31
4/10/2017 1 Geo-Science and Engineering Needs in the Energy Sector J. Carlos Santamarina KAUST Munib and Angela Masri Institute of Energy and Natural Resources American University of Beirut – April 2017 Social Media (2017) BP - Biofuels American Petroleum Institute – Super Bowl Exxonmobil – Biofuels Committed to better energy Shell – ECO-marathon

Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

1

Geo-Science and Engineering

Needs in the Energy Sector

J. Carlos SantamarinaKAUST

Munib and Angela Masri Institute of Energy and Natural ResourcesAmerican University of Beirut – April 2017

Social Media (2017)BP - Biofuels

American Petroleum Institute – Super Bowl

Exxonmobil – Biofuels

Committed to better energy

Shell – ECO-marathon

Page 2: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

2

Explosion: 4/20/10 (@10 pm)Deepwater Horizon

Sinks: 4/22/10 (~10 am) Oil slick: 5/6/10

News

Energy = Tera-Problem

Energy Geo-Science & Engineering

Contents

Page 3: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

3

Usage TOTAL: 97.5 QuadsRead numbers as ~ %LLNL: flowcharts.llnl.gov2015

Usage

86% Fossil fuels

TOTAL: 97.5 QuadsRead numbers as ~ %LLNL: flowcharts.llnl.gov2015

Page 4: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

4

Usage TOTAL: 97.5 QuadsRead numbers as ~ %LLNL: flowcharts.llnl.gov2015

Transition from C-economy to renewables: will be C-fueled !

Usage TOTAL: 97.5 QuadsRead numbers as ~ %LLNL: flowcharts.llnl.gov2015

Phase-out nuclear? Not yet… But: Waste? Onshore reserves? Risks?

Page 5: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

5

Usage TOTAL: 97.5 QuadsRead numbers as ~ %LLNL: flowcharts.llnl.gov2015

Transportation: Oil-based, and most inefficient!

Usage TOTAL: 97.5 QuadsRead numbers as ~ %LLNL: flowcharts.llnl.gov2015

Efficiency AND conservation

Page 6: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

6

Sources: TrendsEIA 2015 Note: ~ BP ~ MIT ~ OPECRenewables: biomass, hydro, solar, wind

Fossil fuels - Projection: decreased % of total … but, increased consumption

Consumption - Worldwide

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

Cu

m.

Po

wer

Co

nsu

mp

tio

n

Power consumption [kW/pers]

Page 7: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

7

Consumption - Worldwide

Pronounced differences worldwide

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

Cu

m.

Po

wer

Co

nsu

mp

tio

n

Power consumption [kW/pers]

2000 cal

1000 times

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

Cu

m.

Po

wer

Co

nsu

mp

tio

n

Power consumption [kW/pers]

India

China

GermanyJapan

Rusia

USA

Canada

Consumption - Worldwide

Page 8: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

8

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

Cu

m.

Po

wer

Co

nsu

mp

tio

n

Power consumption [kW/pers]

KSA

KuwaitUAE

BahrainQatar

Oman

Consumption - Worldwide

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

Cu

m.

Po

wer

Co

nsu

mp

tio

n

Power consumption [kW/pers]

16% Population56% Energy

Consumption - Worldwide

5

84% Population44% Energy

Page 9: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

9

“>5 spenders”: Efficiency + Conservation … But will we do with savings ?!

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

Cu

m.

Po

wer

Co

nsu

mp

tio

n

Power consumption [kW/pers]

5

Savings=

1.8 T$ (2016)

2.5 T$ (2040)

Consumption - Worldwide

Consumption - Worldwide

Sustainable energy system

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 100

Cu

m.

Po

wer

Co

nsu

mp

tio

n

Power consumption [kW/pers]

2000 cal

sustainable energy system

Page 10: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

10

Population Growth:  20,000,000 per year

-2

-1

0

1

2

3

4

5

6

10 100 1,000 10,000 100,000

Power [W / Person]

Po

pu

lati

on

Gro

wth

[%

/yr]

countries > 4,000,000

Data: CIA, UN

Reproductive choices future energy demands & individual’s C-footprint

Population Growth

320 W/m2

280 W/m2

200 W/m2

<120 W/m2

<1%

1.0-1.5%

1.5-2.1%

2.1-3.0%

>3%

No info

Match: Solar! Distributed – Correlated with growing needs – Grid-independent ±

Human Development Index

Migration

Insolation

Page 11: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

11

Oil Reserves

Big consumers … low producers

Mismatch: Conflicts and migration – 14 M refugees – 1.8 T$/yr military expenditure

Strategies: 2040 Horizon

Conservation = reduce overspending Leapfrog-Tech Good governance

Page 12: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

12

12M people12,000 km2

1000 p/km2

6M people22,000 km2

250 p/km2

Modern Cities & Infrastructure = Cheap Fossil Fuels

ParisAtlanta

Revolution in transportation … the technology is available

2013 Volkswagen 100 km/l

2017 Chevrolet Bolt 50 km/l

2016Chevrolet Volt

(2nd generation)45 km/l

2015 BMW i3 51 km/l

Transportation Revolution

Page 13: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

13

Hydroelectric H=100m 0.001

Coal 23

Oil ~ gasoline 45

Hydrogen 140

Uranium (effective) 900,000

Energy Density

[MJ/kg]

Fossil fuels: very compact engineering

NOTE: 1.0 lt of gasoline = 10 m2 of solar panels for 1 day

Energy Plant TypeLifetime Cost

¢ / kWh

Offshore Wind 20.0

Coal & CCS 14.4

PV Solar 12.5

Gas & CCS 10.0

Nuclear 9.5

Coal 9.5

Hydro-electric 8.4

Gas 7.5

Land Based Wind 7.4

Real-cost Pricing

http://solarcellcentral.com

Real-cost pricing proper techno-economical optimization

Page 14: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

14

Summary: TERA-problem

Tera-dollars 100’s T$ infrastructure (optimized for cheap oil)

77 T$ global GDP 2014

>1 T$ for CCS

2.5 T$ savings “>5 spenders”

1.8 T$ military expenditure

6.6 T$ cost to Miami due to climate change

Tera-watt 17 TW power consumption

8 TW increased demand 2040

Tera-kg 20 Tkg CO2 emitted

1012

Global: Reduce differences in Pcons & QL

Governments QL and Pcons Real-cost pricing techno-$ optimization

Developed Efficiency + Conservation (start with transport)

Nations: Save > 1.8 T$/year with today’s technology

How would affluent societies use savings?

Developing Increase quality of life

Nations: Leapfrog technology

Most benefit from solar

Energy Complex … Difficult choices … Urgency

transition: Fueled by fossil fuels !

Summary: Sustainable Energy System

Page 15: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

15

Energy = Tera-Problem

Energy Geo-Science & Engineering

Contents

1 By

4.5 B

2 By3 By4 By 0

0 2000 yr-2000 yr-4000 yr-6000 yr

Time Scales

Fossil Fuels = >400My solar energy … consumed in <400yr

magnification: 2x106

3.5

BY

A:

bac

teri

a

2.5

BY

A:

O2

atm

osp

h

1.5

BY

A:

pla

nts

230-65 MYA: dinosaurs

coal & petrol

Page 16: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

16

earth radius: 6371 kmatmosphere: 80% within 10 km

Length Scales

google_earth

FOSSIL FUELS (C-based) RENEWABLE

Oil Gas Coal GeoT Hydro Wind Solar BioF Nuclear

Site Characterization

Properties of Geomaterials

Reservoir Monitoring & Management

Infrastructure Design Build, Retrofit, Decommission

Geo-Storage Energy & Waste

Geo-Environmental Remediation

Efficiency and Conservation

Energy Geo-Science and Engineering

Page 17: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

17

COAL  26% energy worldwide

OrigenSedimentary rock made of carbon ‐ Forms seams or beds

Recovery: shaft & underground mines or open pit

ReservesWorld: 1012 ton

(China, USA, Pakistan, Russia, India, Australia)

ConsumptionElectric power generation

World: 8x109 ton/yr (China, USA, India) 

EnergeticsEnergy density: 24 MJ/kg (Most efficient plant: 49%)

Emitted CO2= 0.96 kg/kW.h

Geo‐Science 

Engineering

Characterization: Stratigraphy. Faulting. Properties. Gas 

Mine design and operation: roof stability

Optimal extraction strategies & material handling

Coal combustion products: Fly ash (USA: 130106 tons/year)Abandonment: Re‐use. Reclamation. Backfill

Environmental impact: acid mine drainage, methane release

Monitoring active and abandoned mines

Coal Ash Contamination

Contaminated SiteSpillContaminated & Spill

http://earthjustice.org

>130106 ton/yr>1,000 operating ash landfills100s "retired" disposal sites

Page 18: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

18

TVA Kingston Plant (22 December 2008)

34 ha, up to 22 m high ash disposal cell ~2.106 m3 released

OIL  34% energy worldwide

Origin

Accumulation of organic matter in sedimentary basins

Maturation (P&T in “oil window”)

Migration: source to reservoir (geoplumbing and traps)

ReservesWorld: 1.5x1012 barrels

Venezuela, Saudi Arabia, Canada, Iran, Iraq, Kuwait

ConsumptionWorld: 3.2x1010 barrels/yr Primarely: transportation

USA, EU, China, Japan, India

EnergeticsEnergy density: 46 MJ/kg (effective: ~15 MJ/kg)

Emitted CO2 at power plants: 0.88 kg/kW.h

New reservoirs 

&

challenges

Locations: Deep (HT&HP). Arctic regions

Formations: weak, fractured, compressible, beneath salt

Very viscous or immobile oils (oil sands and oil shales)

Page 19: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

19

OIL  34% energy worldwide

Geo‐Science 

Engineering

Characterization: Geo‐pluming, subsalt, u, ’, TPhysical properties: permeability … and all others

Drilling, completion, leaks, zonal isolation

Production: inherently mixed fluid flow (water, oil, gas)

Fines migration and clogging … asphaltenes

Reservoir stimulation: HF, acid, steam, “smart water”

Subsidence, fault reactivation, casing buckling/shear

Monitoring: deformations, microseismicity, fluid pressure.

Infrastructure (onshore and offshore)

Waste reinjection (fluids and grains)

Foraminifera – Globigerinoides (Globigerinina)

www.slb.com

Carbonates: 60% of Worldwide Reserves

Page 20: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

20

GAS  21% energy worldwide

Location

In traps, shale gas, coal beds, gas hydrate

Thermogenic: P&T above the “oil window”

Biogenic: methanogens (high purity CH4 in hydrate)

ReservesWorld recoverable: >2001012 m3 + Gas hydrates …?

Russia, Iran, Qatar, Turkmenistan, USA 

ConsumptionWorld: 3.31012 m3/yr

USA, Russia, EU

Energetics

Energy density: 45 MJ/kg of gas

Hydrates: 5.9 MJ/kg of hydrate

Emitted CO2: 0.5 kg/kW.h

GAS  21% energy worldwide

Geo‐Science 

Engineering

Common

Characterization: stratigraphy, geo‐plumbing, properties

Well drilling (horizontal) and completion

Monitoring: Deformations, microseismicity, u, T

Integration of monitoring data into reservoir management

Infrastructure

Waste management (HF fluids, cuttings, produced fines)

Shale gas Fracking: water demand (>107 liters of water per well)

Evolution of fractures in pre‐structured shales

Early drop in production

CH4 leakage (may reach 8% of the produced gas)

Hydrates Hydrate nucleation and growth in sediments

Production: P T CO2CH4 surface mining

Subsidence, casing‐sediment interaction

Environmental hazard: seafloor stability and gas release

Page 21: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

21

Shales – Hydraulic Fracture

Don Duggan-Haas

Marcellus shale outcrop

Robert M. Reed (Bureau of Economic Geology)

Stimulation: HF Pre-structured Media

Roshankhah 2015

0.7

-0.7

p/

zo

CL

Page 22: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

22

uni-mki.gwdg.de

Gas in Hydrates

Nankai Trough - March 2013

http://www.nytimes.com

DoE

CO2 GEOSTORAGE

Situation

Anthropogenic CO2 emissions:  33 1012 t/yr

Current CO2 atmosphere ~400 ppm. Increase: 2ppm/yr

Severe consequences 550 ppm (IPCC, 2000)

No low cost & scalable technology to capture CO2

More than 50 CO2 geostorage pilot projects worldwide

CO2 injection: common practice in petroleum production

Geostorage

Supercritical: saline aquifers, oil & gas reservoirs, coal seams

Liquid CO2: pools in deep ocean (> 3000 m)

CO2 Hydrate: deep ocean, CO2CH4

Chemically: carbonation, natural (trees, algae), coal/ shale

Geo‐Science 

Engineering

Identification and characterization: formations & seal

Porosity & dpore (injectability‐trapping tradeoff)

Long‐term response ~10,000 yr (formation, grouts, plugs)

Engineered injection: fingering, storativity, leakage

Coupled HCM: mixed fluids, acidification, dissolution

Monitoring: plume tracking, leak detection, deformation, P&T

Sealing strategies

Page 23: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

23

C Geo-storage: HQM Coupling

diffusion

Q

capillarity

pH dissolutioncontractionko shearCO2 Brine

buoyancy

advectionconvection

capillarity

HR

tensile fracture

‐fingering

HCO2

Caprock

Costly CO2 capture … uncertain long-term geo-storage

200ms

2.5km

Geo-Plumbing: Leak

Norway (Lawrence, 2010)

Page 24: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

24

NUCLEAR 6% energy worldwide

UraniumIn minerals (mined when >1000 ppm. In seawater (3 ppb)235U half‐life: 7 108 years

Energetics Energy density: 83 106 MJ/kg (effective: 0.9 105 MJ /kg)

Reserves

In minerals: 5 106 tons. In seawater: 4 109 tons

Annual production: 5.5 104 tons

Kazakhstan, Canada, Australia, Namibia, Niger, Russia

Context

Nuclear power plants in operation: 437

No nuclear waste repository in operation

Critical time for waste fuel storage: ~100 years

Design horizon: 10,000 yr to 1,000,000 yr

Commercial

accidents

Three Mile Island 1979, Chernobyl 1986, Fukushima 2011. 

Minor: more common (e.g., leaks from spent fuel pools)

NUCLEAR 6% energy worldwide

Geo‐Science 

Engineering

Common Characterization, baseline conditions, properties

Monitoring: Thermal field, leaks, long‐term monitoring

Monitoring integration into optimization/reliability strategy

Mining

Excavation 

Handling of tailings 

Infrastructure

Static, seismic, natural hazards

Heat absorption/release (new generation reactors)

Design for life‐cycle and for decommissioning

Flooding protection and mitigation

Regional and local subsidence

Remediation

Waste storage

Salt, hard rock, or clay

Self‐healing, HTCBM constraints, stability, retention

HTCBM: understanding, properties, and modeling

Design for retrievability

Page 25: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

25

GEOTHERMAL 0.2‐to‐0.3% of all energy consumed

Types

Shallow (<0.1 km): subsurface thermal capacitance

Hydrothermal (inter depth): Volcanic / tectonic regions

Deep geothermal (~3‐5 km, 150C<T< 350C): steam

Resource

98% of the earth: T> 1000CAverage heat flux: ~0.08W/m2

Potential:   4 TW of electricity  4 TW for heating

Installed: 12 GW of electricity 30 GW for heating

Geo‐Science 

Engineering

ShallowGSH

P Characterization: T, kT, c, groundwater

Coupled HTCM processes (e.g., repetitive TM ratcheting)

Engineering: backfill for heat storage and exchange

Optimal operation

Deep ‐EG

S

Characterization: fractures & geoplumbing

Rock properties @ HT (400C) & HP (100 MPa)

Drilling, casing stability

Reservoir engineering: HF, spacing

Coupled HTCM processes – Dissolution/precipitation

Monitoring & management

BIO FUELS 9.8% energy worldwide; >90% of heat from renewables

Sources

Combustible renewables: sugar beet, corn, wood, biogen gas 

Collateral: land & water use, effect on food supply 

Waste is not necessarily carbon neutral

Energetics

Various bio‐mass sources 

Municipal solid waste eV 155 MJ/kg

Paper, cardboard 

Plastic  eV= 3010 MJ/kg

Geo‐Science 

Engineering

Landfills: 

Spatial & time‐varying physical properties 

Liners (clays, geotextiles). Coupled THCBM processes. 

Volume change during decomposition, subsidence

Monitoring: deformations, P&T, gas, leachate

Agriculture: 

Unsaturated, coupled THCBM processes

Root‐soil interaction

Erosion control. Desertification. 

Geomechanical tool optimization, tire‐soil interaction

Monitoring (local, remote)

Page 26: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

26

HYDROELECTRIC 2.2% energy (14% of global electricity)

Resources

Dams (current and planned): all producible capacity

Installed: 400 GW (China, Canada, Brazil, USA)

Hydroelectric power plants: some exceed 10 GW

Geo‐Science 

Engineering

Dams

Site: fractures, relic channels, abutment stability

Classical: piping, dispersion, toe instability, filters, frozen ground,

overtopping, differential settlement, uplift, seepage, intelligent

compaction, dissolution, dynamic response

Reservoir sedimentation and capacity loss

Maintenance & retrofit: sedimentation, erosion, leaks

Tidal

Site: stratigraphy, erodability and mass transport

Underwater turbines, floating and fixed systems:

Anchoring  in soft marine clays

High drag, cavitation, scour

Repetitive dynamic loads 

Both Monitoring: deformations, fluid pressure, leaks

Integration of monitoring into resource management

WIND  <1% % energy worldwide (~2.5% of electricity)

ProductionWind turbines: < 150m diameter, < 8MW

Wind farms: some exceed 1GW

Extractable Worldwide: > total energy consumption (~17 TW)

In placeWorldwide: installed 450 GW (produced 50 GW)

USA: installed 66 GW (produced 13 GW)

EnergeticsWind power P Area A

Air mass density  Wind speed v

Geo‐Science 

Engineering

Onshore and offshore foundations (design, installation)

Characterization, material properties

Response to repetitive loads (ratcheting, terminal densities)

Constitutive models 

Numerical simulators 

Monitoring short and long term performance

Energy storage

3

2

1vAP

Page 27: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

27

SOLAR <1% % energy worldwide *

Solar powerInsolation: 150‐to‐300 W/m2 (primarily between the tropics)

Total earth insolation: 6500 total energy consumption

Harnessing

Heating

Bio‐photosynthesis 

Photovoltaics (power stations can exceed 200 MW) Concentrated 

solar power plants (10 MW units)

Geo‐Science 

Engineering

Solar panels (1‐to‐3m above ground)

Loads: low ‐ consider uplift

Key: low cost & high installation rate (fin or helical piles)

Concentrated solar power (Towers  large moments)

Geo‐storage

Hybrid solar‐thermal (HTM coupling)

Sub‐surface & solar ponds (pools of saltwater)

ENERGY STORAGE

Need

Satisfy peaks 

Optimize plant/system operation

Accommodate intermittent renewable sources

Methods

(scales)

National/commercial: chemical (caverns, aquifers, reservoirs)

Urban: pumped hydro, CAES, molten salt

Residential: distributed thermal energy storage 

Volume

Given: energy density eV [J/m3] 

stored energy E [J] or 

delivered power P [W] and duration t [s]

Chemical

Hydrogen (at 20 MPa)

Methane (at 20 MPa)

Gasoline

H2:

CH4:

gasoline:

eV= 1,600 MJ/m3

eV= 7,600 MJ/m3

eV=40,000 MJ/m3

Pumped HydroFluid unit weight γ [kN/m3] 

at elevation ΔH [m]

water @ΔH=100m

eV = 1 MJ/m3

Compressed AirCycle’s min&max press.

Pmin and Pmax [kPa]. 

Pmin=4 MPa & Pmax=7 MPa

eV = 4 MJ/m3

VV e

tP

e

EV

HeV

min

maxmaxV P

PlnPe

Page 28: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

28

ENERGY STORAGE

Thermal

Sensible heat: 

density ρ [kg/m3]

heat cap. Cp [kJ/(kg.°C)]

water ΔT=10°C

eV = 42 MJ/m3

Latent heat: L [kJ/kg] 

mass density ρ [kg/m3]

icewater

eV = 305 MJ/m3

Geo‐Science 

Engineering

Characterization: Stratigraphy, geo‐pluming 

Material response to PT‐RH‐’ cyclesProofing existent volumes for storage

Design for coupled HTCM processes. 

Monitoring ‐ Integration into reservoir management

Leak monitoring and repair

TCe pV

LeV

CONSERVATION AND EFFICIENCY

General

Conservation: developed nations with overconsumption

Efficiency complements conservation

Embodied energy parallels embodied CO2

Portland cement  embodied CO2 in infrastructure

High inefficiency: Crushing (2‐to‐5%)

Biomimetics

Biological processes: optimal development

Soils excavation:  machine >> hand >> ants

Roots: self‐adaptive, self‐sensing, self‐healing

Geo‐Science 

Engineering

Efficient use of natural resources (e.g., aggregates)

Reduced volume extraction 

Avoid materials with high embodied energy (concrete & steel)

Energy efficiency construction practices 

Energy return on investment EROI (considers all invested energy)

Waste recycling/reutilization: engineering waste reuse for long‐

term performance

Observational approach: monitoring as an integral component of 

energy efficient design and construction practice

Page 29: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

29

Efficiency

Nature: adaptation towards energy optimization

Efficiency: Rock Crushing

Grain-grain interaction

Elasto-thermal within particles

Ein

13 %

1 %

2 %

37%

47 %

Embodied Energy

Page 30: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

30

Geotech: Back to Basics…

geolabs.co.uk

Fluid-Mineral: HTCMFlow-controlling fractionLoad-carrying fraction

Sand [%]

0

60

100

100

0

40

0 100

20

30

10

50

50

90

80

70

60

40

30

20

10

70

80

90

908070605040302010

Sand [%]

0

60

100

100

0

40

0 100

20

30

10

50

50

90

80

70

60

40

30

20

10

70

80

90

908070605040302010

1

2

34

5

7

8

9

6

10

11 12

2

13

F

GF SF

GSF

G SGS

(F)

(G) (S)

b

oo e

e

k

k

'c

'c

HLH

'eeee

u ’ e k

0

100

200

300

Eff

ecti

ve s

tres

s [k

Pa]

N=104

Repetitive THCM loadsPhysics-inspired models

1. Energy = Tera-Problem

Difficult decisions

Urgency

2. Energy Geo-Science and Engineering

Central role

Back to basics: Physics-inspired

Closing

Page 31: Geo-Science and Engineering Needs in the Energy Sector › masri_institute › Events... · 4/10/2017 14 Summary: TERA-problem Tera-dollars 100’s T$ infrastructure (optimized for

4/10/2017

31

Thank you

Current & past team members

Special thanks:

Rached Rached

Dr. Nesreene GhaddarMunib and Angela MasriInstitute of Energy and Natural Resources

References

Terzaghi Lecture: https://www.youtube.com/watch?v=YQGdw_-mOyc

Papers: https://egel.kaust.edu.sa/Pages/Publications.aspx

World situation: https://egel.kaust.edu.sa/Documents/Papers/Pasten_2012a.pdf

https://egel.kaust.edu.sa/Documents/Papers/Santamarina_2006www.pdf