58
Genomic Perspectives on Evolution in Bracken Fern Joshua Der Department of Biology PhD Defense, 27 May 2010 1 Friday, May 28, 2010

Genomic Perspectives on Evolution in Bracken Fern

Embed Size (px)

DESCRIPTION

Bracken fern (Pteridium aquilinum) is an emerging model for genomic studies in ferns. These are slides from my PhD defense seminar which describes three projects examining evolution in bracken and the development of genomic resources for ferns. Video of this presentation with audio is available at http://www.vimeo.com/12118174.

Citation preview

Page 1: Genomic Perspectives on Evolution in Bracken Fern

Genomic Perspectives on Evolution in Bracken Fern

Joshua DerDepartment of Biology

PhD Defense, 27 May 2010

1Friday, May 28, 2010

Page 2: Genomic Perspectives on Evolution in Bracken Fern

Collage by Kristal Watrous

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

2Friday, May 28, 2010

Page 3: Genomic Perspectives on Evolution in Bracken Fern

Collage by Kristal Watrous

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

They all have complete sequenced genomes!

2Friday, May 28, 2010

Page 4: Genomic Perspectives on Evolution in Bracken Fern

Fruit fly Mouse

Model organisms (usually with small genomes)

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Collage by Kristal Watrous

3Friday, May 28, 2010

Page 5: Genomic Perspectives on Evolution in Bracken Fern

Yeast Grapes

Economically important species

Wine

+ =

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Collage by Kristal Watrous

4Friday, May 28, 2010

Page 6: Genomic Perspectives on Evolution in Bracken Fern

Rice Humans

Economically important species

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Collage by Kristal Watrous

5Friday, May 28, 2010

Page 7: Genomic Perspectives on Evolution in Bracken Fern

Platypus Lycophyte

Important evolutionary lineages

Sea Squirt

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Collage by Kristal Watrous

6Friday, May 28, 2010

Page 8: Genomic Perspectives on Evolution in Bracken Fern

Genomics in model organisms

• Generally have small genomes

• Decipher gene and genome function

• Understand networks of molecular interactions (i.e. systems biology)

• Translate new discoveries to benefit people (e.g. crop improvement and human health)

7Friday, May 28, 2010

Page 9: Genomic Perspectives on Evolution in Bracken Fern

The age of genomics

0

375

750

1125

1500

1995 1997 1999 2001 2003 2005 2007 2009

Number of complete genome sequences in Genbank, Feb. 2010(Data from Genomes OnLine Database v.3.0: www.genomesonline.org)

8Friday, May 28, 2010

Page 10: Genomic Perspectives on Evolution in Bracken Fern

“Next-generation” sequencing revolution

• Massive throughput

• Avoid sequence bias and labor associated with molecular cloning

• Huge reduction in cost per base

• Target sequencing for information-rich templates (e.g. gene space and transcriptomes)

9Friday, May 28, 2010

Page 11: Genomic Perspectives on Evolution in Bracken Fern

Next-generation platforms

• Second-generation (in vitro clonal amplification)

• Illumina

• SOLiD

• Roche 454

• Third-generation (single molecule sequencing)

• Helicos

• Pacific Biosciences

• Oxford Nanopore

10Friday, May 28, 2010

Page 12: Genomic Perspectives on Evolution in Bracken Fern

Genome-scale analyses can be performed on ANY organism

What’s your favorite organism?

11Friday, May 28, 2010

Page 13: Genomic Perspectives on Evolution in Bracken Fern

Genome-scale analyses can be performed on ANY organism

Woolly Mammoth

• Genome sequenced 2008

• Roche 454

Credit: Mauricio Anton

12Friday, May 28, 2010

Page 14: Genomic Perspectives on Evolution in Bracken Fern

Genome-scale analyses can be performed on ANY organism

Giant Panda

• Genome sequenced 2010

• Illumina

Photo: Aaron Logan

13Friday, May 28, 2010

Page 15: Genomic Perspectives on Evolution in Bracken Fern

Genome-scale analyses can be performed on ANY organism

• 1000 Genomes (human)

• 1001 Genomes (Arabidopsis)

• 1000 Plant and Animal Reference Genomes Project

• Genome 10K (vertebrates)

• OneKP (plant transcriptomes)

Let’s just sequence it all!

Photo: Natalie Maynor

14Friday, May 28, 2010

Page 16: Genomic Perspectives on Evolution in Bracken Fern

Reality check!

• We have limited resources

• Current technology still has limits

• Instrument capacity

• Throughput

• Read lengths

15Friday, May 28, 2010

Page 17: Genomic Perspectives on Evolution in Bracken Fern

So, how do we choose?

• Plants, of course!

• Two papers give us some guidance

16Friday, May 28, 2010

Page 18: Genomic Perspectives on Evolution in Bracken Fern

So, how do we choose?

• Choice must be considered within a phylogenetic framework

• Once we choose:

Do we need the full genome (yet)?

17Friday, May 28, 2010

Page 19: Genomic Perspectives on Evolution in Bracken Fern

Among plants, what is the last major (i.e. large and diverse) lineage

unsampled in a genome-scale project?

Ferns!

Photo: Robbin Moran

18Friday, May 28, 2010

Page 20: Genomic Perspectives on Evolution in Bracken Fern

Fern evolution

• Sister to seed plants

• Ancient lineage (Devonian)

• ~9000 extant species

• Geographic and ecological diversity

• Evolved and maintain independent gametophyte and sporophyte generations

Ferns

Lycophytes

Bryophytes

Seed Plants

19Friday, May 28, 2010

Page 21: Genomic Perspectives on Evolution in Bracken Fern

Fern evolution

• Sister to seed plants

• Ancient lineage (Devonian)

• ~9000 extant species

• Geographic and ecological diversity

• Evolved and maintain independent gametophyte and sporophyte generations

haploid spores (n)

meiosis

sperm (n)

egg (n)

zygote (2n)

Fern life cycle

syngamysporophyte (2n)

gametophyte (n)

20Friday, May 28, 2010

Page 22: Genomic Perspectives on Evolution in Bracken Fern

Challenges in fern genomics

• Limited agronomic importance

• Large genome sizes (avg. 10 Gb)

• High chromosome numbers (avg. n = 57)

• Extensive history of hybridization and polyploidy

Photo: Mike Windham

21Friday, May 28, 2010

Page 23: Genomic Perspectives on Evolution in Bracken Fern

Bracken fern: Pteridium

• Worldwide distribution

• Toxic to livestock and weedy in pasture

• Highly adaptable and phenotypically plastic

• Established culture techniques

• Paleopolyploid with diploid gene expression

• Genome size: 1C = 9.8 GbLindman. 1917-1926. Bilder ur Nordens Flora-508

22Friday, May 28, 2010

Page 24: Genomic Perspectives on Evolution in Bracken Fern

Bracken fern: Pteridium

Model system in the study of:

• Fern lifecycle

• Apomixis, apogamy, apospory

• Gametophyte development

• Pheromonal sex determination

• Cyanogenesis/Carcinogenesis

• Invasion ecology

• Climate change

Photo: John Thomson

23Friday, May 28, 2010

Page 25: Genomic Perspectives on Evolution in Bracken Fern

Dissertation outline1. Global phylogeny and biogeography of bracken

• Establish an evolutionary framework

2. Characterization of the bracken gametophyte transcriptome

• Leverage 454 sequencing to sample the expressed component of the huge nuclear genome

3. Chloroplast genome and RNA editing in bracken

• Combine genomic and expressed 454 sequence data to study chloroplast RNA metabolism

24Friday, May 28, 2010

Page 26: Genomic Perspectives on Evolution in Bracken Fern

1. Global phylogeny and biogeography of bracken

Citation: Joshua P. Der, John A. Thomson, Jeran K. Stratford and Paul G. Wolf. 2009. Global chloroplast phylogeny and biogeography of bracken (Pteridium: Dennstaedtiaceae). American Journal of Botany 96 (5): 1441-1449.

25Friday, May 28, 2010

Page 27: Genomic Perspectives on Evolution in Bracken Fern

Taxonomic instability• High phenotypic plasticity with

environmental conditions

• Few diagnostic morphological characters recognized

• Intermediate forms between geographic morphotypes

• Hybrid tetraploid species

• Regionally biased studiesThomson JA, Mickel JT, Mehltreter K. Botanical Journal of the Linnean Society, 2008, 157, 1–17.

Over 135 named forms!

26Friday, May 28, 2010

Page 28: Genomic Perspectives on Evolution in Bracken Fern

Phylogenetic objectives:

1. Establish a phylogenetic framework for the genus worldwide

2. Examine patterns of global biogeography

27Friday, May 28, 2010

Page 29: Genomic Perspectives on Evolution in Bracken Fern

Phylogeny

• 77 specimens sampled globally

• trnS-rps4 spacer+gene &rpl16 intron

• 43 parsimony informative sites

• 3 indel haplotypes detected

28Friday, May 28, 2010

Page 30: Genomic Perspectives on Evolution in Bracken Fern

Phylogeny

• 77 specimens sampled globally

• trnS-rps4 spacer+gene &rpl16 intron

• 43 parsimony informative sites

• 3 indel haplotypes detected

AC

B

28Friday, May 28, 2010

Page 31: Genomic Perspectives on Evolution in Bracken Fern

Biogeography

♦♦♦

!

♦▲

♦♦

!

▲★

▲ ▲♦

!

!!

!

!

♦♦

!

!

!

▲▲

▲▲

♦♦♦

♦▲

29Friday, May 28, 2010

Page 32: Genomic Perspectives on Evolution in Bracken Fern

Biogeography

♦♦♦

!

♦▲

♦♦

!

▲★

▲ ▲♦

!

!!

!

!

♦♦

!

!

!

▲▲

▲▲

♦♦♦

♦▲

29Friday, May 28, 2010

Page 33: Genomic Perspectives on Evolution in Bracken Fern

Biogeography

♦♦♦

!

♦▲

♦♦

!

▲★

▲ ▲♦

!

!!

!

!

♦♦

!

!

!

▲▲

▲▲

♦♦♦

♦▲

30Friday, May 28, 2010

Page 34: Genomic Perspectives on Evolution in Bracken Fern

Phylogenetic conclusions

1. First global phylogenetic analysis in bracken

2. Biogeographic patterns are consistent with paleoclimatic events

3. This work contributes to a revision of the genus

31Friday, May 28, 2010

Page 35: Genomic Perspectives on Evolution in Bracken Fern

2. Gametophyte transcriptome

Coauthors: Michael S. Barker, Norman J. Wickett, Claude W. dePamphilis, Paul G. Wolf

32Friday, May 28, 2010

Page 36: Genomic Perspectives on Evolution in Bracken Fern

Transcriptome objectives

1. Develop an extensive expressed sequence resource in ferns

2. Glimpse into the nuclear genome of bracken

3. Characterize the transcriptome & identify active genes in the gametophyte generation

33Friday, May 28, 2010

Page 37: Genomic Perspectives on Evolution in Bracken Fern

Roche 454 sequence reads

Normalized cDNA derived from mature gametophytes

Reads were quality and length filtered, adapter and polyA/T trimmed

• Cleaned reads:! 681,722

• Mean length:!! 372.60 bp

• Total bases:! ! 254 Mb

Histogram of cleaned reads

Cleaned read length, maximum = 624

Num

ber o

f seq

uenc

es

0 100 200 300 400 500 600

050

0010

000

1500

0

34Friday, May 28, 2010

Page 38: Genomic Perspectives on Evolution in Bracken Fern

Transcriptome assembly

Histogram of transcriptome unigenes (CAP3)

Unigene length, largest transcript = 4897 bp

Num

ber o

f seq

uenc

es

0 500 1000 1500 2000 25000

2000

4000

6000

Total unigenes = 38889

Mean length = 685.76 bp

Total bases = 26.67 Mp

Unigenes

Number 38,889

Mean length (bp) 685.76

Mode (bp) 476

Range in length (bp) 86 - 4,897

Total bases (Mbp) 26.67

35Friday, May 28, 2010

Page 39: Genomic Perspectives on Evolution in Bracken Fern

Transcriptome coverage

Wall et. al., 2009. BMC Genomics 10:347

ESTcalc (simulation based model)ESTcalc (simulation based model)

Percent of the unique bases in the transcriptome: 87%

Percent of the genes with at least one read: 100%

19

338

Ultra conserved orthologs

8

155

Shared single copy genes

95%

36Friday, May 28, 2010

Page 40: Genomic Perspectives on Evolution in Bracken Fern

Transcriptome coverage

95% of unigenes captured after 403K reads sampled

1,357 reads to capture the last 10 unigenes

37Friday, May 28, 2010

Page 41: Genomic Perspectives on Evolution in Bracken Fern

Functional annotation

Localization of genes is predominantly in the nucleus, mitochondria, and plastids

cellular_component Level 5

endoplasmic reticulum

(317)

nucleoplasm (376)

vacuole (274)

Golgi apparatus

(212)

microbody (119)

plastid (3,613)

cytoskeleton (238)

nucleus (1,325)

endosome (10)

nucleolus (197)

nuclear lumen (555)

cytosol (448)

mitochondrion (1,967)

GO category: Cellular Component

38Friday, May 28, 2010

Page 42: Genomic Perspectives on Evolution in Bracken Fern

Functional annotation

Two main biological processes involve metabolism and cellular machinery

GO category: Biological Processbiological_process Level 2

multicellular organismal

process (166)

localization (1,713)

multi-organism process (15)

growth (41)

establishment of localization

(1,713)

reproduction (73)

biological regulation (853)

developmental process (194)

reproductive process (29)

cellular process (7,432)

regulation of biological

process (716)

response to stimulus (908)

metabolic process (7,641)

39Friday, May 28, 2010

Page 43: Genomic Perspectives on Evolution in Bracken Fern

Functional annotation

Two main molecular functions are binding (DNA, RNA, and protein) and catalytic activity (hydrolase and transferase activity)

GO category: Molecular functionmolecular_function Level 2

enzyme regulator

activity (106)

binding (8,120)

transcription regulator

activity (409)

structural molecule

activity (542)

translation regulator activity (1)

transporter activity (908)

molecular transducer

activity (357)

catalytic activity (7,915)

40Friday, May 28, 2010

Page 44: Genomic Perspectives on Evolution in Bracken Fern

Comparative genomics

Of 38,889 unigenes, 24,897 had a positive blastx hit

• 23,152 in Arabidopsis

• 22,474 in Physcomitrella

• 16,352 in Selaginella

41Friday, May 28, 2010

Page 45: Genomic Perspectives on Evolution in Bracken Fern

Transcriptome conclusions

1. First comprehensive analysis of gene expression in a fern

2. Most extensive sequence resource available in ferns

42Friday, May 28, 2010

Page 46: Genomic Perspectives on Evolution in Bracken Fern

3. RNA editing in the chloroplast genome

Coauthors: Aaron M. Duffy, Matt Kusner, Chen Gu, Paul Overvoorde, Paul G. Wolf

43Friday, May 28, 2010

Page 47: Genomic Perspectives on Evolution in Bracken Fern

RNA editing in plants• Conversion of C to U or U

to C nucleotide in RNA molecules relative to the encoding DNA

• More abundant in mitochondria than chloroplasts or nuclear genomes

• Most abundant in seed-free vascular plants and hornworts

Ferns (300; ?)

Lycophytes (?; 1450)

Mosses (1; 11)

Seed Plants (30; 500)

Hornworts (900; 600)

Leafy liverworts (?; 600)Thalloid liverwort (none)

Lineage (cp; mt)

44Friday, May 28, 2010

Page 48: Genomic Perspectives on Evolution in Bracken Fern

Chloroplast genome objectives:

1. Reconstruct the complete chloroplast genome from total genomic Roche 454 data

2. Use expressed transcript data to identify RNA editing sites, de novo

45Friday, May 28, 2010

Page 49: Genomic Perspectives on Evolution in Bracken Fern

Chloroplast genomeGenomic 454 read lengths

Read length (maximum = 1363)

Num

ber o

f rea

ds

0 100 200 300 400 500 600 700

050

0015

000

2500

035

000

711,178 reads216.19 Mbp

152,362 bp34.5x coverage

46Friday, May 28, 2010

Page 50: Genomic Perspectives on Evolution in Bracken Fern

Genome annotation

Ribosomal RNAs 4Transfer RNAs 29Photosystem I 5Photosystem II 15Cytochrome 6ATP synthase 6Rubisco (rbcL) 1Chlorophyll biosynthesis 3NADH dehydrogenase 11Ribosomal proteins 22RNA polymerase 4Intron maturase (matK) 1Miscellaneous proteins 5Hypothetical proteins 5

117 total genes

47Friday, May 28, 2010

Page 51: Genomic Perspectives on Evolution in Bracken Fern

RNA editing

Percent chloroplast transcripts 2.8%Percent of chloroplast genome 80.67%Percent of chloroplast sites edited 0.73%Total RNA editing sites detected 851

C to U RNA editing 551U to C RNA editing 300RNA editing in the Inverted Repeat 233

RNA editing in protein coding sequence 660Modified start codons 26Premature stop codon repair 37Repair proper stop codon 6

RNA editing in tRNA genes 15RNA editing in rRNA genes 168RNA editing in introns 12

48Friday, May 28, 2010

Page 52: Genomic Perspectives on Evolution in Bracken Fern

RNA editing

49Friday, May 28, 2010

Page 53: Genomic Perspectives on Evolution in Bracken Fern

Chloroplast genome conclusions

1. Utilized a novel method to reconstruct the chloroplast genome

• Pteridium aquilinum has the chloroplast gene set and gene order of Adiantum capillis-veneris

2. First to use deep RNA sequencing to identify RNA editing in chloroplasts

• Identified a large number of RNA editing sites in the chloroplast genome

50Friday, May 28, 2010

Page 54: Genomic Perspectives on Evolution in Bracken Fern

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Collage by Kristal Watrous

51Friday, May 28, 2010

Page 55: Genomic Perspectives on Evolution in Bracken Fern

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Collage by Kristal Watrous

Conclusions1. Next generation sequencing has enabled

genome-scale studies in non-model organisms

2. Large data sets present new challenges for analysis

3. Incredible opportunities for novel studies and analyses in new organisms

Friday, May 28, 2010

Page 56: Genomic Perspectives on Evolution in Bracken Fern

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Future work

1. Extract mitochondrial genome sequences

2. Sequence the sporophyte transcriptome

3. Explore gene space and transposable elements in the nuclear genome

Collage by Kristal Watrous

52Friday, May 28, 2010

Page 57: Genomic Perspectives on Evolution in Bracken Fern

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

AcknowledgmentsPhD Committee: Coauthors: Claude dePamphilisPaul Wolf Mike Pfrender Jeran Stratford Aaron DuffyCarol VonDohlen Karen Mock John Thomson Chen GuPaul Cliften (Geno Schupp) Mike Barker Matt Kusner

Other supportive roles (e.g. research or editorial assistance, samples, scripts, data, photographs, etc.)Other supportive roles (e.g. research or editorial assistance, samples, scripts, data, photographs, etc.)

Norm Wickett Paul OvervoordeOther supportive roles (e.g. research or editorial assistance, samples, scripts, data, photographs, etc.)Other supportive roles (e.g. research or editorial assistance, samples, scripts, data, photographs, etc.) Funding Agencies:Funding Agencies:

Katrina Dlugosch Ninglin Yin Utah State University: Department of Biology; Vice President for Research; Center for Integrated Biosystems; Center for High Performance Computing; Ecology Center

Utah State University: Department of Biology; Vice President for Research; Center for Integrated Biosystems; Center for High Performance Computing; Ecology Center

Eric Wafula Jacob Parnell

Utah State University: Department of Biology; Vice President for Research; Center for Integrated Biosystems; Center for High Performance Computing; Ecology Center

Utah State University: Department of Biology; Vice President for Research; Center for Integrated Biosystems; Center for High Performance Computing; Ecology CenterJacob Davidson Keithanne Mockaitis

Utah State University: Department of Biology; Vice President for Research; Center for Integrated Biosystems; Center for High Performance Computing; Ecology Center

Utah State University: Department of Biology; Vice President for Research; Center for Integrated Biosystems; Center for High Performance Computing; Ecology Center

Alan Smith Elizabeth Sheffield National Science FoundationNational Science Foundation

Jeffrey Boore Tom Ranker Genomics Education Partnership, Howard Hughes Medical Institute and The Genome Center at Washington University

Genomics Education Partnership, Howard Hughes Medical Institute and The Genome Center at Washington UniversityBrent Mishler Laura Forrest

Genomics Education Partnership, Howard Hughes Medical Institute and The Genome Center at Washington University

Genomics Education Partnership, Howard Hughes Medical Institute and The Genome Center at Washington University

Kenneth White Brian Joy Dedication: Kristal, Cora, and TylerThis one’s for you. Thanks.Dedication: Kristal, Cora, and TylerThis one’s for you. Thanks.Daryll DewaldDedication: Kristal, Cora, and TylerThis one’s for you. Thanks.Dedication: Kristal, Cora, and TylerThis one’s for you. Thanks.

53Friday, May 28, 2010

Page 58: Genomic Perspectives on Evolution in Bracken Fern

Photo Credits: fruit fly: André Karwath; mosquito: Ashok Prabhakaran; honeybee: Allie Caulfield; sea urchin: Jerry Kirkhart; green anole lizard: Clinton & Charles Robertson; opossum: Mike Keeling; platypus: Jon Hooper; horse: Pete Birkinshaw; cow: Kevek Law; rhesus macaque: Paul Asman & Jill Lenoble; nematode: Flickr user snickclunk; dog: John Wright; sea squirt: Silke Baron; chicken: Ernst Vikne; human: Lindsey Wilson; chimp: Frank Wouters; mouse: Kim Carpenter; pufferfish: Julien Mouille; Arabidopsis: Sui-setz; rice: FotoosVanRobin; grape: Tomomarusan; papaya: geishaboy500; yeast: David O. Morgan; diatom: Minami Himemiya; giant panda: Aaron Logan; black cottonwood: Dave Powell; woolly mammoth: Mauricio Anton; wine glass: Klaus Post

Collage by Kristal Watrous

54Friday, May 28, 2010