64
Bending Moment Resistance Reference Clause 6.5.6.5.1 0.9 Clause 6.5.6.5.1 Clause 6.5.6.5.1 30.60 Mpa Bending at extreme fibre, See Table 1.00 Duration factor, See Clause 6.4.1 1.00 System factor, See Clause 6.4.2.2 1.00 Service condition factor, See table 1.0 Treatment factor, See Clause 6.4.4 30.6 Mpa S: b = 80 mm Width of beam h = 570 mm Height of beam S = 4332000 mm^3 Section modulus Clause 6.5.6.5.2 t = 10 mm Lamination thickness R = 100000 mm Radius of curvature of the innermos 1.00 Curvature Factor Clause 6.5.6.5.1 B = 1m Either the beam width (for single p or the width of the widest piece (for multi piece laminations) L = 1m Length of beam frome point of zero to point of zero moment 1 119.30 kN*m 1000 mm Effective length, See table 6.5.6.4 9.4 Mr1 = j*Fb*S*Kx*Kzbg Mr2 = j*Fb*S*Kx*Kl Mr = Min(Mr1,Mr2) j = Fb: Fb = fb(Kd*Kh*Ksb*Kt) fb = Kd = Kh = Ksb = Kt = Fb= S = b*h 2 /6 KX: KX = 1-2000*(t/R) 2 KX = Kzbg: Kzbg = 1.03*(B*L) -0.18 Kzbg = Mr1 = KL: CB = (Le*d/b 2 )^0.5 Le = CB =

GF4_Tudor Arch for Hall Way - Exterior

Embed Size (px)

DESCRIPTION

DSA

Citation preview

Bending Moment Resistance Reference

Clause 6.5.6.5.1

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

30.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

30.6 MpaS:

b = 80 mm Width of beamh = 570 mm Height of beam

S = 4332000 mm^3 Section modulus

Clause 6.5.6.5.2t = 10 mm Lamination thicknessR = 100000 mm Radius of curvature of the innermost lamination

1.00 Curvature Factor

Clause 6.5.6.5.1B = 1 m Either the beam width (for single piece laminations)

or the width of the widest piece(for multi piece laminations)

L = 1 m Length of beam frome point of zero moment to point of zero moment

1

119.30 kN*m

1000 mm Effective length, See table 6.5.6.4.3

9.4

Mr1 = j*Fb*S*Kx*Kzbg

Mr2 = j*Fb*S*Kx*Kl

Mr = Min(Mr1,Mr2)

j =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

Mr1 =

KL:

CB = (Le*d/b2)^0.5

Le =

CB =

1 Clause 6.5.6.4.4

119.30 kN*m

119.30 kN*m

KL =

Mr2 =

Mr =

Shear Resistance (Gross Section)

Clause 6.5.7.2.1

0.9

2.0 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.00 Treatment factor, See Clause 6.4.4

2 Mpa

Gross cross section areac of memberb = 315 mm Width of beamh = 540 mm Height of beam

170100

1 Notch factor, See clause 6.5.7.2.2

204.12 kN

Clause 6.5.7.2.1

3.69 Shear load coefficient, see clause 6.5.7.4 and table 6.5.7.4l = 32 m Length of beam

Z = 5.44 Beam volume

399.8 kN

399.752 kN

Vr1 = F*Fv*2Ag/3*KN

Fv=fv(Kd*Kh*Ksv*Kt)

F =

Fv:

fv =

Kd =

Kh =

Ksv =

Kt =

Fv=

Ag:

Ag = b*h

Ag = mm2

KN :

KN =

Vr1 =

Vr2 = F*Fv*0.48*Ag*KN*Cv*Z-0.18

Cv =

m3

Vr2 =

If Z > 2m3 then Vr = Vr1 else Vr =Vr2

Vr =

Bending Moment Resistance (Based on bending strength)

Section 8.2

Section 8.2

Section 8.2

Section 2.5

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

30.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

30.6 MpaS:

b = 80 mm Width of beamh = 570 mm Height of beam

S = 4332000 mm^3 Section modulus

119.30328 kN*m

Clause 6.5.6.5.2t = 19 mm Lamination thickness, See table 8.2 page 374 wood design manualR = 100000 mm Radius of curvature of the innermost lamination

1.00 Curvature Factor

Clause 6.5.6.5.1B = 1 m Either the beam width (for single piece laminations)

or the width of the widest piece(for multi piece laminations)

L = 1 m Length of beam frome point of zero moment

to point of zero moment

1

1000 mm Effective length, See table 6.5.6.4.3

Mrb1 = M'r*KL*Kx*KM

Mrb2 = M'r*KZbg*KX*KM

Mrb = Min(Mrb1,Mrb2)

M'rb = f*Fb*S

f =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

M'rb =

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

KL:

CB = (Le*d/b2)^0.5

Le =

9.4

1 Clause 6.5.6.4.4

Section 8.40.0436 radian

Location : Apex of curved

0.8946187

106.72 kN*m

106.72 kN*m

106.72 kN*m

CB =

KL =

KM:

KM = 1/(1+2.7*tan a) a =

KM =

Mrb1 =

Mrb2 =

Mrb =

COLUMN _POINT 4 TO 5Liner Section Column

Axial Resistance Parallel Clause 6.5.8To The Grain (Column Capacity)

Pr=phi*Fc*A*Kzcg*KcFc=fc(Kd*Kh*Ksc*Kt)Kzc=0.68(Z)^-0.13 < 1.0Kc=[1.0+(FcKzcgCc^3/35E05KseKt)]^-1

phi= 0.8Fc:

fc= 30.2 Mpa Table 6.3Ksc= 1.00 Service condition factor, See Table 6.4.2 Kt= 1.0 Treatment factor, See Table 5.4.3Kd= 1.0 Duration factor, See Clause 4.3.2.2Kh= 1.0 System factor, See Clause 6.4.3

Fc= 30.2 MpaA = 106400 mm^2

Kzc= see belowKc = see below

Pr = 1431.2 kN

Column Lengths

Weak Axis = Lx = 3000 mmStrong Axis = Ly = 6200 mm

Column Size

Weak Axis = dx = 175 mmStrong Axis = dy = 608 mm

Kzcg

Kzcg = 0.7Z = 0.65968 m3 Member volumn

Kc

Kc = 0.78 Clause 6.5.8.5E = 12400 Table 6.3 - Modulus of Elasticity

E05=0.87E = 10788 Mpa Table 5.3.1 A-DKse = 1.0 Table 6.4.2 service condition factorCc = 17.1

Cc<=50, slenderness is within limitation

Bending Moment Resistance Reference

Clause 6.5.6.5.1

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

25.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

25.6 MpaS:

b = 175 mm Width of beamh = 608 mm Height of beam

S = 10781867 mm^3 Section modulus

Clause 6.5.6.5.2t = 19 mm Lamination thickness, see table 8.2 page 374R = 2800 mm Radius of curvature of the innermost lamination

0.91 Curvature Factor

Clause 6.5.6.5.1B = 0.175 m Either the beam width (for single piece

laminations) or the width of the widest piece(for multi piece laminations)

L = 6 m Length of beam frome point of zero moment to point of zero moment

1.00

225.54 kN*m

5760 mm Effective length, See table 6.5.6.4.3

10.7

Mr1 = j*Fb*S*Kx*Kzbg

Mr2 = j*Fb*S*Kx*Kl

Mr = Min(Mr1,Mr2)

j =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

Mr1 =

KL:

CB = (Le*d/b2)^0.5

Le =

CB =

1 Clause 6.5.6.4.4

225.54 kN*m

225.54 kN*m

Resistance to combined bending and axial load Pf = 38 kNPr = 1431.2 kNMf = 14.1 kN*mMr = 225.54 kN*m

0.09

Check Resistance to combined bending and axial load : OK

Shear Resistance (Gross Section)

Clause 6.5.7.2.1

0.9

2.0 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.00 Treatment factor, See Clause 6.4.4

2 Mpa

Gross cross section areac of memberb = 175 mm Width of beamh = 608 mm Height of beam

106400

1 Notch factor, See clause 6.5.7.2.2

127.68 kN

Clause 6.5.7.2.1

KL =

Mr2 =

Mr =

Vr1 = F*Fv*2Ag/3*KN

Fv=fv(Kd*Kh*Ksv*Kt)

F =

Fv:

fv =

Kd =

Kh =

Ksv =

Kt =

Fv=

Ag:

Ag = b*h

Ag = mm2

KN :

KN =

Vr1 =

Vr2 = F*Fv*0.48*Ag*KN*Cv*Z-0.18

𝑘=𝑃_𝑓/𝑃_𝑟 +𝑀_𝑓/𝑀_𝑟 =

3.69 Shear load coefficient, see clause 6.5.7.4 and table 6.5.7.4

l = 6200 mm Length of beam

Z = 0.66 Beam volume

365.6 kN

127.7 kN

10

0.08

Check shear Resistance : OK

Cv =

m3

Vr2 =

If Z > 2m3 then Vr = Vr1 else Vr =Vr2

Vr =

Vf =𝑘=𝑉_𝑓/𝑉_𝑟 =

TURDOR ARCH @ POINT 4Bending Moment Resistance (Based on bending strength)

Section 8.2

Section 8.2

Section 8.2

Section 2.5

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

25.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

25.6 MpaS:

b = 175 mm Width of beamh = 608 mm Height of beam

S = 10781867 mm^3 Section modulus

248.41421 kN*m

Clause 6.5.6.5.2t = 19 mm Lamination thickness, See table 8.2 page 374

wood design manualR = 2800 mm Radius of curvature of the innermost

0.91 lamination Curvature Factor

Clause 6.5.6.5.1B = 0.175 m Either the beam width (for single piece

laminations) or the width of the widest piece(for multi piece laminations)

L = 6 m Length of beam frome point of zero moment to point of zero moment

1

Mrb1 = M'r*KL*Kx*KM

Mrb2 = M'r*KZbg*KX*KM

Mrb = Min(Mrb1,Mrb2)

M'rb = f*Fb*S

f =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

M'rb =

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

KL:

CB = (Le*d/b2)^0.5

5760 mm Effective length, See table 6.5.6.4.3

10.7

1 Clause 6.5.6.4.4

Section 8.40.5529889 radian

Location : Not apex of curved

1

225.54 kN*m

225.54 kN*m

225.54 kN*m

Bending Moment Resistance (Based on radial tension strength)

Clause 6.5.6.6.2

Clause 6.5.6.6.1

0.9 Clause 6.5.6.6.1

Clause 6.5.6.6.1

0.83 Mpa Specified strength intension perpendicular to grain, see table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

0.83 Mpa

S:

b = 175 mm Width of beamh = 608 mm Height of beam

S = 10781867 mm^3 Section modulus

A = 106400 Maximum cross sectional area of memberR = 3104 mm Radius of curvature at centerline of member

0.9 rad Enclosed angle in radian Loading : Uniformly distributedMember : Double tapered curved

Le =

CB =

KL =

KM:

KM = 1/(1+2.7*tan a) a =

KM =

Mrb1 =

Mrb2 =

Mrb =

Mrt1= f*Ftp*S*KZtp*KR

Mrt2 = f*Ftp*2*A/3*R*KZtp

f =

Ftp:

Ftp = ftp(Kd*Kh*Kstp*Kt)

ftp =

Kd =

Kh =

Kstp =

Kt =

Ftp=

S = b*h2/6

KZtp:

mm2

b =

0.6995909

0.55 radianA = 0.16 Constants given in table 6.5.6.6.3B = 0.06 Constants given in table 6.5.6.6.3C = 0.11 Constants given in table 6.5.6.6.3

5.6826898Location : Not apex of curved

32.02 kN*m

115.06 kN*m

0.00 kN*m

Mr = 225.54 kN*m

Axial Resistance Parallel Clause 6.5.8To The Grain (Column Capacity)

Pr=phi*Fc*A*Kzcg*KcFc=fc(Kd*Kh*Ksc*Kt)Kzc=0.68(Z)^-0.13 < 1.0Kc=[1.0+(FcKzcgCc^3/35E05KseKt)]^-1

phi= 0.8Fc:

fc= 30.2 Mpa Table 6.3Ksc= 1.00 Table 6.4.2 service condition factorKt= 1.0 Table 5.4.3 treatment factorKd= 1.0 Duration factor see Clause 4.3.2.2Kh= 1.0 System factor see Clause 6.4.3

Fc= 30.2 MpaA = 84455 mm^2

Kzc= see belowKc = see below

Pr = 1162.7 kN

1162.7 kN Calculated with equivalent section

1225.9 kN Calculated with smaller section and Cc=1

Column Lengths

Weak Axis = Lx = 3000 mmStrong Axis = Ly = 6200 mm

KZtp =

KR: a =

KR = [A+B*(d/R)+C*(d/R)2]-1

KR =

Mrt1=

Mrt2 =

Mrt =

Column Size

Equivalent Smaller end Larger end

Weak Axis = dx = 175 mm 175 mm 175 mm

Strong Axis = dy = 482.6 mm 380 mm 608 mm

Kzcg

Kzcg = 0.7Z = 0.523621 m3 Member volumn

Kzcg = 0.8 For member with constant section

Z = 0.4123 m3 of smaller one

Kc

Kc = 0.77 Clause 6.5.8.5E = 12400 Table 6.3 - Modulus of Elasticity

0.87E = 10788 Table 5.3.1 A-DKse = 1.0 Table 6.4.2 service condition factorCc = 17.1

Cc<=50, slenderness is within limitation

Resistance to combined bending and axial load Pf = 38 kNPr = 1162.7 kNMf = 14.1 kN*mMr = 225.54 kN*m

0.10

Check Resistance to combined bending and axial load : OK

Shear Resistance (Gross Section)

Clause 6.5.7.2.1

0.9

2.0 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.00 Treatment factor, See Clause 6.4.4

2 Mpa

Gross cross section areac of member

Vr1 = F*Fv*2Ag/3*KN

Fv=fv(Kd*Kh*Ksv*Kt)

F =

Fv:

fv =

Kd =

Kh =

Ksv =

Kt =

Fv=

Ag:

Ag = b*h

𝑘=𝑉_𝑓/𝑉_𝑟 =

𝑘=𝑃_𝑓/𝑃_𝑟 +𝑀_𝑓/𝑀_𝑟 =

b = 175 mm Width of beamh = 608 mm Height of beam

106400

1 Notch factor, See clause 6.5.7.2.2

127.68 kN

Clause 6.5.7.2.1

3.69 Shear load coefficient, see clause 6.5.7.4 and table 6.5.7.4

l = 6.2 m Length of beam

Z = 0.66 Beam volume

365.6 kN

127.7 kN

10

0.08

Check shear Resistance : OK

Ag = mm2

KN :

KN =

Vr1 =

Vr2 = F*Fv*0.48*Ag*KN*Cv*Z-0.18

Cv =

m3

Vr2 =

If Z > 2m3 then Vr = Vr1 else Vr =Vr2

Vr =

Vf =𝑘=𝑉_𝑓/𝑉_𝑟 =

TURDOR ARCH @ POINT 3Bending Moment Resistance (Based on bending strength)

Section 8.2

Section 8.2

Section 8.2

Section 2.5

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

25.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

25.6 MpaS:

b = 175 mm Width of beamh = 1192 mm Height of beam

S = 41441867 mm^3 Section modulus

954.82061 kN*m

Clause 6.5.6.5.2t = 19 mm Lamination thickness, See table 8.2 page 374

wood design manualR = 2800 mm Radius of curvature of the innermost

0.91 lamination Curvature Factor

Clause 6.5.6.5.1B = 0.175 m Either the beam width (for single piece

laminations) or the width of the widest piece(for multi piece laminations)

L = 6 m Length of beam frome point of zero moment to point of zero moment

1

Mrb1 = M'r*KL*Kx*KM

Mrb2 = M'r*KZbg*KX*KM

Mrb = Min(Mrb1,Mrb2)

M'rb = f*Fb*S

f =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

M'rb =

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

KL:

CB = (Le*d/b2)^0.5

5760 mm Effective length, See table 6.5.6.4.3

15.0

1 Clause 6.5.6.4.4

Section 8.40.5529889 radian

Location : Apex of curved

0.3750223

325.10 kN*m

325.10 kN*m

325.10 kN*m

Bending Moment Resistance (Based on radial tension strength)

Clause 6.5.6.6.2

Clause 6.5.6.6.1

0.9 Clause 6.5.6.6.1

Clause 6.5.6.6.1

0.83 Mpa Specified strength intension perpendicular to grain, see table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

0.83 Mpa

S:

b = 175 mm Width of beamh = 1192 mm Height of beam

S = 41441867 mm^3 Section modulus

A = 208600 Maximum cross sectional area of memberR = 3396 mm Radius of curvature at centerline of member

0.9 rad Enclosed angle in radian Loading : Uniformly distributedMember : Double tapered curved

Le =

CB =

KL =

KM:

KM = 1/(1+2.7*tan a) a =

KM =

Mrb1 =

Mrb2 =

Mrb =

Mrt1= f*Ftp*S*KZtp*KR

Mrt2 = f*Ftp*2*A/3*R*KZtp

f =

Ftp:

Ftp = ftp(Kd*Kh*Kstp*Kt)

ftp =

Kd =

Kh =

Kstp =

Kt =

Ftp=

S = b*h2/6

KZtp:

mm2

b =

0.6005656

0.55 radianA = 0.16 Constants given in table 6.5.6.6.3B = 0.06 Constants given in table 6.5.6.6.3C = 0.11 Constants given in table 6.5.6.6.3

5.1384221Location : Not apex of curved

95.53 kN*m

211.87 kN*m

0.00 kN*m

Mr = 325.10 kN*m

Axial Resistance Parallel Clause 6.5.8To The Grain (Column Capacity)

Pr=phi*Fc*A*Kzcg*KcFc=fc(Kd*Kh*Ksc*Kt)Kzc=0.68(Z)^-0.13 < 1.0Kc=[1.0+(FcKzcgCc^3/35E05KseKt)]^-1

phi= 0.8Fc:

fc= 30.2 Mpa Table 6.3Ksc= 1.0 Table 6.4.2 service condition factorKt= 1.0 Table 5.4.3 treatment factorKd= 1.0 Duration factor see Clause 4.3.2.2Kh= 1.0 System factor see Clause 6.4.3

Fc= 30.2 MpaA = 130445 mm^2

Kzc= see belowKc = see below

Pr = 1225.9 kN

1718.9 kN Calculated with equivalent section

1225.9 kN Calculated with smaller section and Cc=1

Column Lengths

Weak Axis = Lx = 3000 mmStrong Axis = Ly = 6200 mm

KZtp =

KR: a =

KR = [A+B*(d/R)+C*(d/R)2]-1

KR =

Mrt1=

Mrt2 =

Mrt =

Column Size

Equivalent Smaller end Larger end

Weak Axis = dx = 175 mm 175 mm 175 mm

Strong Axis = dy = 745.4 mm 380 mm 1192 mm

Kzcg

Kzcg = 0.7Z = 0.808759 m3 Member volumn

Kzcg = 0.8 For member with constant section

Z = 0.4123 m3 of smaller one

Kc

Kc = 0.78 Clause 6.5.8.5E = 12400 Table 6.3 - Modulus of Elasticity

0.87E = 10788 Table 5.3.1 A-DKse = 1.0 Table 6.4.2 service condition factorCc = 17.1

Cc<=50, slenderness is within limitation

Resistance to combined bending and axial load Pf = 25.2 kNPr = 1225.9 kNMf = 32.1 kN*mMr = 325.10 kN*m

0.12

Check Resistance to combined bending and axial load : OK

Shear Resistance (Gross Section)

Clause 6.5.7.2.1

0.9

2.0 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.00 Treatment factor, See Clause 6.4.4

2 Mpa

Gross cross section areac of member

Vr1 = F*Fv*2Ag/3*KN

Fv=fv(Kd*Kh*Ksv*Kt)

F =

Fv:

fv =

Kd =

Kh =

Ksv =

Kt =

Fv=

Ag:

Ag = b*h

𝑘=𝑉_𝑓/𝑉_𝑟 =

𝑘=𝑃_𝑓/𝑃_𝑟 +𝑀_𝑓/𝑀_𝑟 =

b = 175 mm Width of beamh = 786 mm Height of beam

137550

1 Notch factor, See clause 6.5.7.2.2

165.06 kN

Clause 6.5.7.2.1

3.69 Shear load coefficient, see clause 6.5.7.4 and table 6.5.7.4

l = 6.2 m Length of beam

Z = 0.85 Beam volume

451.3 kN

165.1 kN

25

0.15

Check shear Resistance : OK

Ag = mm2

KN :

KN =

Vr1 =

Vr2 = F*Fv*0.48*Ag*KN*Cv*Z-0.18

Cv =

m3

Vr2 =

If Z > 2m3 then Vr = Vr1 else Vr =Vr2

Vr =

Vf =𝑘=𝑉_𝑓/𝑉_𝑟 =

TURDOR ARCH @ POINT 2Bending Moment Resistance (Based on bending strength)

Section 8.2

Section 8.2

Section 8.2

Section 2.5

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

25.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

25.6 MpaS:

b = 175 mm Width of beamh = 617 mm Height of beam

S = 11103429 mm^3 Section modulus

255.82301 kN*m

Clause 6.5.6.5.2t = 19 mm Lamination thickness, See table 8.2 page 374

wood design manualR = 2800 mm Radius of curvature of the innermost

0.91 lamination Curvature Factor

Clause 6.5.6.5.1B = 0.175 m Either the beam width (for single piece

laminations) or the width of the widest piece(for multi piece laminations)

L = 6 m Length of beam frome point of zero moment to point of zero moment

1

Mrb1 = M'r*KL*Kx*KM

Mrb2 = M'r*KZbg*KX*KM

Mrb = Min(Mrb1,Mrb2)

M'rb = f*Fb*S

f =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

M'rb =

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

KL:

CB = (Le*d/b2)^0.5

5760 mm Effective length, See table 6.5.6.4.3

10.8

1 Clause 6.5.6.4.4

Section 8.40.5529889 radian

Location : Not apex of curved

1

232.26 kN*m

232.26 kN*m

232.26 kN*m

Bending Moment Resistance (Based on radial tension strength)

Clause 6.5.6.6.2

Clause 6.5.6.6.1

0.9 Clause 6.5.6.6.1

Clause 6.5.6.6.1

0.83 Mpa Specified strength intension perpendicular to grain, see table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

0.83 Mpa

S:

b = 175 mm Width of beamh = 617 mm Height of beam

S = 11103429 mm^3 Section modulus

A = 107975 Maximum cross sectional area of memberR = 3108.5 mm Radius of curvature at centerline of member

0.9 rad Enclosed angle in radian Loading : Uniformly distributedMember : Double tapered curved

Le =

CB =

KL =

KM:

KM = 1/(1+2.7*tan a) a =

KM =

Mrb1 =

Mrb2 =

Mrb =

Mrt1= f*Ftp*S*KZtp*KR

Mrt2 = f*Ftp*2*A/3*R*KZtp

f =

Ftp:

Ftp = ftp(Kd*Kh*Kstp*Kt)

ftp =

Kd =

Kh =

Kstp =

Kt =

Ftp=

S = b*h2/6

KZtp:

mm2

b =

0.6973359

0.55 radianA = 0.16 Constants given in table 6.5.6.6.3B = 0.06 Constants given in table 6.5.6.6.3C = 0.11 Constants given in table 6.5.6.6.3

5.673984Location : Not apex of curved

32.82 kN*m

116.56 kN*m

0.00 kN*m

Mr = 232.26 kN*m

Axial Resistance Parallel Clause 6.5.8To The Grain (Column Capacity)

Pr=phi*Fc*A*Kzcg*KcFc=fc(Kd*Kh*Ksc*Kt)Kzc=0.68(Z)^-0.13 < 1.0Kc=[1.0+(FcKzcgCc^3/35E05KseKt)]^-1

phi= 0.8Fc:

fc= 30.2 Mpa Table 6.3Ksc= 1.00 Table 6.4.2 service condition factorKt= 1.0 Table 5.4.3 treatment factorKd= 1.0 Duration factor see Clause 4.3.2.2Kh= 1.0 System factor see Clause 6.4.3

Fc= 30.2 MpaA = 85163.75 mm^2

Kzc= see belowKc = see below

Pr = 1171.5 kN

1171.5 kN Calculated with equivalent section

1225.9 kN Calculated with smaller section and Cc=1

Column Lengths

Weak Axis = Lx = 3000 mmStrong Axis = Ly = 6200 mm

KZtp =

KR: a =

KR = [A+B*(d/R)+C*(d/R)2]-1

KR =

Mrt1=

Mrt2 =

Mrt =

Column Size

Equivalent Smaller end Larger end

Weak Axis = dx = 175 mm 175 mm 175 mm

Strong Axis = dy = 486.65 mm 380 mm 617 mm

Kzcg

Kzcg = 0.7Z = 0.5280153 m3 Member volumn

Kzcg = 0.8 For member with constant section

Z = 0.4123 m3 of smaller one

Kc

Kc = 0.77 Clause 6.5.8.5E = 12400 Table 6.3 - Modulus of Elasticity

0.87E = 10788 Table 5.3.1 A-DKse = 1.0 Table 6.4.2 service condition factorCc = 17.1

Cc<=50, slenderness is within limitation

Resistance to combined bending and axial load Pf = 17.1 kNPr = 1171.5 kNMf = 7.1 kN*mMr = 232.26 kN*m

0.05

Check Resistance to combined bending and axial load : OK

Shear Resistance (Gross Section)

Clause 6.5.7.2.1

0.9

2.0 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.00 Treatment factor, See Clause 6.4.4

2 Mpa

Gross cross section areac of member

Vr1 = F*Fv*2Ag/3*KN

Fv=fv(Kd*Kh*Ksv*Kt)

F =

Fv:

fv =

Kd =

Kh =

Ksv =

Kt =

Fv=

Ag:

Ag = b*h

𝑘=𝑉_𝑓/𝑉_𝑟 =

𝑘=𝑃_𝑓/𝑃_𝑟 +𝑀_𝑓/𝑀_𝑟 =

b = 175 mm Width of beamh = 617 mm Height of beam

107975

1 Notch factor, See clause 6.5.7.2.2

129.57 kN

Clause 6.5.7.2.1

3.69 Shear load coefficient, see clause 6.5.7.4 and table 6.5.7.4

l = 6.2 m Length of beam

Z = 0.67 Beam volume

370.0 kN

129.6 kN

10.8

0.08

Check shear Resistance : OK

Ag = mm2

KN :

KN =

Vr1 =

Vr2 = F*Fv*0.48*Ag*KN*Cv*Z-0.18

Cv =

m3

Vr2 =

If Z > 2m3 then Vr = Vr1 else Vr =Vr2

Vr =

Vf =𝑘=𝑉_𝑓/𝑉_𝑟 =

TURDOR ARCH @ POINT 1Bending Moment Resistance (Based on bending strength)

Section 8.2

Section 8.2

Section 8.2

Section 2.5

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

25.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

25.6 MpaS:

b = 175 mm Width of beamh = 498.5 mm Height of beam

S = 7247982 mm^3 Section modulus

166.99351 kN*m

Clause 6.5.6.5.2t = 19 mm Lamination thickness, See table 8.2 page 374

wood design manualR = 2800 mm Radius of curvature of the innermost

0.91 lamination Curvature Factor

Clause 6.5.6.5.1B = 0.175 m Either the beam width (for single piece

laminations) or the width of the widest piece(for multi piece laminations)

L = 6 m Length of beam frome point of zero moment to point of zero moment

1

Mrb1 = M'r*KL*Kx*KM

Mrb2 = M'r*KZbg*KX*KM

Mrb = Min(Mrb1,Mrb2)

M'rb = f*Fb*S

f =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

M'rb =

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

KL:

CB = (Le*d/b2)^0.5

5760 mm Effective length, See table 6.5.6.4.3

9.7

1 Clause 6.5.6.4.4

Section 8.40.5529889 radian

Location : Not apex of curved

1

151.61 kN*m

151.61 kN*m

151.61 kN*m

Bending Moment Resistance (Based on radial tension strength)

Clause 6.5.6.6.2

Clause 6.5.6.6.1

0.9 Clause 6.5.6.6.1

Clause 6.5.6.6.1

0.83 Mpa Specified strength intension perpendicular to grain, see table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

0.83 Mpa

S:

b = 175 mm Width of beamh = 498.5 mm Height of beam

S = 7247982 mm^3 Section modulus

A = 87237.5 Maximum cross sectional area of memberR = 3049.25 mm Radius of curvature at centerline of member

0.9 rad Enclosed angle in radian Loading : Uniformly distributedMember : Const Depth curved

Le =

CB =

KL =

KM:

KM = 1/(1+2.7*tan a) a =

KM =

Mrb1 =

Mrb2 =

Mrb =

Mrt1= f*Ftp*S*KZtp*KR

Mrt2 = f*Ftp*2*A/3*R*KZtp

f =

Ftp:

Ftp = ftp(Kd*Kh*Kstp*Kt)

ftp =

Kd =

Kh =

Kstp =

Kt =

Ftp=

S = b*h2/6

KZtp:

mm2

b =

0.5009343

0.55 radianA = 0.16 Constants given in table 6.5.6.6.3B = 0.06 Constants given in table 6.5.6.6.3C = 0.11 Constants given in table 6.5.6.6.3

5.7887489Location : Not apex of curved

15.70 kN*m

66.36 kN*m

0.00 kN*m

Mr = 151.61 kN*m

Axial Resistance Parallel Clause 6.5.8To The Grain (Column Capacity)

Pr=phi*Fc*A*Kzcg*KcFc=fc(Kd*Kh*Ksc*Kt)Kzc=0.68(Z)^-0.13 < 1.0Kc=[1.0+(FcKzcgCc^3/35E05KseKt)]^-1

phi= 0.8Fc:

fc= 30.2 Mpa Table 6.3Ksc= 1.00 Table 6.4.2 service condition factorKt= 1.0 Table 5.4.3 treatment factorKd= 1.0 Duration factor see Clause 4.3.2.2Kh= 1.0 System factor see Clause 6.4.3

Fc= 30.2 MpaA = 75831.875 mm^2

Kzc= see belowKc = see below

Pr = 1055.3 kN

1055.3 kN Calculated with equivalent section

1225.9 kN Calculated with smaller section and Cc=1

Column Lengths

Weak Axis = Lx = 3000 mmStrong Axis = Ly = 6200 mm

KZtp =

KR: a =

KR = [A+B*(d/R)+C*(d/R)2]-1

KR =

Mrt1=

Mrt2 =

Mrt =

Column Size

Equivalent Smaller end Larger end

Weak Axis = dx = 175 mm 175 mm 175 mm

Strong Axis = dy = 433.325 mm 380 mm 498.5 mm

Kzcg

Kzcg = 0.8Z = 0.4701576 m3 Member volumn

Kzcg = 0.8 For member with constant section

Z = 0.4123 m3 of smaller one

Kc

Kc = 0.77 Clause 6.5.8.5E = 12400 Table 6.3 - Modulus of Elasticity

0.87E = 10788 Table 5.3.1 A-DKse = 1.0 Table 6.4.2 service condition factorCc = 17.1

Cc<=50, slenderness is within limitation

Resistance to combined bending and axial load Pf = 13.1 kNPr = 1055.3 kNMf = 3.4 kN*mMr = 151.61 kN*m

0.03

Check Resistance to combined bending and axial load : OK

Shear Resistance (Gross Section)

Clause 6.5.7.2.1

0.9

2.0 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.00 Treatment factor, See Clause 6.4.4

2 Mpa

Gross cross section areac of member

Vr1 = F*Fv*2Ag/3*KN

Fv=fv(Kd*Kh*Ksv*Kt)

F =

Fv:

fv =

Kd =

Kh =

Ksv =

Kt =

Fv=

Ag:

Ag = b*h

𝑘=𝑉_𝑓/𝑉_𝑟 =

𝑘=𝑃_𝑓/𝑃_𝑟 +𝑀_𝑓/𝑀_𝑟 =

b = 175 mm Width of beamh = 498.5 mm Height of beam

87237.5

1 Notch factor, See clause 6.5.7.2.2

104.69 kN

Clause 6.5.7.2.1

3.69 Shear load coefficient, see clause 6.5.7.4 and table 6.5.7.4

l = 6.2 m Length of beam

Z = 0.54 Beam volume

310.7 kN

104.7 kN

9

0.09

Check shear Resistance : OK

Ag = mm2

KN :

KN =

Vr1 =

Vr2 = F*Fv*0.48*Ag*KN*Cv*Z-0.18

Cv =

m3

Vr2 =

If Z > 2m3 then Vr = Vr1 else Vr =Vr2

Vr =

Vf =𝑘=𝑉_𝑓/𝑉_𝑟 =

TURDOR ARCH @ POINT 0Bending Moment Resistance (Based on bending strength)

Section 8.2

Section 8.2

Section 8.2

Section 2.5

0.9 Clause 6.5.6.5.1

Clause 6.5.6.5.1

25.60 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

25.6 MpaS:

b = 175 mm Width of beamh = 380 mm Height of beam

S = 4211667 mm^3 Section modulus

97.0368 kN*m

Clause 6.5.6.5.2t = 19 mm Lamination thickness, See table 8.2 page 374

wood design manualR = 2800 mm Radius of curvature of the innermost

0.91 lamination Curvature Factor

Clause 6.5.6.5.1B = 0.175 m Either the beam width (for single piece

laminations) or the width of the widest piece(for multi piece laminations)

L = 6 m Length of beam frome point of zero moment to point of zero moment

1

Mrb1 = M'r*KL*Kx*KM

Mrb2 = M'r*KZbg*KX*KM

Mrb = Min(Mrb1,Mrb2)

M'rb = f*Fb*S

f =

Fb:

Fb = fb(Kd*Kh*Ksb*Kt)

fb =

Kd =

Kh =

Ksb =

Kt =

Fb=

S = b*h2/6

M'rb =

KX:

KX = 1-2000*(t/R)2

KX =

Kzbg:

Kzbg = 1.03*(B*L)-0.18

Kzbg =

KL:

CB = (Le*d/b2)^0.5

5760 mm Effective length, See table 6.5.6.4.3

8.5

1 Clause 6.5.6.4.4

Section 8.40.5529889 radian

Location : Not apex of curved

1

88.10 kN*m

88.10 kN*m

88.10 kN*m

Bending Moment Resistance (Based on radial tension strength)

Clause 6.5.6.6.2

Clause 6.5.6.6.1

0.9 Clause 6.5.6.6.1

Clause 6.5.6.6.1

0.83 Mpa Specified strength intension perpendicular to grain, see table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.0 Treatment factor, See Clause 6.4.4

0.83 Mpa

S:

b = 175 mm Width of beamh = 380 mm Height of beam

S = 4211667 mm^3 Section modulus

A = 66500 Maximum cross sectional area of memberR = 2990 mm Radius of curvature at centerline of member

0.9 rad Enclosed angle in radian Loading : Uniformly distributedMember : Double tapered curved

Le =

CB =

KL =

KM:

KM = 1/(1+2.7*tan a) a =

KM =

Mrb1 =

Mrb2 =

Mrb =

Mrt1= f*Ftp*S*KZtp*KR

Mrt2 = f*Ftp*2*A/3*R*KZtp

f =

Ftp:

Ftp = ftp(Kd*Kh*Kstp*Kt)

ftp =

Kd =

Kh =

Kstp =

Kt =

Ftp=

S = b*h2/6

KZtp:

mm2

b =

0.7743161

0.55 radianA = 0.16 Constants given in table 6.5.6.6.3B = 0.06 Constants given in table 6.5.6.6.3C = 0.11 Constants given in table 6.5.6.6.3

5.9031134Location : Not apex of curved

14.38 kN*m

76.67 kN*m

0.00 kN*m

Mr = 88.10 kN*m

Axial Resistance Parallel Clause 6.5.8To The Grain (Column Capacity)

Pr=phi*Fc*A*Kzcg*KcFc=fc(Kd*Kh*Ksc*Kt)Kzc=0.68(Z)^-0.13 < 1.0Kc=[1.0+(FcKzcgCc^3/35E05KseKt)]^-1

phi= 0.8Fc:

fc= 30.2 Mpa Table 6.3Ksc= 1.00 Table 6.4.2 service condition factorKt= 1.0 Table 5.4.3 treatment factorKd= 1.0 Duration factor see Clause 4.3.2.2Kh= 1.0 System factor see Clause 6.4.3

Fc= 30.2 MpaA = 66500 mm^2

Kzc= see belowKc = see below

Pr = 937.6 kN

937.6 kN Calculated with equivalent section

1225.9 kN Calculated with smaller section and Cc=1

Column Lengths

Weak Axis = Lx = 3000 mmStrong Axis = Ly = 6200 mm

KZtp =

KR: a =

KR = [A+B*(d/R)+C*(d/R)2]-1

KR =

Mrt1=

Mrt2 =

Mrt =

Column Size

Equivalent Smaller end Larger end

Weak Axis = dx = 175 mm 175 mm 175 mm

Strong Axis = dy = 380 mm 380 mm 380 mm

Kzcg

Kzcg = 0.8Z = 0.4123 m3 Member volumn

Kzcg = 0.8 For member with constant section

Z = 0.4123 m3 of smaller one

Kc

Kc = 0.76 Clause 6.5.8.5E = 12400 Table 6.3 - Modulus of Elasticity

0.87E = 10788 Table 5.3.1 A-DKse = 1.0 Table 6.4.2 service condition factorCc = 17.1

Cc<=50, slenderness is within limitation

Resistance to combined bending and axial load Pf = 1.9 kNPr = 937.6 kNMf = 0 kN*mMr = 88.10 kN*m

0.00

Check Resistance to combined bending and axial load : OK

Shear Resistance (Gross Section)

Clause 6.5.7.2.1

0.9

2.0 Mpa Bending at extreme fibre, See Table 6.3

1.00 Duration factor, See Clause 6.4.1

1.00 System factor, See Clause 6.4.2.2

1.00 Service condition factor, See table 6.4.2

1.00 Treatment factor, See Clause 6.4.4

2 Mpa

Gross cross section areac of member

Vr1 = F*Fv*2Ag/3*KN

Fv=fv(Kd*Kh*Ksv*Kt)

F =

Fv:

fv =

Kd =

Kh =

Ksv =

Kt =

Fv=

Ag:

Ag = b*h

𝑘=𝑉_𝑓/𝑉_𝑟 =

𝑘=𝑃_𝑓/𝑃_𝑟 +𝑀_𝑓/𝑀_𝑟 =

b = 175 mm Width of beamh = 380 mm Height of beam

66500

1 Notch factor, See clause 6.5.7.2.2

79.80 kN

Clause 6.5.7.2.1

3.69 Shear load coefficient, see clause 6.5.7.4 and table 6.5.7.4

l = 6.2 m Length of beam

Z = 0.41 Beam volume

248.7 kN

79.8 kN

7.7

0.10

Check shear Resistance : OK

Ag = mm2

KN :

KN =

Vr1 =

Vr2 = F*Fv*0.48*Ag*KN*Cv*Z-0.18

Cv =

m3

Vr2 =

If Z > 2m3 then Vr = Vr1 else Vr =Vr2

Vr =

Vf =𝑘=𝑉_𝑓/𝑉_𝑟 =