4
Geophysical diffraction tomography in seismic palaeontology In 1979, two hikers discovered partially exposed bones from the tail of a hitherto unknown species of dinosaur in the high desert of new mexico (witten et al. 1992) excavation began in 1985 morrison formation, a 145 million years old (late jurassic) sandstone well known for its dinsaur remains further north in the USA, but until then, unrecognised in new mexico. By 1986, it was realised that the bones were from a relative of diplodocus with a projected lenght of at least 33,5 (110 ft). David gillette,who first described the dinosaur, coined the informal name seismosaurus for the new dinosaur, alluding to its considerable size making the earth shake when it moved. The geological setting of the bones indicated that the body had suffered from regor mortis before burial and that the animals carcass had come to rest on a bend in a local river on a point bar and had been burried subsequently by fine sand. The sandstone surrounding the skeleton is massive but predominantly homogeneous, thus providing an excellent medium for remote sensing The 1985-1986 field excavation indicated that the skeleton axtended into a cliff face but the orientation and extent of the bones could only be conjectured. The projected orientation of the skeleton was a level of at least 2.5 m (8 ft) beneath the surface. Traditional excavation using shovel, hammer and chisel would have been extremely slow and would have involved the removal of hundreds of tonnes of material. In april 1988, and again in july 1989, the site was investigated using geophysical diffraction tomography ( GDT ). Geophysical diffraction tomography can take two forms: back projection or back propagation, the concepts of which are illustrated schematically in figure 6.66. for both methods, it is assumed that a series of receivers is located down or borehole and a series of sources is placed a long the ground surface. In back-projection, it is assumed that the energy emanating from a sources travels through the sub surface in straight lines or as rays from sources to a given receiver whose distance from the source is known exactly. The measured travel time of the first arriving signal and its amplitude are related to local variations in wave speed or wave attenuation. Reconstructing an image from variations in measured parameters is achieved math-ematically by using data from many raypaths, which intersect the same unit cells, to iterate towards a solution, which is displayed as a pixelated image ( let each cell is assigned a value from the iteration which is displayed as one pixel in the final image). Back projection has been used for i maging inhomogeneities such as karst features, imaging the earths mantle, and in producing electrical image from arrays of electrodes. Back-projection assumes straight raypaths and ignores any refraction effects. A preferred alternative is back-propagation, which is reputed to provide sharper images and take into account refraction effects. The field system is exactly the same as in back-projection but the effect being sought here is the distortion of the wave front caused by inhomogeneities within the ground being imaged. The distortion of the waveform in both time and space are measured at the receivers. A benefit of the back-propagation methode is that it utilises information contained in the received signals regarding the costructive and destructive interference associated with multiple raypaths between source and receiver. The methods are described in more detail by witten and king (1990). The GDT survey undertaken in april 1988 produced one image displaying a feature that was believed to be due to a dinosaur bone.in early july 1989 a dorsal vertebra and partial rib were exposed at the location indicated by geophysical survey.

Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

Embed Size (px)

Citation preview

Page 1: Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

8/3/2019 Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

http://slidepdf.com/reader/full/geophysical-diffraction-tomography-in-seismic-pal-aeon-to-logy 1/4

Geophysical diffraction tomography in seismic palaeontology

In 1979, two hikers discovered partially exposed bones from the tail of a hitherto unknown species

of dinosaur in the high desert of new mexico (witten et al. 1992) excavation began in 1985 morrison

formation, a 145 million years old (late jurassic) sandstone well known for its dinsaur remains

further north in the USA, but until then, unrecognised in new mexico. By 1986, it was realised that

the bones were from a relative of diplodocus with a projected lenght of at least 33,5 (110 ft). David

gillette,who first described the dinosaur, coined the informal name seismosaurus for the new

dinosaur, alluding to its considerable size making the earth shake when it moved. The geological

setting of the bones indicated that the body had suffered from regor mortis before burial and that

the animals carcass had come to rest on a bend in a local river on a point bar and had been burried

subsequently by fine sand. The sandstone surrounding the skeleton is massive but predominantly

homogeneous, thus providing an excellent medium for remote sensing

The 1985-1986 field excavation indicated that the skeleton axtended into a cliff face but the

orientation and extent of the bones could only be conjectured. The projected orientation of the

skeleton was a level of at least 2.5 m (8 ft) beneath the surface. Traditional excavation using shovel,

hammer and chisel would have been extremely slow and would have involved the removal of 

hundreds of tonnes of material. In april 1988, and again in july 1989, the site was investigated using

geophysical diffraction tomography ( GDT ).

Geophysical diffraction tomography can take two forms: back projection or back propagation, the

concepts of which are illustrated schematically in figure 6.66. for both methods, it is assumed that a

series of receivers is located down or borehole and a series of sources is placed a long the ground

surface. In back-projection, it is assumed that the energy emanating from a sources travels through

the sub surface in straight lines or as rays from sources to a given receiver whose distance from the

source is known exactly. The measured travel time of the first arriving signal and its amplitude are

related to local variations in wave speed or wave attenuation. Reconstructing an image from

variations in measured parameters is achieved math-ematically by using data from many raypaths,

which intersect the same unit cells, to iterate towards a solution, which is displayed as a pixelated

image ( let each cell is assigned a value from the iteration which is displayed as one pixel in the final

image). Back projection has been used for imaging inhomogeneities such as karst features, imaging

the earths mantle, and in producing electrical image from arrays of electrodes. Back-projection

assumes straight raypaths and ignores any refraction effects.

A preferred alternative is back-propagation, which is reputed to provide sharper images and take

into account refraction effects. The field system is exactly the same as in back-projection but the

effect being sought here is the distortion of the wave front caused by inhomogeneities within the

ground being imaged. The distortion of the waveform in both time and space are measured at thereceivers. A benefit of the back-propagation methode is that it utilises information contained in the

received signals regarding the costructive and destructive interference associated with multiple

raypaths between source and receiver. The methods are described in more detail by witten and king

(1990).

The GDT survey undertaken in april 1988 produced one image displaying a feature that was believed

to be due to a dinosaur bone.in early july 1989 a dorsal vertebra and partial rib were exposed at the

location indicated by geophysical survey.

Page 2: Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

8/3/2019 Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

http://slidepdf.com/reader/full/geophysical-diffraction-tomography-in-seismic-pal-aeon-to-logy 2/4

The field acquisition layout is shown in figure 6.68. approximately 1 meter of overburden was

removed from a rectangular plot about 9 m x 12 m. Of which a flat L-shaped area was used in the

GDT survey. A series of four boreholes ( A-D in figure 6.68) were constructed. They were 6 m deep,

lined with PVC casing capped at the bottom, and the annulus around the outside of the casing within

the borehole was backfilled with sand. Each borehole was filled with water and a hydrophone

receiver array with active elements at 0.15 m intervals deployed down the borehole. Sourcepositions were difined along radial lines emanating from the boreholes, with the first source position

1.2 m from the borehole and successive positions at intervals of 0.6 m. The source consisted of a

commercially available seismic betsy gun. Further details of the data acquisition and processing have

been described by witten et al. (1992)

The result of a GDT survey are summarised in figure 6.69 dinosaur bones identified by image

reconstruction are shaded black, those found by direct excavation are shaded grey and the

postulated positions of undiscovered bones, based upon experience of the disposition of other

dinosaur skeleton that have been found with a rigor mortis posture, are unshaded. One of the

reasons why the method worked at this site is that the material surrounding the bones was found to

have a P- wave velocity of only450 m/s, in stark contrast to that of the bones which had a velocity of 4500 m/s.

The use of GDT as part of this palaeontological investigation has been beneficial in the location of 

significant parts of the skeleton of this giant dinosaur. It has also demonstrared the usefulness of the

technique in being able to image object successfully.

The GDT method has also been applied to imaging artificial burried objects such as metal drums,

pipes and tunnels ( e.g. king et al. 1989: witten and king 1990a.b). one such example is illustrated in

figure 6.70. A field test was conducted under controlled conditions by burying waste-simulating

targets at known locations and then imaged using back-propagation imaging. The targets were 55-

gallon metal drums with a diameter of 0.61 m and 1 m tall, either empty or water-filled, and plastic

bags containing styrofoam packing pellets.the positions of the targets relative to a borehole are

shown in figure 6.70A. an array of 29 uniformly spaced hydophones spanning a depth interval of 

0.61 m to 4.9 m was located in a cased monitoring well. Source positions were established along two

lines, one of which is shown figure 6.70. the sources were located over a distance of 1.8-14.6 m from

the well. The resulting image is shown in figure 6.70B in which the water-filled drum is evident as

afaster-velocity anomaly, and the empty drum and the styrofoam are associated.weakly, with low-

velocity zones. Note that in the image, there is a velocitiy anomaly which smears oliquely across the

image from the location of the drum toward the base of the well. This is an artefact of the GDT

method and such elongation of features occurs in the predominant direction of incident wave

propagation. In this case, the sources were at the surface and the waves travelled down towards the

well.

Page 3: Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

8/3/2019 Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

http://slidepdf.com/reader/full/geophysical-diffraction-tomography-in-seismic-pal-aeon-to-logy 3/4

Tomografi difraksi geofisika dalam paleontologi seismik 

Pada tahun 1979, dua pendaki menemukan sebagian tulang dari ekor, spesies dinosaurus yangtidak diketahui di gurun tinggi baru meksiko (Witten et al. 1992) penggalian dimulai pada

tahun 1985 formasi Morrison, 145 juta tahun (jurassic akhir) batupasir terkenal karena

dinsaur itu tetap lebih ke utara di Amerika Serikat, tapi sampai saat itu, tidak diakui di New

Mexico. Pada 1986, disadari bahwa tulang-tulang itu dari relatif Diplodocus dengan panjangdiproyeksikan minimal 33,5 (110 ft). David Gillette, yang pertama kali menggambarkan

dinosaurus, menciptakan nama informal "seismosaurus" untuk dinosaurus yang baru,

mengacu pada ukuran yang cukup itu membuat bumi goyang saat bergerak. Pengaturan

geologi dari tulang menunjukkan bahwa tubuh menderita regor mortis sebelum penguburan

dan bahwa bangkai binatang datang untuk beristirahat di sebuah tikungan di sebuah sungai

lokal pada titik bar dan telah ditanam kemudian oleh pasir halus. Batu pasir sekitar kerangka

adalah besar, tetapi sebagian besar homogen, sehingga memberikan media yang sangat baik 

untuk penginderaan jauh

Bidang penggalian 1985-1986 menunjukkan bahwa kerangka axtended menjadi wajah tebing

namun orientasi dan luasnya tulang hanya bisa menduga. Orientasi diproyeksikan kerangkaadalah tingkat minimal 2,5 m (8 kaki) di bawah permukaan. Penggalian tradisional dengan

menggunakan sekop, palu dan pahat akan menjadi sangat lambat dan akan melibatkan penghapusan ratusan ton bahan. Pada bulan April 1988, dan sekali lagi pada Juli 1989, situs

itu menggunakan tomografi difraksi diselidiki geofisika (GDT).Tomografi difraksi geofisika dapat mengambil dua bentuk: proyeksi kembali atau kembali -

 propagasi, konsep yang digambarkan secara skematis pada Gambar 6.66. untuk keduametode, diasumsikan bahwa rangkaian penerima terletak di bawah atau lubang bor dan

serangkaian sumber ditempatkan permukaan tanah lama. Di bagian belakang-proyeksi,

diasumsikan bahwa energi berasal dari sumber bergerak melalui permukaan sub garis lurus

atau sinar dari sumber ke penerima yang diberikan jarak dari sumber yang diketahui secara

 pasti. Waktu tempuh diukur dari sinyal yang datang pertama dan amplitudo itu berkaitan

dengan variasi lokal dalam kecepatan gelombang atau atenuasi gelombang. Merekonstruksi

gambar dari variasi dalam parameter yang diukur dicapai matematika-ematically dengan

menggunakan data dari raypaths banyak, yang berpotongan sel unit yang sama, untuk beralih

menuju solusi, yang ditampilkan sebagai gambar pixelated (biarkan setiap sel diberi nilai dari

iterasi yang ditampilkan sebagai satu pixel dalam gambar akhir). Kembali - proyeksi telah

digunakan untuk pencitraan inhomogeneities seperti fitur Karst, mantel pencitraan bumi, dan

dalam memproduksi citra listrik dari array dari elektroda. Kembali proyeksi mengasumsikan

raypaths lurus dan mengabaikan efek pembiasan.

Sebuah alternatif yang lebih disukai adalah kembali-propagasi, yang terkenal untuk memberikan gambar yang lebih tajam dan mempertimbangkan efek refraksi rekening. Sistem

lapangan adalah persis sama seperti di belakang-proyeksi tetapi efek sedang dicari di siniadalah distorsi dari depan gelombang yang disebabkan oleh inhomogeneities dalam tanah

yang dicitrakan. Distorsi bentuk gelombang di kedua ruang dan waktu diukur pada penerima.

Keuntungan dari methode back-propagasi adalah bahwa ia memanfaatkan informasi yangterkandung dalam sinyal yang diterima mengenai interferensi costructive dan merusak dikaitkan dengan beberapa raypaths antara sumber dan penerima. Metode yang dijelaskan

secara lebih rinci oleh Witten dan raja (1990).

Survei GDT dilakukan pada bulan April 1988 menghasilkan satu gambar menampilkan fitur 

yang diyakini karena bone.in dinosaurus awal Juli 1989 vertebra dorsal dan rusuk parsial

terkena di lokasi yang ditunjukkan oleh survei geofisika.

Tata letak akuisisi lapangan ditunjukkan pada Gambar 6.68. sekitar 1 meter overburden telah

dihapus dari plot persegi panjang sekitar 9 mx 12 m. Dari yang area berbentuk L datar 

Page 4: Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

8/3/2019 Geophysical Diffraction Tomography in Seismic Pal Aeon to Logy

http://slidepdf.com/reader/full/geophysical-diffraction-tomography-in-seismic-pal-aeon-to-logy 4/4

digunakan dalam survei GDT. Serangkaian empat lubang bor (AD dalam gambar 6.68)dibangun. Mereka 6 m dalam, dilapisi dengan PVC casing dibatasi di bagian bawah, dan

anulus sekitar bagian luar casing dalam sumur itu ditimbun dengan pasir. Setiap lubang diisidengan air dan array penerima hidrofon dengan unsur-unsur aktif pada interval 0,15 m

ditempatkan di lubang bor. Posisi sumber yang difined sepanjang garis radial yang berasal

dari lubang bor, dengan sumber posisi pertama 1,2 m dari posisi lubang bor dan berurutan

 pada interval 0,6 m. Sumber terdiri dari pistol Betsy tersedia secara komersial seismik.Rincian lebih lanjut dari akuisisi dan pengolahan data telah digambarkan oleh Witten et al.

(1992)

Hasil survei GDT dirangkum dalam gambar tulang dinosaurus 6,69 diidentifikasi oleh

rekonstruksi gambar yang berbayang hitam, yang ditemukan oleh penggalian langsung

 berbayang abu-abu dan posisi dipostulasikan tulang yang belum ditemukan, berdasarkan

 pengalaman dari disposisi dari kerangka dinosaurus lain yang telah ditemukan dengan postur 

rigor mortis, yang unshaded. Salah satu alasan mengapa metode ini bekerja di situs ini adalah

materi yang mengelilingi tulang ditemukan memiliki kecepatan P-gelombang only450 m / s,

kontras dengan tulang yang memiliki kecepatan 4500 m / s .

Penggunaan GDT sebagai bagian dari penyelidikan ini paleontologis telah bermanfaat dalamlokasi bagian-bagian penting dari kerangka dinosaurus raksasa ini. Hal ini juga demonstrared

kegunaan teknik untuk dapat berhasil objek gambar.Metode GDT juga telah diterapkan pada objek pencitraan ditanam buatan seperti drum

logam, pipa dan terowongan (misalnya raja et al, 1989:. Witten dan raja 1990a.b). salah satucontoh tersebut diilustrasikan pada Gambar 6.70. Sebuah uji lapangan dilakukan di bawah

kondisi yang dikontrol dengan cara mengubur sampah-simulasi target di lokasi yang dikenaldan kemudian dicitrakan menggunakan kembali-propagasi pencitraan. Sasaran adalah 55-

galon drum logam dengan diameter 0,61 m dan 1 m, kosong atau diisi air, dan kantong

 plastik berisi kemasan styrofoam posisi pellets.the dari target relatif terhadap lubang bor yang

ditunjukkan pada gambar 6.70A. sebuah array dari 29 hydophones seragam spasi mencakup

interval kedalaman 0,61 m sampai 4,9 m terletak di casing pemantauan baik. Posisi sumber 

 berdiri di sepanjang dua baris, salah satunya ditunjukkan Gambar 6.70. sumber-sumber yang

terletak lebih dari jarak 1,8-14,6 m dari sumur. Gambar yang dihasilkan ditampilkan dalam

gambar 6.70B di mana drum berisi air terbukti sebagai afaster-kecepatan anomali, dan drum

kosong dan styrofoam yang associated.weakly, dengan kecepatan rendah zona. Perhatikan

 bahwa dalam gambar, ada anomali velocitiy yang Pap oliquely di gambar dari lokasi drum ke

dasar sumur. Ini adalah artefak dari metode GDT dan perpanjangan seperti fitur terjadi dalam

arah dominan propagasi gelombang insiden. Dalam hal ini, sumber-sumber berada di

 permukaan dan gelombang perjalanan turun menuju sumur.