28
Gauss composition and integral arithmetic invariant theory David Zureick-Brown (Emory University) Anton Gerschenko (Google) Connections in Number Theory Fall Southeastern Sectional Meeting University of North Carolina at Greensboro, Greensboro, NC Nov 8, 2014

Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Gauss composition and integral arithmetic invarianttheory

David Zureick-Brown (Emory University)Anton Gerschenko (Google)

Connections in Number TheoryFall Southeastern Sectional Meeting

University of North Carolina at Greensboro, Greensboro, NC

Nov 8, 2014

Page 2: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Sums of Squares

Recall (p prime)

p = x2 + y2 if and only if p = 1 mod 4 or p = 2.

For products

(x2 + y2)(z2 + w2) = (xz + yw)2 + (xw − yz)2

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 2 / 26

Page 3: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Sums of Squares

Recall (p prime)

p = x2 + dy2 if and only if [more complicated condition].

Example

p = x2 + 2y2 for some x , y ∈ Z if and only if p = 2 or p = 1, 3 mod 8.

Example

p = x2 + 3y2 for some x , y ∈ Z if and only if p = 3 or p = 1 mod 3.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 3 / 26

Page 4: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Sums of Squares

Recall (p prime)

p = x2 + dy2 if and only if [more complicated condition].

For products

(x2 + dy2)(z2 + dw2) = (xz + dyw)2 + d(xw − yz)2

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 4 / 26

Page 5: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Integers represented by a quadratic form

General quadratic forms (initiated by Lagrange)

Q(x , y) ∈ Z[x , y ]2

Recall (p prime)

p = Q(x , y) for some x , y ∈ Z if and only if [more complicatedcondition].

Composition law?

Q(x , y)Q(z ,w) = Q(a, b)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 5 / 26

Page 6: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Sums of Squares (Euler’s conjecture)

Example

p = x2 + 14y2 for some x , y ∈ Z if and only if(−14

p

)= −1 and

(z2 + 1)2 = 8 has a solution mod p.

Example

p = 2x2 + 7y2 for some x , y ∈ Z if and only if(−14

p

)= −1 and

(z2 + 1)2 − 8 factors into two irreducible quadratics mod p.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 6 / 26

Page 7: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Integers represented by a quadratic form (equivalence)

Equivalence of forms

1 Q(x , y) ∈ Z[x , y ]22 M ∈ SL2(Z), QM(x , y) := Q(ax + by , cx + dy)

3 n ∈ Z is represented by Q iff it is represented by QM .

4 Reduced forms: |b| ≤ a ≤ c and b ≥ 0 if a = c or a = |b|.

Example

29x2 + 82xy + 58y2 ∼ x2 + y2.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 7 / 26

Page 8: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Gauss composition

Theorem (Gauss composition)

The reduced, non-degenerate positive definite forms of discriminant −Dform a finite abelian group, isomorphic to the class group of Q(

√−D).

Example (D = −56)x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2

Remark1 Gauss’s proof was long and complicated; difficult to compute with.

2 Later reformulated by Dirichlet.

3 Much later reformulated by Bhargava.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 8 / 26

Page 9: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Bhargava cubes

a b

d c

e f

h g

��

��

��

��

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 9 / 26

Page 10: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Bhargava cubes

a b

d c

e f

h g

��

��

��

��

1 a, b, d , c , e, f , h, g ∈ Z,

2 Cube is really an element of Z2 ⊗ Z2 ⊗ Z2, with a natural SL2(Z)3

action

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 10 / 26

Page 11: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Gauss composition via Bhargava cubes

a b

d c

e f

h g

��

��

��

��

Q1(x , y) := −Det((

a bd c

)x −

(e fh g

)y)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 11 / 26

Page 12: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Gauss composition via Bhargava cubes

a b

d c

e f

h g

��

��

��

��

Qi (x , y) := −Det (Mix − Niy)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 12 / 26

Page 13: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Gauss composition via Bhargava cubes

a b

d c

e f

h g

��

��

��

��

Qi (x , y) := −Det (Mix − Niy)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 13 / 26

Page 14: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Bhargava’s theorem

a b

d c

e f

h g

��

��

��

��

Qi (x , y) := −Det (Mix − Niy)

Theorem (Bhargava)

Q1(x , y) + Q2(x , y) + Q3(x , y) = 0

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 14 / 26

Page 15: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Lots of parameterizations

Example

binary cubic forms ↔ cubic fields

pairs (ternary, quadratic) forms ↔ quartic fields

quadruples of quinary ↔ quintic fields

alternating bilinear forms

binary quartic forms ↔ 2-Selmer elements of Elliptic curves

Remark1 14 more (Bhargava)

2 many more (Bhargava-Ho)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 15 / 26

Page 16: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Representation theoretic framework

Space of forms

1 The space V of binary quadratic forms is 3-dimensional vector space(resp. R-module).

2 V = Sym2 C2

Representations

SL2(C) Sym2 C2

SL2(R) Sym2 R2

SL2(Z) Sym2 Z2 etc..

Invariants1 C-Invariants: two non-zero forms f , g are C equivalent iff ∆(f ) = ∆(g).

2 Z-Invariants: ∆(f ) = ∆(g) 6⇒ Z equivalence.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 16 / 26

Page 17: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Representation theoretic framework

Invariants1 C-Invariants: two non-zero forms f , g are C equivalent iff ∆(f ) = ∆(g).

2 Z-Invariants: ∆(f ) = ∆(g) 6⇒ Z equivalence.

Example (D = −14 · 4)x2 + 14y2 is not equivalent to 2x2 + 7y2.

Fundamental object of study

1 SL2(Z)-orbits of an SL2(Q)-orbit

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 17 / 26

Page 18: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

General representation theoretic framework

Framework1 V = free R module

2 G V

3 R → R ′ ring extension

4 v ∈ V (R)

Goal

Understand the G (R)-orbits of the G (R ′)-orbit of v

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 18 / 26

Page 19: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Arithmetic invariant theory

“Is every group a cohomology group

or a Manjul shapedasteroid that fell from the sky?” – Jordan Ellenberg

H1et(SpecZ,ResO/ZGm)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 19 / 26

Page 20: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Arithmetic invariant theory

“Is every group a cohomology group or a Manjul shapedasteroid that fell from the sky?” – Jordan Ellenberg

H1et(SpecZ,ResO/ZGm)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 19 / 26

Page 21: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Arithmetic invariant theory

“Is every group a cohomology group or a Manjul shapedasteroid that fell from the sky?” – Jordan Ellenberg

H1et(SpecZ,ResO/ZGm)

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 19 / 26

Page 22: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Bhargava–Gross–Wang

Setup

1 f , g ∈ V (Q)

2 M ∈ G (Q) s.t. g = M · f3 σ ∈ Gal(Q/Q)

4 Then g = Mσ · f , so f = M−1Mσ · f , i.e. M−1Mσ ∈ Stabf

Cohomological framework

The mapGal(Q/Q)→ Stabf ; σ 7→ M−1Mσ

is a cocycle, and gives an element of H1(Gal(Q/Q),Stabf ).

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 20 / 26

Page 23: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Integral arithmetic invariant theory

Remark1 AIT only works for fields; can’t recover Gauss composition

2 Analogue of Galois cohomology is etale cohomology.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 21 / 26

Page 24: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Integral arithmetic invariant theory – setup

Setup

1 S any base (e.g. Z);

2 G/S any group scheme (not necessarily smooth, or even flat);

3 X (usually a vector space);

4 G X an action.

Example (“Gauss”)

G = SL2,Z, acting on X = Sym2 A2Z

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 22 / 26

Page 25: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Main Theorem

Theorem (Giraud; Geraschenko-ZB)

Let v ∈ X (S). Then there is a functorial long exact sequence (of groupsand pointed sets)

0→ Stabv (S)→ G (S)g 7→g ·v−−−−→ Orbitv (S)→ H1(S ,Stabv )→ H1(S ,G ).

If Stabv is commutative, then

Orbitv (S)/G (S) ∼= ker(H1(S , Stabv )→ H1(S ,G )

)is a group.

Remark

The image Orbitv (S)/G (S) of X (S) is the set of G (S) equivalence classesof v ′ ∈ Orbitv (S) in the same local orbit as v .

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 23 / 26

Page 26: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Example: Gauss composition revisited

Example (“Gauss”)

G = SL2,Z acts on X = Sym2 A2Z; Stabv is a non-split torus (thus commutative).

Let f ∈ X (Z) be a primitive (non-zero mod all p) integral quadratic form.

0→ Stabv (Z)→ SL2(Z)g 7→g ·f−−−−→ Orbitf (Z)→ H1(Z,Stabv )→ H1(Z, SL2).

Remark

1 H1(Z,SL2) = 0 (this is Hilbert’s theorem 90).2 Orbitf (Z)/ SL2(Z) = integral equivalence classes of primitive forms with

the same discriminantn.

3 H1(Z,Stabv ) ∼= Orbitf (Z)/ SL2(Z).

4 H1(Z,Stabv ) ∼= PicZ[(∆f +√

∆f )/2] = Cl Q[√

∆f ].

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 24 / 26

Page 27: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Example: Gauss composition (non-primitive)

Remark

1 If f ∈ Z2 is not primitive, then Stabf is not flat over SpecZ.

2 (Easiest way to not be flat: dim Stabf ,Fp is not constant.)

3 Our machinery does not care; and recovers Gauss composition fornon-primitive forms.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 25 / 26

Page 28: Gauss composition and integral arithmetic invariant theorydzb/slides/ZBGer-UNC-integral-AIT.pdf · 2015. 12. 5. · Gauss composition Theorem (Gauss composition) Thereduced,non-degenerate

Still to come

More applications wanted.

1 We’re currently iterating through the known literature, derivingparamaterizations where possible.

2 E.g. Delone–Faddeev (ternary cubic forms vs cubic rings): stabilizer isa finite flat group scheme.

3 Future predictive power, especially of degenerate objects/orbits.

David Zureick-Brown (Emory University) Gauss composition and integral AIT Nov 8, 2014 26 / 26