84
GFSSP GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version 5 (Beta Release) Alok Majumdar ER43/NASA/MSFC Users Group Meeting October 26, 2004

GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

GFSSPGENERALIZED FLUID SYSTEM

SIMULATION PROGRAM- Version 5 (Beta Release)

Alok MajumdarER43/NASA/MSFC

Users Group MeetingOctober 26, 2004

Page 2: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Topics

• GFSSP Overview• New Features of Version 5

– Conjugate Heat Transfer– Improvements in

• Enthalpy Equation• Ideal Gas Option• VTASC

• Demonstration• Applications

Page 3: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Classification of CFD Codes

Computational Fluid Dynamics (CFD)

Navier Stokes Analysis (NSA)

Network Flow Analysis (NFA)

Finite Difference

Finite Element

Finite Volume

Finite Volume

Finite Difference

GFSSP

Computational Fluid Dynamics (CFD)

Navier Stokes Analysis (NSA)

Network Flow Analysis (NFA)

Finite Difference

Finite Element

Finite Volume

Finite Volume

Finite Difference

Computational Fluid Dynamics (CFD)

Navier Stokes Analysis (NSA)

Network Flow Analysis (NFA)

Finite Difference

Finite Difference

Finite Element

Finite Element

Finite VolumeFinite

VolumeFinite

VolumeFinite

VolumeFinite

DifferenceFinite

Difference

GFSSP

Page 4: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

GFSSPThermo-Fluid System Analysis Tool

Properties

- Fluids• Cryogenic• Propellants• Refrigerants• Air• Ideal Gas• Generic

- Solids• Metals• Alloys• Generic

Components

• Flow Resistances

-Pipe

- Fittings

- Seals

• Pump

• Heat Exchanger

• Turbopump

• Control Valve

• Generic

Processes

• Mixing of Fluid

• Pressurization

• Blow down

• Choking

• Phase Change

• Water hammer

• Conjugate Heat Transfer

Page 5: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Finite Volume Formulation in a Fluid Network

= Boundary Node

= Internal Node

= Branch

H2

N2

O2

H2 + O2 +N2

H2 + O2 +N2

= Boundary Node

= Internal Node

= Branch

H2H2

N2N2

O2O2

H2 + O2 +N2H2 + O2 +N2

H2 + O2 +N2H2 + O2 +N2

GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches.

Page 6: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Conjugate Heat Transfer

Boundary Node

Internal Node

Branches

Solid Node

Ambient Node

Conductor

Solid to Solid

Solid to Fluid

Solid to Ambient

Page 7: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Mathematical Closure

Unknown Variables Available Equations to Solve

1. Pressure 1. Mass Conservation Equation

2. Flowrate 2. Momentum Conservation Equation

3. Fluid Temperature 3. Energy Conservation Equation of Fluid

4. Solid Temperature 4. Energy Conservation Equation of Solid

5. Specie Concentrations 5. Conservation Equations for Mass Fraction of Species

6. Mass 6. Thermodynamic Equation of State

Page 8: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

GFSSP – Program Structure

Graphical User Interface (VTASC)

Solver & Property Module User Subroutines

Input Data

File

New Physics

• Time dependent

process

• non-linear boundary

conditions

• External source term

• Customized output

• New resistance / fluid

option

Output Data File

• Equation Generator

• Equation Solver

• Fluid Property Program

• Creates Flow Circuit

• Runs GFSSP

• Displays results graphically

Graphical User Interface (VTASC)

Solver & Property Module User Subroutines

Input Data

File

New Physics

• Time dependent

process

• non-linear boundary

conditions

• External source term

• Customized output

• New resistance / fluid

option

Output Data File

• Equation Generator

• Equation Solver

• Fluid Property Program

• Creates Flow Circuit

• Runs GFSSP

• Displays results graphically

Page 9: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Mass Conservation Equations

Nodej = 1

mji. Node

j = 3mij.

Nodej = 2

mij.

Nodej = 4

mji.

mji.

mij.

= -

SingleFluidk = 1

SingleFluidk = 2

Fluid Mixture

Fluid Mixture

Nodei

∑=

=−=

∆−∆+

nj

jmmm

ij

1

.

ττττ

Note : Pressure does not appear explicitly in Mass Conservation Equation although it is earmarked for calculating pressures

Page 10: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Momentum Conservation Equation

i

j

g

θ

ω ri rj

.mij

Axis of Rotation

Branch

Node

Node• Represents Newton’s Second Law of Motion

Mass X Acceleration = Forces

• Unsteady

• Longitudinal Inertia

• Transverse Inertia

• Pressure

• Gravity

• Friction

• Centrifugal

• Shear Stress

• Moving Boundary

• Normal Stress

• External Force

Page 11: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Energy Conservation Equation

k = 2

Nodej = 1 mji

. Nodej = 3

mij.

Nodej = 2

mij.

Nodej = 4

mji.

mji.

mij.

= -

SingleFluidk = 1

SingleFluid

Fluid Mixture

Fluid Mixture

Nodei

2 2/ /

. .,0 ( 0.5 ) ,0 ( 0.5 )

1j ij c i ij cij j ij i i

p pm h m hJ J

j nMAX m h u g MAX m h u g Q

j

τ τ τρ ρτ

ρ ρ

+∆

+ +

− − − =

∆= − − + = ∑

iQ

Rate of Increase of Internal Energy =

Enthalpy Inflow + Kinetic Energy Inflow -ow + Kinetic Energy Outflow +

Heat Source

• Upwind Scheme for advection

Enthalpy Outfl

Page 12: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Equation of State

Resident mass in a control volume is calculated

from the equation of state for a real fluid

RTzpVm=

z is the compressibility factor determined from

higher order equation of state

Page 13: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Heat Conduction Equation

i

js = 1

js = 2js = 3

js = 4

jf = 1 jf = 2 jf = 3 jf = 4

ja = 1 ja = 2

( ) i

n

jsa

n

jsf

n

jss

isp SqqqTmC

sa

a

sf

f

ss

s

=

=

=

+++=∂∂ ∑∑∑

111

τ ( )

∑ ∑ ∑

∑ ∑ ∑

= = =

= =

=

+++∆

+∆

+++

=ss

s

sf

f

sa

a

afs

ss

s

sf

f

sa

a

a

a

f

f

s

s

n

j

n

j

n

jijijij

p

n

j

n

j

ims

mpn

j

jaij

jfij

jsij

is

CCCmC

STmC

TCTCTCT

1 1 1

1 1,

1

τ

τ( )isjsijijijss TTAkq s

sss−=

δ/

( )isjfijijsf TTAhq f

ff−=

( )isjaijijsa TTAhq a

aa−=

Ambient Node

Solid Node

Fluid Node

Conservation Equation

Successive Substitution Form

Page 14: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Solution Scheme

Mass Momentum

Energy

Specie

State

Simultaneous

Successive Substitution

SASS : Simultaneous Adjustment with Successive Substitution

Approach : Solve simultaneously when equations are strongly coupled and non-linear

Advantage : Superior convergence characteristics with affordable computer memory

Page 15: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

SASS Solution Scheme

Iteration Loop Governing Equations Variables

Simultaneous Solution

Successive Substitution

Property Calculation

Convergence Check

Mass Conservation

Momentum Conservation

Equation of StateResident Mass

Energy Conservation of fluid Enthalpy

Pressure

Flowrate

Energy Conservation of solid Solid Temperature

Thermodynamic PropertyProgram

Temperature, Density, Compressibility factorr, Viscosity, etc.

Page 16: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Graphical User Interface

Page 17: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Verification of Conjugate Heat Transfer Results

0

50

100

150

200

250

0 3 6 9 12 15 18 21 24

X (inches)

Tem

pera

ture

(Deg

F)

AnalyticalGFSSP

GFSSP Model

Comparison with Analytical Solution

Problem Considered

Page 18: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Other Improvements

• Ideal Gas Option– Allows to chose new reference temperature and

pressure– Allows mixture of ideal gas and real fluid

• VTASC– Conjugate Heat Transfer– Ideal Gas Option– Display of results– Use of default properties for resistance and conductor

option

Page 19: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Summary

• The major highlight of Version 5 is– Conjugate Heat Transfer

• The other improvements are– Ideal Gas Option– Enthalpy Equation– VTASC Upgrade

• Work in Progress– Modeling of Boil-off and Fill-up of Cryogenic Tank– Modeling of Liquid Metal and Electromagnetic Pump– Chilldown of Cryogenic Transfer Line– Flow in Micro channel– Pressurization of Joint in Solid Rocket Motor– Cryo-pumping– Isentropic Flow in Nozzle

Page 20: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Numerical Modeling of Thermofluid Transients During

Chilldown of Cryogenic Transfer Lines Update

Todd SteadmanJacobs Sverdrup Technology, Inc.

Page 21: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Experimental Setup

Page 22: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

GFSSP Model

Page 23: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Model Details• Time Step = 0.0015 secs

• Upstream Boundary ConditionsFluid: Liquid HydrogenP = 74.97 psiaT = 48.6 R

• Pipe CharacteristicsMaterial: Copper1” Outside Diameter, 3/16” Wall Thickness

13577

67.6 Number Courant ≥⋅

==sftft

aLb

ττ

Page 24: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Temperature Comparison

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100Time (sec)

Tem

pera

ture

(K)

Version 5.01Version 4.0Exp Data

STATION 1 STATION 2 STATION 3 STATION 4

Page 25: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Pressure Prediction

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100Time (sec)

Pres

sure

(kPa

)

Version 5.01Version 4.0

STATION 1

STATION 2

STATION 3

STATION 4

Page 26: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Quality Prediction

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Vapo

r Qua

lity

Version 5.01Version 4.0

STATION 1 STATION 2 STATION 3 STATION 4

Page 27: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Mass Flow Rate Prediction

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Mas

s Fl

ow R

ate

(kg/

s)

Version 5.01Version 4.0

INLET

MIDPOINT

EXIT

Page 28: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Heat Transfer Coefficient Prediction

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Hea

t Tra

nsfe

r Coe

ffici

ent (

W/m

^2-K

)

Version 5.01Version 4.0

STATION 1STATION 2

STATION 3

STATION 4

Page 29: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

GFSSP USERS GROUP MEETING

Johnny MaroneyJacobs Sverdrup

10/26/04

Page 30: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Topics

• Chill down in a small tube• Micro-Channel• Stennis LOX Line

Page 31: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Chill Down in a Small Tube• Dr. Matthew Cross Doctorial Dissertation

- Correlated Experimental Data to GFSSP Version 4

• Compared Version 4 to Version 5- Heat Transfer in subroutine- Conjugate Heat Transfer

Page 32: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Chill Down in a Small Tube

Hydrogen Aluminum Tube

26 in length

3/16 inDiameter

Page 33: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Version 4

Page 34: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Version 5

Page 35: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

V4 & V5, RELH=0, Alok new files, Solid Temperature Comparison

-450-430-410-390-370-350-330-310-290-270-250-230-210-190-170-150-130-110-90-70-50-30-101030507090

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Time (seconds)

Tem

pera

ture

(F) V4 Solid T3 ( F)

V4 Solid T15 ( F)V4 Solid T27 ( F)V5 Solid T32 (F) V5 Solid T44 (F) V5 Solid T56 (F)

Page 36: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

V4 & V5, RELH=0, Alok new files, Pressure Comparison

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

14.0

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

15.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Time (seconds)

Pres

sure

(psi

a) V4 P3 (Psia) V4 P15 (Psia) V4 P27 (Psia) V5 P3 (Psia) V5 P15 (Psia) V5 P27 (Psia)

Page 37: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Page 38: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Micro-Channel• Height = 0.000383 inches, width = 0.00238

inches • 45.5 mm (1.8 inches) total piping• Rectangular ducts• Water• Steady State

Page 39: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

14.7 psia, 77F15.7 psia, 77F

6.6159 mm

2.659 mm

14.7 psia, 77F

22.6849 mm

2.6487 mm

2.6487 mm

0.4328 mm

0.4328 mm

2.9287 mm

2.9287 mm

2.659 mm

Page 40: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Page 41: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Page 42: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

RS-84 Subscale Preburner LOX• Stennis• Varying Elevations• Control Valves (% open/closed)• Inlet at 7210 psia, -281.69F• Outlet at 6850 psia, -276.1F• BPV opens at 0.2 seconds, closes at 14.8 seconds• Valve opens at 4.0 seconds, closes at 12.8 seconds

Page 43: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

LOX Run Line Section Identification for K factors

TestArticleInterface

UHPLOXTank

Bypass LegFLM-14A03-LOFlow Meter

MVP

GN2 TA PurgeMVP

GN2 TA Purge

LF-14A15-LOFilter

TankS/OValve

Section 1ends (tank valve,

3 els, 43 ft 6” pipe,-0.33’ elv)

Section 2 ends(2 els, 12.5’ 6” pipe,

+2.8’ elv)

Section 3 ends(3.0’ 6” pipe,

+0’ elv)

Section 5ends (LF)

P

T

VPV-14A03-LO

MV-14A2092-LO

Section 6 ends(1 red, 18.15’ 4” pipe,4 els, +7.5’ elv)

Section 7 ends(4.23’ 4” pipe,1 el, +0’ elv)

Section 9 ends(3.64’ 4” pipe,+0’ elv)

Section 10 (13 Br) ends(1 red, 2.34’ 2.5” pipe,1 el, -1.1’ elv)

Section 7 Br ends(1 red, 1 tee br, 0.82’ 1.5” pipe,+0’ elv)

RO-14A2091-LO

Section 9 Br ends(1.18’ 1.5” pipe,+0’ elv)

Section 11 BrEnds (3.27’ 1.5” pipe, 1 el)

Section 12 Br ends(1 exp, 2.89’ 4” pipe,1 tee br)

6” pipe ID = 4.209”4” pipe ID = 2.86”4” monel clad pipe ID = 2.61”1.5” pipe ID = 1.1”2.5” pipe ID = 1.827”Br=branch section

Elev = 29.5’

Elev = 38.4’

Height difference between Tank discharge and Test Article Interface = +8.9’Volume downstream of MOV VPV-14A03-LO (excluding bypass)= 378.6 cubic inchesVolume downstream of MV-14A2092-LO to main line tie-in = 38.4 cubic inches

Page 44: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

Page 45: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

LOX Flowrate history for Main and Bypass Line and Test Article, Time Step = 0.1 Seconds

-100.00

0.00

100.00

200.00

300.00

400.00

-4.00 0.00 4.00 8.00 12.00 16.00 20.00

Time (seconds)

Flow

rate

(lb/

s)

F3132 LBM/SF3536 LBM/SF4647 LBM/S

Page 46: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

LOX Pressure History at Test Article, Time Step = 0.1 Seconds

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

-4.00 0.00 4.00 8.00 12.00 16.00 20.00

Time (seconds)

Pres

sure

(psi

a)

P46 PSIA

Page 47: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

Allied AerospaceERCMorganQualisRaytheon

LOX Pressure History for Main and Bypass Valve, Time Step = 0.1 Seconds

0.00

2000.00

4000.00

6000.00

8000.00

-4.00 0.00 4.00 8.00 12.00 16.00 20.00

Time (seconds)

Pres

sure

(psi

a)

P31 PSIAP32 PSIAP35 PSIAP36 PSIA

Page 48: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

1

Introduction

• Topics• Rapid Pressurization of Solid Rocket Motor

(SRM) Field Joint• Nitrogen Cryo-Pumping Into Thermal Protection

Protection System (TPS) Foam Voids & Subsequent Ejection

Page 49: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

2

Field Joint Pressurization• Problem Description

• Channel Is Pressurized From 12.2 psia and 60 °F to °F to 900 psia and 2300 °F Within 1 Second

• Highly Transient Fluid Flow Within and Heat Transfer to Surrounding Structure

Page 50: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

3

Field Joint Pressurization• GFSSP Model Description

• Single Boundary Node Represents Flow Inlet• Last Node Represents Primary O-Ring Gland• Nodes/Branches In Between Represent Flow

Channel• Conjugate Heat Transfer To Solid Nodes

Page 51: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

4

Field Joint Pressurization• Future Efforts

• Integrate GFSSP With Solid Structure Heat Transfer Code For Advanced Conjugate ModelingModeling

Page 52: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

5

N2 Cryo-Pumping & Ejection• Problem Description

• Voids Unintentionally Produced During TPS Application

• Void/Channel Initially Filled With GN2• Foam Around Void Cools To LH2 Temp. (-423 °F)

During Shuttle Tanking• Cryo-Pumping Draws N2 Into Void• N2 Is Ejected From Void Due To Subsequent TPS

Heating During Shuttle Ascent

N2Source Tanking

Ascent

TPS Foam Void

N2 Leak Path

Page 53: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

6

N2 Cryo-Pumping & Ejection• GFSSP Model Description

• For In-Flow, Transient Inlet Conditions For Fluid Provided At Node 1

• Void Temperature (N2 & Foam Walls) Approximated Approximated As Spatially Uniform At Each Time Time Step (Tanking & Ascent)

• Transient Void Temperature Specified By Using Solid Solid Node In Conjunction With Fluid Node and Very Very Low Resistance Conductor (i.e. Very High h)

Page 54: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

1

SSME Regen. Cooling Problem

Objective:• Use GFSSP to model heat transfer between main MCC

flow and regenerative cooling flow.

Accomplished:1. Developed a simple model of heat transfer between two

counter flow fluids.2. Investigated GFSSP’s ability to predict flow conditions

in a Converging-Diverging nozzle

Page 55: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

2

Basic Heat Exchanger Model

Hot flow path

Solid (nozzle wall) nodes

Cool flow path

Model geometry (i.e. pipe diameter, wall thickness, etc…) was chosen arbitrarily

Page 56: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

3

Basic Heat Exchanger ModelTemperature distribution in a counter flow heat exchanger

* Working fluid - H2O

50.0

60.0

70.0

80.0

90.0

100.0

110.0

2 3 4 5Node

Tem

pera

ture

(F)

Hot Side Cold Side Wall_hotWall_mid Wall_cold

Flow

Flow

Page 57: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

4

User Subroutine for hg & hc

Equation for Gas side (Bartz):

( )σ

µ×

×

= ∗

9.01.08.0

6.0

2.0

2.0 Pr026.0

AA

RD

cgpC

Dh ttnsc

ns

p

tg

( )12.0

2

68.0

2

211

21

211

21

1

−+

+

−+

=

MMTT

nsc

wg γγσWhere,

Equation for Coolant Side:55.0

2.0

8.0

3/2

2.0

Pr029.0

=

wc

copc T

TdGC

Page 58: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

5

User Subroutine for hg & hc

C**************************************************SUBROUTINE USRHCF(NUMBER,HCF)

C PURPOSE: PROVIDE HEAT TRANSFER COEFFICIENTC**************************************************

INCLUDE 'COMBLK.FOR'C**************************************************

C Loop to determine throat area and diameter

areat=10000do numbera=2,5

call indexi(numbera,node,nnodes,ipn)call indexud(ipn,node,inode,nint,numbr,namebr,nbr,

& ibrun,ibrdnibranch,ibu,ibd)if (area(ibu) .LT. areat) then

areat = area(ibu)endif

enddo

Dt = (4.0*areat*144.0/3.141593)**(0.5)R = 0.75*Dt

C****************************************

C Call Nozzle Properties

numberb=1call indexi(numberb,node,nnodes,ipnb)

y = gama(ipnb)aMach = emach(ipnb)Pns = p(ipnb)*(1+(y-1)/2*aMach**2)**(y/(y-1))Tns = TF(ipnb)*(1+(y-1)/2*aMach**2)cstar = sqrt(32.2*y*Rnode(ipnb)*Tns)/

& (y*sqrt((2/(y+1))**((y+1)/(y-1))))Cp = Cpnode(ipnb)vis = emu(ipnb)/12.0Prl = Pr(ipnb)g = 32.2

Page 59: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

6

User Subroutine for hg & hcC Call index variables and determine heat transfer coefficient

Do numberc = 2,5call indexi(numberc,node,nnodes,ipn)call indexud(ipn,node,inode,nint,numbr,namebr,nbr,ibrun,ibrdn,ibranch,ibu,ibd)numberd = numberc + 24call indexs(numberd,nodesl,nsolidx,ipsn)bmach = sqrt(2/(y-1)*((Pns/P(ipn))**((y-1)/y)-1))sigma = 1/((0.5*(Ts(ipsn)/Tns)*(1+(y-1)/2*bmach**2)+0.5)**(0.68)*(1+(y-1)/2*bmach**2)**(0.12))

HCF = 0.026/Dt**(0.2)*(vis**(0.2)*Cp/Prl**(0.6))*(Pns*g/cstar)& **(0.8)*(Dt/R)**(0.1)*(areat/area(ibu))**(0.9)*sigmaEnddo

Do numbere = 8,11call indexi(numbere,node,nnodes,ipn)call indexud(ipn,node,inode,nint,numbr,namebr,nbr,ibrun,ibrdn,ibranch,ibu,ibd)numberf = numbere + 6call indexs(numberf,nodesl,nsolidx,ipsn)Gdot = flowr(ibu)/area(ibu)/144.dia = (4.0*area(ibu)*144.0/3.141593)**(0.5)

HCF = 0.029*cpnode(ipn)*vis**(0.2)/Pr(ipn)**(2/3)*Gdot**(0.8)/dia**(0.2)*(Tf(ipn)/Ts(ipsn))**0.55Enddo

RETURNENDC***********************************************************************

Page 60: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

7

GFSSP Modeling – CD Nozzle Investigation

Throat

• Tutorial 2 in GFSSP Course Charts

• Working fluid – H2O (steam)

• Inlet Pressure - 150 psi

Page 61: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

8

GFSSP Modeling – CD Nozzle Investigation

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

-1 0 1 2 3 4 5 6 7

Axial Distance

Pres

sure

(psi

)

.

P_ex =134 psi P_ex = 60 psi P_ex = 15 psi Isentropic

Pressure vs. Axial Location

Page 62: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

9

GFSSP Modeling – CD Nozzle Investigation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

-1 0 1 2 3 4 5 6 7

Axial Location

Den

sity

(lbm

/ft^3

)

.

P_ex = 134 psi P_ex = 60 psi P_ex = 15 psi Isentropic

Density vs. Axial Location

Page 63: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

10

GFSSP Modeling – CD Nozzle Investigation

Temperature vs. Axial Location

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

-1 0 1 2 3 4 5 6 7

Axial Location

Tem

pera

ture

(F)

.

P_ex = 134 psi P_ex = 60 psi P_ex = 15 psi Isentropic

Page 64: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

11

GFSSP Modeling – CD Nozzle Investigation

Mach Number vs. Axial Location

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

-1 0 1 2 3 4 5 6 7

Axial distance

Mac

h N

umbe

r

.

P_ex = 134 psi P_ex = 60 psi P_ex = 15 psi Isentropic

Page 65: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

12

GFSSP Modeling – CD Nozzle Investigation

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

-1 0 1 2 3 4 5 6 7

Axial distance

Mac

h N

umbe

r

.

P_ex = 134 psi P_ex = 60 psi P_ex = 15 psi Isentropic Mach P

Isentropic Calculation based on GFSSP Pressure

Mach Number vs. Axial Location (Modified)

Page 66: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

13

VTASC Regen. Cooling Model

Cooling Channel flow path (H2)

Nozzle flow path (Ideal Gas) Throat

Solid (nozzle wall) nodesNozzle flow path, Coolant Channel, and wall thickness set to MCC geometry

Page 67: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

14

SSME Regen. Cooling Problem

Preliminary Results

1. Demonstrated basic counter flow heat exchanger.

2. Created subroutine to calculate heat transfer coefficients

3. Could not correctly predict Mach number in diverging portion of C-D nozzle.

4. Mach number necessary for correct calculation of heat transfer coefficient using the Bartz equation. Used isentropic calculation for HCF subroutine using GFSSP predicted pressure.

5. Model became complex as geometry, multiple fluid, and MCC operating conditions were applied. …Convergence became difficult to achieve and the time required was too large for use with SSME power balance models.

Page 68: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

15

SSME Regen. Cooling Problem

NOTE:

• Used a beta version of the GFSSP code with conjugate heat transfer.

• Used “2nd Law” option for solution control. New version has improved enthalpy (1st Law option) calculation for compressible flow.

• Investigation of this problem is continuing.

Page 69: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

1

Closed Circuit Modeling of Liquid Metal

Alok MajumdarER43/NASA/MSFC

Users Group MeetingOctober 26, 2004

Page 70: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

2

CONTENT

• Introduction• New Features

– Property Table– Electro Magnetic Conduction Pump– Closed Circuit Modeling– Fixed Flowrate

• Results• Summary

Page 71: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

3

Introduction

Objectives

• Calculate Flowrate

• State point properties

NaK – Helium System

Page 72: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

4

New Features

1. Property Look up Table for NaK

2. Electro-Magnetic Conduction Pump

3. Closed Circuit Model

4. Fixed Helium Flowrate

Page 73: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

5

NaK Property Table

Table for Specific Heat (Btu/lb-Deg R)

15 30 0.5100E+03 0.5600E+03 0.6100E+03 0.6600E+03 0.7100E+03 0.7600E+03 0.8100E+03 0.8600E+03 0.9100E+03 0.9600E+03 0.1010E+04 0.1060E+04 0.1110E+04 0.1160E+04 0.1210E+04 0.1260E+04 0.1285E+04 0.1310E+04 0.1335E+04 0.1360E+04 0.1385E+04 0.1410E+04 0.1435E+04 0.1460E+04 0.1510E+04 0.1560E+04 0.1660E+04 0.1760E+04 0.1860E+04 0.1902E+04 0.6000E+01 0.2300E+00 0.2280E+00 0.2250E+00 0.2230E+00 0.2210E+00 0.2190E+00 0.2170E+00 0.2160E+00 0.2150E+00 0.2130E+00 0.2120E+00 0.2110E+00 0.2105E+00 0.2100E+00 0.2090E+00 0.2087E+00 0.2085E+00 0.2083E+00 0.2080E+00 0.2083E+00 0.2087E+00 0.2090E+00 0.2093E+00 0.2097E+00 0.2099E+00 0.2100E+00 0.2105E+00 0.2110E+00 0.2120E+00 0.2130E+00

Temperature

Pressure

Specific Heat

No. of temperature points No. of pressure points

Property Tables are required for

• Density

• Enthalpy

• Specific Heat

• Viscosity

• Conductivity

• Entropy

• Specific Heat Ratio

Page 74: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

6

Electro-Magnetic Conduction Pump

Pump Characteristic Curve

Pump Pressure Rise is a function of:

• Flowrate

• Voltage/Current

Page 75: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

7

User Subroutine for Modeling Electro-Magnetic Conduction Pump

Interpolate data to find DELP

SUBROUTINE SORCEF

Read Pump Performance Data From Table

IF (IBRANCH(I) .EQ. 1718) THEN C BRACKET THE FLOWRATE IR=0 DO II =2,NFLW IF (FLOWR(I).GE.FLWTE(II-1).AND.FLOWR(I).LE.FLWTE(II)) THEN IR=II GO TO 100 ENDIF ENDDO 100 IF (IR.EQ.0) THEN IF (FLOWR(I).GT.FLWTE(NFLW)) IR=NFLW IF (FLOWR(I).LT.FLWTE(1)) IR=1 ENDIF C BRACKET THE VOLT JR=0 DO JJ = 2,NVOLT IF (VOLTIN.GE.VOLT(JJ-1).AND.VOLTIN.LE.VOLT(JJ)) THEN JR=JJ GO TO 200 ENDIF ENDDO 200 IF (JR.EQ.0) THEN IF(VOLTIN.GT.VOLT(NVOLT)) JR=NVOLT IF(VOLTIN.LT.VOLT(1)) JR=1 ENDIF C CALCULATE DELPTE FACTFLW=(FLOWR(I)-FLWTE(IR-1))/(FLWTE(IR)-FLWTE(IR-1)) FACTV=(VOLTIN-VOLT(JR-1))/(VOLT(JR)-VOLT(JR-1)) DELPTE=(1.-FACTFLW)*(1.-FACTV)*DPTE(IR-1,JR-1) & +FACTFLW*(1.-FACTV)*DPTE(IR,JR-1) & +FACTFLW*FACTV*DPTE(IR,JR) & +(1.-FACTFLW)*FACTV*DPTE(IR-1,JR) TERM100=144*DELPTE*AREA(I)

C ADD CODE HERE C MODELING OF THERMO-ELECTRIC PUMP DIMENSION VOLT(50),FLWTE(50),DPTE(50,50) LOGICAL UNREAD DATA VOLTIN/170/ C READ PUMP CHARACTERISTIC DATA FROM FILE IF (ITER.EQ.1.AND. (.NOT. UNREAD)) THEN OPEN (NUSR1,FILE='nak_58_pump.dat',STATUS='UNKNOWN') READ(NUSR1,*) NFLW,NVOLT READ(NUSR1,*) (VOLT(JJ),JJ=1,NVOLT) DO II = 1,NFLW READ(NUSR1,*) FLWTE(II),(DPTE(II,JJ),JJ=1,NVOLT) ENDDO UNREAD = .TRUE. ENDIF ! IF (ITER.EQ.0)..

Page 76: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

8

Closed Circuit Modeling

• Cyclic Boundary Condition needs to be satisfied at Node 1

• This implies Temperature at Node 22 must be equal to Temperature at Node 1

• This must be achieved by iteration

Page 77: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

9

Use of a new User SubroutineSet Temperatures at Boundary node equal to upstream node

C********************************************************************** SUBROUTINE USRADJUST(ITERADJ) C PURPOSE: ADJUST BOUNDARY CONDITION OR GEOMETRY C*********************************************************************** INCLUDE 'COMBLK.FOR' C********************************************************************** C ADD CODE HERE FLOWREQ= .1 RELAXAR=0.5 REPEAT = .FALSE. C ADJUST TEMPERATURE TO SATISFY CYCLIC BOUNDARY CONDITION NUMBER=1 CALL INDEXI(NUMBER,NODE,NNODES,IPN1) NUMBER=22 CALL INDEXI(NUMBER,NODE,NNODES,IPN2) DIFTEM=ABS(TF(IPN1)-TF(IPN2))/TF(IPN1) TF(IPN1)=TF(IPN2)

IF (MAX(DIFTEM,DIFFLW) .LT. 0.001.AND. ITERADJ.GT.2) THEN REPEAT=.FALSE. ELSE REPEAT=.TRUE. ENDIF WRITE(*,*)'ITERADJ=',ITERADJ, 'DIFTEM = ', DIFTEM ,'DIFFLW =', & DIFFLW

Check for convergence

Page 78: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

10

Fixed Flowrate for Helium

• Helium Flowrate was maintained constant by Flow Regulating Valve

• A variable area choked orifice was used

• Area was adjusted in SUBROUTINE USRADJUST

Page 79: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

11

User Subroutine for Flowrate adjustment

C ADJUST AREA OF CHOKED ORIFICE TO REGULATE FLOWRATE NUMBER=3435 CALL INDEXI(NUMBER,IBRANCH,NBR,IB) FLOWCALC = FLOWR(IB) IF (ITERADJ .EQ. 0) THEN AREAOLD=AREA(IB) FLWOLD=FLOWCALC IF (FLOWCALC .GT. FLOWREQ) THEN AREA(IB)=0.99*AREA(IB) ELSE AREA(IB)=1.01*AREA(IB) ENDIF ELSE C CALCULATE GRADIENT DADMDT=(AREA(IB)-AREAOLD)/(FLOWCALC-FLWOLD) DIFFLW=ABS(FLOWREQ-FLOWCALC)/FLOWREQ FLWOLD=FLOWCALC AREAOLD=AREA(IB) C CORRECT AREA AREA(IB)=AREAOLD+RELAXAR*DADMDT*(FLOWREQ-FLWOLD) ENDIF

Define adjustment of area in 1st

iteration

Determine the area based on gradient in subsequent iterations

Page 80: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

12

Pressure Distribution

Page 81: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

13

Temperature Distribution

Page 82: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

14

Helium Supply Temperature

Page 83: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

15

Helium Flowrate

Page 84: GENERALIZED FLUID SYSTEM SIMULATION PROGRAM - Version …

16

Summary

• NaK property was introduced through property table earmarked for RP-1

• Electro Magnetic Conduction pump was modeled in SUBROUTINE SORCEF

• Closed circuit model requires iterative adjustment to satisfy cyclic boundary condition

• Flow regulating valve also requires iterative adjustment of flow area

• SUBROUTINE USRADJUST (to be made available in the final release) performed iterations for cyclic boundary condition and flow regulating valve