31
Geomagnetic observatory data from Huancayo, Peru, to investigate long-term trends in the equatorial electrojet region Jürgen Matzka 1 , Claudia Stolle 1,2 , Tarique Adnan Siddiqui 1 , Lea Geibel 1,3 , Oscar Veliz 4 1 GFZ German Research Centre for Geosciences 2 University Potsdam 3 Inst. Of Geophysics. And Meteorology, Univ. of Cologne 4 Instituto Geofísico del Perú

Geomagnetic observatory data from Huancayo, Peru, to ... › isea14 › sites › bdu.edu.et.isea14 › ...Geomagnetic observatory data from Huancayo, Peru, to investigate long-term

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Geomagnetic observatory data from

    Huancayo, Peru, to investigate long-term trends in the equatorial electrojet region

    Jürgen Matzka1, Claudia Stolle1,2, Tarique Adnan Siddiqui1, Lea Geibel1,3, Oscar Veliz4

    1GFZ German Research Centre for Geosciences 2University Potsdam

    3Inst. Of Geophysics. And Meteorology, Univ. of Cologne 4Instituto Geofísico del Perú

  • Quan%fying  solar  flux  and  geomagne%c  main  field  influence  on  the  equatorial  thermosphere-‐ionosphere  system  for  %mescales  

    complementary  to  satellite  missions  

    A  Project  funded  by  the  German  Research  Council  through  the  Priority  Programme  “DynamicEarth”  

  • •  originates  in  the  Earth’s  core,  strong  dipole  plus  mul%pole  -‐>  structured  •  overall  decrease  over  last  centuries-‐>  influence  on  ionospheric  conduc%vity  •  ver%cal  at  the  magne%c  poles,  horizontal  at  the  magne%c  (dip)  equator    •  organises  the  external  magnetospheric  and  ionospheric  current  systems  

    The  geomagne?c  field  

  • The  geomagne?c  field:  long  term  evolu?on  of  the  South  Atlan?c  Anomaly  

    •  significant  change  over  70  years  (%me  scale  of  geomagne%c  observatories)  •  important  for  long  term  inves%ga%ons  of  the  ionospheric  current  systems    

  • The  geomagne?c  field:  magne?c  field  strength  (leE)  and  10-‐year  change  (right)    

    •  10-‐year  change  can  be  significant  (%me  scale  of  satellite  mission)    

  • Geomagne?c  observatories  (INTERMAGNET  consor?um)  

    •  INTERMAGNET  observatories  have  high  quality,  only  two  are  directly  at  the  dip  equator:  Addis  Ababa  and  Huancayo  

  •  !

    Geomagne?c  Field  changes  over  100  years:  field  strength  and  loca?on  of  the  dip  equator  

    Figure  modified  aRer  Cnossen  and  Richmond,  2013  

         Geomagne%c  Observatory  Huancayo  (code:  HUA,  ins%tute:  IGP,  Peru)  •  Decreasing  geomagne%c  field  strength  at  HUA  and  the  American  sector  •  Dip  equator  posi%on  stable  at  HUA  and  in  the  Asian  and  Pacific  sector  

  • Hourly  mean  values  of  H  at  HUA  from  World  Data  Centre  

    •  There  are  significant  gaps  in  the  1960ies,  70ies,  80ies  and  90ies.  

  • 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010−5

    0

    5

    10

    D [d

    egre

    e]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

    2.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    Data  availability  for  HUA  since  1922  and  ‘newly  found  data’  (and  F10.7)  

    •  Handwri^en  tables  fill  in  the  longest  gap  and  cover  a  solar  cycle  with  low  F10.7  max    

    Digital  hourly  mean  values  available  from  World  Data  Centre  Gap  in  digital  hourly  mean  values  Handwri^en  tables  of  hourly  mean  values:  (World  Data  Centre  Bolder  and  IGP,  Peru)  

  • What  we  see:    

    What  we  learn:    

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20102.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    b)

    c)

    d)

    a)

    20 24

    20 24

    !

    16  

    Geomagne?c  and  solar  parameters  for  Huancayo  ?me  series  

  • What  we  see:    

    Horizontal  field  strength    

    What  we  learn:    

    Decrease  by  19%  -‐>  conduc%vity  

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20102.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    b)

    c)

    d)

    a)

    20 24

    20 24

    !

    16  

    Geomagne?c  and  solar  parameters  for  Huancayo  ?me  series  

  • What  we  see:    

             

    Inclina%on:  2.26°  is  125  km,    that  gives          

    What  we  learn:    

             

    <  10%  change  in  the  magne%c  signal  of  the  EEJ  

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20102.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    b)

    c)

    d)

    a)

    20 24

    20 24

    !

    16  

    Geomagne?c  and  solar  parameters  for  Huancayo  ?me  series  

  • What  we  see:    

             

                     F10.7  -‐>  conduc%vity    

    What  we  learn:    

             

                 Low  solar  max  cycles  20  and  24  

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20102.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    b)

    c)

    d)

    a)

    20 24

    20 24

    !

    16  

    Geomagne?c  and  solar  parameters  for  Huancayo  ?me  series  

  • What  we  see:    

             

                           Sunspot  nr.    further  back    than  F10.7  

    What  we  learn:    

             

                             

    Solar  cycle  16  also  very  low  

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20102.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    b)

    c)

    d)

    a)

    20 24

    20 24

    !

    16  

    Geomagne?c  and  solar  parameters  for  Huancayo  ?me  series  

  • 1920 1930 1940 1950 1960 1970 1980 1990 2000 20102.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    b)

    c)

    d)

    a)

    20 24

    20 24

    !

    16  

    Comparison  with  Addis  ?me  series  

    Addis  Ababa  geomagne%c  observatory  •  long  term  longitudinal  comparison    

  • Newly  found  microfilm  from  World  Data  Centre  Boulder  

    •  arriving  for  digital  scanning  

  • Newly  found  microfilm  from  World  Data  Centre  Boulder  

    •  one  month:  daily  rows,  columns  by  the  hour,  sums,  quiet  days  mean  varia%on    

  • A  first  test:  quiet  day  mean  daily  varia?on  at  HUA  for  previously  missing  data      

    1962J F M A M J J A S O N D

    0 to 24 UT for January to December

    HUA

    mea

    n da

    ily v

    aria

    tion

    for q

    uiet

    day

    s of

    H

    1963

    J F M A M J J A S O N D

    1967

    J F M A M J J A S O N D

    1968

    J F M A M J J A S O N D

    1969

    J F M A M J J A S O N D

    1970

    J F M A M J J A S O N D

    1971

    J F M A M J J A S O N D

    1972

    J F M A M J J A S O N D

    1973

    J F M A M J J A S O N D

    1974

    J F M A M J J A S O N D

    1975

    J F M A M J J A S O N D

    1976

    J F M A M J J A S O N D

    1977

    J F M A M J J A S O N D

    1978

    J F M A M J J A S O N D

    1979

    J F M A M J J A S O N D

    1980

    J F M A M J J A S O N D

    For  January  to  December:  0    to  24  UT  

    1980  1979  1978  1977  1976  1975  1974  1973  1972  1971  1970  1969  1968  1967  1963  1962  

  •      SoEware  to  retype  handwri[en  values    

  • Hourly  mean  values  of  H  at  HUA    

  • Hourly  mean  values  of  H  at  HUA  

  • Hourly  mean  values  of  H  at  HUA  1961  to  1985  

    •  1961  to  1985:  Almost  completely,  last  data  gaps  are  currently    filled  in  

  • Hourly  mean  values  of  H  at  HUA  in  October  1963  

    •  Example  for  day2day-‐variability  and  Dst-‐effects(?)  

  • Hourly  mean  values  of  H  at  HUA  in  October  1963  

    •  The  night  %me  HUA  H  records  follow  nicely  the  Dst-‐index  (Kyoto)  

  • Hourly  mean  values  of  H  at  HUA  

    •  Difference  in  the  World  Data  Centre  (i.e.  Winch,  1981)  and  our  data  set  from  May  1st,  1965  

  • Hourly  mean  values  of  H  at  HUA  

    •  Difference  in  the  World  Data  Centre  (i.e.  Winch,  1981)  and  our  data  set  from  August  1966  

    •  such  differences  can  likely  be  resolved  by      -‐  analysis  of  data  (seasonal  means  vs.  F10.7,  …)    -‐  going  back  to  historic  opera%onal  records  

  • •  We  have  (almost)  digi%sed  the  ‘newly  found’  H-‐component  

    •  Next  step:  inves%gate  homogeneity  of  the  %me  series    •  Next  step:  inves%ga%ng  long  term  trends  due  to  

    changing  magne?c  main  field  strength  under  defined  (or  corrected  for)  solar  flux  condi%ons  

    •  Further  opportuni?es:  -‐  Long  term  %dal  signal  -‐  Lunar  %dal  signal  and  Sudden  Stratospheric  Warming  -‐  Day2day-‐variability  -‐  …    Data  will  be  available  at  the  World  Data  Centres  for  Geomagne?sm  once  also  the  ver%cal  component  Z  and  declina%on  D  are  digi%sed  and  quality-‐checked.  

    Conclusion  

  • Annual Mean Data Viewer: HUANCAYOAs recorded in 2014, mean calculated from all days

    Dashed lines show annual means adjusted by jump values

    1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010Years from 1922 to 2014

    -175.0-150.0-125.0-100.0

    -75 .0-50 .0-25 .0

    .025.050.075.0

    100.0125.0150.0175.0200.0225.0250.0275.0300.0325.0350.0375.0400.0425.0450.0475.0500.0

    D, range 638min., mid-point 168min.

  • The  ionospheric  current  systems  

  • What  we  see:    

    Horizontal  field  strength    

    Inclina%on:  2.26°  is  125  km,    that  gives      F10.7  -‐>  conduc%vity    Sunspot  nr.    further  back    than  F10.7  

    What  we  learn:    

    Decrease  by  19%  -‐>  conduc%vity    

    <  10%  change  in  the  magne%c  signal  of  the  EEJ    Low  solar  max  cycles  20  and  24      

    Solar  cycle  16  also  very  low  

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20102.4

    2.6

    2.8

    3x 104

    H [n

    T]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    1

    2

    3

    I [de

    gree

    ]

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    F10.

    7

    1920 1930 1940 1950 1960 1970 1980 1990 2000 20100

    100

    200

    300

    suns

    potn

    umbe

    rs

    black: HMV availalbe, red: current data gaps, green: newly discovered HMV

    b)

    c)

    d)

    a)

    20 24

    20 24

    !

    16  

    Geomagne?c  and  solar  parameters  for  Huancayo  ?me  series  

  • 1

    2 3

    April 01 to 20, 1976

    200300400500600

    HM

    V [n

    T]

    -300-200-1000

    Dst

    [nT]

    Observatory: HUA Componenent: H Base: 27.000 nT Year: 1976 Month: April 13h - 14h 14h - 15h 15h - 16h17 (quiet) 482 536 57018 quiet 457 504

    typical table ofHuancayo hourlymeanvalues (HMVs):handwritten,microfilmed,scanned image

    masks displaying relevantparts of scanned image

    mask for manual typing of HMVs

    display of HMVs and Dst-index

    data

    bas

    is

    con

    cept

    of m

    anua

    l dig

    itiza

    tion

    prog

    ram

    Title  

    Can  check  internal  consitncy  Of  typing  process