6
1 Level: Name : Reference level : 0,00 (m) Fire rating : 0 (h) Maximum cracking : 0,30 (mm) Environment class : moderate Concrete creep coefficient : p = 2,00 2 Beam: Beam16...17 Number: 1 2.1 Material properties: Concrete : M 30 fcu = 30,00 (MPa) Unit weight : 2549,29 (kG/m3) Longitudinal reinforcement : B500B fy = 500,00 (MPa) Transversal reinforcement : B500B fy = 500,00 (MPa) 2.2 Geometry: 2.2.1 Span Position L.supp. L R.supp. (m) (m) (m) P1 Span 0,30 5,70 0,30 Span length: L o = 6,00 (m) Section from 0,00 to 5,70 (m) 30,0 x 65,0 (cm) without left slab without right slab 2.2.2 Span Position L.supp. L R.supp. (m) (m) (m) P2 Span 0,30 7,70 0,30 Span length: L o = 8,00 (m) Section from 0,00 to 7,70 (m) 30,0 x 65,0 (cm) without left slab without right slab 2.3 Calculation options: Regulation of combinations : IS:875 (Part5) Calculations according to : IS 456 : 2000 Precast beam : no Cover : bottom c = 3,0 (cm)

g-16-17

  • Upload
    tovar

  • View
    3

  • Download
    2

Embed Size (px)

DESCRIPTION

IS

Citation preview

1 Level:

Name :

Reference level : 0,00 (m)

Fire rating : 0 (h)

Maximum cracking : 0,30 (mm)

Environment class : moderate

Concrete creep coefficient : p = 2,00

2 Beam: Beam16...17 Number: 1

2.1 Material properties:

Concrete : M 30 fcu = 30,00 (MPa)Unit weight : 2549,29 (kG/m3)

Longitudinal reinforcement : B500B fy = 500,00 (MPa)

Transversal reinforcement : B500B fy = 500,00 (MPa)

2.2 Geometry:

2.2.1 Span Position L.supp. L R.supp.(m) (m) (m)

P1 Span 0,30 5,70 0,30Span length: Lo = 6,00 (m)Section from 0,00 to 5,70 (m)

30,0 x 65,0 (cm)without left slabwithout right slab

2.2.2 Span Position L.supp. L R.supp.(m) (m) (m)

P2 Span 0,30 7,70 0,30Span length: Lo = 8,00 (m)Section from 0,00 to 7,70 (m)

30,0 x 65,0 (cm)without left slabwithout right slab

2.3 Calculation options:

Regulation of combinations : IS:875 (Part5)

Calculations according to : IS 456 : 2000

Precast beam : no

Cover : bottom c = 3,0 (cm)

: side c1 = 3,0 (cm): top c2 = 3,0 (cm)

2.4 Calculation results:

2.4.1 Internal forces in ULS

Span Mtmax. Mtmin. Ml Mr Ql Qr(kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN)

P1 135,62 -0,00 16,56 -263,71 120,03 -236,99P2 148,58 -0,00 -271,82 9,25 230,68 -76,78

0 2 4 6 8 1 0 1 2 1 42 5 0

2 0 0

1 5 0

1 0 0

5 0

0

- 5 0

- 1 0 0

- 1 5 0

- 2 0 0

- 2 5 0

- 3 0 0

[ m ]

[ k N * m ]

B e n d i n g M o m e n t U L S : M M r M c

0 2 4 6 8 1 0 1 2 1 4- 3 0 0

- 2 0 0

- 1 0 0

0

1 0 0

2 0 0

3 0 0

[ m ]

[ k N ]

S h e a r F o r c e U L S : V V r V c ( s t i r r u p s ) V c ( t o t a l )

2.4.2 Internal forces in SLS

Span Mtmax. Mtmin. Ml Mr Ql Qr(kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN)

P1 0,00 0,00 0,00 0,00 0,00 0,00P2 0,00 0,00 0,00 0,00 0,00 0,00

2.4.3 Required reinforcement area

Span Span (cm2) Left support (cm2) Right support (cm2)bottom top bottom top bottom top

P1 5,51 0,00 0,64 0,18 0,00 11,29P2 6,07 0,00 0,00 11,68 0,36 0,28

0 2 4 6 8 1 0 1 2 1 41 5

1 0

5

0

5

1 0

1 5

[ m ]

[ c m 2 ]

R e i n f o r c e m e n t A r e a f o r B e n d i n g : A b t A b r A b m i n A d e s A v e r _ g r o s s

0 2 4 6 8 1 0 1 2 1 41 0

8

6

4

2

0

2

4

6

8

1 0

[ m ]

[ c m 2 / m ]

R e i n f o r c e m e n t A r e a f o r S h e a r : A s t A s r A s H a n g

0 2 4 6 8 1 0 1 2 1 40

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

[ m ]

[ c m 2 / m ]

T r a n s v e r s a l r e i n f o r c e m e n t a r e a f o r f l a n g e b e n d i n g : A c o n t

2.4.4 Deflection and cracking

at(s-t) - initial deflection due to total loadap(s-t) - initial deflection due to long-term loadap(l-t) - long-term deflection due to long-term loada - total deflectionaall - allowable deflection

Wcr - width of perpendicular cracks

Span at(s-t) ap(s-t) ap(l-t) a aall Wcr(cm) (cm) (cm) (cm) (cm) (mm)

P1 0,0 0,0 0,0 0,0=(L0/--) -2,4 0,0P2 0,0 0,0 0,0 0,0=(L0/--) -3,2 0,0

0 2 4 6 8 1 0 1 2 1 44

3

2

1

0

- 1

- 2

- 3

- 4

[ m ]

[ c m ]

D e f l e c t i o n s : a p ( s - t ) a p ( l - t ) a t ( s - t ) a a a d m

0 2 4 6 8 1 0 1 2 1 40 . 3

0 . 2

0 . 1

0

0 . 1

0 . 2

0 . 3

[ m ]

[ m m ]

C r a c k i n g : C w C w a d m

2.5 Theoretical results - detailed results:

2.5.1 P1 : Span from 0,30 to 6,00 (m)ULS SLS

Abscissa M max. M min. M max. M min. A bottom A top(m) (kN*m) (kN*m) (kN*m) (kN*m) (cm2) (cm2)0,30 16,56 -4,59 0,00 0,00 0,64 0,180,75 66,23 -0,00 0,00 0,00 2,63 0,001,35 108,95 -0,00 0,00 0,00 4,38 0,001,95 131,60 -0,00 0,00 0,00 5,34 0,002,55 135,62 -0,00 0,00 0,00 5,51 0,003,15 121,09 -0,00 0,00 0,00 4,90 0,003,75 84,50 -0,00 0,00 0,00 3,38 0,004,35 28,58 -0,00 0,00 0,00 1,12 0,004,95 0,00 -51,71 0,00 0,00 0,00 2,045,55 0,00 -156,75 0,00 0,00 0,00 6,426,00 0,00 -263,71 0,00 0,00 0,00 11,29

ULS SLSAbscissa Q max. Q max. Wcr(m) (kN) (kN) (mm)0,30 120,03 0,00 0,00,75 83,50 0,00 0,01,35 52,11 0,00 0,01,95 24,39 0,00 0,02,55 -3,59 0,00 0,03,15 -55,35 0,00 0,03,75 -85,05 0,00 0,04,35 -116,34 0,00 0,04,95 -150,56 0,00 0,05,55 -191,56 0,00 0,06,00 -236,99 0,00 0,0

2.5.2 P2 : Span from 6,30 to 14,00 (m)ULS SLS

Abscissa M max. M min. M max. M min. A bottom A top

(m) (kN*m) (kN*m) (kN*m) (kN*m) (cm2) (cm2)6,30 0,00 -271,82 0,00 0,00 0,00 11,686,95 0,00 -131,20 0,00 0,00 0,00 5,327,75 0,00 -13,65 0,00 0,00 0,00 0,538,55 67,03 -0,00 0,00 0,00 2,66 0,009,35 118,75 -0,00 0,00 0,00 4,79 0,0010,15 148,58 -0,00 0,00 0,00 6,07 0,0010,95 140,79 -0,00 0,00 0,00 5,73 0,0011,75 124,10 -0,00 0,00 0,00 5,02 0,0012,55 93,53 -0,00 0,00 0,00 3,75 0,0013,35 49,35 -0,00 0,00 0,00 1,95 0,0014,00 9,25 -7,24 0,00 0,00 0,36 0,28

ULS SLSAbscissa Q max. Q max. Wcr(m) (kN) (kN) (mm)6,30 230,68 0,00 0,06,95 181,82 0,00 0,07,75 115,61 0,00 0,08,55 88,12 0,00 0,09,35 49,29 0,00 0,010,15 -8,56 0,00 0,010,95 -16,83 0,00 0,011,75 -33,06 0,00 0,012,55 -46,02 0,00 0,013,35 -67,16 0,00 0,014,00 -76,78 0,00 0,0

2.6 Reinforcement:

2.6.1 P1 : Span from 0,30 to 6,00 (m)Longitudinal reinforcement:

bottom 3 B500B 14 l = 5,16 from 0,03 to 5,191 B500B 14 l = 4,99 from 0,20 to 5,191 B500B 14 l = 2,75 from 0,04 to 0,04

assembling (top) 3 B500B 10 l = 4,51 from 0,30 to 4,80

support (B500B)3 B500B 12 l = 0,83 from 0,03 to 0,861 B500B 12 l = 2,33 from 0,04 to 0,04

Surface reinforcement:4 B500B 12l = 5,94 from 0,18 to 6,12

Transversal reinforcement:

main stirrups 4 B500B 12l = 5,94

e = 1*-0,12 (m)38 B500B 8 l = 1,57e = 18*0,30 + 1*0,20 (m)

pins 4 B500B 12 l = 5,94e = 1*-0,12 (m)38 B500B 8 l = 1,57e = 18*0,30 + 1*0,20 (m)

2.6.2 P2 : Span from 6,30 to 14,00 (m)Longitudinal reinforcement:

bottom 3 B500B 14 l = 3,63 from 4,54 to 8,173 B500B 14 l = 6,76 from 7,52 to 14,271 B500B 14 l = 7,77 from 4,54 to 12,301 B500B 14 l = 2,75 from 14,26 to 14,26

assembling (top) 3 B500B 10 l = 5,71 from 8,10 to 13,80

support (B500B)3 B500B 16 l = 4,20 from 4,35 to 8,553 B500B 16 l = 1,93 from 5,19 to 7,123 B500B 12 l = 0,92 from 13,35 to 14,271 B500B 12 l = 2,33 from 14,26 to 14,26

Surface reinforcement:4 B500B 12l = 7,94 from 6,18 to 14,12

Transversal reinforcement:

main stirrups 4 B500B 12l = 7,94

e = 1*-0,12 (m)52 B500B 8 l = 1,57e = 1*0,10 + 2*0,20 + 23*0,30 (m)

pins 4 B500B 12 l = 7,94e = 1*-0,12 (m)52 B500B 8 l = 1,57e = 1*0,10 + 2*0,20 + 23*0,30 (m)

3 Material survey:

Concrete volume = 2,79 (m3)

Formwork = 23,00 (m2)

Steel B500B

Total weight = 240,35 (kG)

Density = 86,19 (kG/m3)

Average diameter = 10,7 (mm)

Survey according to diameters:

Diameter Length Weight(m) (kG)

8 141,58 55,8810 30,63 18,8912 65,43 58,1114 64,87 78,4216 18,40 29,05

Steel B500B

Total weight = 2,85 (kG)

Density = 1,02 (kG/m3)

Average diameter = 8,0 (mm)

Survey according to diameters:

Diameter Length Weight(m) (kG)

8 7,22 2,85