26
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 183285, 25 pages doi:10.1155/2012/183285 Research Article Global Behavior for a Strongly Coupled Predator-Prey Model with One Resource and Two Consumers Yujuan Jiao 1, 2 and Shengmao Fu 1 1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China 2 College of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730124, China Correspondence should be addressed to Shengmao Fu, [email protected] Received 23 March 2012; Accepted 15 May 2012 Academic Editor: Michiel Bertsch Copyright q 2012 Y. Jiao and S. Fu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider a strongly coupled predator-prey model with one resource and two consumers, in which the first consumer species feeds on the resource according to the Holling II functional response, while the second consumer species feeds on the resource following the Beddington- DeAngelis functional response, and they compete for the common resource. Using the energy estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness of global solutions for the model are proved. Meanwhile, the sucient conditions for global asymptotic stability of the positive equilibrium for this model are given by constructing a Lyapunov function. 1. Introduction The principle of competitive exclusion asserts that two or more consumer species cannot coexist indefinitely upon a single limiting resource, which dates back to the pioneering work of Volterra 1 in the 1920s. Subsequently, Ayala 2 in 1969 demonstrated experimentally that two species of Drosophila can coexist upon a single limiting resource. Ayala’s experiments have received much attention see the comprehensive survey by Cantrell and Cosner 3. Schoener 4 in 1976 found that intraspecific interference among consumers may lead to coexistence of multiple consumer species upon a single resource. To examine more closely the implications of feeding interference among conspecific consumers on

Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2012, Article ID 183285, 25 pagesdoi:10.1155/2012/183285

Research ArticleGlobal Behavior for a Strongly CoupledPredator-Prey Model with One Resource and TwoConsumers

Yujuan Jiao1, 2 and Shengmao Fu1

1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China2 College of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730124,China

Correspondence should be addressed to Shengmao Fu, [email protected]

Received 23 March 2012; Accepted 15 May 2012

Academic Editor: Michiel Bertsch

Copyright q 2012 Y. Jiao and S. Fu. This is an open access article distributed under the CreativeCommons Attribution License, which permits unrestricted use, distribution, and reproduction inany medium, provided the original work is properly cited.

We consider a strongly coupled predator-prey model with one resource and two consumers, inwhich the first consumer species feeds on the resource according to the Holling II functionalresponse, while the second consumer species feeds on the resource following the Beddington-DeAngelis functional response, and they compete for the common resource. Using the energyestimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundednessof global solutions for the model are proved. Meanwhile, the sufficient conditions for globalasymptotic stability of the positive equilibrium for this model are given by constructing aLyapunov function.

1. Introduction

The principle of competitive exclusion asserts that two or more consumer species cannotcoexist indefinitely upon a single limiting resource, which dates back to the pioneering workof Volterra [1] in the 1920s. Subsequently, Ayala [2] in 1969 demonstrated experimentally thattwo species of Drosophila can coexist upon a single limiting resource. Ayala’s experimentshave received much attention (see the comprehensive survey by Cantrell and Cosner[3]). Schoener [4] in 1976 found that intraspecific interference among consumers maylead to coexistence of multiple consumer species upon a single resource. To examinemore closely the implications of feeding interference among conspecific consumers on

Page 2: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

2 Abstract and Applied Analysis

consumer-resource dynamics, Cantrell et al. [5] in 2004 proposed the following predator-preysystem:

du

dt= ru(1 − u

K

)− auv

1 + bu− Auw

1 + Bu +Dw,

dv

dt= v(−l + eu

1 + bu

),

dw

dt= w(−L +

Eu

1 + Bu +Dw

),

(1.1)

where r, a, b, e, l, A, B,D, E, L, and K are positive constants, u(t) represents the density of thelimiting resource at time t, v(t) and w(t) denote two consumers species. The first consumerspecies feeds upon the resource according to the Holling II functional response, whilethe second consumer species feeds upon the resource following the Beddington-DeAngelisfunctional response, and they compete for the common resource. For more details on thebackgrounds about this system see [5].

The system (1.1) has a positive equilibrium E = (u, v, w) under the suitable conditions,where

u =l

e − bl , v =e

al

{ru

(1 − u

K

)− A

DE[(E − BL)u − L]

}, w =

(E − BL)u − LDL

. (1.2)

The Jacobian matrix of the system (1.1) at E can be written as

J(E)

=

⎛⎝a11 a12 a13a21 a22 a23a31 a32 a33

⎞⎠, (1.3)

where

a11 = u

[−ruK

+abv

(1 + bu)2+

ABw

(1 + Bu +Dw)2

], a12 = − au

1 + bu< 0,

a13 = − Au(1 + Bu)

(1 + Bu +Dw)2< 0, a21 =

ev

(1 + bu)2> 0, a31 =

Ew(1 +Dw)

(1 + Bu +Dw)2> 0,

a33 = − DEuw

(1 + Bu +Dw)2< 0, a22 = a23 = a32 = 0.

(1.4)

The following results were proved in [5]:

(1) the system (1.1) is dissipative;

(2) the positive equilibrium E of (1.1) is locally stable if −(a11+a33) > 0 and a11(a11a33−a13a31 − a12a21) − a33(a11a33 − a31a31) < 0; and

(3) the positive equilibrium E of (1.1) is globally stable if max{b, B}(K − u) < 1.

Page 3: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 3

Rescaling the system (1.1) such that

u

K

–−→ u, v –−→ v, w –−→ w, rt –−→ t,a

r

–−→ a, bK –−→ b,A

r

–−→ A, BK –−→ B,

D –−→ D,l

r–−→ l,

(eK)l

–−→ e,L

r

–−→ L,(EK)L

–−→ E

(1.5)

yields

du

dt= u(1 − u) − auv

1 + bu− Auw

1 + Bu +Dw,

dv

dt= lv(−1 + eu

1 + bu

),

dw

dt= Lw

(−1 + Eu

1 + Bu +Dw

).

(1.6)

The corresponding weakly coupled reaction-diffusion system for (1.6) is as follows:

ut = d1Δu + u(1 − u) − auv

1 + bu− Auw

1 + Bu +Dw, x ∈ Ω, t > 0,

vt = d2Δv + lv(−1 + eu

1 + bu

), x ∈ Ω, t > 0,

wt = d3Δw + Lw(−1 + Eu

1 + Bu +Dw

), x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.7)

where Ω ⊂ RN is a bounded smooth domain, ν is the outward unit normal vector of the

boundary ∂Ω, ∂ν = ∂/∂ν. The constants d1, d2, and d3, called diffusion coefficients, arepositive, and u0(x), v0(x), and w0(x) are nonnegative functions which are not identicallyzero. The system (1.7) has a constant positive steady-state solution E∗ = (u∗, v∗, w∗) if andonly if

e > b, E − B > e − b, DE(e − b − 1) −A(e − b)[(E − B) − (e − b)] > 0, (1.8)

where

u∗ =1

e − b , v∗ =e{DE(e − b − 1) −A(e − b)[(E − B) − (e − b)]}

aDE(e − b)2,

w∗ =(E − B) − (e − b)

D(e − b) .

(1.9)

Page 4: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

4 Abstract and Applied Analysis

In [6], Hei and Yu proved the following main results.(1) The equilibrium (u∗, v∗, w∗) of (1.7) is locally asymptotically stable if (1.8) and

DE2[b(e − b − 1) − e] +A(e − b)(Be − bE)[(E − B) − (e − b)] < 0 (1.10)

hold.(2) Let d∗

2 and d∗3 be fixed positive constants which satisfy d∗

2μ1 ≥ l(e − b − 1)/(1 + b)and d∗

3μ1 ≥ L(E − B − 1)/(1 + B).Then there exists a positive constant D1, such that (1.7) has no nonconstant positive

solution if d1 > D1, d2 ≥ d∗2 and d3 ≥ d∗

3, where 0 = μ0 < μ1 < μ2 < · · · are the eigenvalues ofthe operator −Δ on Ωwith the homogeneous Neumann boundary condition.

(3) Let di (i = 1, 3) be fixed positive constants. Assume that a∗11 > 0,

min{4d2 − 4eld1 − ed2

4d2,[D(E − B) −A(E − B − 1)]

D(E − B)}>

1e − b (1.11)

and (1.8) hold. Furthermore, assume that one of the following conditions is satisfied:

(i) a∗11a∗33 − a∗31a∗13 < 0, μ ∈ (μn, μn+1) for some n ≥ 1, and the sum σn =

∑ni=1 dimE(μi)

is odd;

(ii) a∗11a∗33 − a∗31a∗13 > 0, μ ∈ (μk, μk+1), μ ∈ (μn, μn+1) for some n ≥ k ≥ 1, and the sum

σn =∑n

i=k+1 dimE(μi) is odd.

Then there exists a positive constant D2, such that (1.7) has at least one nonconstant positivesolution if d2 ≥ D2, where

a∗11 = −u∗ + abv∗

e2u∗+ABw∗

E2u∗,

a∗33 = − DELu∗w∗

(1 + Bu∗ +Dw∗)2,

a∗13 = −Aw∗

Eu∗,

a∗31 =ELw∗(1 +Dw∗)

(1 + Bu∗ +Dw∗)2,

μ =a∗11d3 + a

∗33d1 +

√(a∗11d3 − a∗33d1

)2 + 4a∗31a∗13d1d3

2d1d3,

μ =a∗11d3 + a

∗33d1 −

√(a∗11d3 − a∗33d1

)2 + 4a∗31a∗13d1d3

2d1d3

(1.12)

and E(μi) is the eigenspace corresponding to μi inH1(Ω).(4) The bifurcation of nonconstant positive solutions for (1.7)was studied.In recent years, the SKT type cross-diffusion systems have attracted the attention of

a great number of investigators and have been successfully developed on the theoretical

Page 5: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 5

backgrounds. The above work mainly concentrate on (1) the instability and stability inducedby cross-diffusion, and the existence of nonconstant positive steady-state solutions [7–14];(2) the global existence of strong solutions [15–23]; (3) the global existence of weak solutionsbased on semidiscretization or finite element approximation [24–30]; and (4) the dynamicalbehaviors [18, 19, 31, 32], and so forth. The corresponding SKT type cross-diffusion systemfor (1.7) is as follows:

ut = Δ(d1u + α11u2 + α12uv + α13uw

)+ u(1 − u) − auv

1 + bu− Auw

1 + Bu +Dw, x ∈ Ω, t > 0,

vt = Δ(d2v + α21uv + α22v2 + α23vw

)+ lv(−1 + eu

1 + bu

), x ∈ Ω, t > 0,

wt = Δ(d3w + α31uw + α32vw + α33w2

)+ Lw

(−1 + Eu

1 + Bu +Dw

), x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,(1.13)

where αij(i, j = 1, 2, 3) are positive constants, αii(i = 1, 2, 3) are referred as self-diffusionpressures, and αij(i, j = 1, 2, 3, i /= j) are cross-diffusion pressures. The self-diffusion impliesthe movement of individuals from a higher to lower concentration region. Cross-diffusionexpresses the population fluxes of one species due to the presence of the other species.The value of cross-diffusion coefficient may be positive, negative, or zero. The positivecross-diffusion coefficient denotes the movement of the species in the direction of lowerconcentration of another species and negative cross-diffusion coefficient denotes that onespecies tends to diffuse in the direction of higher concentration of another species (e.g., [33]).

The local existence of solutions for the system (1.13) is an immediate consequence of aseries of important papers [34–36] by Amann. Roughly speaking, if u0(x), v0(x), andw0(x) inW1

p(Ω)with p > n, then (1.13) has a unique nonnegative solution u, v,w ∈ C([0, T),W1p(Ω))∩

C∞((0, T), C∞(Ω)), where T ∈ (0,∞] is the maximal existence time for the solution. If thesolution (u, v,w) satisfies the estimate

sup{‖u(·, t)‖W1

p (Ω), ‖v(·, t)‖W1p (Ω), ‖w(·, t)‖W1

p (Ω) : 0 < t < T}<∞, (1.14)

then T = +∞. Moreover, if u0(x), v0(x), w0(x) ∈W2p(Ω), then u, v,w ∈ C([0,∞),W2

p(Ω)).For the following SKT system

ut = d1Δ[(1 + αv + γu

)u]+ au(1 − u − cv), x ∈ Ω, t > 0,

vt = d2Δ[(1 + δv)v] + bv(1 − du − v), x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(P)

Page 6: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

6 Abstract and Applied Analysis

Yamada in [23] proposed four open problems:

(1) the global existence of solutions of (P) in the case δ > 0 and the space dimensionN ≥ 6;

(2) the global existence in the case γ = 0;

(3) in order to study the asymptotic behavior of u, v as t → ∞ need to establish theuniform boundedness of global solutions; and

(4) the global existence of solutions for the following full SKT system:

ut = d1Δ[(1 + αv + γu

)u]+ au(1 − u − cv), x ∈ Ω, t > 0,

vt = d2Δ[(1 + βu + δv

)v]+ bv(1 − du − v), x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

(1.15)

with α, γ, β, δ > 0.Very few global existence results for (1.13) are known. The main purpose of this paper

is to establish the uniform boundedness of global solutions for the system (1.13) in one spacedimension. For convenience, we consider the following system:

ut =(d1u + α11u2 + α12uv + α13uw

)xx

+ u(1 − u) − auv

1 + bu− Auw

1 + Bu +Dw, 0 < x < 1, t > 0,

vt =(d2v + α21uv + α22v2 + α23vw

)xx

+ lv(−1 + eu

1 + bu

), 0 < x < 1, t > 0,

wt =(d3w + α31uw + α32vw + α33w2

)xx

+ Lw(−1 + Eu

1 + Bu +Dw

), 0 < x < 1, t > 0,

ux(x, t) = vx(x, t) = wx(x, t) = 0, x = 0, 1, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), 0 < x < 1.(1.16)

We firstly investigate the global existence and the uniform boundedness of the solutionsfor (1.16), then prove the global asymptotic stability of the positive equilibrium (u∗, v∗, w∗)of (1.16) by an important lemma from [37]. The proof is complete and complement to theuniform convergence theorems in papers [38–40].

It is obvious that (u∗, v∗, w∗) is the unique positive equilibrium of the system (1.16) if(1.8) holds.

For simplicity, we denote ‖ · ‖Wkp (0,1) by | · |k,p and ‖ · ‖Lp(0,1) by | · |p. Our main results are

as follows.

Page 7: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 7

Theorem 1.1. Let u0(x), v0(x), w0(x) ∈ W22 (0, 1), (u, v,w) be the unique nonnegative solution of

the system (1.16) in the maximal existence interval [0, T). Assume that

8α11α21α31 > α21α213 + α212α31,

8α12α22α32 > α32α221 + α223α12,

8α13α23α33 > α23α231 + α232α13.

(1.17)

Then there exist t0 > 0 and positive constants M′,M which depend on di, αij (i, j =1, 2, 3), a, b, e, l, A, B,D, E and L, such that

sup{|u(·, t)|1,2, |v(·, t)|1,2, |w(·, t)|1,2 : t ∈ (t0, T)

} ≤M′, (1.18)

max{u(x, t), v(x, t), w(x, t) : (x, t) ∈ [0, 1] × (t0, T)} ≤M, (1.19)

and T = +∞. Moreover, in the case that d1, d2, d3 ≥ 1, d2/d1, d3/d1 ∈ [d, d], where d and d arepositive constants,M′,M depend on d, d, but do not depend on d1, d2, d3.

Remark 1.2. Since the continuous embedding H1(Ω) ↪→ L∞(Ω) holds only in one spacedimension, we can only establish the uniform maximum-norn estimates about time for thesolution in one space dimension.

Theorem 1.3. Assume that all conditions in Theorem 1.1 are satisfied. Assume further that

4αβu∗v∗w∗d1d2d3 > u∗M2(αα23v∗ + βα32w∗)2(d1 + 2α11M + α12M + α13M)

+ αv∗M2(α13u∗ + βα31w∗)2(d2 + α21M + 2α22M + α23M)

+ βw∗M2(α12u∗ + αα21v∗)2(d3 + α31M + α32M + 2α33M),

(1.20)

DE[(e − b) − b(e − b − 1)] > A(e − b)[(E − B) − (e − b)](B − b), (1.21)

and (1.8) hold, where α = a(1 + bu∗)/el, β = A(1 + Bu∗)/EL(1 + Dw∗), M is given by (1.19).Then the unique positive equilibrium (u∗, v∗, w∗) of (1.16) is globally asymptotically stable.

Remark 1.4. The system (1.16) has no nonconstant positive steady-state solution if allconditions of Theorem 1.3 hold.

Page 8: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

8 Abstract and Applied Analysis

Examples. The following two examples satisfy all conditions of Theorem 1.3:

α11 =14, α12 = 1, α13 = 1,

α21 =52, α22 = 1, α23 =

14,

α31 = 1, α32 = 1, α33 = 2,

b = 1, e = 3, A = 1,

B =12, D =

23, E = 3,

d1, d2, d3 � 1;

α11 = 2, α12 = 1, α13 = 2,

α21 =32, α22 =

12, α23 = 1,

α31 = 2, α32 = 2, α33 = 3,

b =12, e =

52, A =

23,

B =12, D =

34, E = 4,

d1, d2, d3 � 1.

(1.22)

2. Global Solutions

In order to establish the uniform W12 -estimates of the solutions for the system (1.16),

the following Gagliardo-Nirenberg-type inequalities and the corresponding corollary playimportant roles (see [38, 41]).

Theorem 2.1. LetΩ ⊂ Rn be a bounded domain with ∂Ω ∈ Cm. For every function u ∈Wm

r (Ω), 1 ≤q, r ≤ ∞, the derivative Dju (0 ≤ j < m) satisfies the inequality

∣∣∣Dju∣∣∣p≤ C(|Dmu|ar |u|1−aq + |u|q

), (2.1)

provided one of the following three conditions is satisfied: (1) r ≤ q, (2) 0 < n(r − q)/(mrq) < 1,or (3) n(r − q)/(mrq) = 1 and m − n/q is not a nonnegative integer, where 1/p = j/n + a(1/r −m/n) + (1 − a)/q for all a ∈ [j/m, 1), and the positive constant C depends on n,m, j, q, r, a.

Page 9: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 9

Corollary 2.2. There exists a universal constant C such that

|u|2 ≤ C(|ux|1/32 |u|2/31 + |u|1

), ∀u ∈W1

2 (0, 1), (2.2)

|u|4 ≤ C(|ux|1/22 |u|1/21 + |u|1

), ∀u ∈W1

2 (0, 1), (2.3)

|u|5/2 ≤ C(|ux|2/52 |u|3/51 + |u|1

), ∀u ∈W1

2 (0, 1), (2.4)

|ux|2 ≤ C(|uxx|3/52 |u|2/51 + |u|1

), ∀u ∈W2

2 (0, 1). (2.5)

Throughout this paper, we always denote that C is a Sobolev embedding constant orother kind of universal constant, Aj, Bj , Cj are some positive constants which depend only onαij (i, j = 1, 2, 3), a, b, e, l, A, B,D, E and L,Kj are positive constants depending on di, αij (i, j =1, 2, 3), a, b, e, l, A, B,D, E and L. When d1, d2, d3 ≥ 1, d2/d1, d3/d1 ∈ [d, d], Kj depend on d, d,but do not depend on d1, d2, d3.

Proof of Theorem 1.1. Taking integration of the three equations in (1.16) over (0, 1), respec-tively, and combining the three integration equalities linearly, we have

d

dt

∫1

0[(el + EL)u + av +Aw]dx ≤

∫1

0[(el + EL)u(1 − u) − alv −ALw]dx. (2.6)

It follows from the Young inequality and the Holder inequality that

d

dt

∫1

0[(el + EL)u + av +Aw]dx ≤ C1 − k

∫1

0[(el + EL)u + av +Aw]dx, (2.7)

where k = min{l, L}, C1 = (k + 1)2(el + EL)/4. So there exist positive constants M0 and τ0depending on a, b, e, l, A, B,D, E, and L, such that

∫1

0udx,

∫1

0v dx,

∫1

0wdx ≤M0, t ≥ τ0. (2.8)

Moreover, there exists a positive constant M′0 which depends on a, b, e, l, A, B,D, E, L and

L1-norm of u0, v0, w0, such that

∫1

0udx,

∫1

0v dx,

∫1

0wdx ≤M′

0, t ≥ 0. (2.8)′

Page 10: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

10 Abstract and Applied Analysis

Multiplying the first three equations in the system (1.16) by u, v,w, respectively, andintegrating over (0, 1), we have

12d

dt

∫1

0u2dx ≤ −d1

∫1

0u2xdx −

∫1

0

[(2α11u + α12v + α13w)u2x + (α12vx + α13wx)uux

]dx

+∫1

0u2dx,

12d

dt

∫1

0v2dx ≤ −d2

∫1

0v2xdx −

∫1

0

[(α21u + 2α22v + α23w)v2

x + α21(ux + α23wx)vvx]dx

+el

b

∫1

0v2dx,

12d

dt

∫1

0w2dx ≤ −d3

∫1

0w2xdx −

∫1

0

[(α31u + α32v + 2α33w)w2

x + (α31ux + α32vx)wwx

]dx

+EL

B

∫1

0w2dx,

(2.9)

from which it follows that

12d

dt

∫1

0

(u2 + v2 +w2

)dx

≤ − d∫1

0

(u2x + v

2x +w

2x

)dx +

∫1

0u2dx +

el

b

∫1

0v2dx +

EL

B

∫1

0w2dx −

∫1

0q(ux, vx,wx)dx

≤ − d∫1

0

(u2x + v

2x +w

2x

)dx +

(1 +

el

b+EL

B

)∫1

0

(u2 + v2 +w2

)dx −

∫1

0q(ux, vx,wx)dx,

(2.10)

where d = min{d1, d2, d3},

q(ux, vx,wx) = (2α11u + α12v + α13w)u2x + (α12u + α21v)uxvx + (α21u + 2α22v + α23w)v2x

+ (α13u + α31w)uxwx + (α31u + α32v + 2α33w)w2x + (α23v + α32w)vxwx.

(2.11)

It is obvious that q(ux, vx,wx) is a positive definite quadratic form of ux, vx,wx if (1.17) holds.So (1.17) implies that

12d

dt

∫1

0

(u2 + v2 +w2

)dx ≤ −d

∫1

0

(u2x + v

2x +w

2x

)dx +

(1 +

el

b+EL

B

)∫1

0

(u2 + v2 +w2

)dx.

(2.12)

Page 11: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 11

Now, we proceed in the following two cases.(i) One has t ≥ τ0. The inequality (2.2) implies that |u|62 ≤ C(|ux|22|u|41 + |u|61) ≤

CM40(|ux|22 +M2

0). So we have∫10 u

2xdx ≥ (1/CM4

0)(∫10 u

2dx)3 −M2

0, and

−∫1

0

(u2x + v

2x +w

2x

)dx ≤ − 1

9CM40

[∫1

0

(u2 + v2 +w2

)dx

]3+ 3M2

0. (2.13)

It follows from (2.12) and (2.13) that

12d

dt

∫1

0

(u2 + v2 +w2

)dx

≤ d⎧⎨⎩−C2

[∫1

0

(u2 + v2 +w2

)dx

]3+ 3M2

0 +1d

(1 +

el

b+EL

B

)∫1

0

(u2 + v2 +w2

)dx

⎫⎬⎭.(2.14)

This means that there exist positive constants τ1 and M1 depending on di(i =1, 2, 3), a, b, e, l, A, B,D, E, and L, such that

∫1

0u2dx,

∫1

0v2dx,

∫1

0w2dx ≤M1, t ≥ τ1. (2.15)

When d ≥ 1, M1 is independent of d because the zero point of the right-hand side in (2.14)can be estimated by positive constants independent of d.

(ii) One has t ≥ 0. Repeating estimates in (i) by (2.8)′, we can obtain that there existsa positive constantM′

1 depending on di (i = 1, 2, 3), a, b, e, l, A, B,D, E, L and the L1, L2-normof u0, v0, w0, such that

∫1

0u2dx,

∫1

0v2dx,

∫1

0w2dx ≤M′

1, t ≥ 0. (2.15)′

When d ≥ 1,M′1 is independent of d.

To estimate |ux|2, |vx|2, |wx|2, we introduce the following scaling:

u =u

d1, v =

v

d1, w =

w

d1, t = d1t. (2.16)

Page 12: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

12 Abstract and Applied Analysis

Denoting ξ = d2/d1, η = d3/d1, and using u, v,w, t instead of u, v, w, t, respectively, then thesystem (1.16) reduces to

ut = Pxx + f(u, v,w), 0 < x < 1, t > 0,

vt = Qxx + g(u, v,w), 0 < x < 1, t > 0,

wt = Rxx + h(u, v,w), 0 < x < 1, t > 0,

ux(x, t) = vx(x, t) = wx(x, t) = 0, x = 0, 1, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), 0 < x < 1,

(2.17)

where P = u+α11u2+α12uv+α13uw, Q = ξv+α21uv+α22v2+α23vw, R = ηw+α31uw+α32vw+α33w

2, f(u, v,w) = d−11 u − u2 − (auv/(1 + bd1u)) − (Auw/(1 + Bd1u + Dd1w)), g(u, v,w) =

lv(−d−11 + (eu/(1 + bd1u))), h(u, v,w) = Lw(−d−1

1 + (Eu/(1 + Bd1u +Dd1w))).We still proceed in the following two cases.

(i) One has t ≥ τ∗1 = d1τ1. It is not hard to verify that

∫1

0udx,

∫1

0v dx,

∫1

0wdx ≤M0d

−11 ,∫1

0u2dx,

∫1

0v2dx,

∫1

0w2dx ≤M1d

−21 ,

|P |1, |Q|1, |R|1 ≤ A1K1d−11 ,

(2.18)

whereK1 = (1 + ξ + η) +M1d−11 , A1 = max{M0, α11 + α12 + α13, α21 + α22 + α23, α31 + α32 + α33}.

Multiplying the first three equations in (2.17) by Pt,Qt, Rt, integrating them over thedomain (0, 1), respectively, and then adding up the three integration equalities, we have

12y′(t) = −

∫1

0u2t dx − ξ

∫1

0v2t dx − η

∫1

0w2t dx −

∫1

0q(ut, vt,wt)dx

+∫1

0

[(1 + 2α11u + α12v + α13w)utf + α12uvtf + α13uwtf

]dx

+∫1

0

[(ξ + α21u + 2α22v + α23w)vtg + α21vutg + α23vwtg

]dx

+∫1

0

[(η + α31u + α32v + 2α33w

)wth + α31wuth + α32wvth

]dx,

(2.19)

where y(t) =∫10 (P

2x + Q2

x + R2x)dx. Notice by (1.17) that there exists a positive constant C3

depending only on αij (i, j = 1, 2, 3), such that

q(ut, vt,wt) ≥ C3(u + v +w)(u2t + v

2t +w

2t

). (2.20)

Page 13: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 13

Thus,

12y′(t) ≤ −

∫1

0u2t dx − ξ

∫1

0v2t dx − η

∫1

0w2t dx − C3

∫1

0(u + v +w)

(u2t + v

2t +w

2t

)dx

+∫1

0

[(1 + 2α11u + α12v + α13w)utf + α12uvtf + α13uwtf

]dx

+∫1

0

[(ξ + α21u + 2α22v + α23w)vtg + α21vutg + α23vwtg

]dx

+∫1

0

[(η + α31u + α32v + 2α33w

)wth + α31wuth + α32wvth

]dx.

(2.21)

Using the Young inequality, Holder inequality, and (2.18), we can obtain the followingestimates:

∫1

0u4dx ≤

(∫1

0u2dx

)1/3(∫1

0u5dx

)2/3

≤M1/31 d−2/3

1

(∫1

0u5dx

)2/3

,

∫1

0uv2dx ≤

(∫1

0u2dx

)1/2(∫1

0v2dx

)1/6(∫1

0v5dx

)1/3

≤M2/31 d−4/3

1

(∫1

0v5dx

)1/3

,

∫1

0u3dx ≤

(∫1

0u2dx

)2/3(∫1

0u5dx

)1/3

≤M2/31 d−4/3

1

(∫1

0u5dx

)1/3

,

∫1

0u4v dx ≤ 4

5

∫1

0u5dx +

15

∫1

0v5dx ≤ 4

5

∫1

0

(u5 + v5

)dx.

(2.22)

Applying the above estimates and Gagliardo-Nirenberg-type inequalities to the termson the right-hand side of (2.21), we have

−∫1

0u2t dx ≤ −1

2

∫1

0P 2xxdx +

∫1

0f2dx,

− ξ∫1

0v2t dx ≤ − ξ

2

∫1

0Q2xxdx + ξ

∫1

0g2dx,

− η∫1

0w2t dx ≤ −η

2

∫1

0R2xxdx + η

∫1

0h2dx,

Page 14: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

14 Abstract and Applied Analysis∫1

0f2dx ≤

∫1

0

(d−21 u

2 + u4 +a2v2

(bd1)2+A2w2

(Bd1)2+ 2

au2v

bd1+ 2

Au2w

Bd1+ 2

aAvw

bBd21

)dx

≤[1 + 2

(ab

)2+ 2(A

B

)2]M1d

−41 +M1/3

1 d−2/31

(∫1

0u5dx

)2/3

+ 2(a

b+A

B

)M2/3

1 d−7/31

(∫1

0u5dx

)1/3

,

ξ

∫1

0g2dx ≤ ξ

∫1

0

(l2d−2

1 v2 +

e2l2v2

(bd1)2

)dx ≤ ξl2

[1 +(eb

)2]M1d

−41 ,

η

∫1

0h2dx ≤ η

∫1

0

(L2d−2

1 w2 +

E2L2w2

(Bd1)2

)dx ≤ ηL2

[1 +(E

B

)2]M1d

−41 ,

(2.23)

−∫1

0u2t dx − ξ

∫1

0v2t dx − η

∫1

0w2t dx

≤ − 12

∫1

0P 2xxdx − ξ

2

∫1

0Q2xxdx − η

2

∫1

0R2xxdx

+

{1 + 2

[(ab

)2+(A

B

)2]+ ξl2

[1 +(eb

)2]+ ηL2

[1 +(E

B

)2]}

M1d−41

+M1/31 d−2/3

1

(∫1

0u5dx

)2/3

+ 2(a

b+A

B

)M2/3

1 d−7/31

(∫1

0u5dx

)1/3

.

(2.24)

Similarly, we can obtain

∫1

0utf dx ≤

∫1

0ut

(d−11 u + u2 +

a

bd1v +

A

Bd1w

)dx

≤ d−21

∫1

0udx +

ε

2

∫1

0uu2t dx +

12ε

∫1

0u3dx +

ε

2

∫1

0uu2t dx

+(a/bd1)

2

∫1

0v dx +

ε

2

∫1

0vu2t dx +

(A/Bd1)2

∫1

0wdx +

ε

2

∫1

0wu2t dx

≤ 12ε

[1 +(ab

)2+(A

B

)2]M0d

−31 +

12εM2/3

1 d−4/31

(∫1

0u5dx

)1/3

+ ε∫1

0uu2t dx +

ε

2

∫1

0vu2t dx +

ε

2

∫1

0wu2t dx,

Page 15: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 15

2α11

∫1

0uutf dx ≤ 2α11

∫1

0uut

(d−11 u + u2 +

a

bd1v +

A

Bd1w

)dx

≤ α211d−21

ε

∫1

0u3dx + ε

∫1

0uu2t dx +

α211ε

∫1

0u5dx + ε

∫1

0uu2t dx

+α211a

2

εb2d21

∫1

0u2v dx + ε

∫1

0vu2t dx +

α211A2

εB2d21

∫1

0u2wdx + ε

∫1

0wu2t dx

≤ α211ε

[1 +(ab

)2+(A

B

)2]M2/3

1 d−10/31

(∫1

0u5dx

)1/3

+α211ε

∫1

0u5dx

+ 2ε∫1

0uu2t dx + ε

∫1

0vu2t dx + ε

∫1

0wu2t dx,

α12

∫1

0vutf dx ≤ α12

∫1

0vut

(d−11 u + u2 +

a

bd1v +

A

Bd1w

)dx

≤ α212d−21

∫1

0uv2dx +

ε

2

∫1

0uu2t dx +

α2122ε

∫1

0u4v dx +

ε

2

∫1

0vu2t dx

+α212a

2

2εb2d21

∫1

0v3dx +

ε

2

∫1

0vu2t dx +

α212A2

2εB2d21

∫1

0v2wdx +

ε

2

∫1

0wu2t dx

≤ α2122ε

[1 +(ab

)2+(A

B

)2]M2/3

1 d−10/31

(∫1

0v5dx

)1/3

+2α2125ε

∫1

0

(u5 + v5

)dx

2

∫1

0uu2t dx + ε

∫1

0vu2t dx +

ε

2

∫1

0wu2t dx,

α13

∫1

0wutf dx ≤ α13

∫1

0wut

(d−11 u + u2 +

a

bd1v +

A

Bd1w

)dx

≤ α213d−21

∫1

0uw2dx +

ε

2

∫1

0uu2t dx +

α2132ε

∫1

0u4wdx +

ε

2

∫1

0wu2t dx

+α213a

2

2εb2d21

∫1

0w2v dx +

ε

2

∫1

0vu2t dx +

α213A2

2εB2d21

∫1

0w3dx +

ε

2

∫1

0wu2t dx

≤ α2132ε

[1 +(ab

)2+(A

B

)2]M2/3

1 d−10/31

(∫1

0w5dx

)1/3

+2α2135ε

∫1

0

(u5 +w5

)dx

2

∫1

0uu2t dx + ε

∫1

0wu2t dx +

ε

2

∫1

0vu2t dx,

Page 16: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

16 Abstract and Applied Analysis

α12

∫1

0uvtf dx ≤ α12

∫1

0uvt

(d−11 u + u2 +

a

bd1v +

A

Bd1w

)dx

≤ α212d−21

∫1

0u3dx +

ε

2

∫1

0uv2

t dx +α2122ε

∫1

0u5dx +

ε

2

∫1

0uv2

t dx

+α212a

2

2εb2d21

∫1

0u2v dx +

ε

2

∫1

0vv2

t dx +α212A

2

2εB2d21

∫1

0u2wdx +

ε

2

∫1

0wv2

t dx

≤ α2122ε

[1 +(ab

)2+(A

B

)2]M2/3

1 d−10/31

(∫1

0u5dx

)1/3

+α2122ε

∫1

0u5dx

+ ε∫1

0uv2

t dx +ε

2

∫1

0vv2

t dx +ε

2

∫1

0wv2

t dx,

α13

∫1

0uwtf dx ≤ α13

∫1

0uwt

(d−11 u + u2 +

a

bd1v +

A

Bd1w

)dx

≤ α213d−21

∫1

0u3dx +

ε

2

∫1

0uw2

t dx +α2132ε

∫1

0u5dx +

ε

2

∫1

0uw2

t dx

+α213a

2

2εb2d21

∫1

0u2v dx +

ε

2

∫1

0vw2

t dx +α213A

2

2εB2d21

∫1

0u2wdx +

ε

2

∫1

0ww2

t dx,

≤ α2132ε

[1 +(ab

)2+(A

B

)2]M2/3

1 d−10/31

(∫1

0u5dx

)1/3

+α2132ε

∫1

0u5dx

+ ε∫1

0uw2

t dx +ε

2

∫1

0vw2

t dx +ε

2

∫1

0ww2

t dx,

ξ

∫1

0vtg dx ≤ ξ

∫1

0vtlv

(d−11 +

e

bd1

)dx ≤ ξ2l2d−2

1 (1 + (e/b))2

∫1

0v dx +

ε

2

∫1

0vv2

t dx

≤ ξ2l2(1 + (e/b))2

2εM0d

−31 +

ε

2

∫1

0vv2

t dx,

α21

∫1

0uvtg dx ≤ α21

∫1

0uvtlv

(d−11 +

e

bd1

)dx

≤ α221l2d−2

1 (1 + (e/b))2

∫1

0u2v dx +

ε

2

∫1

0vv2

t dx

≤ α221l2(1 + (e/b))2

2εM2/3

1 d−10/31

(∫1

0u5dx

)1/3

2

∫1

0vv2

t dx,

Page 17: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 17

2α22

∫1

0vvtg dx ≤ 2α22

∫1

0v2vtl

(d−11 +

e

bd1

)dx

≤ α222l2d−2

1 (1 + (e/b))2

ε

∫1

0v3dx + ε

∫1

0vv2

t dx

≤ α221l2(1 + (e/b))2

εM2/3

1 d−10/31

(∫1

0v5dx

)1/3

+ ε∫1

0vv2

t dx,

α23

∫1

0wvtg dx ≤ α23

∫1

0wvtlv

(d−11 +

e

bd1

)dx

≤ α223l2d−2

1 (1 + (e/b))2

∫1

0v2wdx +

ε

2

∫1

0wv2

t dx

≤ α223l2(1 + (e/b))2

2εM2/3

1 d−10/31

(∫1

0v5dx

)1/3

2

∫1

0wv2

t dx,

α21

∫1

0vutg dx ≤ α21

∫1

0v2vtl

(d−11 +

e

bd1

)dx

≤ α221l2d−2

1 (1 + (e/b))2

∫1

0v3dx +

ε

2

∫1

0vu2t dx

≤ α221l2(1 + (e/b))2

2εM2/3

1 d−10/31

(∫1

0v5dx

)1/3

2

∫1

0vu2t dx,

α23

∫1

0vwtg dx ≤ α23

∫1

0v2wtl

(d−11 +

e

bd1

)dx

≤ α223l2d−2

1 (1 + (e/b))2

∫1

0v3dx +

ε

2

∫1

0vw2

t dx

≤ α223l2(1 + (e/b))2

2εM2/3

1 d−10/31

(∫1

0v5dx

)1/3

2

∫1

0vw2

t dx,

η

∫1

0wthdx ≤ η

∫1

0wtLw

(d−11 +

E

Bd1

)dx

≤ η2L2d−21 (1 + (E/B))2

∫1

0wdx +

ε

2

∫1

0ww2

t dx

Page 18: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

18 Abstract and Applied Analysis

≤ η2L2(1 + (E/B))2

2εM0d

−31 +

ε

2

∫1

0ww2

t dx,

α31

∫1

0uwthdx ≤ α31

∫1

0uwtLw

(d−11 +

E

Bd1

)dx

≤ α231L2d−2

1 (1 + (E/B))2

∫1

0w2udx +

ε

2

∫1

0uw2

t dx

≤ α231L2(1 + (E/B))2

2εM2/3

1 d−10/31

(∫1

0w5dx

)1/3

2

∫1

0uw2

t dx,

α32

∫1

0vwthdx ≤ α32

∫1

0vwtLw

(d−11 +

E

Bd1

)dx

≤ α232L2d−2

1 (1 + (E/B))2

∫1

0w2v dx +

ε

2

∫1

0vw2

t dx

≤ α232L2(1 + (E/B))2

2εM2/3

1 d−10/31

(∫1

0w5dx

)1/3

2

∫1

0vw2

t dx,

2α33

∫1

0wwthdx ≤ 2α33

∫1

0w2wtL

(d−11 +

E

Bd1

)dx

≤ α233L2d−2

1 (1 + (E/B))2

ε

∫1

0w3dx + ε

∫1

0ww2

t dx

≤ α233L2(1 + (E/B))2

εM2/3

1 d−10/31

(∫1

0w5dx

)1/3

+ ε∫1

0ww2

t dx,

α31

∫1

0wuthdx ≤ α31

∫1

0w2utL

(d−11 +

E

Bd1

)dx

≤ α231L2d−2

1 (1 + (E/B))2

∫1

0w3dx +

ε

2

∫1

0wu2t dx

≤ α231L2(1 + (E/B))2

2εM2/3

1 d−10/31

(∫1

0v5dx

)1/3

2

∫1

0wu2t dx,

Page 19: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 19

α32

∫1

0wvthdx ≤ α32

∫1

0w2vtL

(d−11 +

E

Bd1

)dx

≤ α232L2d−2

1 (1 + (E/B))2

∫1

0w3dx +

ε

2

∫1

0wv2

t dx

≤ α232L2(1 + (E/B))2

2εM2/3

1 d−10/31

(∫1

0w5dx

)1/3

2

∫1

0wv2

t dx.

(2.25)

By the above inequalities and the condition (1.17), we have

∫1

0

[(1 + 2α11u + α12v + α13w)utf + α12uvtf + α13uwtf

]dx

+∫1

0

[(ξ + α21u + 2α22v + α23w)vtg + α21vutg + α23vwtg

]dx

+∫1

0

[(η + α31u + α32v + 2α33w

)wth + α31wuth + α32wvth

]dx

≤ λε∫1

0(u + v +w)

(u2t + v

2t +w

2t

)dx +

C4

ε

(1 + ξ2 + η2

)M0d

−31

+C5

ε

(1 + d−2

1

)M2/3

1 d−4/31

[∫1

0

(u5 + v5 +w5

)dx

]1/3+C6

ε

∫1

0

(u5 + v5 +w5

)dx,

(2.26)

where λ is a constant depending only on ε(αij) (i, j = 1, 2, 3). Choose a small enough positivenumber ε which depends on αij (i, j = 1, 2, 3), a, b, e, l, A, B,D, E, and L, such that λε < C3.Substituting inequalities (2.24) and (2.26) into (2.21), one can obtain

12y′(t) ≤ − 1

2

∫1

0P 2xxdx − ξ

2

∫1

0Q2xxdx − η

2

∫1

0R2xxdx

+ B1K2d−31 + B2Y + B3K3d

−2/31 Y 2/3 + B4K4d

−4/31 Y 1/3,

(2.27)

where Y =∫10 (u

5 + v5 + w5)dx, K2 = (1 + ξ2 + η2)M0 + (1 + ξ + η)M1d−11 , K3 = M1/3

1 , K4 =M2/3

1 (1 + d−21 ).

Note that

P ≥ α11u2, Q ≥ α22v2, R ≥ α33w2. (2.28)

Page 20: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

20 Abstract and Applied Analysis

It follows from (2.18) and (2.4) to functions P, Q, R that

Y ≤ B5

∫1

0

(P 5/2 +Q5/2 + R5/2

)dx ≤ B6K

3/21 d−3/2

1 y1/2 + B6K5/21 d−5/2

1 ,

Y 1/3 ≤ B7K1/21 d−1/2

1 y1/6 + B7K5/61 d−5/6

1 ,

Y 2/3 ≤ B8K1d−11 y

1/3 + B8K5/31 d−5/3

1 .

(2.29)

Moreover, one can obtain by (2.5) and (2.18) that

−12

∫1

0P 2xxdx − ξ

2

∫1

0Q2xxdx − η

2

∫1

0R2xxdx

≤ −B9 min{1, ξ, η

}K−4/3

1 d4/31 y5/3 +

(1 + ξ + η

)K2

1d−21 .

(2.30)

Combining (2.27),(2.29), and (2.30), we have

12y′(t) ≤ − A1 min

{1, ξ, η

}K−4/3

1 d4/31 y5/3

+ A2

[(1 + ξ + η

)K2

1d−21 +K2d

−31 +K5/2

1 d−5/21 +K5/3

1 K3d−7/31 +K5/6

1 K4d−13/61

]+ A3K

3/21 d−3/2

1 y1/2 +A4K1K3d−5/31 y1/3 +A5K

1/21 K4d

−11/61 y1/6.

(2.31)

Multiplying inequality (2.31) by d21, we have

12y′(t) ≤ − A1 min

{1, ξ, η

}K−4/3

1 y5/3

+ A2

[(1 + ξ + η

)K2

1 +K2d−11 +K5/2

1 d−1/21 +K5/3

1 K3d−1/31 +K5/6

1 K4d−1/61

]+ A3K

3/21 d−1/2

1 y1/2 +A4K1K3d−1/31 y1/3 +A5K

1/21 K4d

−1/61 y1/6,

(2.32)

where y =∫10 [(d1Px)

2 + (d1Qx)2 + (d1Rx)

2]dx. The inequality (2.32) implies that there existτ2 > 0 and positive constant M2 depending on di, αij (i, j = 1, 2, 3), a, b, e, l, A, B,D, E, and L,such that

∫1

0(d1Px)

2dx,

∫1

0(d1Qx)

2dx,

∫1

0(d1Rx)

2dx ≤ M2, t ≥ τ2. (2.33)

In the case that d1, d2, d3 ≥ 1, ξ, η ∈ [d, d], the coefficients of inequality (2.31) can be estimatedby some constants which depend on d, d, but do not depend on d1, d2, d3. So M2 depends

Page 21: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 21

on αij (i, j = 1, 2, 3), a, b, e, l, A, B,D, E, L, d, and d, but it is irrelevant to d1, d2, d3, whend1, d2, d3 ≥ 1 and ξ, η ∈ [d, d]. Since

⎛⎝PxQx

Rx

⎞⎠ =

⎛⎝Pu Pv PwQu Qv Qw

Ru Rv Rw

⎞⎠⎛⎝uxvxwx

⎞⎠, (2.34)

we can transform the formulations of ux, vx,wx into fraction representations, then distributethe denominators of the absolute value of the fractions to the numerators item and enlargethe term concerning with ux, vx or wx to obtain

|d1ux| + |d1vx| + |d1wx| ≤ C′(|d1Px| + |d1Qx| + |d1Rx|), 0 < x < 1, t > 0, (2.35)

where C′ is a constant depending only on ξ, η, αij (i, j = 1, 2, 3). After scaling back andcontacting estimates (2.33) and (2.35), there exist positive constant M2 depending ondi, αij (i, j = 1, 2, 3), a, b, e, l, A, B,D, E, L, and τ2 > 0, such that

∫1

0u2xdx,

∫1

0v2xdx,

∫1

0w2xdx ≤M2, t ≥ τ2. (2.36)

When d1, d2, d3 ≥ 1 and ξ, η ∈ [d, d],M2 is independent of d1, d2, d3.(ii)One has t ≥ 0. Modifying the dependency of the coefficients in inequalities (2.17)–

(2.22), namely, replacingM0,M1 withM′0,M

′1, there exists a positive constantM

′2 depending

on di, αij(i, j = 1, 2, 3), a, b, e, l, A, B, D, E, L, and theW12 -norm of u0, v0, w0, such that

∫1

0u2xdx,

∫1

0v2xdx,

∫1

0w2xdx ≤M′

2, t ≥ 0. (2.36)′

Furthermore, in the case that d1, d2, d3 ≥ 1, ξ, η ∈ [d, d], M′2 depends on d, d, but does not

depend on d1, d2, d3.Summarizing estimates (2.8), (2.15), (2.36) and Sobolev embedding theorem, there

exist positive constants M,M′ depending only on di, αij (i, j = 1, 2, 3), a, b, e, l, A, B,D, E,and L, such that (1.18) and (1.19) hold. In particular, M,M′ depend only on αij (i, j =1, 2, 3), a, b, e, l, A, B,D, E, L, d, and d, but do not depend on d1, d2, d3, when d1, d2, d3 ≥ 1and ξ, η ∈ [d, d].

Similarly, according to (2.8)′, (2.15)′, (2.36)′, there exists a positive constant M′′

depending on di, αij (i, j = 1, 2, 3),a, b, e, l, A, B,D, E, L and the initial functions u0, v0, w0, suchthat

|u(·, t)|1,2, |v(·, t)|1,2, |w(·, t)|1,2 ≤M′′, t ≥ 0. (2.37)

Further, in the case that d1, d2, d3 ≥ 1, ξ, η ∈ [d, d], M′′ depends only on d, d, but do notdepend on d1, d2, d3. Thus, T = +∞. This completes the proof of Theorem 1.1.

Page 22: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

22 Abstract and Applied Analysis

3. Global Stability

In order to obtain the uniform convergence of the solution for the system (1.16), we recall thefollowing result which can be found in [37, 42].

Lemma 3.1. Let a and b be positive constants. Assume that ϕ, ψ ∈ C1([a,+∞)), ψ(t) ≥ 0 andϕ is bounded from below. If ϕ′(t) ≤ −bψ(t) and ψ ′(t) is bounded from above in [a,+∞), thenlimt→∞ψ(t) = 0.

Proof of Theorem 1.3. Let (u, v,w) be a solution for the system (1.16) with initial functionsu0(x), v0(x), w0(x) ≥ (/≡ )0. From the strong maximum principle for parabolic equations, itis not hard to verify that u, v,w > 0 for t > 0. Define the function

H(u, v,w) =∫1

0

(u − u∗ − u∗ ln u

u∗)dx + α

∫1

0

(v − v∗ − v∗ ln

v

v∗)dx

+ β∫1

0

(w −w∗ −w∗ ln

w

w∗)dx.

(3.1)

Then the time derivative ofH(u, v,w) for the system (1.16) satisfies

dH

dt=∫1

0

u − u∗u

utdx + α∫1

0

v − v∗

vvtdx + β

∫1

0

w −w∗

wwtdx

= −∫1

0

[u∗

u2(d1 + 2α11u + α12v + α13w)u2x +

u∗

u(α12vx + α13wx)ux

+αv∗

v2 (d2 + α21u + 2α22v + α23w)v2x +

αv∗

v(α21ux + α23wx)vx

+βw∗

w2 (d3 + α31u + α32v + 2α33w)w2x +

βw∗

w(α31ux + α13vx)wx

]dx

+∫1

0(u − u∗)

(1 − u − av

1 + bu− Aw

1 + Bu +Dw

)dx + α

∫1

0(v − v∗)m

(−1 + eu

1 + bu

)dx

+ β∫1

0(w −w∗)M

(−1 + Eu

1 + Bu +Dw

)dx.

(3.2)

The first integrand in the right hand of (3.2) is positive definite if

4αβu∗v∗w∗(d1 + 2α11u + α12v + α13w)(d2 + α21u + 2α22v + α23w)(d3 + α31u + α32v + 2α33w)

> u∗(αα23v

∗w + βα32w∗v)2(d1 + 2α11u + α12v + α13w)

+ αv∗(α13u∗w + βα31w∗u)2(d2 + α21u + 2α22v + α23w)

+ βw∗(α12u∗v + αα21v∗u)2(d3 + α31u + α32v + 2α33w).(3.3)

Page 23: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 23

By the maximum-norm estimate in Theorem 1.1, the condition (1.20) implies (3.3). Therefore,we have

dH

dt≤ −

∫1

0

[1 − abv∗

(1 + bu∗)(1 + bu)− ABw∗

(1 + Bu∗ +Dw∗)(1 + Bu +Dw)

](u − u∗)2dx

− β∫1

0

MDEu∗

(1 + Bu∗ +Dw∗)(1 + Bu +Dw)(w −w∗)2dx

≤ −∫1

0

[1 − abv∗

1 + bu∗− ABw∗

1 + Bu∗ +Dw∗

](u − u∗)2dx − β

∫1

0

MDEu∗

1 + Bu∗ +Dw∗ (w −w∗)2dx

� − l1∫1

0(u − u∗)2dx − βl2

∫1

0(w −w∗)2dx,

(3.4)

where

l1 = 1 − abv∗

1 + bu∗− ABw∗

1 + Bu∗ +Dw∗ ,

l2 =MDEu∗

1 + Bu∗ +Dw∗ > 0.

(3.5)

The condition (1.21) implies l1 > 0. Using the similar argument in the proof of Theorem 4.2 in[42], by the maximum-norm estimate in Theorem 1.1 and some tedious calculations, we canprove

limt→∞

∫1

0(u − u∗)2dx = lim

t→∞

∫1

0(v − v∗)2dx = lim

t→∞

∫1

0(w −w∗)2dx = 0. (3.6)

It follows from (3.6) and Gagliardo-Nirenberg-type inequality |u|∞ ≤ C|u|1/21,2 |u|1/22 that(u, v,w) converges uniformly on (u∗, v∗, w∗). By the fact thatH(u, v,w) is decreasing for t ≥0, it is obvious that (u∗, v∗, w∗) is globally asymptotically stable. So the proof of Theorem 1.3is completed.

Acknowledgments

This work is supported by the China National Natural Science Foundation (no. 11061031;11161041), the Fundamental Research Funds for the Gansu University, NWNU-KJCXGC-03-61 and the Fundamental Research Funds for the Central Universities (no. zyz2012074).

References

[1] V. Volterra, “Variations and fluctuations of the number of individuals in animal species livingtogether,” Journal du Conseil Conseil International pour l’Exploration de la Mer, vol. 3, pp. 3–51, 1928.

[2] F. J. Ayala, “Experimental invalidation of the principle of competitive exclusion,”Nature, vol. 224, pp.1076–1079, 1969.

Page 24: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

24 Abstract and Applied Analysis

[3] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series inMathematical and Computational Biology, John Wiley & Sons, Chichester, UK, 2003.

[4] T. W. Schoener, “Alternatives to Lotka-Volterra competition: models of intermediate complexity,”Theoretical Population Biology, vol. 10, no. 3, pp. 309–333, 1976.

[5] R. S. Cantrell, C. Cosner, and S. Ruan, “Intraspecific interference and consumer-resource dynamics,”Discrete and Continuous Dynamical Systems Series B, vol. 4, no. 3, pp. 527–546, 2004.

[6] L.-J. Hei and Y. Yu, “Non-constant positive steady state of one resource and two consumers modelwith diffusion,” Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 566–581, 2008.

[7] K. Kuto, “Stability of steady-state solutions to a prey-predator system with cross-diffusion,” Journalof Differential Equations, vol. 197, no. 2, pp. 293–314, 2004.

[8] K. Kuto and Y. Yamada, “Multiple coexistence states for a prey-predator systemwith cross-diffusion,”Journal of Differential Equations, vol. 197, no. 2, pp. 315–348, 2004.

[9] Y. Lou and W. Ni, “Diffusion, self-diffusion and cross-diffusion,” Journal of Differential Equations, vol.131, pp. 79–131, 1996.

[10] Y. Lou and W.-M. Ni, “Diffusion vs cross-diffusion: an elliptic approach,” Journal of DifferentialEquations, vol. 154, no. 1, pp. 157–190, 1999.

[11] P. Y. H. Pang and M. Wang, “Strategy and stationary pattern in a three-species predator-prey model,”Journal of Differential Equations, vol. 200, no. 2, pp. 245–273, 2004.

[12] J. Shi, Z. Xie, and K. Little, “Cross-diffusion induced instability and stability in reaction-diffusionsystems,” Journal of Applied Analysis and Computation, vol. 1, pp. 95–119, 2011.

[13] C. Tian, Z. Lin, and M. Pedersen, “Instability induced by cross-diffusion in reaction-diffusionsystems,” Nonlinear Analysis. Real World Applications, vol. 11, no. 2, pp. 1036–1045, 2010.

[14] M. Wang, “Stationary patterns of strongly coupled prey-predator models,” Journal of MathematicalAnalysis and Applications, vol. 292, no. 2, pp. 484–505, 2004.

[15] Y. S. Choi, R. Lui, and Y. Yamada, “Existence of global solutions for the Shigesada-Kawasaki-Teramotomodel with weak cross-diffusion,”Discrete and Continuous Dynamical Systems Series A, vol. 9, no. 5, pp.1193–1200, 2003.

[16] Y. S. Choi, R. Lui, and Y. Yamada, “Existence of global solutions for the Shigesada-Kawasaki-Teramotomodel with strongly coupled cross-diffusion,”Discrete and Continuous Dynamical Systems Series A, vol.10, no. 3, pp. 719–730, 2004.

[17] S. Fu, Z. Wen, and S. Cui, “Uniform boundedness and stability of global solutions in a stronglycoupled three-species cooperating model,” Nonlinear Analysis: Real World Applications, vol. 55, pp.1–18, 2006.

[18] D. Le, “Cross diffusion systems on n spatial dimensional domains,” Indiana University MathematicsJournal, vol. 51, no. 3, pp. 625–643, 2002.

[19] D. Le, L. V. Nguyen, and T. T. Nguyen, “Shigesada-Kawasaki-Teramoto model on higher dimensionaldomains,” Electronic Journal of Differential Equations, vol. 72, pp. 1–12, 2003.

[20] Y. Lou, W.-M. Ni, and Y. Wu, “On the global existence of a cross-diffusion system,” Discrete andContinuous Dynamical Systems, vol. 4, no. 2, pp. 193–203, 1998.

[21] P. V. Tuoc, “Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systemson domains of arbitrary dimensions,” Proceedings of the American Mathematical Society, vol. 135, no. 12,pp. 3933–3941, 2007.

[22] P. V. Tuoc, “On global existence of solutions to a cross-diffusion system,” Journal of MathematicalAnalysis and Applications, vol. 343, no. 2, pp. 826–834, 2008.

[23] Y. Yamada, “Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with cross-diffusion,” Mathematical and Analytic Institute Communications in Waseda University, vol. 1358, pp. 24–33, 2004.

[24] J. W. Barrett and J. F. Blowey, “Finite element approximation of a nonlinear cross-diffusion populationmodel,” Numerische Mathematik, vol. 98, no. 2, pp. 195–221, 2004.

[25] J. W. Barrett, J. F. Blowey, and H. Garcke, “Finite element approximation of a fourth order nonlineardegenerate parabolic equation,” Numerische Mathematik, vol. 80, no. 4, pp. 525–556, 1998.

[26] J. W. Barrett, H. Garcke, and R. Nurnberg, “Finite element approximation of surfactant spreading ona thin film,” SIAM Journal on Numerical Analysis, vol. 41, no. 4, pp. 1427–1464, 2003.

[27] L. Chen and A. Jungel, “Analysis of a parabolic cross-diffusion population model without self-diffusion,” Journal of Differential Equations, vol. 224, no. 1, pp. 39–59, 2006.

[28] F. Filbet, “A finite volume scheme for the Patlak-Keller-Segel chemotaxis model,” NumerischeMathematik, vol. 104, no. 4, pp. 457–488, 2006.

Page 25: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Abstract and Applied Analysis 25

[29] G. Galiano, M. L. Garzon, and A. Jungel, “Semi-discretization in time and numerical convergence ofsolutions of a nonlinear cross-diffusion population model,” Numerische Mathematik, vol. 93, no. 4, pp.655–673, 2003.

[30] G. Gilardi and U. Stefanelli, “Time-discretization and global solution for a doubly nonlinear Volterraequation,” Journal of Differential Equations, vol. 228, no. 2, pp. 707–736, 2006.

[31] Y.-H. Fan, L.-L. Wang, and M.-X. Wang, “Notes on multiple bifurcations in a delayed predator-preymodel with nonmonotonic functional response,” International Journal of Biomathematics, vol. 2, no. 2,pp. 129–138, 2009.

[32] Z. Luo and Z.-R. He, “Optimal harvesting problem for an age-dependent n-dimensional competingsystem with diffusion,” International Journal of Biomathematics, vol. 1, no. 2, pp. 133–145, 2008.

[33] B. Dubey and B. Hussain, “A predator-prey interaction model with self and cross-diffusion,”Ecological Modelling, vol. 141, pp. 67–76, 2001.

[34] H. Amann, “Dynamic theory of quasilinear parabolic equations—I. Abstract evolution equations,”Nonlinear Analysis. Theory, Methods & Applications, vol. 12, no. 9, pp. 895–919, 1988.

[35] H. Amann, “Dynamic theory of quasilinear parabolic equations—II. Reaction-diffusion systems,”Differential and Integral Equations, vol. 3, no. 1, pp. 13–75, 1990.

[36] H. Amann, “Dynamic theory of quasilinear parabolic systems—III. Global existence,” MathematischeZeitschrift, vol. 202, no. 2, pp. 219–250, 1989.

[37] M. Wang, Nonlinear Partial Differential Equations of Parabolic Type, Science Press, Beijing, China, 1993.[38] S.-A. Shim, “Uniform boundedness and convergence of solutions to cross-diffusion systems,” Journal

of Differential Equations, vol. 185, no. 1, pp. 281–305, 2002.[39] S.-A. Shim, “Uniform boundedness and convergence of solutions to the systems with cross-diffusions

dominated by self-diffusions,”Nonlinear Analysis. Real World Applications, vol. 4, no. 1, pp. 65–86, 2003.[40] S.-A. Shim, “Uniform boundedness and convergence of solutions to the systemswith a single nonzero

cross-diffusion,” Journal of Mathematical Analysis and Applications, vol. 279, no. 1, pp. 1–21, 2003.[41] L. Nirenberg, “On elliptic partial differential equations,” Annali della Scuola Normale Superiore di Pisa,

vol. 13, pp. 115–162, 1959.[42] Z. Lin and M. Pedersen, “Stability in a diffusive food-chain model with Michaelis-Menten functional

response,” Nonlinear Analysis. Theory, Methods & Applications, vol. 57, no. 3, pp. 421–433, 2004.

Page 26: Global Behavior for a Strongly Coupled Predator-Prey Model ...downloads.hindawi.com/journals/aaa/2012/183285.pdf2 4d 2, D E−B −A E−B−1 D E−B > 1 e−b 1.11 and 1.8 hold

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of