bf156260562bt15626f15626U5626C!5626rIS626056?6056260S626P5b2605626v56?605626?156

26L?57260572bf35726v572bl1572609726tIS726V572605726L3572bfi5726m572605726L35726$357

26058260582605826(3S8260582bn582605826v9826n58260582bf3~82bl?58Z6V5826u5826B582605826058l?6f1982685826E1582bV5826058

Z6H5926M5926059i!6k159

D-4

Page 83: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

27059

;

3

s

6

7

8

27957

;

3

u

5

6

7

8

27k458

:

3

4

5

t)

3

.2

2bf15926059

270552705527F155t?7e552705527n5527F1552705S2705527P5527C+552705527P55270552705527@55

?7t?Sb2705b27USb

270572705727P572711!37270572705?27v5727F15727f157270!$727057270S727Q5727fiS727n57z7n5727f45727@5727f157

27858270S827m58270S827058t?7f?5827F15827058270s82705827v15827058

2705927v59i!7n5927P592705927059

D-5

Page 84: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

5

6

7

8

~7F16t!

;

s

4

5

6

7

8

9

18

111 82 73 4

32 2

S,u 99,@- ,99(3tinE+n2 01

,99EIfjoE+02 99 991

~99@C43F+02 99 99t

,99Lj610E+02 99 992

,990fl@E+f12 99 99,990@0Et02 99 99

1,99@Iii(jjE+02 99 99

2,990tltiE+@i? 9q 99,99fj00E+Q2 99 99

2,99(j$l?E+Q2 99 99,990flLIE+02 99 99

1,99af10F+@2 99 99

2,990fIBE+02 99 99,990~@E+@2 99 99

5.990flfiFt02 99 99

;140nHU i;m@flOti ;99zItiLW+n2 99 99s N + COW59 TRAN, COCFS, FOR N/ P, HE-4 --=- w-H FOR N 99128P76

ENERGIES Alil)PL~’ZTRABILITIES FOR THE NEUTRON CONTINIIUM ?5 4n

37D5927059i?7u592705927059270592705927059270592785927e592705927059

27060270f’iuZ70hi3270hti2706027ti6027Ub0270bF32706ti2706027t16fI27f1602706027136027060270602706fli?706D2706m27flh0?7a(la27(36027060270bfI271a6FI

D-6

Page 85: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

hfOtMOU ~9b)6?t-fi? ,39329EDOQ ,967cI?f.=@t,19243E-11 tlg 0,

flp B, 0,C3r 0. 0,0. e, 0,

0, 0,692Et0R 0~32390E+0fl ~31692f!+00 ,59095E-02919ED03 .U1889E-@5 g33f184E-07 .U1889EW05795E0il ,31939Ew09 .317Q5E=II a.

e. @p 0,0,. 0, 0,0. 0, n,

0; fl; 0: 0; 0,, n.~877UUF+00 ~48799E+00 ,&li51Ei0tl ~I18790E+fi0 *61151E+flg ,56278E=01,7U769E-OZ ~5h278Ew01 ,7U769E-VIZ P176ilE-03 ?2S98~E-f15 ,17611E-03~2598QF-fi5 ?4R76SE-fi7 P95632E*149 .lJ8765Ew07 ~95h32E-09 .18302E*l@,33Q0PE-l? r18302E-10 ,33@@PE=12 n, 0.

0/n,

0, fl? 0p ~ ?,0,

n“0,. 09 Op n.

(3P0.

n. 0, Clp 0, (3.~865B4E+f10 ~5716UEit10 ~71~28E+00 ~5716UE+P0 ~71U2fiF+00 .J8725E+@a,332n8E-01 Pi8725E+D0 ?S3Z08E?mt p 15338E-n2 .31675E-L74 ~15338E-U2,31675Ew04 .86u51E-f16 ,25@lbF-07 ,86U51t-C6 .25016E-07 ,71218Ew@9~1921ZE-10 ~7i218E-09 ,19212E=l@ .47981E-12 0, ,47981E=12

tlp ~? 0, n, 0.0,

n,Q1. *, fi, 0. 0.

0; 0: 0; n; e; 0;.83306E+f10.151n@E+aa

~6U972’E;tiO ,76tj16E~00 ,bU972E+00 ~76cl16E+0t3 .5725flE+n0?572’5mEia0 Pi5iBnE+f10 ,,22993E-@l ~68753E=03 ,22993Ew0\

~613753E*@$ ~29PV6E004 ?13486E-05 r29E06E~@4 ~13486E-g5 ,6273aE-f17~27’?86E-f18 ~6273uE-n7 .27986E-f18 ~!1659E-09 ,u4s75E9ii ,l1659E-09~uL1575Ew11 ,15U81E=12 0. ,!5u81E-12 0, 0.

q. Op 09 09 0* 0.Op I?? 0, Op 0, 0.

,81813E+UGl ..66R96Ejflfl .76112E+0fd .6b896E+@0*2Z549E+RII

g76112C+00 ,71567E+$J0●7f5b7E+flk3 .2?5U9E+0a ~5952LIE-Pl ~20i23Ew02 ,59521JE-01

.20i23E-f12 ~9779UE-OU g53g71E*L3s ~9779uE*P4~15714E-f17 ~29S011E~06

,!5347iE-OS ,295f18E-t36~15?luE-07 ~7850bEw09 ~36i12E-lE4

.36112E-lfl.78506E-09

P15119E9D11 ~’37272E-i3 b15119E-li .57272Eu!3 fl,np ‘aP a. 0. 0, 0,0. 0,, OF Op Wp~8QQ21E+f10 ~68161E+0fl .7575bE+Cltl ~68161E+ng .75756E+0@ 0:80425E+0@~2972Qk+f10 ~813u25E+f10 ~29?24E40fi ~12921E+I?0 ,0903uE-02 ,1.2921E+00~u9113uEw02 >26922f?i03 ~1674uEwnu~657Q5E=D7 .!f1647E-C15

~2692ZE*P3 ~167UUEWk14 ,if16Q7Ewg5.657U5E=07 ~38269E-f18 ,20589E-09 ,38269E-a8

~2f158flE-fi9 .lfl1399E-10 9a4136gEwi2 ~lflP95E-10 ,4U86PEV12 0,0, np

:;‘t 0, 0.

0. np Ot 0. 0,~79119E+13kI ~68992E+C30 ~75176Eh09 .68992E+Ot3 ,75176E+0fl ,U5221E!0a~3b136E+00 ~85221E+t10 ~36136E4C4g >23967F+0fl ,107P0E-01 .23967E+0fl~lfi7goE~c41 ?6~636Fwn3 ~uu163Ewnu ~63636E-fi3 ,uu163E~flu ,31667E-05,22191f-06 ,31667E-~5 ~2?191E~f16 ~l~732E~F37 ,90681E=t39 .lU732EMk37,90b81E-PQ ~51@36EmlVJ ,.26f155E-11 ~51f136Fo10 ,26C155E-11 ,12023E*12

0, ~l?@23E-12 n. o? 0s B.Op 0, a? ~? OF 0,

.77892E+00 .b9527E+00 i74i180E~k30 .69527E+afl .74488C+00 .87U58E+00

?P23242s26272829383132333U35363738394@UIU243U44sU647U84950515253

z:5657585960616263646566676869707172

;:7576

H798W818283Ou

D-7

Page 86: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

gulb3uf+00 ,87u5hE;00 ,u1/i3uE+flfl ~38Z32E+$?t3 ,~fa40E~oI ,38Z!32E!4t)Ci~21!luPE-@l p13u3uF-OZ *1VI?U9E-(33 g13u3(lE~02 ~l(32U9EW03 ,81313E-05~636QGE-@6 ~llf313Ewf15 ~63ht!mE-Flb ~47367E-07 ●32833E-08 .U7367E~07,32833EwQ8 ~.2~f3bZ!E-?Q ~12au2E-lt3 ~200b2E-Q9 ,1.2flu2E~i0 ,b2878E-12

Clp ,62t378E-12 fl. 0, 0, 0.

9s8687888990Q!929s9495969794

1:;10110210310Uins106ia?1P8109110!1111211311011511611711811912U12112212312412512b12712812913!a131152133134135136137138139lanIui1421431441U5146147

D-8

Page 87: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

~66933F+f10 ~9238?E+k10 ,60933F+VIEI !LJt.~79313uE+o# .24U71E+f4fi ,51184E-01 149~22447E-g2 ,uR19SE-U3 ,22447E-02 150~1029flE-P3 .2138uEw04 ,U2363E-05 151.13382EwC6 ,20870E~07 ,13382E~06 152~2962@E-flfj 0. 0, 153ohf19?RE+P0 ,56588E+0Q ,6ti813E+00 !54/63996E+R0 ~86289E+00 ~63996E+00 155,88296E+VB ,38?i62E+09 ,qbf368Em0i i5b,(J96U7EW132 ,l15nQE-02 ,09687E-PZ 157~26716E-03 .6!077E-@4 ,13u93Emflu 158!507e5L-@h ,97S83E~@7 [email protected] 159~15891E-f17 ao 0, 160~587!PE+@0 .5U929C+@fl ,61577F+@0 161,61uhUE+flfl .8k1574E+0n ,61460E+C48 lb2~9t3372E+0fl .5??68E+nn , 15952E+@0 163~97RlUE-k32 ,ZU!83E~02 ,9741aE.02 164~bPi27E-03 .1417~5E*a3 ,35892Ewn4 165~lRP27F-t35 ,3b2i9E-06 .18B27E-05 ~b6.667F15E-fi7 0, 0. 167;56371E~f10 ~533Q7E+a@ .585U9Et0$3 lb8*59259E+00 ,75357E+C3@ ,59259E+UL3 169/881392EtP0 ~63B70E+0@ .23762E+00 170~175t7E-Gll ,45948E-02 ,17517E-flI t71. 12112E-n2 .31917Ew143 .829blE*84 17Z

k?; V? ‘i4F .O: n,,U6752EW05 ~1368f3E=t3’3 ~2f14!9E-06 ,11751Ewus ,24S48EW06 ‘:122S2EW07~U65n7EWf19 ~lG!378E-L77 ~53472E-09 ,11197E-IB ,2307t!E-12 .l1973E~10~23720Ewi2 BP. ~r 0= np

0,0.

Fly 0, n? 0,0,

a,F!p 0. 0. 0, 0,

0, n. 0. Q. 0. 0.n; flr 0; 0; ap 0;~6U915E-82 175b8E~f12 ,3977uE=133 ,15Z61E-n2 ,u7u78E-B3 ,29b18F-@U,18i9nEwv5 ;2~263E-f34 *211S5E-OS ~68i?88E*~7 .23389E-c+8 .739UlE-07,2Ulb5FwC41j ,71833E-10 ~196bbEWli ,.’?28b8E-l0

P,. 0.,19794E-iI 0,

~. 0: 0, 0.0, n:. Op 0. ?,cl.

0,n. 0. 0. 0. 0.

0;. 63; 0; 09 0; i:,l1938E+00 ~3i382E-01 91103~E=@1 ~2818!E-01 ~ 13f168Ew01 ,95543E*0S,86n99E-04 ~9f177bE-f13 ~lfl@87Ew03 ,432181!*f15 n2P52fJE=0b.213261!~@6

.f$7u87E-05,894bOEm08 ,35319E-09 .9096nEMl?8 ,35588E=09 ,12520Em1B

17423

:b78

1:11li?1314

::

18

::

::232425262728293031323330353b37

D-9

Page 88: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

0; P; n; Op 0; 0,~72535E+flP ~2R04LIF;I?0 ~t?4P9bE+PP ~27882E+00 ,25727E+0fl ~Z8778E-nlp5e293E-@2 p325Q3F-Ql ~5638iJFvt32 ~3649QE~m3 ?263?9E-04 ,41633E-03~277u6E-P4 . 10a5QE=f15 pllu61F*n6 ~18u68Ewf15 pllS77EWB6 .66321E-08,3U620EV@9 .,66631JE-08 ~3u7(?lEmnQ ~16194E-10 ~b’1674E-iZ si62i5E-10~6772.2E-12 n. n.. riip 0, 0,

D. 0, 0. 0. 0* u.0: 0; 0; 0; 0; u,~87315E+V@ ~419W3Ei00 ~JJ7u0iE;@0 ~J.J3172E+f10 ~46885ii+00 ,7U’363E-81~\7756E-fil ~Q?9U8EWfli .9!8793P-L71 ..14705E-@2 ~123@nEw03 ,171blli=B2,13881E-’23 ~9R919E0@5 g74u32E-fi6 ~l@152E-OU ?75295E-Q6 ,514v2E-07~32173E-n8 ~5167QE~f17 ~3225RE-08 ~18101E-C9 .911u3E-11 ,18126Ew09.9121uE-11 ~ulo25E-12 8, ~4104aE-i2 0, 0.

0. n. n. n. 0, 0,L4; BP 0~ e; I?p 0,,933811E+O@ ~52613Et@0 ,967869Eik3P p5’53s6E*00.476@’?EwRl .2vP28F+(lti

,b3u58E+L70 .149QBE+fi0.4bi91E-01 .4qu5pEwg2 .u1917E-03 .5324nE-02

or P:. 0; G); 0: 0,.95U22E+00 ,6c3386E;CII? ~81182E4@0 ~64243E+0B ~73503E+0n .2fJ801E+00●lnUL13E+0k3 ~3q817F+nB ~90u3QE-t41 ,911v02E~PI ,l147PEIw02 ,1356JJE-01~1247nE-02 /ilR25F-03 .li585Ewn0 ~i2245E-83 ,l1762E-04 ,10568E-@S~882P4E-07 ~lL?6U2E*g5 ~f1850PE-B7 ~6659QE-08 ,fJ5164E-09 .66704E-g8~fJ5206E-09 ~27f137E-lfl ~lu92uE-11 ~27U53E-10 wlU933E-11 .72854E-13

nF ~72871F-13 ~~ OF 0. 0,Op ~t 0. 9P 0$ 0,,95567EiPn ,659QOEtFlfl ~138i33E~t10 ,g7f1548E+C3fl ~78787E+k3FJ .35960E+@0~lQ213E+Ptl ~51157F+Og ~lu8uPE4Qln ~2”S513E-01 B26716E*92 ~29901E~Bl~29U39E-f12 ,3P36PE-n3 ,v33P66EwflLJ ~3i6tflE-Q3 e33647E-B4 .337b5Ewf15~317QZE-V6 ~3am33F?f15 ,3i82Pf-Ob ~27t3i2E-07 ,.2072iE*08 ,27064E-07.2f17U3E~08 ~i0254E-t!9 ~87855E-11 ~i4263Ew09 .87088E-ii ,48577E-i2

8P ~JJ859@Ew12 Op n! 0, tt~np Op 0. 0. (4, 0,,9LJ764E+Ba ~7flP5QE;00 ~918i?Fiflfl ~7U98UE+00 .fi12PgE+0@ ,4702UE+00,3n655E+@0 ~66188E*06! ~21u82E+00 ~uU866EnB1 ,55Qu2Eof12 ,58879E-P1~61585E~@2 ~6R368E-a3 ,8133PE=04 ~71305Ewn3 .82975Ew0U ,91763E-05,95669E-E6 ~q?593E-P5 ,Q6q77Ewn6 ,90853E-C47 .7785nE-k38 ,91047Ew@7~7793QE-la8 ~59893E-n9 ~413fi8E-lEl ,59932Ev09 ,u1325E-lt4 .25561EM111● 1U223E-12 .25568E-11 .14?25E-12 fl, n, 0,

0; 0; 0; a: 0. 0,,,q18U3F+Lln ~752flbFi0fl ~92711E+00 ,801Q9E+@fl ,81755E+0@ ,65655E+00~5tiU06E40n ~11677QE+n# ~3U582t4@n ,l?6f14E+00 ,1782@E~fll ,17U18E+0t!~2@685E-@l ~2S366E-g2 p35u41E’an3 .2697nE-92 ,36392k-OS~58916E-a5

.472U2E-@U~l177q5E-n4 ,g59236E-fi5 \67u6aED06

~7n15UE-@7 ~65513E-f18 ~5UQ90~W89 ~65564EFB8870ti56E-07 ,b7639E-06

~28f172E*ll,55f124E*09 ~ulu41Ew10

~ulu53F-i@ ~28f178kwll ~~1714iE-12 0,0, t?p 0.

n171uuE-lz0. 0.

,8Q433E+tiL7 ~709nRE;wl ,90990F+00 :8Uj77E+f10 ,81266E+t3fl .79@55E+fIfl~69n15Et$a ~958U2E+00 ~fJ7~8LlE+f10 ~?7123E+@f4 ,4U926c=fll ,37173E4fi0.5U4Q3E-01 .71809Ewf12 .l1361E=f12 .77797E*02 ~l17hfiEID02 .17368E-f13

3639404!42U3auus464748U9505152S3545556575859606162636U6S66676869707172

H757677

;:80818283808586878889909192939493969798

1::

D-10

Page 89: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

p3J57tK-f35 ,4!$42JJE-96 ,33688?=05~u53u5F:-Q7 ~U5P19E-f38 ~l10138E=n9~23257Ewii 15181E-12 .23261E=11

(3P n: 0.~86b03E+Pt3 ~8C1833E+00 ,87B35E+U0,466U4E+00 ,9U0f13E-01 ,58729E+@0~18088Ewni ~3V567Emf12 ,U9999E9L33~12u83E-fiu ,175JJ4E-OS qi2’535E-t34~224iflE*P6 r25768E-07 .t?6636E-flJ3~2n75PE~lEI ,15689E-11 ,2Q750Ev10,!a66?E-12 0, 0,~8i3f133E+0fi ~8f1637E+00 ,9i3flPE+00,6662PE+nn .lb982E+@Q ,73629E+o0~38@52E-wl .67673E-172 ,12fi09E~f12,37262EwflQ ,5Q151E-nS ,37u57E-f14,8582PF*P6 ,t120?E-D6 ,13257EW(!7,13u55E=09 ~l1612Ewi14 ,13458E-@9~90693E~12 EI, 01~88qb2E+00 08@887E+B0 ,93795E+0t3~8837mE+flB .33fl.2RE+fi0 .8i7P7E+0fl~91832E-ul .1789~E~01 .34637E91?Z~llJ15Ec-n3 ,26?f17E-OU ,lU258E-a3~4U856E-P5 .69687Ew@6 .97791E-07.lUlOME-n8 ,lU495E-t39 ,lU103E=n8r13fJ66FV10 0~ 0,~(3~lu8E+PQl .81629E+nC! ,9398wE+O0?97875F+P0 ,51RlSE+@Fi .R226@[email protected]+P0 ~3R977E-01 .811u1E-612,UP871E-C!3 ,f45967E-flJJ ,41318E*D3~lb920E*f14 ,3nu3’?E-f15 ~U9697E-136~97555E-c18 sl17@5E-a8 ,97582F-!38..126qbF-G19 n, cl,.e89n9E+90 ~82976E+0t? ,q2~~i?E+fi0~c?9837E+flkl ~73735E+00 .81292E+t30~36579E+t3k3 .88360E-01 ,19616F-fIl~12397E-P2 ,29873C-L43 ,126E+2E-@2●68489E-flu ~lu532E~0Q .Z823nEW@S;79u61E-C37 ,l1433Ew07 ,79U9nEm07~lU86UE-08 0, 0,,88551E+QoI .8U352E+gF1 .91378E+8c3~95bJJ9E+tfl .87126Et00 .81288E+00~59nt~lE+68 ,165u0E+0fl ,38571E-01~292i3Ewfi2 ~7J3i!5E~03 .29Q33E-02~2fi256EP03 ,Uq148E-04 ,1i0513E-f14~425q5E9136 ,7i932E=g17 ,4Z’6i5E-016,10978E-f17 0. n,~883J39F+00 ,g855U6E+011 .9015iE+f10~Q213QlE+tn~ ,925q5E+fla ,82nti3E+00~7625fiE+00 .2h571E+00 ,bU722E-fll,571qlE-g2 ,i655kEw02 .E19!.27Ew02~U7299EID@3 .l.2807E-03 ,32566E-E14~16S0bE-P5 .3216LIEuF?6.56676Ew07 0.

tlb517E-050.

.fi8271E+fla .8bSflRE+0fl ,8930SE+00~896UtEtFI0 ,93123E+0n ,82862E+0B~f371u!E+@0 .37586ti+f10 ,95462F-C41~9h28uE-n2 ,2Q772E-02 .lOinUE-al~91895E~@3 ?27120E*03 ,76335EWOU.u9162E-05 ~l@891E~0S ,u92P2E-@5~.218h8EPn6 0, 0,0884U?E+P0 ,87267Ett3C3 ,889n7E+nfl~8133@9E+P0 ~9138bE+0n ,835b6E+00.909flqE+@n ,u778.?E+OO ,12615E+00

Iflj1021031G3U105\06107108lk19110111!12113114115116117118i19128121122!23124125126127928129130!311321331341351361371381391401411421U3104i451U61471481U9i5vl151152153154!55!56157158159160ltIl162163

D-n

Page 90: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

16U165166167168169170171172173174

234

z78

1:

;:1314

::171819

:;22232U25262728t29

::323334

::37383940.41U24344us464740

%915253

D-12

Page 91: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

0, $11!!8QF91O .fl$t?2ko11 @, t!p ,10ne6En12@p 9P op 0? n, 0.

~287QlEbnt! n.m Opr?t

~25flQ3E+fin plb8b9E+0t7 0.,9487bE~t31 ~38700E&flI O* 0, .12971E-B1

,32973E_02 flt 0,n. ~2u149E-(!U

~73z79Ew03 ,13b38E~03 0,~40i16E=I?s Ot 0, .657blE-t?6

,1B2(?9E-06 0. o?0,

,14896E*07 t2f1006E=08 0~,2u582E:09 g27k59E~lP fip n. ,28203E-11

~2b39UE~12 np Of o? 0, 0.~b0731E+@fl Op 0,

~p?57i3ulE+00 uSU9UE+813 0,

93!_8Q5Ei00 .1615?E+n0 nt e: ,611878E-B1,1861PEmtll ap O* ●458SuE-F12 ,91278Ew03 13,

n, ?17329EW03 g3fi~73Ew04 Op n, ,535U@E-n5~91188E906 t3p BP

@p ,,3116QE.FM~1484flEw@6 ~22U35E~f17 0,

~39s99Enfi9 P. 0, .4596@E-10~uR796E=ll @p 0. ~u7u87E*12 @.~82V58E+00 B: 0, ~80k389E+@0 .72UluE+00 &

e. .b0907E;fl@ .Uf188UE+00 OP (3. ,t21341E+00,7472UE-al n. flr ~20927E*@i ,u517iEw02 FI.

Oj ~9ii7wEw03 ~lb733Ewf13 Q, 0. ,311biE_0U~57.215E-05 OP o.

0/~10227E-ns ~17194E-06 0,

~267i3E~07 ~38f158E-I?8 OP $3F ,49581E009~59101f-ltl n. 0a ,6456UEWlt @, P,919?IJE+oa n, Ob ,Q89U1F+PD .87293Et0t4 ;;

Op ~8@857Ei00 066937E+0n flt ap ,4S8s7E+00~2161@f+8fl OP 0, .729@3E-Pl .17664E*t41 0,

0? ,93796uE-?)2 ~72;8;E*n3 OF 0, .iUiu6E-f13~274@3EwmU P? Op ,52965E-05 .97873E*06 VI.

n, ?16837E-f16 ,t?66b2Em07 OP 0, ,38652E-08~512@5F-99 9P l?, ~62352E-l@ 0, 0,~96191E+n0 O? ap ~95594E+@0 .9UF168E+00 R,

0. .9L3733EtD0 .83b60E+k30 0~ 0, ,68989E+00,4U336E*EC4 OP 9? ,19U31E+00 ,56u51E-01 0.

BP ,.131S1E-01 .26u52E-n2 OF 0, ,52758E-03~l@692E-53 0. 0. .21887E-OU ,439S9E-05 0,

13p ~8291uE-06 ,.1UIJ78E-P16 0. m, .231B5E-07,33995E*013 nP OF ~4566UEmf19 0, n,.99@32E+0(! (3P 0. ~9867nE+n0

BP,98543E+0@ V,

.97UP7E;00 .9b!0!it+Pk? @o n. .91337E+00“,.82388Etgn Q? BP .h0179E+@fl .30989C+00 0,@p .97597ER01 ,23307E*@l OF fl? ,,U8356E-02,lt3312E-f12 BP Fi. .22663E-03 .5147bE~04 0,

B! P1136flEw04 ~23b@3E=0S OF k?. ,452U7EW06~79579E~u7 o: Cl. ~12823E-@7 OP 0,,99736E+@0 OF ap ~99u72E+mPI g99b07E+0q 0.

k’? ~Q9tlb3E+0n *9897!E+0C+ 0. la? ,97Z63E+flt3,95272E+On Ot n, ,066U0E+00

Op?69863Ei0@ 0,

,37254E;Et0 ~12f183Ein0 0,. 0, .2985uE-R1~b6521E-R2 nf 0. ~lU727EW0~

OF~35933E-03 0,

.88U32E004 F21?32E-WU @. 08 ,U7639E-E15~985P8E-q6 flt R? ,18684E=86 O* 0,~99932E+k?Fl Pp 0. ,9974SE+P6J ,99895E+00 0.

0, ,9959tlE+f10 ~997t!3E+fl@ tl. 0, ,9898flE+k70,9859QE+3L3 P? qt ~956U5Etn0 ,9@lf42E+0w n,

a? .7ia67E+t30 *fl#9m5E+mcl Op n. .13185E+B0/3264bE-al 0:. 0?

,u6431Ei03~7i917E-P2 *17685E*f12 8.

0? .,l?iJ18Ekt43 t3t ?3, .317Qlt=0U,759Z6E-f15 @,. 0. 91669flE-QS n, a.~99993E+00 fl~ 0. ..99891E+00 .99984E+a9 0.

n, ~99851E+@n ~99937E+0fl OP n, ,99718E+L70~99677E+fln n. n ~99E49bE+00

flp ~9U171E;flB :8i;7t?E+@@ 0.,97896E+00 0,

0, ,5U66UE+00.2138qE+R0 O. 0, .5S763E-B1 ,13112E=01 0,

SdS35657585960616263

::66676869

;:727374

;:7778798fl81

::8485868788899ti9192939495

:!9899

100101102103~04;05lf16$07188109110111112113llU115116

D-13

Page 92: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

lap ~3u4@7FavIZ ,99ciSlEL03 0~ 0, ,295n7em03~8u!9PE-fltt ag Op ~22u9aF-nd 0. 0.~Q9991E+P&7 flr flp ~99947E+8m ,99986E+00 0.

Op ~99q~9F;F10 ~9’?9b4E+0Ci Up e.~99860E+klB P,

~99916f+f10Op ~998i3E+00

0,~993U4E+0t! 0.

~9fi895Etnrl ~95u2fli+f10 0~ 0, ,87897E+L?B~b15g0E+G3 flp @p ~2776UE+00 ,753621iw0j 0,

Op ~ia72~Egei .51328E-02 0. 0, ,lb268E-02~f528vaE.03 0~ 0,, ~j6539E”fi3 0, 0,*9997QE+f18 Op tip ~q9q76E+0fl ~99975E+B@ t?,

Op ~99978E;flfi ~Q9961E+013 0, ap ,9990UE+00~9Q919E+Efi nt C4p .99990E+@0 ,9977QE+00 0,

0, ~9q879E+00 ,99v89E+G40 0. 0. .981taE+00~92557E+flfI 8P flp ,766135E+t30 ,41aQbE+00 0~

0? ~li377E+L10 ~3ulilL7E*fll0~ ap ,99783Emfi~p33qieE=Q2 VP n? ~1217flF-fi2 0, 0,.99972E+P0 Og 0. ~9Q90~E+Pg ,R?9969E+13B 0,

0, ~99985Etf10 ;99ti61E+00 0. ap~999Q4E+PLi aP

~99991E+flla#t ~99996E+f4fl .99908E+%0 0.

0. ~99957E+f10 ~q9UinE+00 @P 0. .99509E+0C3~98892E+n0 fit Op ,9fJ751E+g0 .8u214E+00 0,

at ~5R939E+c10 ~i9g66E+0tl UP 0,.1538uEwc31 u:

,49948E*flin.. ~5a972Ewn2 0, 0,

~99970E+g0 flp 0.,0,

,9998!E+B0 ●99968E+00 0,~99982E;Pfl ~9996UE+00 Ot 0, .Q9983E+00

~99956E+t78 fit 0> /99979E+QlaOp

,99957E+6913 0,~9q9Q6Ei88 ~99~7t?E+n0 flt n. ,99771E+00

~99879E+f10 Ot flp .98657E+n13 ,9b959~+00 0,k?, P85735E+M .58Li15E+~0 flp n, ,.2203iE+OP~6338uE-ni C!f np ~198ilE~01 0. 0,~99969E+08 VP ng .99977E+00 .99968E+00 0,

0/ ~99976E+Oe ~99b66E+fia @~ G!f ,999746+00~999b6F+00 np 0? ..99966E+00 ,99971E+00 R,

np ~999U2E+f10 .9999flEiD0 B? a, .99074E+L30,.9997iE+nEi (4. 0* ~99653E+Fq ,99138E+00 0.

5P ~971Q3Ein0 ~8683UE~f10 a.. 0,, .60963C+00~23235E+flfl g? 13p ~70509E-tIl OP e,~9q968E+nfl @p G). ~99971E+0fl ,99968E+00 0,

0? ~9vq70E+n0 ~q9967E+00 OP 0, .99967E+(40,99968E+f10 flt 0, ~99Q59E+F10 .99972E+00 0,

0, ~999uaE;fHa ,99~77E;00 @, Op ,99925E+fi0~99945E+0B C!t n, ,.99928E+B0 ,9959UE+00 fl,

09 ~99585E;Pfl ~96zlUE+00 fiP 0, .88735E+00~57950E+00 nt 0> p23557E+00 n, 0,~99967E+tltl B? (4P ~99967E+n0 ,99966E+130 0.

VP .99965E;C?0 ~999b6E+@0 0,. ag .99962Etn0~9q966E+On D? Op

ap~99956E+$3kl ,99966E+00 fl.

~999a8E+00 ~99961E+gfl OP 0, ,999u9E+0w~99925E+0VI flp 0, ~99983E+00 .99773E+tIn n,

Op ~9992jE;00 ..98987E+00 OP 0.8 .9b7flC3E+00~06740E+fla flP BP ,.5513iuE+t100, 0,~Q9964E+fif! Oy Op ~99963E+f10 ,9996QE+00 0,

0,. ~9996iEin0 ~999b3E+00 gt na ,999S8r+t30~99961E+t!Cl fiP at

Op~9995uE+P0 ~99958E+00 G3,

~99951Ei%0 ,,999UkE+00 8P e, ,99955E+00~9992iE+0n P? UF ~q9973E+P0 ,99U69E+0b? 0,

LIP ~99905E+t10 .99T90E+00 @P n. ,98b8iE+00.97075E+00 0. 0, .8i96bE+0’7 a, 0,

1171!8119120!2112212312U1251?6127128129j3013113213313U13s136137138139lagiaj1U2143104la5\l161U7148\u91501511s215315U155156157158159160!6116216316a16516616716816917017!172173174

D-14

Page 93: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

ca

ca

65

S=ssa

W6S

E----

W&

esca

..

..

cars9

ca

...-

Wac=w

ea

ca

ea

6a

EC

9W

61

ea

6c

9e

es-or-m

6=m

e-

..

..

5a

,-4

.-=

-Q”4“”-

*oln

tn

aJ-b

=r

Ir-imln

lnC

Gcm

r-r-amru

rut-iJ

nJ

-ml-i=

?

kJ

-zr-

Uh#

>4.-

.s

XX

fs●

b-m

mewZ

F4

i-.

m:n0a(a-1m:zmII9

-Z

=?

Nu

1%

al

tv

-r-4s

u

E-1

.

Page 94: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

LIJ

oaJ-1Uxa

Idt----a

tarsaAD

-s-Nn

wsu

I->F-

9-0

.44

ao-xn.

E-2

,

Page 95: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

a.ml

NmIdz

@-

.zIL

us

U

.a

v

m

if!

.m

u)-

x0

3

n

u

t-u

w“I&0“IL0C

3zId

t-u)

v

E-3

Page 96: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

6=1

:8●

..-mz0u

.

+U

mz!%-.-!

-auu

.!.uId(n

n?

xz0

9-1

n

E-4

Page 97: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Q.

.VI

zCK

um

●✚▼

N.

.t9

1n

!-Ltl

:.

..

..

..

..

ea

mG

lscs6

1E

a6

Jc

J.

.m

a!.=

8D

mn

tu2

D-r>

E=(X

:●

sldC

O<

tD

o=

turn

●c

->lbe-

0#born

bsl

-S

---C

-6--------

..

..

..

-------b

EJ

m6

1B

M8

C9

mm

(stlnm

mw

mc

i)fslF

alsse

aw

ea

ea

s)mw

●ln

uU

’JU

YW

3\\\U

vu

>+

.e

-nV

uo

Ux

uO

bu

a2!

E–5

Page 98: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

s-B

*-)-U

Y8

t<>

tr.z

6XW

buu:

*UX

\*<8

H\

kb

?m:

●U

JU

Ic

--●

D-

6..

-D-b

-----------------=

---

bS

CQ

CJ

LC

9D

Ca

c9

c9

mw

ea

=m

ea

==

Wo

w=’=

=====

?-?*-

uadt-s

mm

l

E::

tumu::

z-rutV

*.<8

-INN

SN

Co@

IncC

Jt

?-t

rut11

#N

D<

1

-->s

mr-

-e-.

..

...-

t-61Q

caLs!9cs6

..

.?ss6

NC

*--*9

N

mVI

:Nu,m

!-I*

i--

..

.m

--,.

.6“s-,.6a

..

m6

!.6

,..

?.n

-,-.fJ-

N

●✚anlM

..

m-w

-sE.

..

c9we3

..

.m

c2eaN

**D:r:b

ir:b

!.6.6

.—..

.m

NS

....

..

E===

8.(9NN

>+

.<

9-90U

csoU%(Y

nun

-id-l

iblw-

>>

o-W

wo

-1-l+

.w>-

E-6

Page 99: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Iaw

iIn

mi

iwm

-zm

8-rc

--m

t.

..

..

..

..

..

...

...

...

..

..

c),

s“:m

”:=

=W

C9S

6SE

S9S

GG

2e

arststsstsa

lcs

●I:sIt:

.--nJ

5ss9

m-a

56●

#W

ILL

!r-l

m?0

=6

-)-.--

>alz\

rrew

U.O

idrx

.lal

al-

51

-lIf’to

.in.

f-into

.

Ida7

mu-l

,.

C2

EO

-Ja-.9U

:.

!..-.

-nJ

-m1.W

=Ixtm

=?

r-a)i&

lo.

?-cl-

v

mvii\w.

iii

E-7

Page 100: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

z0“

m-

-..

-- m-

..

..

.--a

nr.q

.

murn

d

-6)

w6.

Wa

lS

C+

E!C

96

=-“--

W9

-Cea

w&

w..

S3

cw

ca

wm

C9

s,ma

cg

eaww

mw

=6

62

ss.

..

..

...

.-.

-.--

“-.

Z*

0+9+.

..

..-

eb

o.

n

mm

-1-1

s~o

-klz

IL-1

N-n

N-o

U.

.

mw

mm

-1w>kJ

-1

m2

-<*3Na

.

a-..

wD-

Wavmc

v

66.

.m

N

s.

in

6!

w.

.w

=?

s.

m

ii>-1

>-

Ide

>>U

u.1

tutu

s-.Iz

-u

.4

..

u

mu

.

E–8

Page 101: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

>

mm.

8I&l

mti

DUb-

>wx

9on

ka

m

-1v.-6726

z- ztnm

m..

.....

ab,

-m

zm

>-z

z-:

f96

t9

B8

E-9

Page 102: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

t9snl...

aa

cu

G?a

tE

s&

5..

.-

mU

J*-

UC

SW

zati-u

=Lz

-U

6(9w‘?s..

.

1?

wN

NELv.s

.u-i●

8.

mS!u

z●n

#u

-xm

w=

w-s

M a

Uw

ulu

lu

-line

<m

--u-ill-l

-.nm

alnN

6....

-..Q

wm

u-1

.-N

-

fu-

me

!...

-.

..

..

...

.--

c.fuoJnJN

Nm

z

2=

ol-

-u.-

E-10

Page 103: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

>>ur

ms8IA

>ux

mn.4

.!.

z0

d..

.d

:N.

..

.

mm:6

.

Cb

J

m

b-k

Jc

aQ

mz

=C(n:

Orn

a,U

ou

na

u

m6I:zC9

..m

uam-z1

1-

a-WI

s.

Cu

uz

cc-.

-1I&l

>-w

6s-1

MaL

MO

..

.6

Nn

E-11

Page 104: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

>us

d.

mzoD.c

mm

=zm

mlo

m------

.

N5sknN.

mw

mC

96

nN

Lo.

n?

w.s

m.B

.

.Iu

P-1

E-12

Page 105: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Nm

lN

In.mIn

m.

ms..0

CQ

..

-1Idz:-1

9

E-13

Page 106: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

-rurn

=r

Ln

-r-

.

.----

.n

.—

.—.

—.

—.

----

.-.

.

wG61C9

d-m

J---

n

G

E-14

Page 107: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

Iolmw

.m

-lntnLnm

..

..<<.....

.m

=-#dnm

l-u###

#am

[

..

...

..

..

W--

4---N

6

6

E-15

Page 108: GNASH: A Preequilibrium, Statistical Nuclear-Model …...s. --“ *, -.-..,.- .-. LA-6947 GI(2-14 REPORT COLLECTION 13EPRODUCTKMN C3. COPY GNASH: I UC-34C Issued: November 1977 A Preequilibrium,

-------.

..

.=

-m-m=lrnr--am

r--cm

4-0.-4-0.-

------

●O

OO

SB

SB

SC

D9B

am.

..

..

..

.—.

.**....

..

..

sLmc9-ls--f94

U?s*css&

-casS

-SE

.e

-M

E-16