15
Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica General relativistic hydrodynamics of non-convex stellar collapse: gravitational waves José M. Ibáñez, NSG, José A. Font, Miguel A. Aloy, Susana Serna, Antonio Marquina. In preparation. 7th Iberian Gravitational Wave Meeting, Bilbao, 15-17 May 2017

General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Nicolas Sanchis-GualDepartamento de

Astronomía y Astrofísica

General relativistic hydrodynamics of non-convex stellar collapse: gravitational waves

José M. Ibáñez, NSG, José A. Font, Miguel A. Aloy, Susana Serna, Antonio Marquina. In preparation.

7th Iberian Gravitational Wave Meeting, Bilbao, 15-17 May 2017

Page 2: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

IntroductionAn open issue in relativistic astrophysics is the knowledge of the equation of state (EOS) describing the thermodynamical properties of high-density matter. Such extreme conditions are achieved in the cores of neutron stars.

With the recent detection of gravitational radiation, a significant new channel to collect complementary information and improve our understanding of the dense-matter EOS will soon be opened.

Its properties and the possible existence of exotic states may critically influence the stability and dynamics of these objects. The dense-matter EOS also plays a fundamental role in the evolution (on a hydrodynamical timescale) of scenarios of relativistic astrophysics such as core-collapse supernovae, short and long-duration progenitors of gamma-ray bursts, the cooling of protoneutron stars, the formation of stellar-mass black holes, or the merger of compact-binary systems.

Form a theoretical point of view, the existence of such exotic states of matter in the dense-matter EOS also requires the analysis of the “convexity” of the EOS.

Page 3: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Non-ConvexityIn classical fluid dynamics, the convexity of a thermodynamical system is determined by the EOS and, more specifically, by the so-called fundamental derivative (see Isabel’s talk):

G(cla) := �1

2V

@2p

@V 2

����s

@p

@V

����s

G(rel) = G(cla) �3

2c2s(rel) .

Page 4: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Non-ConvexityT = 50.1MeV. Yq = 0.30

0.01 0.10 1.00n [fm-3]

0

1

2

3

Cla

ssic

al F

un

da

me

nta

l de

riva

tive

GSHen_FSU2_npeaNNR

GSHen_FSU1_npeaNNR

GSHen_NL3_npeaNNR

LS220nl

LS220Lnl

STOS_npeaNR

STOS_B165e_npeaNRQQs

BHP_LP_npeBsN

SFHX_npeN

SFHO_npeN

HS_TMA_npeN

HS_TM1_npeN

HS_NL3_npeN

T = 50.1MeV. Yq = 0.30

0.01 0.10 1.00n [fm-3]

0

1

2

3

Re

lativ

istic

Fu

nd

am

en

tal D

eriva

tive

Page 5: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Motivated by the indications of the existence of possible regions in the dense-matter EOS where the thermodynamics can be non-convex, we performed a numerical study of the structure and dynamics of compact stellar configurations described by a BZT fluid.

For our study we consider the dynamics of unstable and uniformly-rotating neutron stars that collapse gravitationally to black holes.

Page 6: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

A phenomenological NC EOSWe choose a particularly simple form of the EOS, namely an ideal gas EOS with an adiabatic index which depends on the density. While this phenomenological EOS can only be regarded as a toy-model, it serves nonetheless to exemplify the particularities that appear when the EOS is non-convex. The pressure p obeys an ideal-gaslike EOS of the form, GGL-EOS (Gaussian Gamma Law):

p = (� � 1)⇢✏

� ⌘ �0 +K exp

✓� x

2

2

◆,

K := �1 � �0 , x := ⇢� ⇢1

Page 7: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

GGL-EOS

The FD becomes negative -> Non convex region!

-0.4 -0.2 0.0 0.2 0.4-2

-1

0

1

2

-0.4 -0.2 0.0 0.2 0.4log10(!/!1)

-2

-1

0

1

2

log

10(p

/(!

1c2

))

CONVEX

NCR NCC

0.5 1 1.5 2

! / !1

-20

-10

0

10

20

30

Fu

nd

am

en

tal

De

riv

ati

ve

s

7.4x10-2

7.1x10-1

6.9x101

8.0x102

Classical

0.5 1 1.5-2

-1

0

1

2

�1 = 1.9, �0 = 4/3,� = 1.1, ⇢1 = 1015g/cm3

Page 8: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Relativistic blast wave test

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

den

sit

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

den

sit

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ve

loc

ity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ve

loc

ity

Page 9: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Gravitational collapse of RNS

Page 10: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Gravitational collapse of RNS

Page 11: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Gravitational collapse of RNS

⇢1 = 1.5E � 3 ⇢1 = 2.5E � 3

Page 12: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Gravitational collapse of RNS

⇢1 = 1.5E � 3 ⇢1 = 2.5E � 3

Page 13: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Gravitational wave radiation

Page 14: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Gravitational wave radiation

Fixed density parameter: ⇢1 = 2.1E� 3

Fixed width:

� = 1.1

Page 15: General relativistic hydrodynamics of non-convex stellar ...tp.lc.ehu.es/IGWM2017/wp-content/uploads/2017/06/Sanchis.pdf · Nicolas Sanchis-Gual Departamento de Astronomía y Astrofísica

Summary The EOS of high-density matter might contain regions in which the

thermodynamics may be non-convex. The so-called BZT flows are subject to non-convex dynamics and are characterized by the appearance of compound waves (rarefaction shocks) during the evolution.

We have chosen a simple, phenomenological, non-convex EOS, namely an ideal-gas EOS with an adiabatic index which depends on the density.

The numerical simulations of collapsing stars have shown the appearance of the characteristic compound waves of BZT fluids and have also illustrated how the non-convex dynamics is also imprinted on the gravitational-wave signals associated with the infalling phase.

A future study using actual microphysical EOS from nuclear physicswill be presented elsewhere.