56
GEOGG121: Methods Inversion I: linear approaches Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 0592 Email: [email protected] www.geog.ucl.ac.uk/~mdisney

GEOGG121: Methods Inversion I : linear approaches

  • Upload
    harris

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

GEOGG121: Methods Inversion I : linear approaches. Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7670 0592 Email: [email protected] www.geog.ucl.ac.uk /~ mdisney. Lecture outline. Linear models and inversion Least squares revisited, examples - PowerPoint PPT Presentation

Citation preview

Page 1: GEOGG121: Methods Inversion  I :  linear approaches

GEOGG121: MethodsInversion I: linear approachesDr. Mathias (Mat) DisneyUCL GeographyOffice: 113, Pearson BuildingTel: 7670 0592Email: [email protected]/~mdisney

Page 2: GEOGG121: Methods Inversion  I :  linear approaches

• Linear models and inversion– Least squares revisited, examples– Parameter estimation, uncertainty– Practical examples

• Spectral linear mixture models• Kernel-driven BRDF models and change detection

Lecture outline

Page 3: GEOGG121: Methods Inversion  I :  linear approaches

• Linear models and inversion– Linear modelling notes: Lewis, 2010– Chapter 2 of Press et al. (1992) Numerical Recipes in C (online

version http://apps.nrbook.com/c/index.html)– http://en.wikipedia.org/wiki/Linear_model– http://en.wikipedia.org/wiki/System_of_linear_equations

Reading

Page 4: GEOGG121: Methods Inversion  I :  linear approaches

Linear Models

• For some set of independent variables x = {x0, x1, x2, … , xn}

have a model of a dependent variable y which can be expressed as a linear combination of the independent variables.

110 xaay

22110 xaxaay

ni

iii xay

0

xay

Page 5: GEOGG121: Methods Inversion  I :  linear approaches

Linear Models?

ni

iiiii xbxaay

10 cossin

ni

iiii bxaay

10 sin

nn

ni

i

ii xaxaxaaxay 0

202010

00 ...

xaeay 10

xay

Page 6: GEOGG121: Methods Inversion  I :  linear approaches

Linear Mixture Modelling

• Spectral mixture modelling:– Proportionate mixture of (n) end-member spectra

– First-order model: no interactions between components

11

0

ni

i iF

1

0

ni

i iiFr Fr

Page 7: GEOGG121: Methods Inversion  I :  linear approaches

Linear Mixture Modelling

• r = {rl0, rl1, … rlm, 1.0} – Measured reflectance spectrum (m wavelengths)

• nx(m+1) matrix:

1

2

1

0

112111101

11210101

10201000

1

1

0

0.10.10.10.10.1 n

nmmmm

n

n

m

P

PPP

r

rr

llll

llllllll

l

l

l

Fr

Page 8: GEOGG121: Methods Inversion  I :  linear approaches

Linear Mixture Modelling

• n=(m+1) – square matrix

• Eg n=2 (wavebands), m=2 (end-members)

Fr

rF 1

Page 9: GEOGG121: Methods Inversion  I :  linear approaches

Reflectance

Band 1

Reflectance

Band 2

1

2

3

r

Page 10: GEOGG121: Methods Inversion  I :  linear approaches

Linear Mixture Modelling

• as described, is not robust to error in measurement or end-member spectra;

• Proportions must be constrained to lie in the interval (0,1) – - effectively a convex hull constraint;

• m+1 end-member spectra can be considered;• needs prior definition of end-member spectra; cannot

directly take into account any variation in component reflectances

– e.g. due to topographic effects

Page 11: GEOGG121: Methods Inversion  I :  linear approaches

Linear Mixture Modelling in the presence of Noise

• Define residual vector• minimise the sum of the squares of the error e,

i.e.

eFr

ee

eeFrFrFr ml

l

21

0 ll

Method of Least Squares (MLS)

Page 12: GEOGG121: Methods Inversion  I :  linear approaches

Error Minimisation

• Set (partial) derivatives to zero

02 1

0

21

0

ml

lii

ml

l

F

FFr

P

Frl

ll

ll

eeFrFrFr ml

l

21

0 ll

iiFF ll

1

0

1

0

1

020

ml

l iml

l i

ml

l i

Fr

Fr

ll

l

ll

ll

Page 13: GEOGG121: Methods Inversion  I :  linear approaches

Error Minimisation

• Can write as:

PMO

1

0

1

0

ml

l iml

l i Fr llll

1

1

0

1

0

111110

111110

010100

1

0

1

1

0

n

ml

l

nlnlnllnll

lnlllll

lnlllll

ml

l

nll

ll

ll

F

FF

r

rr

llllll

llllllllllll

l

ll

Solve for P by matrix inversion

Page 14: GEOGG121: Methods Inversion  I :  linear approaches

e.g. Linear Regression

mxcy

PMO

mc

xxx

xyy nl

l ll

lnl

l ll

l1

02

1

0

1

mc

xxx

yxy

2

1

x

xyy

xx

xy

xx

xyxx2

2

2

22

11 2

21

xxxM

xx

222 xxxx

Page 15: GEOGG121: Methods Inversion  I :  linear approaches

RMSE

1

0

22nl

lii mxcye

mnRMSE

2

Page 16: GEOGG121: Methods Inversion  I :  linear approaches

y

xx x1x2

Page 17: GEOGG121: Methods Inversion  I :  linear approaches

Weight of Determination (1/w)

• Calculate uncertainty at y(x)

mc

xPQxy

1

QMQw

T 11

we 1

2

2

11

xx

xxw

Page 18: GEOGG121: Methods Inversion  I :  linear approaches

P0

P1RMSE

Page 19: GEOGG121: Methods Inversion  I :  linear approaches

P0

P1RMSE

Page 20: GEOGG121: Methods Inversion  I :  linear approaches

Issues

• Parameter transformation and bounding• Weighting of the error function• Using additional information• Scaling

Page 21: GEOGG121: Methods Inversion  I :  linear approaches

Parameter transformation and bounding

• Issue of variable sensitivity– E.g. saturation of LAI effects– Reduce by transformation

• Approximately linearise parameters• Need to consider ‘average’ effects

Page 22: GEOGG121: Methods Inversion  I :  linear approaches
Page 23: GEOGG121: Methods Inversion  I :  linear approaches

Weighting of the error function

• Different wavelengths/angles have different sensitivity to parameters

• Previously, weighted all equally– Equivalent to assuming ‘noise’ equal for all observations

Ni

i

Ni

imeasured ii

RMSE

1

1

2modelled

1

Page 24: GEOGG121: Methods Inversion  I :  linear approaches

Weighting of the error function

• Can ‘target’ sensitivity– E.g. to chlorophyll concentration– Use derivative weighting (Privette 1994)

Ni

i

Ni

imeasured

P

iiPRMSE

1

21

2

modelled

Page 25: GEOGG121: Methods Inversion  I :  linear approaches

Using additional information

• Typically, for Vegetation, use canopy growth model– See Moulin et al. (1998)

• Provides expectation of (e.g.) LAI– Need:

• planting date• Daily mean temperature• Varietal information (?)

• Use in various ways– Reduce parameter search space– Expectations of coupling between parameters

Page 26: GEOGG121: Methods Inversion  I :  linear approaches

Scaling

• Many parameters scale approximately linearly– E.g. cover, albedo, fAPAR

• Many do not– E.g. LAI

• Need to (at least) understand impact of scaling

Page 27: GEOGG121: Methods Inversion  I :  linear approaches

Crop Mosaic

LAI 1 LAI 4 LAI 0

Page 28: GEOGG121: Methods Inversion  I :  linear approaches

Crop Mosaic

• 20% of LAI 0, 40% LAI 4, 40% LAI 1. • ‘real’ total value of LAI:

– 0.2x0+0.4x4+0.4x1=2.0.

LAI 1

LAI 4

LAI 0

)2/exp())2/exp(1( LAILAI s

 visible: NIR 1.0;2.0 s

3.0;9.0 s

Page 29: GEOGG121: Methods Inversion  I :  linear approaches

canopy reflectance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

LAI

refle

ctan

ce

visible

NIR

canopy reflectance over the pixel is 0.15 and 0.60 for the NIR.

• If assume the model above, this equates to an LAI of 1.4. • ‘real’ answer LAI 2.0

Page 30: GEOGG121: Methods Inversion  I :  linear approaches

Linear Kernel-driven Modelling of Canopy Reflectance

• Semi-empirical models to deal with BRDF effects– Originally due to Roujean et al (1992)– Also Wanner et al (1995)– Practical use in MODIS products

• BRDF effects from wide FOV sensors– MODIS, AVHRR, VEGETATION, MERIS

Page 31: GEOGG121: Methods Inversion  I :  linear approaches

Satellite, Day 1 Satellite, Day 2

X

Page 32: GEOGG121: Methods Inversion  I :  linear approaches

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

136

143

150

157

164

171

178

185

192

199

206

218

226

233

240

247

254

261

268

275

282

Julian Day

ND

VI

original NDVI MVC BRDF normalised NDVI

AVHRR NDVI over Hapex-Sahel, 1992

Page 33: GEOGG121: Methods Inversion  I :  linear approaches

Linear BRDF Model

• of form: ,,,, geogeovolvoliso kfkff llll

Model parameters:

Isotropic

Volumetric

Geometric-Optics

Page 34: GEOGG121: Methods Inversion  I :  linear approaches

Linear BRDF Model

• of form: ,,,, geogeovolvoliso kfkff llll

Model Kernels:

Volumetric

Geometric-Optics

Page 35: GEOGG121: Methods Inversion  I :  linear approaches

Volumetric Scattering

• Develop from RT theory– Spherical LAD– Lambertian soil– Leaf reflectance = transmittance– First order scattering

• Multiple scattering assumed isotropic

Xs

Xl ee

12

cossin

32

,1

2L

X

Page 36: GEOGG121: Methods Inversion  I :  linear approaches

Volumetric Scattering

• If LAI small:

Xe X 1

Xs

Xl ee

12

cossin

32

,1

2L

X

2

12

2cossin

32

,1 LLs

l

sl L

2

2cossin

32

,1

Page 37: GEOGG121: Methods Inversion  I :  linear approaches

Volumetric Scattering

• Write as:

sl L

2

2cossin

32

,1

,,, 10 volthin kaa lll

2

2cossin

,

volk

slL

a

l 60

l31

lLa

RossThin kernel

Similar approach for RossThick

LBL

exp2

exp

Page 38: GEOGG121: Methods Inversion  I :  linear approaches

Geometric Optics

• Consider shadowing/protrusion from spheroid on stick (Li-Strahler 1985)

h

b

r

A()

Projection (shadowed)

Sunlit crownshadowed crown

shadowed ground

h

b

r

A()

Projection (shadowed)

Sunlit crownshadowed crown

shadowed ground

Page 39: GEOGG121: Methods Inversion  I :  linear approaches

Geometric Optics

• Assume ground and crown brightness equal• Fix ‘shape’ parameters• Linearised model

– LiSparse– LiDense

Page 40: GEOGG121: Methods Inversion  I :  linear approaches

Kernels

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-75 -60 -45 -30 -15 0 15 30 45 60 75

view angle / degrees

kern

el v

alue

RossThick LiSparse

Retro reflection (‘hot spot’)

Volumetric (RossThick) and Geometric (LiSparse) kernels for viewing angle of 45 degrees

Page 41: GEOGG121: Methods Inversion  I :  linear approaches

Kernel Models

• Consider proportionate (a) mixture of two scattering effects

,,11,,

11

00

geogeovolvol

multgeovol

kakaaa

lalallalal

Page 42: GEOGG121: Methods Inversion  I :  linear approaches

Using Linear BRDF Models for angular normalisation• Account for BRDF variation• Absolutely vital for compositing samples

over time (w. different view/sun angles)• BUT BRDF is source of info. too!

MODIS NBAR (Nadir-BRDF Adjusted Reflectance MOD43, MCD43)http://www-modis.bu.edu/brdf/userguide/intro.html

Page 43: GEOGG121: Methods Inversion  I :  linear approaches

MODIS NBAR (Nadir-BRDF Adjusted Reflectance MOD43, MCD43)http://www-modis.bu.edu/brdf/userguide/intro.html

Page 44: GEOGG121: Methods Inversion  I :  linear approaches

BRDF Normalisation• Fit observations to model• Output predicted reflectance at standardised

angles – E.g. nadir reflectance, nadir illumination

• Typically not stable– E.g. nadir reflectance, SZA at local mean

KP ,,l

lll

geo

vol

iso

fff

P

,,

1

geo

vol

kkK QMQ

wT 11

And uncertainty via

Page 45: GEOGG121: Methods Inversion  I :  linear approaches

Linear BRDF Models to track change • Examine change due to burn (MODIS)

FROM: http://modis-fire.umd.edu/Documents/atbd_mod14.pdf

220 days of Terra (blue) and Aqua (red) sampling over point in Australia, w. sza (T: orange; A: cyan).

Time series of NIR samples from above sampling

Page 46: GEOGG121: Methods Inversion  I :  linear approaches

MODIS Channel 5 Observation

DOY 275

Page 47: GEOGG121: Methods Inversion  I :  linear approaches

MODIS Channel 5 Observation

DOY 277

Page 48: GEOGG121: Methods Inversion  I :  linear approaches

Detect Change

• Need to model BRDF effects• Define measure of dis-association

wee

predictedobservedpredictedobserved

1122

Page 49: GEOGG121: Methods Inversion  I :  linear approaches

MODIS Channel 5 Prediction

DOY 277

Page 50: GEOGG121: Methods Inversion  I :  linear approaches

MODIS Channel 5 Discrepency

DOY 277

Page 51: GEOGG121: Methods Inversion  I :  linear approaches

MODIS Channel 5 Observation

DOY 275

Page 52: GEOGG121: Methods Inversion  I :  linear approaches

MODIS Channel 5 Prediction

DOY 277

Page 53: GEOGG121: Methods Inversion  I :  linear approaches

MODIS Channel 5 Observation

DOY 277

Page 54: GEOGG121: Methods Inversion  I :  linear approaches

So BRDF source of info, not JUST noise!• Use model expectation of angular reflectance

behaviour to identify subtle changes

5454Dr. Lisa Maria Rebelo, IWMI, CGIAR.

Page 55: GEOGG121: Methods Inversion  I :  linear approaches

Detect Change

• Burns are:– negative change in Channel 5– Of ‘long’ (week’) duration

• Other changes picked up– E.g. clouds, cloud shadow– Shorter duration – or positive change (in all channels)– or negative change in all channels

Page 56: GEOGG121: Methods Inversion  I :  linear approaches

Day of burn

http://modis-fire.umd.edu/Burned_Area_Products.htmlRoy et al. (2005) Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data, RSE 97, 137-162.