106
FY18 RWDC State Unmanned Aerial System Challenge: Practical Solutions to Precision Agriculture Detailed Background Document October 2018 Version 2.0 Developed by Robert Deters, Ph.D. BS in Engineering Technology, Program Chair, Embry-Riddle Aeronautical University-Worldwide Jeffrey Coppola, MBA Deputy Director, Real World Design Challenge Brent A. Terwilliger, Ph.D. MS in Unmanned Systems, Program Chair, ERAU-Worldwide Contributing Authors Andrew Shepherd, Ph.D. Director-UAS, Sinclair Community College Brian Sanders, Ph.D. Assistant Professor, ERAU-Worldwide James Marion, Ph.D. Assistant Professor, ERAU-Worldwide Paul Lange Faculty, ERAU-Worldwide Debra Bourdeau, Ph.D. Associate Professor, ERAU-Worldwide Stefan Kleinke Assistant Professor, ERAU-Worldwide

FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

Embed Size (px)

Citation preview

Page 1: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RWDCStateUnmannedAerialSystemChallenge:PracticalSolutionstoPrecisionAgriculture

DetailedBackgroundDocument

October2018Version2.0Developedby

RobertDeters,Ph.D.BSinEngineeringTechnology,ProgramChair,Embry-RiddleAeronauticalUniversity-Worldwide

JeffreyCoppola,MBA

DeputyDirector,RealWorldDesignChallenge

BrentA.Terwilliger,Ph.D.MSinUnmannedSystems,ProgramChair,ERAU-Worldwide

ContributingAuthorsAndrewShepherd,Ph.D.

Director-UAS,SinclairCommunityCollege

BrianSanders,Ph.D.AssistantProfessor,ERAU-Worldwide

JamesMarion,Ph.D.AssistantProfessor,ERAU-Worldwide

PaulLangeFaculty,ERAU-Worldwide

DebraBourdeau,Ph.D.AssociateProfessor,ERAU-Worldwide

StefanKleinke

AssistantProfessor,ERAU-Worldwide

Page 2: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Pageii

TableofContentsI.Overview:WhatisanUnmannedAircraftSystem?.............................................................................. 1

PayloadElement(s) .............................................................................................................................. 3

AirVehicleElement ............................................................................................................................. 4

Command,Control,andCommunications(C3)Element..................................................................... 5

SupportEquipmentElement ............................................................................................................... 6

OperatorElement ................................................................................................................................ 6

II.PracticalSolutionstoPrecisionAgricultureChallengeDetail .............................................................. 8

ChallengeScenario .............................................................................................................................. 9

Approach ........................................................................................................................................... 10

CropDetails ....................................................................................................................................... 11

PestDetails ........................................................................................................................................ 12

FieldInfestation ................................................................................................................................. 14

SOLVITALPesticide ............................................................................................................................ 14

CompliantUASSolutionSpecifications.............................................................................................. 15

III.FAARegulations................................................................................................................................ 17

OperationalLimitations ..................................................................................................................... 17

RemotePilotinCommandCertificationandResponsibilities ........................................................... 18

AircraftRequirements ....................................................................................................................... 19

IV.PayloadSelectionGuidelinesandCatalogOptions .......................................................................... 20

AerialSprayingEquipment ................................................................................................................ 20

Visual(Exteroceptive)Sensors........................................................................................................... 23

ProcessingofData ............................................................................................................................. 33

V.AirVehicleElementSelectionGuidelinesandCatalogOptions ........................................................ 35

OptionA:Fixed-WingPusherPropellerDesign ................................................................................. 37

OptionB:Fixed-WingTractorPropellerDesign................................................................................. 39

OptionC:Rotary-wingDesign............................................................................................................ 41

OptionD:MultirotorDesign .............................................................................................................. 43

OptionE:Hybrid(Fixed-wing/Quadrotor)Design ............................................................................. 45

Page 3: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Pageiii

AlternativeAirVehicleElementOptions ........................................................................................... 47

AdditionalAirVehicleElement-ComponentOptions ...................................................................... 49

VI.Command,Control,andCommunications(C3)SelectionGuidelinesandCatalog .......................... 61

VII.SupportEquipmentSelectionGuidelinesandCatalog .................................................................... 80

VIII.UASPersonnel/LaborGuidelines.................................................................................................... 84

Engineering/DesignPersonnelandTeamMemberRoles ................................................................. 84

DesignConstruction/AssemblyPersonnel......................................................................................... 86

OperationalandSupportPersonnel .................................................................................................. 86

IX.FlightPlanningGuidelines ................................................................................................................ 88

TakeoffandInitialClimb.................................................................................................................... 88

DataCaptureduringStraightandLevelFlight ................................................................................... 88

DataCaptureduringaCoordinatedTurn .......................................................................................... 89

FlightPathforFullCoverageoftheSubjectArea .............................................................................. 89

Approach,Landing,andRefueling/Maintenance .............................................................................. 90

TotalMissionTimeCalculation.......................................................................................................... 90

CommunicationsConsiderations ....................................................................................................... 90

X.BusinessCaseGuidelines................................................................................................................... 95

Rationale................................................................................................ Error!Bookmarknotdefined.

ReturnonInvestment............................................................................ Error!Bookmarknotdefined.

FeasibilityandRisk................................................................................. Error!Bookmarknotdefined.

CompetitiveLandscape ......................................................................... Error!Bookmarknotdefined.

Scope,Schedule,andBudget................................................................. Error!Bookmarknotdefined.

Summary................................................................................................ Error!Bookmarknotdefined.

XI.3DCADModelRequirements ......................................................................................................... 100

XII.AdditionalInformationandResources .......................................................................................... 101

PTCTools ......................................................................................................................................... 101

TeamSubmissions ........................................................................................................................... 101

Scoring ............................................................................................................................................. 101

Page 4: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Pageiv

ListofFigures

Figure1.BasicUASconfigurationwithmajorelementsidentified........................................................... 2Figure2.UASdesignapproachwithmajorelementoptionsidentified. .................................................. 3

Figure3.ExampleC3configurationandassociatedinterfaces. ................................................................ 5Figure4.Dentcorn.................................................................................................................................... 11Figure5.Damagetocornfromthebillbug. ............................................................................................. 12

Figure6.Lifecycleofthecornbillbug. ..................................................................................................... 13Figure7.DJIAgrasMG-1octocopter. ....................................................................................................... 15Figure8.eBeeSQagriculturaldrone........................................................................................................ 16

Figure9.AsthealtitudeoftheUASchanges,thesensorfootprintwillvary. ........................................ 31Figure10.Theoverlappingsensorfootprintsmustsufficientlyoverlapforsensingwithoutgapsordataholidays. .................................................................................................................................................... 32

Figure11.Theoverlappingsensorfootprintsmustsufficientlyoverlapfordetectionduringacoordinatedturnattheinsideoftheturnandtheoutsideoftheturntoensurecompletecoverageandnodataholidays. ............................................................................................................................... 32

Figure12.Exampleofanassembledcoverageareafrompre-calculatedflightmaneuversandtheirindividualcoverageareas. ........................................................................................................................ 33Figure13.Fixed-wingpusherpropellerdesign. ....................................................................................... 37

Figure14.Fixed-wingtractorpropellerdesign. ....................................................................................... 39Figure15.Rotary-wingdesign. ................................................................................................................. 41Figure16.Multirotordesign. .................................................................................................................... 43

Figure17.Hybrid(fixed-wing/quadrotor)design. ................................................................................... 45Figure18.SixUASwithlow-powercommunicationsoperatinginsubjectarea(interference)............. 91Figure19.UASfeaturinguseofamultiplexer(inred). ........................................................................... 92

Figure20.TrackingAntennaexample. ..................................................................................................... 93Figure21.Multipleaircraftanddirectionalantennaseparationexample. ............................................ 94Figure22.3Dcubeswithonecommonedge. ........................................................................................ 100

Page 5: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Pagev

ListofTablesTable1.PayloadElement–AerialSprayingEquipmentOptions ............................................................ 21

Table2.PayloadElement–VisualSensorOptions.................................................................................. 24Table3.AirVehicleElement–AdditionalFlightControlOptions ........................................................... 49Table4.AirVehicleElement–AdditionalOnboardSensorOptions ...................................................... 51

Table5.C3Element–Control/DataProcessingandDisplayEquipmentOptions .................................. 62Table6.C3Element–CommunicationEquipmentOptions.................................................................... 66Table7.DescriptionofUAVComponents ................................................................................................ 80

Page 6: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page1

I.Overview:WhatisanUnmannedAircraftSystem?Anunmannedaircraftsystem(UAS)canbedefinedasanaircraftwithoutanoperatororflightcrew

onboard.Theyareremotelycontrolledusingmanualflightcontrol(i.e.,teleoperation)orautonomouslyusinguploadedcontrolparameters(e.g.,waypoints,altitudehold,orminimum/maximumairspeed).

UASaretypicallyusedtoperformavarietyoftasksorapplicationsthatareconsideredtoodull,dangerous,dirty,ordeepforhumansormannedplatforms(i.e.,4Ds).Theircivilian/commercialuses

includeaerialphotography/filming,agriculture,communications,conservation/wildlifemonitoring,damageassessment/infrastructureinspection,fireservicesandforestrysupport,lawenforcement/security,searchandrescue,weathermonitoringandresearch.Theyprovideanoption

thatiseconomicalandexpedient,withoutputtingahumanoperator(i.e.,pilot)atrisk.

UASarecommonlyreferredtoasunmannedaerialvehicles(UAV)s,unmannedaerospace,aircraftoraerialsystems,remotelypilotaircraft(RPA),remotelypilotedresearchvehicle(RPRV),andaerialtargetdrones.However,thetermUASitselfisreflectiveofasystemasawhole,whichhasconstituent

componentsorelementsthatworktogethertoachieveanobjectiveorsetofobjectives.Thesemajorelements,depictedinFigure1,includetheairvehicleelement,payload,data-link(communications),commandandcontrol(C2),supportequipment,andtheoperator(humanelement).

Page 7: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page2

Figure1.BasicUASconfigurationwithmajorelementsidentified.

TheUASyouwilldevelopinthischallengeiscomprisedofthesamesuchelements.NOTE:Forpurposesofcomponentcategorizationandfunctionalitysimplification,thedata-link/communicationsandcommandandcontrol(C2)havebeencombinedintoasingleelement(i.e.,command,control,and

communications[C3]).Eachteamwillchoosedifferentquantities,sizes,types,andconfigurationsofthevariouscomponentstocreateauniqueUASdesignusingtheapproachdepictedinFigure2.

Page 8: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page3

Figure2.UASdesignapproachwithmajorelementoptionsidentified.

Ahigh-leveldescriptionofeachofthesystemelements,tailoredtothischallenge,follows.Manyoftheseitemsaredescribedinmoredetailinlatersections.

PayloadElement(s)ThepayloadsrepresentthefirstelementtobeexaminedinthedesignofaUASasittraditionally

representstheprimarypurposeoftheplatform.Inthecaseofthischallenge,thepayloadmustbeselectedinordertodetectpestsoveracropareatwo(2)milebytwo(2)milefield.ThefollowingprovidescommonexamplesofVisual/exteroceptivesensors.Thesesensorsareusedtocapture

informationregardingtheoperatingenvironment.Thisinformationcanbeusedtoprovidesituationalawarenessrelativetotheorientationandlocationoftheaerialvehicleelementand/orprovideinformationaboutthepestcontentinthecroparea.Thefollowingrepresentthemajorprimarypayload

categoriestoconsiderinthedesignanddevelopmentofaUAS:

• Visual/exteroceptivesensors–usedtocaptureinformation(e.g.,visualdata)regardingtheoperatingenvironmenttoprovidetheoperatorwithsituationalawarenessrelativetotheorientationandlocationoftheaerialvehicleelement(e.g.,unmannedaerialvehicle[UAV])ofaUAS.Thefollowingrepresenttheexamplesofcommonpayloadsensors:

o CCD/CMOScamera(e.g.,DaytimeTV,colorvideo)–digitalimagingsensor,typicallyreturnscolorvideoforlivedisplayonthegroundcontrolstation(GCS)terminal

Page 9: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page4

o Thermal(e.g.,infrared[IR])–sensorusedtomeasureandimageheat(i.e.,thermalradiation)

o LiDAR–measuresdistanceandcontoursofremotebodies(e.g.,terrain)throughuseofreflectedlaserlight,typicallyrequiressignificantamountofpreorpost-processingtorenderanddisplaythedata

o SyntheticApertureRadar(SAR)–measuresdistanceandcontoursofremotebodies(e.g.,terrain)throughuseofreflectedradiowaves,typicallyrequiressignificantamountofpreorpost-processingtorenderanddisplaythedata

o Multispectralcamera–anall-encompassingvisualsensorforcapturingimagedataacrosstheelectromagneticspectrum(e.g.,thermal,radar,etc.)NOTE:Whiletheseoptionsareoption,itishighlysuggestedthataminimumofaCCD/CMOS

camerabeincludedintheUASdesigntovisuallyconfirmorientation/locationoftheaircraft(seePrimaryvideodataequipment[non-payload]inthefollowingsubsection).Additionally,

proprioceptive(onboard)sensorscanbeusedtoaugmentthepayloadsensorstoimprovesituationalawarenessanddetermineamoreaccuratedepictionofthestateoftheaircraft.

• AerialSprayingEquipment–usedtotransportandapplythepesticide/watermixturetotheaffectedareasofthesubjectcrop

o Boomtubing–usedtoprovidesupportlatticefornozzlesanddeliveryofpesticidemixturefluidfordispersal

o Nozzles–componentsusedtoatomizethismixtureintodropletsforsprayingo Spraypump–usedtotransferfluidfromstoragetanktotubingandnozzleso Spraytank–usedtostoreandcarrypesticidemixturealoftfordispersal

Thedetailsconcerningtheseelements,includingcatalogequipmentoptions,canbefoundintheCatalogOptionssectionofthisdocument.

AirVehicleElementTheairvehicleelement(i.e.,UAV)representstheremotelyoperatedaerialcomponentoftheUAS.

TherecanbemorethanoneUAVinaUASandeachiscomposedofseveralsubsystemcomponents,suchasthefollowing:

• Airframe–thestructuralaspectofthevehicle.Theplacement/locationofmajorcomponentsontheairframe,includingpayload,powerplant,fuelsource,andcommand,control,and

communications(C3)equipment,willbedeterminedbyyourteam.Thiselementcanbepurchasedasacommercially-off-the-shelf(COTS)optionfromthecatalogorcustomdesignedbyyourteam

• FlightControls–theflightcomputer(e.g.,servocontroller),actuatorsandcontrolsurfacesoftheairvehicle

• Powerplant(propulsion)–thethrustgeneratingmechanism,includingtheengine/motor,

propeller/rotor/impeller,andfuelsource(e.g.,batteryorinternalcombustionfuel)• Sensors(onboard)–thedatameasurementandcapturedevices

Page 10: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page5

NOTE:ThesesubsystemcomponentscanbepurchasedasasingleCOTSoptionfromthecatalog(i.e.,includedinCOTSairframe),modified/supplementedusingotheroptions,orentirelycustomdesignedby

yourteam.

Thedetailsconcerningthiselement,includingcatalogequipmentoptions,canbefoundinthesectionAirVehicleElementSelectionGuidelinesandCatalogOptionsofthisdocument.

Command,Control,andCommunications(C3)ElementC3representshowyourteamwillgetdatato(e.g.,controlcommands)andfrom(e.g.,telemetryandonboardsensorvideo)theairvehicleelement(oranyadditionalunmanned/roboticsystems),whileinoperation.Yourconfigurationwilldependonthedesignchoicesmadebyyourteam.Someofthese

itemswillbeincludedintheweightandbalancecalculationsfortheAirVehicleElement(i.e.,airborneelements),whiletheremainingwillbeincludedinthegroundcontrolstation(GCS).Thefollowingimage(Figure3),depictsanexampleC3interfaceoverviewofamediumcomplexityUAS.

Figure3.ExampleC3configurationandassociatedinterfaces.

ThefollowingrepresentstheprimaryC3elementsubsystemcomponents:

• Controlcommandsandtelemetryequipment–thecapture,processing,transmission,receipt,execution,anddisplayofalldataassociatedwithcontrolandfeedbackoftheairvehicleelement.Thefollowingrepresentthetypesofcontrols:

Page 11: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page6

o Manual–operatorperformsremotecontroloftheUAVo Semi-autonomous–operatorperformssomeoftheremotecontroloftheUAV,system

performstherest(pre-determinedpriortoflight)o Autonomous–operatorsupervisessystemcontroloftheUAV(pre-determinedpriorto

flightanduploadedduringflight)

o Controlswitching–useofamultiplexerdeviceprovidesamethodtoswitchbetweendifferentcontrolmethods(e.g.,switchbetweenmanualandautonomouscontrol)

• Primaryvideodataequipment(non-payload)–thecapture,transmission,receipt,anddisplay

ofvisualdatafromtheprimaryvideosensor(non-payload),ifapplicable.NOTE:Primaryvideoistypicallyusedtooperatetheaircraftfromanegocentric(i.e.,firstpersonview[FPV])perspective

• Remotesensing(primarypayloadsensor)equipment–thecapture,storageortransmissionanddisplayofdatafromtheprimarypayloadsensor.

Thedetailsconcerningthiselement,includingcatalogequipmentoptions,canbefoundintheCommand,Control,andCommunications(C3)SelectionGuidelinesandCatalogsectionofthis

document.

SupportEquipmentElementSupportequipmentrepresentsthoseadditionalitemsrequiredtoassistinUASoperationandmaintenanceinthefield.Thesecaninclude,butarenotlimitedtothefollowing:

• Launchandrecoverysystems–componentsusedtosupporttheUAVtotransitionintoflightorreturntheaircraftsafely

• Flightlineequipment–componentsusedtostart,align,calibrate,ormaintaintheUAS

o Refueling/rechargingsystemo Internalcombustionenginestarter

• Transportation–usedtodeliverequipmenttotheoperatingenvironment/field

• Powergeneration–portablesystemcapableofproducingsufficientpowertoruntheGCSandanyadditionalsupportequipment;typicallyinternalcombustionusinggasoline

• Operationalenclosure–portableworkareaforthecrew,computers,andothersupportgear

Thedetailsconcerningthiselement,includingcatalogequipmentoptions,canbefoundintheSupport

EquipmentSelectionGuidelinesandCatalogsectionofthisdocument.

OperatorElementTheoperatorelementrepresentsthosepersonnelrequiredtooperateandmaintainthesystem.Theseroleswillbedependentonthedesignofthesystem.Thesecaninclude,butarenotlimitedtothefollowing:

• Pilotincommand(PIC)• Secondaryoperator(co-pilotorspotter)• Payload/sensoroperator

• Sensordatapost-processerspecialist• Support/maintenancepersonal

Page 12: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page7

NOTE:YouwillidentifyyourcrewneedsbasedonyourUASdesignaccordingtotheprovidedguidelines.Forexample,iftheaerialsprayerpayloadisconfiguredtoautomaticallyreleasethepesticideoverspecific

areasidentifiedusingGPS,aspecificpayloadoperatorwillnotbenecessary.However,theappropriatesystemdesignwouldneedtobeestablishedtosupportsuchoperations.

ThedetailsconcerningthiselementcanbefoundintheUASPersonnel/LaborGuidelinessectionofthisdocument.

Page 13: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page8

II.PracticalSolutionstoPrecisionAgricultureChallengeDetailBy2050,therewillbeanestimatedadditionaltwobillionpeopleonEarth,whichwillsignificantlyimpact

theavailabilityoffood.Ithasbeenestimatedthattherewillbeaneedtoproduce70%morefoodtoaddresssuchapopulationgrowth.Throughouthistory,advancesintechnologyhaveallowedfarmerstoproducemorefood.Onepieceofcurrenttechnologythathasthepotentialtogreatlyhelpthemodern

farmeristheunmannedaircraftsystem(UAS).ByusingaUAS,thefarmercanmorepreciselymonitorafieldofcropsandbeabletoapplywater,fertilizer,orpesticidesinamannerthatsavestime,savesmoney,savesresources,andincreasescropyield.

TheFY18RWDCStatechallengewillcontinuethefocusonunmannedsystemsandprecisionagriculture

throughthedesignandimplementationofaUAStosupportprecisionagricultureintheproductionofcorn.TheteamswilluseconceptsfromEngineeringTechnology(i.e.,applicationofscienceandengineeringtosupportproductimprovement,industrialprocesses,andoperationalfunctions)to

identify,compare,analyze,demonstrate,anddefendthemostappropriatecomponentcombinations,system/subsystemdesign,operationalmethods,andbusinesscasetosupportthechallengescenario.Throughuseofaninquiry-basedlearningapproachwithmentoringandcoaching,thestudentswillhave

anopportunitytolearntheskillsandgeneralprinciplesassociatedwiththechallengeinahighlyinteractiveandexperientialsetting.Forexample,thestudentswillneedtoconsiderandunderstandthevariousunmannedsystemelemental(subsystem)interactions,dependencies,andlimitations(e.g.,

poweravailable,duration,rangeofcommunications,functionalachievement)astheyrelatetotheoperation,maintenance,anddevelopmenttobestsupporttheirproposedbusinesscase.

Tosupporttheinquirybasedlearningapproach,eachteamwillperformanddocumentthefollowing:1) TaskAnalysis-analyzethemission/tasktobeperformed

2) StrategyandDesign-determineengineeringdesignprocess,roles,theoryofoperation,designrequirements,systemdesign,crewresources,integrationtesting,anddesignupdates

3) Costs-calculatecostsandanticipatedcapabilitiesassociatedwithdesignandoperation,

includingmodificationofthedesigntofurthersupportacompetitiveandviablebusinesscase4) AlternativeUses-identifyalternativeusesofsystemtoimprovemarketabilityandusecases

Asyouprogressthroughthechallenge,yourteamwillincrementallybepresentedwithbackgroundrelatingtothecompositionandoperationofunmannedsystemdesigns,engineeringdesignprinciples,

unmannedsystemapplicationtoprecisionagriculture,businessmanagement,anddevelopmenttools.Youwillneedtoworktogetherasateamwithcoachesandmentorstoidentifywhatyouneedtolearnwhilepursuingthecompletionofthischallenge.Byconnectingyourownexperienceandinterest,you

willhaveanopportunitytogainfurtherinsightintotheapplicationofdesignconcepts,betterunderstandapplicationofunmannedsystemtechnology,andworkcollaborativelytowardscompletionofacommongoal.

Page 14: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page9

ChallengeScenarioYourCompanyhasbeentaskedwithmakingacasewhetherornotthepart107regulationsarerestrictingtheabilitytoimprovecropyieldwhileminimizingprofits.Youwillbecomparingyouraircraft

totwoaircraftthatdoprecisionagricultureintheUnitedStates.YourUASdesignshouldperformsprayingand/orsurveyingbetterthantheoneorbothoftheaircraftsgiven.WhileyoumaychoosetohavecapabilitiesofbothUASdesignsgiveninyourdesign,youmustdobetterthantheDJIAgrasMG-1

atspraying,dobetterthantheeBee SQ at surveying, or do better at both.Todemonstratetheabilitiesofyouraircraft,youwillbeusingthetestfieldownedbyyourcompany.Thefieldis2milesby2milesinsize(2560acres)andthecropiscorn.Itwillalsobeassumedthatyoumustprovideyoursurveyingand

sprayingasaservicetothefarmer,youmayNOTsayyourbusinesscaseistoselltheaircraft.

IfyoudecidethatyourUAVwillonlytakecareofoneofthe2featuresdonebytheDJIAgrasMG-1(spraying)ortheeBee SQ (surveying), you will need to come up with a way of completing those tasks through traditional methods. For example, if you make a surveying UAV that is unable to do any spraying, you will need to research another method of getting the pesticide to the affected areas. The cost of performing the additional tasks that your UAV design does not complete must be accounted for in your costs for servicing the field. You must however have at least one UAV that completes the survey and/or spraying tasks of the DJIAgrasMG-1(spraying)ortheeBee SQ (surveying). You should be comparing your system to the given performances of the two given designs. The performance of the DJIAgrasMG-

1(spraying)andtheeBee SQ (surveying) are listed in the detailed background.

Bothdesignsmayuseunmannedgroundvehiclesorotherroboticsystemsifdesired.Inaddition,multipleaircraftmaybeusedatthesametime.

Field:Asmentionedearlier,thesizeofthetestfieldis2milesby2miles(2560acres).Dirtaccessroadssurroundthefield.Aircraftwithawidthof9ftorlessmayusetheaccessroadsfortakeoffandlanding.

Largeraircraftmustusethegrasslandingstripownedbythecompanythatislocated1milenorthofthenorthernborderofthetestfield.

AlthoughthisfieldsizeisthetestingsiteforyourUAS,youshouldtrytofindatwhatrangeoffieldsizesdoesyourUASbestperform.

Safety:Foreachareathatyourteamdecidestogooutsideofpart107withyourUAS,youshouldinclude

waysofaddressinganypossiblesafetyissuesthatmightarise.Besidesanysafetyconcernsfrombeingoutsideofpart107,youraircraftshouldalso,ataminimum,havethefollowingsafetyfeatures:

• ProceduresforlossofsignalfromthepilotandGPS• Proceduresforobstacledetectionandavoidance

Specificpart107regulationscanbefoundat

http://realworlddesignchallenge.org/resources/021515_sUAS_Summary-1.pdf

BusinesscaseTeamswillbelookingtoseeiftheycanmakeacasethattheirdesignsoutsideofpart107

regulationswillleadtoanincreasedopportunityforprofit.Theincreasedprofitshouldbemadefroma

Page 15: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page10

reductionofcostsoranimprovementinrevenue(throughincreasedcropyield).Teamsshouldlookathowchangestothefieldsizechangesthecostperacre.Thechangesinthecostperacreshouldbeused

tofindarangeofoptimalfieldsizestoreduceyourcosts.TeamsshouldNOTjustraisethepriceoftheirsystemtoimproveitsprofitability.Anyincreaseinpriceshouldbewithinareasonablepriceforafarmertospendandstillmakemoneyhimself.

Comparison:Theoutcomefromyourteamwillbeanunmannedsystemcapableofsurveyingafieldand

sprayingpesticides.Youwillbecomparingyoursystemsperformancewiththeonesgiventoyouinthedetailedbackground.Youwilltrytomakeacasethatifyougooutsideofthepart107regulationsthenyouwillhavetheopportunitytosignificantlyimprovetheprofitabilityofyoursystem.

ApproachEachteamistooperatefromtheperspectiveofasmallcompanyseekingfundingforthedemonstration

ofaprototypesystem.ThechallengeproposalshouldutilizethePACEmodelofproductdevelopment(asadvocatedbytheProductDevelopmentManagementAssociation;www.pdma.org)suchthattheengineeringdevelopmentcostsareminimizedbutalsoincludeinformationabouttheacquisitioncost

andoperationsandsupportcostofthesystemtoshowthattheproductcanbecompetitiveinthemarketplace.Thefollowingstepsarerecommendedinpursuitofaresponsetothechallengescenario:

1. Considerallaspectsandrequirementsofthechallenge2. Performbackgroundresearchonthetopic,availabletools,andexistingdesigns

3. Reviewtheprovidedinformationonthesubjectcrop(corn)andpest4. Developatheoryofoperationthatcanbeadaptedasyoulearnmoreaboutthechallengetopics

andprecisionagriculturemethods5. Createaninitialdesign(conceptualdesign)6. Analyzethedesignanddetermineeffectiveness(i.e.,identifyprocess[es]tovalidateandverify

preliminarydesignandoperation;ensureaircraftiscapableofthelimitloadfactorandultimateloadfactor;determinesurveyefficiency,airframeefficiency,airframecost,andbusinessprofitability,thencalculateobjectivefunction;redesignandreviseasnecessary)

7. Continueresearchanddesign(documentdetaileddesign,designdecisions,lessonslearned,recalculatevariables;redesignandreanalyze,asnecessary)

Thesuccessfulproposalshouldincludeanestimateofthetimelinetorecovertheinitialinvestmentandanypotentialfutureyearprofitsforafive-yearperiod(e.g.,five-yearbreakevenanalysis),whilestriving

todemonstrateandillustratethesolutionefficientlysurveysandspraysthefieldeffectively.Itisstronglyrecommendedthatyouconductyourownresearchonthetopictoanswerthefollowingquestionsasyoubegintodevelopyourchallengesolution:

• Whatpayloadcomponentsarebestsuitedtodetectpestsapplythepesticide(SOLVITAL)? • Areyoudirectly(quantifyingamountofinfestation)orindirectly(colorofcrop,heightofcrop)

measuringinfestation?• HowmanyUAVswouldbeappropriatetoaddressthechallenge?• Howwillthemethodofdetectiondifferduringthegrowthphasesofthecrop?

Page 16: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page11

• Whatarethecurrentmethodstodetectpestsinregardstocorn(satellite,mannedaircraft,persononfootorinatruck)?

• WhataretheuniqueadvantagesorlimitationsassociatedwithcompliancewithPart107comparedwithnoncompliantmethods?

• WhatbenefitsofcapabilitiesofUAScanbeenhancedoraugmentedtosupporttheiruse? • HowdoestheDJIAgrasaccomplishpesticidespraying? • WhataresomeoftheareasforpossibleimprovementorefficiencygainbygoingoutsideofPart

107regulations?Fromabusinessperspective,youmayalsowanttoconsiderthevariousoperationalfactorsanddesigncapabilitiesthatmayaffectthecostfortreatmentanddetection.

CropDetailsThestandardforthechallengethisyearisZeamaysvar.indentata,commonlyknownasdentcorn.

YellowdentcornisthemostcommonlygrowncornintheUnitedStatesandisusedforcornmeal,tortillas,theproductionofplastics,andfructose(acommonsweetenerinprocessedfoods).Thisspeciesofcorntypicallygrowstoaheightof2-3m(6-9ft).Thespeciesofdentcornusedforthischallengeis

assumedtonotbeaBtcornthathasbeengeneticallydesignedforpestresistance.

Figure4.Dentcorn.1

Currently55%ofallcornfarmlandintheUSispartofafarmthatis2,000acresormore.In2016,cornproductionintheUnitedStatesaveraged175.3bushelsperacre.Forthechallenge,wewillassumeamarketpriceof$3perBushel.2

Performanceofyoursystemisbasedonthechallengefieldsizeof2miby2mi(2560acres).Although

youmaychoosetolookathowyoursystemperformsinfieldsofdifferentsizes,the2560-acrefieldwill

1ByJonathunder-Ownwork,CCBY-SA3.0,https://commons.wikimedia.org/w/index.php?curid=112745432http://www.cornandsoybeandigest.com/blog/usda-projects-record-corn-and-soybean-crop-2016

Page 17: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page12

beusedinthecomparisonofyourUAS’sperformancetotheDJIAgrasMG1andeBeesSQperforminginsideoftheFAAPart107regulations.

PestDetails3Thepestyoursystemwillberemovingfromthefieldisthecornbillbug.SOLVITALsprayedonafieldin

theappropriatevolumewilleliminateallcornbillbuginfestations.Typically,themosteffectivetreatmenttimetoeliminatetheinfestationisearlyinthecorn’slifecycle.

Reddish-browntoblack,adultbillbugrangeinlengthfrom3/8"-1/2"in(10to15mm).Thisbeetleisactiveatnightandhidesinthesoilduringtheday.Althoughithaswings,thecornbillbugtypically

crawlsoverthegroundinsearchoffood,anditcanmigrate0.25mi(0.4km)ormore.Thepresenceofyellownutsedgehadbeenassociatedwithbillbuginfestations.

SymptomsofCornBillbugs

Figure5.Damagetocornfromthebillbug.

• Cornleavestwistedandfailtouncurlbecauseofcornbillbugs• Rowsofovalholesinwhorlleaves

• Smallplantsmaybekilled

• Excessivetillersonsurvivingplants

• Injuryoftenmoresevereinborderrows• CornsusceptibletoinjurytotheV6leafstage

• Larvaewilltunnelintothebaseoftheplant

3Informationaboutthecornbillbugisfromhttps://www.pioneer.com/home/site/us/agronomy/crop-management/corn-insect-disease/corn-billbugsandhttps://extension.entm.purdue.edu/fieldcropsipm/insects/maize-billbug.php.Figuresarefromhttps://www.pioneer.com/home/site/us/agronomy/crop-management/corn-insect-disease/corn-billbugs

Page 18: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page13

PestFactsandImpactonCrop

Adultsfeedontheinnerplanttissueofthestemthroughgougedsmallholes.Whilelargerplantsmaycontinuetogrow,smallplantsmaybekilled.Figureshowsthetraverserowofholes,whichisonevisiblesignofbillbugactivity.Thestemandrootsaresusceptibletoinjuryfromgrubs.Severefeedingcanresultinplantlodgingandstoppingthegrowthofanear.Billbugdamagedplantsareusuallystunted.

• Nosignificantnaturalenemiesknown• Hostrangeisprimarilylargergrasses,sedgesandrushes

• Smallcornplantsmaybekilledormisshapenbyadultfeeding

• PlantstoV6leafstagemaytillerandbedeformed

• Severeinfestationshavereducedyieldsupto40%• Damageismostsevereinyellownutsedge-infestedfieldsoralongborderrowswiththisweed

• BillbugsthatsometimefeedoncornexistacrosstheUnitedStatesbutaremoreofaproblemintheSoutheastandtheSouthernCornBelt

Lifecycle

Figure6.Lifecycleofthecornbillbug.

Page 19: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page14

FieldInfestation Forthischallenge,youwillassumethat10%ofthetestfieldhasbeeninfestedwithbillbugs.Forthefieldsizeof2560acres,yoursystemwillneedtotreat256acreswithpesticide.

SOLVITALPesticide SOLVITALrepresentsthefictionalpesticidefortheFY18RealWorldDesignChallenge(RWDC)State

Challenge.Itisaliquidsuitableforuseinallconventionalagriculturalsprayequipmentagainsttheall

speciesofthecornbillbug.

MixtureDetails Forthediscussionofvolumes,galloninthisdocumentmeansU.S.liquidgallon.Thefollowingrepresents

theweightandeffectivenessofSOLVITAL.

• Weightof8.36lb/gal(1kg/L).Wewillassumethatthereisnosignificantchangeindensitywithinreasonablechangesintemperature.

• 0.35gal(1.32L)isenoughpesticidetotreat1acreofinfestedfield.Iftheamountperacreisreduced,SOLVITALwillnolongerbeeffective.

HandlingandStorage HAZARD:Hazardoustohumansanddomesticanimals.Maybefatalifswallowed,harmfulifabsorbedthroughskin;causesmoderateeyeirritation;prolongedorfrequentlyrepeatedskincontactmaycause

allergicreactionsinsomeindividuals.Avoidcontactwithskin,eyes,orclothing. Applicatorsandotherhandlersmustwear:

• Coverallsovershort-sleevedshirtandshortpants • Chemical-resistantgloves • Chemical-resistantshoesplussocks • Protectiveeyewear • Chemical-resistantheadgearforoverheadexposure • Chemical-resistantapronwhencleaningequipmentandmixingorloading

WARNING:SOLVITAListoxictobirdsandwildlife,andextremelytoxictofishandaquaticorganisms.Do

notapplydirectlytowater,toareaswheresurfacewaterispresent,ortointertidalareasbelowthemeanhighwatermark.

Storage–thefollowingrepresenttherequirementsforstorageofSOLVITAL: • Donotcontaminatewater,foodorfeedbystorageordisposalofwastes • Storeinoriginalcontainerinsecureddrystoragearea • Preventcross-contaminationwithotherpesticidesandfertilizers • Donotstoreabove98.6°Fforextendedperiodsoftimeasstoragebelow43.88°Fmayresultin

formationofcrystals NOTE:Ifproductcrystallizes,storeat50to69.8°Fandagitatetoredissolvecrystals

Page 20: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page15

• Ifcontainerisdamagedorspilloccurs,useproductimmediatelyordisposeofproductand damagedcontainer.

AssumetheSOLVITALisalreadyavailableonsite(deliveredtothelocationbyavendorinastorage

vessel;deliverycostincludedinthe$45pergallonprice);however,eachsolutionshouldaddresshowtosafelyhandleandaddittotheaircraftfromthestoragevesselusingappropriatesafetypractices.

SpecialtrainingisnotrequiredtohandleSOLVITAL.

CompliantUASSolutionSpecificationsThissectionprovidesbackgroundinformationontheDJIAgrasMG-1andeBeeSQ.Usetheinformationprovidedasthebenchmarkforthecomparisonwithyoursystem.

DJIAgrasMG-1Information,specifications,andfigurearefromDJI’swebsite(https://www.dji.com/mg-1)

Figure7.DJIAgrasMG-1octocopter.

TheDJIAgrasMG-1isanoctocopterdesignedforprecisionapplicationofliquidpesticides,fertilizers,andherbicides.Ithasapayloadcapacityof10kg(22lb)ofliquidsandcandispersetheliquidusingfour

nozzles.Thepayloadcontainerhasavolumeof10L(2.64gal).Eachnozzlehasamaximumsprayrateof0.43L/min.Theaircrafthasaspraywidthof4-6mwhenusingallfournozzleandis1.5-3mabovethecrops.Thestandardtakeoffweightfortheaircraftis22.5kg(49.6lb).Ithasamaximumflyingspeedof

22m/s(49mph),butthemaximumoperatingspeedis8m/s(18mph).TheDJIAgrasMG-1cancover4,000-6,000m2ofcropsin10min,andcanspray7-10acres/hr.Thesprayingefficiencyofthisaircraftisabout40-60timesfasterthanmanualspraying.

Touseasacomparisontoyourdesign,assumethefollowingperformanceoftheDJIAgrasMG-1.Using

SOLVITAL,theAgrascanspray7acres/hr.Bycovering6,000m2perflight,asingleaircraftwillneed4.7flightstocomplete7acres.Assumingittakes10mintocompleteastandardflight,anhourofapplicationtimewillincludeatotalof47minofflighttimewith3.25minbetweeneachflighttoswitch

thebatteryandrefillthepayloadcontainer.Forthe4-mi2(2560-acre)fieldwitha10%infestation,theaircraftwillneedtospray256acres.At7acres/hr,asingleaircraftwilltake36.6hr,orthreedaysofdaylightflights,tocompletethesprayingofthefield.

Page 21: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page16

eBeeSQInformation,specifications,andfigurearefromSenseFly’swebsite(https://www.sensefly.com/drones/ebee-sq.html)

Figure8.eBeeSQagriculturaldrone.

TheeBeeSQisanagriculturaldronedesignedtocapturecropdataacrossfourmultispectralbandsplus

RGBimagery.Theaircraftcanmonitorhundredsofacresinasingleflight.Theaircrafthasawingspanof110cm(43.3in)andonlyweighs1.1kg(2.42lb).Itscruisespeedis11-30m/s(35-68mph)andhasamaximumflighttimeof55min.Atanaltitudeof120m(400ft)abovegroundlevel,itcancoverabout

500acresinaflight.Thesensorhasagroundsampledistance(GSD)resolutionforthemultispectralof12cm/px(4.72in/px)and3.1cm/px(1.22in/px)fortheRGB.

Touseasacomparisontoyourdesign,assumethefollowingperformanceoftheeBeeSQ.Assumethat

ittakesafull55-minflighttocover500acresat400-ftaltitudeforasingleaircraft.Withacoupleofminutesonthegroundtochangethebattery,itwilltakeabout5hrforasingleaircrafttocoverthefull4-mi2(2560-acre)field.

Page 22: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page17

III.FAARegulationsInsummer2016,theFAAreleasedtheSmallUnmannedAircraftRegulations(Part107).Thefullrules

canbereadathttp://www.faa.gov/uas/media/RIN_2120-AJ60_Clean_Signed.pdf.Asummaryoftherulesareincludedinthissectionbasedonthedocumentfoundathttp://www.faa.gov/uas/media/Part_107_Summary.pdf.MoreinformationontheFAArulesand

additionalinformationonflyingaUAScanbefoundathttp://www.faa.gov/UAS/.

OperationalLimitations• Unmannedaircraftmustweighlessthan55lbs.(25kg).• Visualline-of-sight(VLOS)only;theunmannedaircraftmustremainwithinVLOSoftheremote

pilotincommandandthepersonmanipulatingtheflightcontrolsofthesmallUAS.Alternatively,theunmannedaircraftmustremainwithinVLOSofthevisualobserver.

• AtalltimesthesmallunmannedaircraftmustremaincloseenoughtotheremotepilotincommandandthepersonmanipulatingtheflightcontrolsofthesmallUASforthosepeopletobecapableofseeingtheaircraftwithvisionunaidedbyanydeviceotherthancorrectivelenses.

• Smallunmannedaircraftmaynotoperateoveranypersonsnotdirectlyparticipatingintheoperation,notunderacoveredstructure,andnotinsideacoveredstationaryvehicle.

• Daylight-onlyoperations,orciviltwilight(30minutesbeforeofficialsunriseto30minutesafterofficialsunset,localtime)withappropriateanti-collisionlighting.

• Mustyieldrightofwaytootheraircraft.• Mayusevisualobserver(VO)butnotrequired.• First-personviewcameracannotsatisfy“see-and-avoid”requirementbutcanbeusedaslongas

requirementissatisfiedinotherways.• Maximumgroundspeedof100mph(87knots).• Maximumaltitudeof400feetabovegroundlevel(AGL)or,ifhigherthan400feetAGL,remain

within400feetofastructure.• Minimumweathervisibilityof3milesfromcontrolstation.• OperationsinClassB,C,DandEairspaceareallowedwiththerequiredATCpermission.• OperationsinClassGairspaceareallowedwithoutATCpermission.• NopersonmayactasaremotepilotincommandorVOformorethanoneunmannedaircraft

operationatonetime.• Nooperationsfromamovingaircraft.• Nooperationsfromamovingvehicleunlesstheoperationisoverasparselypopulatedarea.• Nocarelessorrecklessoperations.• Nocarriageofhazardousmaterials.• Requirespreflightinspectionbytheremotepilotincommand.• Apersonmaynotoperateasmallunmannedaircraftifheorsheknowsorhasreasontoknow

ofanyphysicalormentalconditionthatwouldinterferewiththesafeoperationofasmallUAS.• Foreign-registeredsmallunmannedaircraftareallowedtooperateunderpart107iftheysatisfy

therequirementsofpart375.

Page 23: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page18

• Externalloadoperationsareallowediftheobjectbeingcarriedbytheunmannedaircraftissecurelyattachedanddoesnotadverselyaffecttheflightcharacteristicsorcontrollabilityoftheaircraft.

• Transportationofpropertyforcompensationorhireallowedprovidedthato Theaircraft,includingitsattachedsystems,payloadandcargoweighlessthan55

poundstotal;o Theflightisconductedwithinvisuallineofsightandnotfromamovingvehicleor

aircraft;ando TheflightoccurswhollywithintheboundsofaStateanddoesnotinvolvetransport

between(1)HawaiiandanotherplaceinHawaiithroughairspaceoutsideHawaii;(2)theDistrictofColumbiaandanotherplaceintheDistrictofColumbia;or(3)aterritoryorpossessionoftheUnitedStatesandanotherplaceinthesameterritoryorpossession.

• Mostoftherestrictionsdiscussedabovearewaivableiftheapplicantdemonstratesthathisorheroperationcansafelybeconductedunderthetermsofacertificateofwaiver.

RemotePilotinCommandCertificationandResponsibilities• Establishesaremotepilotincommandposition.• ApersonoperatingasmallUASmusteitherholdaremotepilotairmancertificatewithasmall

UASratingorbeunderthedirectsupervisionofapersonwhodoesholdaremotepilotcertificate(remotepilotincommand).

• Toqualifyforaremotepilotcertificate,apersonmust:o Demonstrateaeronauticalknowledgebyeither:

! PassinganinitialaeronauticalknowledgetestatanFAA-approvedknowledgetestingcenter;or

! Holdapart61pilotcertificateotherthanstudentpilot,completeaflightreviewwithintheprevious24months,andcompleteasmallUASonlinetrainingcourseprovidedbytheFAA.

o BevettedbytheTransportationSecurityAdministration.o Beatleast16yearsold.

• Part61pilotcertificateholdersmayobtainatemporaryremotepilotcertificateimmediatelyuponsubmissionoftheirapplicationforapermanentcertificate.OtherapplicantswillobtainatemporaryremotepilotcertificateuponsuccessfulcompletionofTSAsecurityvetting.TheFAAanticipatesthatitwillbeabletoissueatemporaryremotepilotcertificatewithin10businessdaysafterreceivingacompletedremotepilotcertificateapplication.

• Untilinternationalstandardsaredeveloped,foreign-certificatedUASpilotswillberequiredtoobtainanFAA-issuedremotepilotcertificatewithasmallUASrating.

Aremotepilotincommandmust:

• MakeavailabletotheFAA,uponrequest,thesmallUASforinspectionortesting,andanyassociateddocuments/recordsrequiredtobekeptundertherule.

• ReporttotheFAAwithin10daysofanyoperationthatresultsinatleastseriousinjury,lossofconsciousness,orpropertydamageofatleast$500.

• Conductapreflightinspection,toincludespecificaircraftandcontrolstationsystemschecks,toensurethesmallUASisinaconditionforsafeoperation.

Page 24: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page19

• Ensurethatthesmallunmannedaircraftcomplieswiththeexistingregistrationrequirementsspecifiedin§91.203(a)(2).

Aremotepilotincommandmaydeviatefromtherequirementsofthisruleinresponsetoanin-flightemergency.

AircraftRequirementsFAAairworthinesscertificationisnotrequired.However,theremotepilotincommandmustconductapreflightcheckofthesmallUAStoensurethatitisinaconditionforsafeoperation.

Page 25: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page20

IV.PayloadSelectionGuidelinesandCatalogOptionsThereisavarietyofpayloadsandcapabilitiesthatcouldbeappliedtosatisfytherequirementsofthechallenge.Thissectiondescribesseveralpossibleoptionsthatcanbeselectedforincorporationinto

yourdesign.Itissuggestedthateachteamalsoresearchotherpossiblepayloadsthatcanbeusedinthesurveyandsprayingmissions.Itisimportantthatyouconsiderpayloadattributes,includingcost,capacity,weight,powerrequired,andcapabilities(e.g.,sensorresolutionandfield-of-view).Also,you

shouldconsiderhowthepayloadyouselectwillbeintegratedwithyourplatform.Besuretoaddresssize,weight,power,andstabilizationrequirements.Theselectionmustconsiderenvironmentalfactorssuchasoperatingtemperatureranges,humidity,andcoolingmethod.Ananalysisofcostand

integrationofselectedpayloadsmustbeincluded.

TheUASplatformshouldbethoughtofasadeploymenttoolforthepayloadandshouldbeoptimizedforoptimalpayloadperformance(i.e.surveying,spraying,orboth).RWDChascreatedthefollowingpayloadoptionstobeusedasareferenceinthedesignoftheUASsystem.Sincetechnologyis

constantlyadvancing,especiallyforsensors,youareencouragedtoexplorewhatotheroptionsmaybeavailable,andmakeyourownselectionsbasedonyouranalysis(pleaseprovidesupportingrationaleandatleastthesamelevelofdetailasisprovidedhereintheengineeringnotebook).Keepinmindyou

willneedtoobtainaccuratecostsforanynon-catalogoptionpayloadsyouincorporate.

AerialSprayingEquipment Theaerialsprayingequipmentisusedtostore,transport,anddispersetheSOLVITALpesticideacrosstheinfestedareasofthesubjectcrop.Performinvestigativeresearchtoexplorehowthistechnologyhas

beenusedinconventionalmannedplatformsandisnowbeingusedinthelatestgenerationofunmannedequipment.

Page 26: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page21

Table1.PayloadElement–AerialSprayingEquipmentOptions

Component Description CostPerItem

BoomTubing

Providesstructuralsupportandconveyspesticidemixturetonozzles:

• 0.25”diameter(0.1466ozperinch) • 0.5”diameter(0.2133ozperinch) • 0.75”diameter(0.28ozperinch)

$0.15perinch(0.25”)

$0.20perinch(0.5”)

$0.30perinch

(0.75”)

FlatFanNozzle

Usedforbroadcastsprayingofpesticidesandherbicides,producestapered-edge,spraypattern(flatfan);idealrangebetween30-40PSI

• 0.125”diameter(0.25ozweight)–0.75”(L)x0.4375”(W)

• 0.25”diameter(0.75oz)–0.9375”(L)x0.5625”(W)

• 0.375”diameter(1.25oz)–1.1875”(L)x0.75”(W)

$1.00(0.125”)$2.50(0.25”)

$4.00(0.375”)

FloodNozzle

Usedtoapplysuspensionmixtureswherecloggingisapotentialconcern(nozzlesrequirespacingof60”)

• Sameweights/dimensionsasflat-fan

$2.00(0.125”)$3.00(0.25”)

$4.00(0.375”)

RaindropNozzle

Usedtoproducelargedispersantdropsinahollow-conepattern

• Sameweights/dimensionsasflat-fan

$1.00(0.125”)$2.50(0.25”)

$4.00(0.375”)

Hollow-coneNozzle

Usedtoapplypesticidewhenpenetrationoffoliageortotalcoverageoffoliagesurface(leaf)isrequired;spraydriftpotentialishigher

• 0.125”diameter(2ozweight)–1.4063”(L)x0.8125”(W)

• 0.25”diameter(2oz)–1.5313”(L)x0.8125”(W)

$3.00(0.125”)$5.00(0.25”)

Full-coneNozzleUsedtocounteractpotentialissuesofdriftbyproducingalargerdropletthanfloodnozzle(requiresflowcontroller)

• 0.125”diameter(0.25ozweight)–0.625”(L)x

$1.00(0.125”)$2.50(0.25”)

Page 27: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page22

0.5”(W) • 0.25”diameter(0.34oz)–0.75”(L)x0.5625”(W)

Component Description CostPerItem NozzleScreens

Preventsplugging/cloggingofnozzlesbyremovinglargeparticlesfrommixture

• Nominalweightperunit

$0.10(0.125”)$0.25(0.25”)

$0.70(0.375”)

SprayPump Providespressurefortransferofpesticidemixturefromspraytanktoboomtubing/nozzlesatrequisite40PSI

• 0.89lb(14.24oz)

$20

ControlBox

Providescontrolofspraypump(requiresoneservoinputforon/offfunctionality;doesnotvaryspeedorpressure)

• 0.67lb(10.72oz)

$10

SprayTank

Providesstorageofpesticidemixture • Plastic16ozvolume(4ozweight)-2.375”(H)x

5.875”(L)x2.6875” (W)

• Plastic24ozvolume(5ozweight)–2.5”(H)x7.5”(L)x3”(W)

• Aluminum24ozvolume(2.2lbweight)–4.5”(H)x10”(L)x7”(W)

• Plastic32ozvolume(6.4ozweight)–3”(H)x7.75”(L)x3.6875” (W)

• Plastic50ozvolume(7.5ozweight)–3.5”(H)x8.375”(L)x4.375”(W)

$4.50(plastic16oz)$5.00(plastic24oz)

$20(alum24oz)$8.00(plastic32oz)

$12.00(plastic50oz)

Page 28: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page23

Visual(Exteroceptive)Sensors Visualexteroceptivesensorsareusedtocaptureinformation(e.g.,visualdata)regardingtheremoteoperatingenvironmenttoprovidetheoperatorwithsituationalawarenessrelativetotheorientation

andlocationoftheaerialvehicleelement.CommonpayloadsensorsincludeCCD/CMOScameras,thermal,LiDAR,SAR,andmultispectralcamera.Itissuggestedthateachteamalsoresearchotherpossiblesensorsthatmightfitbetterwiththeirmissiongoals.Itisimportantthatyouconsiderpayload

attributes,includingcost,capacity,weight,powerrequired,andcapabilities(e.g.,sensorresolutionandfield-of-view).Makesuretoconsiderthedatatreatmentandpost-processingrequirementsaspartofthesensorselectioncriteria(e.g.sensordataonboardprocessingvs.downlinkrequirements,post-flight

dataanalysisrequirements,andassociated/requiredcost/manpower/time/equipment).Also,youshouldconsiderhowthesensoryouselectwillbeintegratedwithyourplatform.Besuretoaddresssize,weight,power,andstabilizationrequirements.Theselectionmustconsiderenvironmentalfactors

suchasoperatingtemperatureranges,humidity,andcoolingmethod.Ananalysisofcostandintegrationofselectedpayloadsmustbeincluded.

RWDChascreatedthefollowingsensoroptionstobeusedasareferenceinthedesignoftheUASsystem.However,youareencouragedtoexplorewhatotheroptionsmaybeavailable,andmakeyour

ownselectionsbasedonyouranalysis(pleaseprovidesupportingrationaleandatleastthesamelevelofdetailasisprovidedhereintheengineeringnotebook).Keepinmindyouwillneedtoobtainaccurate

costsforanynon-catalogoptionpayloadsyouincorporate.

Page 29: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page24

Table2.PayloadElement–VisualSensorOptions

Component Description CostPerItem

X250Camera

ThisisatypicalCCD/CMOScamera:• Stabilization:Poor• Imager: DaylightElectro-OpticalCamera• RollLimitsaboutx-axis: NA• PitchLimitsabouty-axis:NA• Roll/PitchSlewRate:Fixed• VideoFormat:NTSC• VideoFrameRate:30framesper1.001second• VideoScan:Interlaced• ContinuousZoom:NoZoom• CameraProfile:

o Resolution(Horizontal):656pixelso Resolution(Vertical):492pixelso WideAngleFieldofView(Horizontal):62°o WideAngleFieldofView(Vertical):30°o TelescopicFieldofView:n/a

• Weight:0.18oz(8g)• DimensionswhenMounted:

o xLength:0.94inches(24mm)o yWidth:0.71inches(18mm)o zHeight:0.39inches(10mm)

• VoltageIn:3.6-24V• PowerDraw:1W(nominal),1.5W(maximum)

$30

X500Camera

ThisisanimprovedCCD/CMOScamera:• Stabilization:Poor• Imager:DaylightElectro-OpticalCamera• RollLimitsaboutx-axis: NA• PitchLimitsabouty-axis:NA• Roll/PitchSlewRate:Fixed• VideoFormat: NTSC• VideoFrameRate:30framesper1.001second• VideoScan:Interlaced• ContinuousZoom:NoZoom• CameraProfile:

o Resolution(Horizontal): 656pixels o Resolution(Vertical):492pixelso WideAngleFieldofView(Horizontal):90°o WideAngleFieldofView(Vertical):80°o TelescopicFieldofView:n/a

• Weight:0.18oz(5g)• DimensionswhenMounted:

o xLength:0.89inches(22.5mm) o yWidth:0.45inches(11.5mm)o zHeight:0.31inches(8mm)

• VoltageIn:3.6to24V• PowerDraw:1W(nominal),1.5W(maximum)

$50

Page 30: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page25

Component Description CostPerItem

X1000

• Stabilization:Good• Imager:DaylightElectro-OpticalCamera• RollLimitsaboutx-axis:30°panleft,30°panright• PitchLimitsabouty-axis:30°tiltup,30°tiltdown• Roll/PitchSlewRate:50°persecond• VideoFormat: NTSC• VideoFrameRate:30framesper1.001second• VideoScan:Interlaced• ContinuousZoom:NoZoom• CameraProfile:

o Resolution(Horizontal):640pixels o Resolution(Vertical):480pixelso WideAngleFieldofView(Horizontal):40°o WideAngleFieldofView(Vertical):20°o TelescopicFieldofView:n/a

• Weight:0.50lb(0.227kg)• CenterofGravity(measuredfromfront,rightcorneratredX)

o x:1.75inches(44.5mm)o y:1.75inches(44.5mm)o z:1.00inches(25.4mm)

• DimensionswhenMounted: o xLength:2.5inches(63.5mm) o yWidth:2.5inches(63.5mm)o zHeight:2.0inches(50.8mm)

• VoltageIn:5to12V• PowerDraw:1.5W(nominal),2.0W(maximum)

$5,000

Page 31: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page26

Component Description CostPerItem

X2000

• Stabilization:Excellent• Imager:DaylightElectro-OpticalCamera• RollLimitsaboutx-axis:80°panleft,80°panright• PitchLimitsabouty-axis:80°tiltup,80°tiltdown• Roll/PitchSlewRate:200°persecond• VideoFormat: NTSC• VideoFrameRate:30framesper1.001second• VideoScan:Interlaced• ContinuousZoom:1xWideAngleto10xTelescopic• CameraProfile:

o Resolution(Horizontal):640pixels o Resolution(Vertical):480pixelso WideAngleFieldofView(Horizontal):55°o WideAngleFieldofView(Vertical):5.5°o TelescopicFieldofView(Horizontal):41.25°o TelescopicFieldofView(Vertical):4.125°

• Weight:2.1lb(0.95kg)• CenterofGravity(measuredfromfront,rightcorneratredX)

o x:2.00inches(50.8mm)o y:2.00inches(50.8mm)o z:0.75inches(19.1mm)

• DimensionswhenMounted: o xLength:4.0inches(102mm) o yWidth:4.0inches(102mm)o zHeight:1.0inches(25.4mm)

• VoltageIn:9to24V• PowerDraw:10W(nominal),14W(maximum)

$15,000

Page 32: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page27

Component Description CostPerItem

X3000

• Stabilization:Excellent• Imager:ThermalInfraredandVisualSpectrumCamera• RollLimitsaboutx-axis:85°panleft,85°panright• PitchLimitsabouty-axis:85°tiltup,85°tiltdown• Roll/PitchSlewRate:50°persecond• VideoFormat:JPEGImagesandMPEG-4Video• VideoFrameRate:25framespersecond• VideoScan:Interlaced• ContinuousZoom:4xContinuousZoomIR,8xContinuousZoom

Visual• CameraProfile:

o Resolution(Horizontal):640pixels o Resolution(Vertical):480pixelso WideAngleFieldofView(Horizontal):25°o WideAngleFieldofView(Vertical):19°o TelescopicFieldofView(Horizontal):n/ao TelescopicFieldofView(Vertical):n/a

• Weight:3.5lb(1.6kg)• CenterofGravity(measuredfromfront,rightcorneratredX)

o x:2.5inches(63.5mm)o y:2.5inches(63.5mm)o z:0.0inches(0.0mm)

• DimensionswhenMounted: o xLength:5.0inches(127mm) o yWidth:5.0inches(127mm)o zHeight:2.25inches(57.2mm)

• VoltageIn:5to12V• PowerDraw:12W(nominal),16W(maximum)

$17,000

Page 33: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page28

Component Description CostPerItem

X4000

• Stabilization:Excellent• Imager:ThermalInfrared• RollLimitsaboutx-axis:80°panleft,80°panright• PitchLimitsabouty-axis:80°tiltup,80°tiltdown• Roll/PitchSlewRate:65°persecond• VideoFormat:JPEGImagesandMPEG-4Video• VideoFrameRate:25framespersecond• VideoScan:Interlaced• ContinuousZoom:8xContinuousZoomIR• CameraProfile:

o Resolution(Horizontal):640pixels o Resolution(Vertical):480pixelso WideAngleFieldofView(Horizontal):30°o WideAngleFieldofView(Vertical):25°o TelescopicFieldofView(Horizontal):n/ao TelescopicFieldofView(Vertical):n/a

• Weight:3.0lb(1.4kg)• CenterofGravity(measuredfromfront,rightcorneratredX)

o x:2.00inches(50.8mm)o y:2.00inches(50.8mm)o z:0.75inches(19.1mm)

• DimensionswhenMounted: o xLength:4.0inches(102mm) o yWidth:4.0inches(102mm)o zHeight:1.0inches(25.4mm)

• VoltageIn:5to12V• PowerDraw:10W(nominal),12W(maximum)

$20,000

Page 34: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page29

Component Description CostPerItem

X5000

• Stabilization:Excellent• Imager:MultispectralImager(3-FixedFilters:Green,Red,NIR)• RollLimitsaboutx-axis:30°panleft,30°panright• PitchLimitsabouty-axis:30°tiltup,30°tiltdown• Roll/PitchSlewRate:50°persecond• VideoFormat:NTSCorPAL• VideoFrameRate:1framepersecond• VideoScan:Interlaced• ContinuousZoom:NoZoom• CameraProfile:

o Resolution(Horizontal):2048pixelso Resolution(Vertical):1536pixelso WideAngleFieldofView(Horizontal):40°o WideAngleFieldofView(Vertical):20°o TelescopicFieldofView(Horizontal):n/ao TelescopicFieldofView(Vertical):n/a

• Weight:1.4lb(0.64kg)• CenterofGravity(measuredfromfront,rightcorneratredX)

o x:1.75inches(44.5mm)o y:1.75inches(44.5mm)o z:1.00inches(25.4mm)

• DimensionswhenMounted: o xLength:2.5inches(63.5mm) o yWidth:2.5inches(63.5mm)o zHeight:2.0inches(50.8mm)

• VoltageIn:9to12V• PowerDraw:2W(nominal),3W(maximum)

$5,500

Page 35: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page30

Component Description CostPerItem

X6000

• Stabilization:Excellent• Imager:MultispectralImager(3-FixedFilters:Green,Red,NIR)• RollLimitsaboutx-axis:70°panleft,70°panright• PitchLimitsabouty-axis:70°tiltup,70°tiltdown• Roll/PitchSlewRate:150°persecond• VideoFormat:NTSCorPAL• VideoFrameRate:2framepersecond• VideoScan:Interlaced• ContinuousZoom:NoZoom• CameraProfile:

o Resolution(Horizontal):1280pixels o Resolution(Vertical):1024pixelso WideAngleFieldofView(Horizontal):40°o WideAngleFieldofView(Vertical):20°o TelescopicFieldofView(Horizontal):n/ao TelescopicFieldofView(Vertical):n/a

• Weight:7.0lb(3.2kg)• CenterofGravity(measuredfromfront,rightcorneratredX)

o x:6.00inches(152mm)o y:6.00inches(152mm)o z:0.00inches(0.0mm)

• DimensionswhenMounted: o xLength:12.5inches(318mm) o yWidth:12.5inches(318mm)o zHeight:4.75inches(121mm)

• VoltageIn:9to12V• PowerDraw:5.6W(nominal),8W(maximum)

$15,000

Page 36: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page31

Itisimportanttoconsidersensorcapabilitieswhenselectingyourplatformandproposedmissionplans.Forexample,increasesinaltitudewillincreasetheareacollectedbythesensorinagivenperiodbutit

willalsoreducetheresolutionorthedetailcollected(seeFigure9).

Figure9.AsthealtitudeoftheUASchanges,thesensorfootprintwillvary.

Youshouldalsoconsiderthespeedatwhichthesensorcollectsimages,thevelocityandaltitudeofthe

platform,andthelayoutofthecollectionflightstoensuretherearenodataholidaysorgapsincollecteddataoverthesurfaceoftheareaofinterest(seefollowingfigures).

(a)

(b)

(c)

UAVSpeed

Footprint

UAVSpeed

Footprint

UAVSpeed

Footprint

Page 37: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page32

Figure10.Theoverlappingsensorfootprintsmustsufficientlyoverlapforsensingwithoutgapsordataholidays.

Figure11.Theoverlappingsensorfootprintsmustsufficientlyoverlapfordetectionduringacoordinatedturnattheinsideoftheturnandtheoutsideoftheturntoensurecompletecoverage

andnodataholidays.

UAVForwardSpeed

PreviousCameraFootprintsOverlapping…

CameraFootprintHeight

Page 38: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page33

Figure12depictstheflightpathofaUASoverahypotheticalfield.Notethattheflightpathsfollowastraightlineuntilpassingtheedgeofthecollectionarea.Thesepathsshouldbespacestoensurethat

boththeend-lap(theoverlapofcollectedimagesalongasingleflightline)andtheside-lap(theoverlapofcollectedimagesinneighboringparallelflightlines)aresufficienttoensurecompleteareacoveragewithnogaps.AlsonotethatthedistancethattheUASmustactuallytravelislongerthansimplyflying

overthecollectionarea.Again,rememberthedesignofyoursystemistheactofbalancingthecompetingrequirementsofthesensorandplatformtomeetthemissionneeds.

Figure12.Exampleofanassembledcoverageareafrompre-calculatedflightmaneuversandtheirindividualcoverageareas.

ProcessingofDataOncedatahavebeencollectedbyasensor,theymustbeprocessedtoprovideusefulinformationfromwhichtomakedecisions.Youshouldconsiderthefollowingfactorsrelatedtothestorage,transmission,andanalysisofthecollecteddataaspartofthedesignchallenge:1. Willyourdatabestoredonboardtheplatform?Ifso,youmustconsiderthestoragemedium,

requiredstoragecapacity,andhowthedatawillberetrievedonceontheground(i.e.,USB,Ethernet,Firewire,WiFi,ormemorycardreader).

2. Willyoursystembecapableoftransmittingthecollectedimagerytoareceiveronthegroundduringtheflight?Ifso,whatequipmentwillberequiredtosupportlivetransmission?Whatfrequencieswillyouuse?Arethereanylimitstothevolumeorqualityofdatathatcanbetransmitted?Youshouldalsoconsidertheaddedpower,space,weight,andcostofincludingalivedatatransmissioncapability.

3. Youmustincludetheabilityforyourremotesensingsystemtocollectandcorrelateprecisepositionalinformationrelatedtothecollectedimageryorvideotosupportdataprocessing.

StraightandLevelManeuver250feetwidex2,000feetlong

flightdistance2,000feet

TurnManeuverA250footinnerradius,

500footouterradiusflightradius375feet

flightdistance1179feet

TurnManeuverB500footinnerradius,

750footouterradiusflightradius625feet

flightdistance1964feet

AssembledCoverageArea

FieldofInterest

Page 39: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page34

4. Youmustidentifytherequiredsoftwaretoprocessthecollecteddataandaddresstheacquisitionandcontinuingownershipcostsforthesoftwareandpersonneltrainingandexperienceneededtooperateit.Also,besuretoincludethenecessarycomputersandanyotherrequiredequipmentinyouranalysis.

Youmustconsiderthetotalownershipandoperationalcostforyourproposedsystemsolution.Rememberthatthereareoperationalcostsbeyondtheinitialacquisitionoftheplatform,sensor,ancillarysupportequipment,etc.Youshouldalsoaddresstheongoingcostsassociatedwithcollecting,

analyzing,storing,anddevelopingactionablestepsbasedonyourdataanalysis.ThereasonforconductingtheUASflightsistocollectdatathatcanbeprocessedtoprovideinformationtodetectpests.Therefore,youshouldconsiderthetechnical,operational,andbusinessaspectsforallofyour

decisionsthroughouttheentireprocessofconductingamissionandprovidingactionableproducts.

Page 40: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page35

V.AirVehicleElementSelectionGuidelinesandCatalogOptionsYourselectionofAirVehicleElement(s)andassociatedsubsystemcomponentswillbeprimarilydirectedbythetypeofapplicationortasktobeperformedandthepayloadtobecarried.Asstatedinthechallenge,theairvehiclemustbeabletocompletethesurveymission,thesprayingmission,orboth.It

issuggestedthatbeforestartingthedesignprocessyoufullyexaminetherequirementsoftheapplication/taskanddetermineanoverviewtheoryofoperation(i.e.,howyouexpectanoveralldesigntoworkinrelationtoapplicationplanning,briefing,launch,execution,recovery,anddebrief).Consider

thefollowing:

1) Whatoperationalspeed,duration,andrangewouldbestsupportthischallengescenario?2) Whattypeofflightoperationwouldbestsuiteyourapproach?

• Forwardflight

o Fixed-wing(fasttoslowspeeds,bestpowereconomy/performancewithapayload)o Hybrid(fasttoslowspeeds,improvedpowereconomywithapayload)o Rotary-wing(mediumtoslowspeeds,reducedpowereconomywithapayload)

o Multirotor(slowspeeds,leastpowereconomywithapayload)• Translational(i.e.,transitionfromhovertoforward,lateral,orreverse)andhoveringflight

o Rotary-wing(mediumtoslowspeeds,mostverticalliftingpotential)

o Hybrid(fasttoslowspeeds,mediumliftingpotential)o Multirotor(slowspeeds,leastverticalliftingpotential)

3) Whatperformancewouldyoubewillingtotradeforadditionalcapability?

a. None-onlyforwardflightandpayloadcapabilityisimportant(fixed-wing)b. Someduration/payloadliftcapability–highspeedforwardflight,abilitytotakeoffin

smallspace,andabilitytohoverisimportant(hybridorrotary-wing)

c. Fastforwardflightandduration–abilitytotakeoffinsmallspace,stoppingtohoveroften,andlowcostisimportant(multirotor)

Youareprovidedwiththefollowingbaselineairvehicleelementoptionsforthischallenge:• Fixed-wingPusherPropeller

• Fixed-wingTractorPropeller• Rotary-wing/helicopter• Multirotor

• Hybrid(fixed-wing/quadrotor)

ThiscatalogofAirVehicleElementoptionswascreatedasastartingpointforthedesignofyourUAS.Youarefreetomodifyorchangeeachoftheseoptionsasyoudeemnecessary,oryoucanstartfromscratch(providesupportingrationaleandatleastthesamelevelofdetailasisprovidedhereinthe

engineeringnotebook).Keepinmind,youwillneedtocalculatecoststomodifytheairframesaspurchasedorbuildfromscratch(e.g.,materials,labor,andcomponents).Youwillalsoneedto

Page 41: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page36

determineallofthemetricsidentifiedforeachexampleairframeintheirrespectivedetaileddescriptionsbelow.

ThefollowingsubsectionscontainthedetailsforthebaselineAirVehicleElementconfigurations.Please

notethatadditionaloptionsfortheAirVehicleElementareavailableintheAlternativeAirVehicleElementOptionssection.

NOTE:Itisessentialthatyoucompareallofthefeatures,capabilities,andlimitationsofeachoptionandnotselect

basedsolelyonprice.Yoursuccessinthisprojectwillbedependentonprovidingrationaljustifyingyourselectionsincludingthefollowing:

• Abilitytoliftselectedpayload(s)• Capabilitytocapturesensordatafromtheentiresubjectarea(i.e.,sufficientrangetocovercropusing

youridentifiedmethod)

• Sufficientflightdurationcapabilitytocoverapplicablesubjectarea• Establishment/maintenanceofsafeoperation(e.g.,continualvisualtracking,minimizingpotentialfor

aircraftlossoraccident,andcontinuityofcommunications)• Ensuringsufficientpersonneltosupportproposedoperations

• Costtointegratedesign(i.e.,engineeringdevelopmenteffort)andoperatethesystemasproposed

Page 42: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page37

OptionA:Fixed-WingPusherPropellerDesign

Figure13.Fixed-wingpusherpropellerdesign.

Airframe:• Compositeairframe• V-tail(mixedrudder/elevator)• High-mountedwingwithailerons• Tricyclelandinggear

FlightControls• Push-pullconnectors• Servos:

o (2)aileronso (2)mixed-elevator/rudder(v-tail)o (1)steerablenosegear

• Electronicspeedcontrol(ESC,lessthan100A)• UniversalBatteryeliminationcircuitry(BEC)

Powerplant(propulsion)• ElectricBrushlessMotor(7.7;1geareddrive)

o Weight:22.4ozo Dimensions:2.5”(diameter)x2.4”(caselength),8mmdiametershaft(.98”length)o RPM/V(kVRating):250o InputVoltage:44.4Vo Motorstaticefficiency:62.8%o Suppliedpower:2.68hp(1998W)

Page 43: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page38

o Staticthrust:15.24lb(with19x11propellerstaticRPMof5650)o Maxconstantcurrent:45Ao Maxsurgecurrent:72Ao MaxconstantWatts:2500W

• Propeller(pusher,19x11,efficiency80%)• Battery(640Wh44.4V,LithiumPolymer[Li-Po])

OnboardSensors• None

Metrics• Cost:$15,000.00• EmptyWeight:32.85lb(14.9kg)• Wingspan:129”(3.3m)• Length:89.37”(2.27m)• Maximumpayload:14.55lb(6.6kg)• Endurance:110minuteswith6.17lb(2.8kg)payload• Cruisespeed:42.76kt(49.21mph)

RequiredEquipment/Components• Autopilotand/orservocontrol(i.e.,primaryandsecondarycontrol;e.g.,servoreceivers[RX]sor

serialservocontrollers)• Sensor(payload)• Onboardsensors• Antennas(primaryandsecondarycontrol,telemetry,andvideo)• Groundcontrolandcommunications(primaryandsecondary)

Page 44: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page39

OptionB:Fixed-WingTractorPropellerDesign

Figure14.Fixed-wingtractorpropellerdesign.

Airframe:• Reinforcedcarbonfiberairframe• Fiberglasspayloadbaymodule• Conventionaltail(elevatorandrudder)• High-mountedwingwithailerons

FlightControls• Servos:

o (2)aileronso (1)ruddero (1)elevator

• Push-pullconnectors• ESC• Independent1300mAhLi-Pobattery(forservopower)

Powerplant(propulsion)• Electricmotor(brushless)

o Weight:2.6ozo Dimensions:1.1”(diameter)x1.47”(caselength),4mmdiametershafto RPM/V(kVRating):880o InputVoltage:7.4Vo Motorstaticefficiency:65.4%o Suppliedpower:0.19hpo Staticthrust:.99lb(with10x6propellerstaticRPMof5150)o Maxconstantcurrent:20Ao Maxsurgecurrent:25Ao MaxconstantWatts:189W

• (2)5000mAhLi-Pobatteries(formotor)

Page 45: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page40

• Propeller(foldingtractor,10x6,efficiency78%)OnboardSensors

• NoneMetrics

• Cost:$5,000.00• EmptyWeight:2.78lb(1.26kg)• Wingspan:78.74”(2.0m)• Length:47.24”(1.2m)• Maximumpayload:0.88lb/14.12oz(0.4kg)• Endurance:55minuteswith0.88lb/14.12oz(0.4kg)payload• Cruisespeed:32.39kt(37.28mph)

RequiredEquipment/Components• Autopilotand/orservocontrol(i.e.,primaryandsecondarycontrol;e.g.,servoreceivers[RX]sor

serialservocontrollers)• Sensor(payload)• Onboardsensors• Antennas(primaryandsecondarycontrol,telemetry,andvideo)• Groundcontrolandcommunications(primaryandsecondary)

Page 46: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page41

OptionC:Rotary-wingDesign

Figure15.Rotary-wingdesign.

Airframe:• Plasticandaluminum

FlightControls• 120degreecollective/cyclicpitchmixingsystem(CCPM)• Singlemainrotor(810mmsymmetricalv-bladerotors)• Tailrotor(130mm)• Servos:

o (1)enginethrottleo (1)rotorpitcho (1)rotorrollo (1)rotorcollectiveo (1)yaw(tailrotor)o (1)Gyroscopemodeselection

Powerplant(propulsion)• 52CCtwo-stroke,two-cylinder,internalcombustionengine(8hp;ZenoahG-26engine)

o Weight:50oz(w/omuffler),57oz(withmuffler)o Dimensions:6.6”(L)x8”(W)x7.7”(H)o FuelConsumption:14.22fl-oz/hp/hro Suppliedpower:8hp(5965W)o Staticthrust:40lbo Singlecarburetormanifold

• Enginecoolingfan• Rotor(810mm,efficiency:90%)• Fuel:gasolinemixedwithtwo-cycleengineoil• Fueltank:32ozcapacity

Page 47: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page42

• Battery(servopower):3000mAh6.0VOnboardSensors

• GyroscopeMetrics

• Cost:$8,000• EmptyWeight:20lb(9.07kg)• Mainrotordiameter:63.78”(1.62m)• Tailrotordiameter:10.63”(0.27m)• Length(includingrotors):78.74”(2m)• Width:20.87”(0.53m)• Height:25.98”(0.66m)• Maximumpayload:25lb(11.34kg)• Endurance:30minuteswithoutpayload(32ozfuel)• Cruisespeed:21.6kt(24.85mph)

RequiredEquipment/Components• Autopilotand/orservocontrol(i.e.,primaryandsecondarycontrol;e.g.,servoreceivers[RX]sor

serialservocontrollers)• Sensor(payload)• Onboardsensors• Antennas(primaryandsecondarycontrol,telemetry,andvideo)• Groundcontrolandcommunications(primaryandsecondary)

Page 48: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page43

OptionD:MultirotorDesign

Figure16.Multirotordesign.

Airframe:• Plasticandaluminum• Includesstructuretoattach/holdpayload(i.e.,camera)

FlightControls• Multirotorflightcontrollerwithautopilotfunctionality(e.g.,Wookong-M)

o GPSpositioning,attitudehold,andheadingholdo Modesofoperation:Manual,attitude,andGPSattitudeo Failsafehovero Gohomeandautolanding

• ESC(6units,40A)Powerplant(propulsion)

• ElectricBrushlessMotor(6engines,41x14mm,320rpm/V,360Wmaximumpower)o Weight(each):5.22ozo Dimensions:1.8”(diameter)x1.26”(caselength),4mmdiametershafto RPM/V(kVRating):320o InputVoltage:22.2Vo Motorstaticefficiency:77.3%o Suppliedpower:0.6hpo Staticthrust:3.35lb(with15x4propellerstaticRPMof6235)o Maxconstantcurrent:30Ao Maxsurgecurrent:35Ao MaxconstantWatts:360W

• 6S10,000mAh,15C,22.2VLiPobattery• (6)Propellers(carbonfiber,15x4,efficiency85%)

o (3)clockwiserotation

Page 49: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page44

o (3)counter-clockwiserotationOnboardSensors

• GPS• Inertialmeasurementunit(IMU)builtintoflightcontroller

o (3)gyroscopeso (3)accelerometerso (3)magnetometer

Metrics• Cost:$6,000• EmptyWeight:15.43lb(7kg)• Diagonalspan:31.50”(0.80m)• Framearmlength:13.78”(0.35m)• Length(includingrotors):47.46”(1.18m)• Length(includingrotors):39.37”(1.00m)• Height:19.69”(0.50m)• Payload(supportsupto):5.51lb(2.50kg)• Endurance:16minutes• Maximumascent/descentspeed:3m/s• Maximumflightspeed:10m/sor19.44kt(22.37mph)

RequiredEquipment/Components• Secondaryservocontrol(e.g.,servoreceiver[RX]orserialservocontroller)• Sensor(payload)• Additionalonboardsensors• Antennas(primaryandsecondarycontrol,telemetry,andvideo)• Groundcontrolandcommunications(primaryandsecondary)

Page 50: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page45

OptionE:Hybrid(Fixed-wing/Quadrotor)Design

Figure17.Hybrid(fixed-wing/quadrotor)design.

Airframe:• Compositematerials

FlightControls• Quadrotor

o Multirotorflightcontrollerwithautopilotfunctionality(e.g.,Wookong-M)! GPSpositioning,attitudehold,andheadinghold! Modesofoperation:Manual,attitude,andGPSattitude! Failsafehover! Gohomeandautolanding

o ESC(4units,40A)• Fixed-wing

o Servos:! (2)ailerons! (1)rudder! (1)elevator

o Push-pullconnectorso (1)ESC

Powerplant(propulsion)• Fixed-wing:

o ElectricBrushlessMotor(7.7;1geareddrive,2700W,2.7kV)! Weight:22.4oz! Dimensions:2.5”(diameter)x2.4”(caselength),8mmdiametershaft(0.98”

length)! RPM/V(kVRating):250! InputVoltage:44.4V! Motorstaticefficiency:62.8%

Page 51: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page46

! Suppliedpower:2.68hp(1998W)! Staticthrust:15.24lb(with19x11propellerstaticRPMof5650)! Maxconstantcurrent:45A! Maxsurgecurrent:72A! MaxconstantWatts:2500W

o Propeller(pusher,19x11,efficiency80%)o Battery(640Wh44.4V,LithiumPolymer[Li-Po])

• Secondary(quadrotor):o ElectricBrushlessMotor(4engines,41x14mm,320rpm/v,360Wmaximumpower)

! Weight(each):5.22oz! Dimensions:1.8”(diameter)x1.26”(caselength),4mmdiametershaft! RPM/V(kVRating):320! InputVoltage:22.2V! Motorstaticefficiency:77.3%! Suppliedpower:0.6hp! Staticthrust:3.35lb(with15x4propellerstaticRPMof6235)! Maxconstantcurrent:30A! Maxsurgecurrent:35A! MaxconstantWatts:360W

o 6S10,000mAh,15C,22.2VLiPobatteryo (4)Propellers(carbonfiber,15x4,efficiency85%)

! (2)clockwiserotation! (2)counter-clockwiserotation

OnboardSensors• GPS• IMUbuiltintoflightcontroller

o (3)gyroscopeso (3)accelerometerso (3)magnetometer

Metrics• Cost:$25,000• EmptyWeight:25lb(11.34kg)• Wingspan:127.95”(3.25m)• Length:88.58”(2.25m)• Maximumpayload:5lb(2.27kg)• Endurance(forwardflight):60minuteswith5lb(2.27kg)payload• Endurance(hover):5minuteswith5lb(2.27kg)payload• Cruisespeed:35kt(40.28mph)

RequiredEquipment/Components• Fixed-wingflightcontrols:Autopilotand/orservocontrol(i.e.,primaryandsecondarycontrol;

e.g.,servoreceivers[RX]sorserialservocontrollers)• Quadrotorflightcontrols:Secondaryservocontrol(e.g.,servoreceiver[RX]orserialservo

controller)• Sensor(payload)• Onboardsensors• Antennas(primaryandsecondarycontrol,telemetry,andvideo)• Groundcontrol(primaryandsecondary)

Page 52: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page47

AlternativeAirVehicleElementOptionsInadditiontoselectingandadaptingthebaselinecatalogoptions,youareencouragedtoexploreotherCOTSunmannedaircraft(UAVs)toconsiderassuitableplatformstomeetthischallenge.Thefollowing

subsectionsareprovidedtoserveasastartingpointofexamplesasyoubegintoresearchsuchaircraftplatforms.

Group1UASThiscategoryconsistsofsmallUAS(sUAS)thatweighlessthan20lb,operateunder1200ftAGL,anddonotexceedanairspeedof100kt:

Fixed-wingexamples• Trimble

o UX5o GatewingX100

• AeroVironmento Wasp

• MarcusUAVInco Zephyr2

• UAVER o Avian

• FliteEvolutiono FE1800SAerobot

• senseFlyo SwingletCam

• Aeromaoo Aeromapper

• CropCamo CropCamUAV

• LockheedMartino DesertHawkIII

• TriggerCompositeso Pteryx

• L3o Cutlass

• Innocono MicroFalconLPo Spider

• C-ASTRALAerospaceo BramorgEOo BramorC4EYE

• SurveyCoptero Tracker120

• Airelectronicso Skywalker

• Mavincio SIRIUS

• IDETECUnmannedSystemso Stardust

• ARAo Nighthawk

• EMTo Aladin

• LehmannAviationo LM450o LM960o GoProPersonalUAV(LA100)

• Raphaelo SkyliteB(Patrol)

• TriggerCompositeso EasyMap

• IAIo BirdEye400o Mosquito

Group2UASThiscategoryconsistsofsUASthatweighbetween21to55lb,operateunder3500ftAGL,anddonotexceedanairspeedof250kt:

Fixed-wingexamples• SilentFalconUASTechnologies

o SilentFalcon• AAICorporation

o AerosondeMark4.7(J-typeEngine)

Page 53: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page48

o AerosondeMark4.7(K-typeEngine)

• Boeing/Insituo ScanEagle

• Aeronauticso Orbiter3STUASo Orbiter2MiniUAS

• Innocono MicroFalconLE

• SurveyCoptero DVF2000

• IAIo BirdEye650o MiniPanther

• UAVFactory

o PenguinBEo PenguinBo PenguinC

• ELILtd o SwanIII

• UMSGroupo F-330

• UAVSI/UniversalTargetSystemsLtdo Vigilant

• ROVAerospace o ROV-4(Electric)o ROV-4(InternalCombustion)

• AdvancedCeramicsResearcho SilverFox

Page 54: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page49

AdditionalAirVehicleElement-ComponentOptionsThefollowingrepresentadditionalcomponentoptionstoimproveormodifytheAirVehicleElement.Youarefreetoselectanyoftheseoptionsorlocatesimilaronesthatyoudeemnecessary(please

providesupportingrationaleandatleastthesamelevelofdetailasisprovidedhereintheengineeringnotebook).

FlightControlsTheoptionsidentifiedinthefollowingtablecanbeusedtoimprovetheredundancyorperformanceoftheflightcontrolsystem.

Table3.AirVehicleElement–AdditionalFlightControlOptions

Component Description CostPerItem

Universalbattery-

eliminationcircuitry(U-BEC)

Thisoptionrepresentsanalternativepowerregulationmodule

forprotectionofthecontrolsystem.Itprovidespowertotheservocontrols,withoutrequiringanadditionpowersource(i.e.,usesmainbatteryforpower).Whentheavailablepowerforthe

systemhasdiminishedtonolongersustainpowered/motoredflight,thesystemwillshiftpowersolelytotheflightcontrols(i.e.,servos)toenabletotheoperatortoperformacontrolleddescent

(e.g.,glideorautorotation).UseofaU-BECinsteadofabuilt-inBEC(partofESC)preventsgroundingorovertemperaturemalfunctionconditionsthatcouldleadtolossofallpowerinthe

system.Thedetailsofthisoptionincludethefollowing:

• Configurable5Vor6Vpower• Powerrequiredat5.5Vto23V• 1.63”(L)x.65”(W)x.28”(H)

• 0.26oz

$20

Page 55: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page50

Component Description CostPerItem

SerialServoController

Thisoptionprovidesaserialinterfacethatcanbeusedtocontroluptoeight(8)hobbyservosorESCs.Thismoduleprovidesaflight

controlalternativetotheservoRXofahobbyradio.Thedetailsofthisoptionincludethefollowing:

• NOTE:IfthisoptionistobeusedtocontrolservositREQUIREStheuseofadataradiowithareceiveror

transceiveronboardtheaircraftandaPCtocontroltheserialservocontrollerfromtheground(seeoptionsintheCommand,Control,andCommunications(C3)Selection

GuidelinesandCatalogsection)• Requiresphysicalconnection(RS232)todatareceiver/

transceiver(supportsbaudratesbetween1200to38400)

• 5to16Vpowerrequired• 0.35oz• 1.22”(L)x1.95”(W)x.4”(H)

• Mustusesoftwareapplicationtocontrolservos• Mustmapoutthefollowing:

o Servoconnections(i.e.,outputoncontrollerto

actualservo;e.g.,output1toengineESC)o UsercontrolinputsfromPC(e.g.,joystickaxis,

joystickbutton,orcontrolonapplicationtoservo

movement)

$25

Page 56: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page51

Component Description CostPerItem

Autopilot

DeviceonboardtheUAV,autonomouslycontrolsservos/actuators,canbeswitchedON/OFFordynamically

reprogrammedwithuploadedparametersfromGCS.Thedetailsofthisoptionincludethefollowing:

• Includes6-DOFIMU(3-axisgyroscopesandaccelerometers),digitalcompass,andbarometer

• Connectsin-linebetweenanexistingservocontrol(e.g.,serialservocontroller,microcontroller,orservoRX)andservos/ESCs

• Requires5to6Vpower• 0.81oz• 2.63”(L)x1.6”(W)x.26”(H)

• Requiresuseofcustomizable/re-configurablesoftware(e.g.,APMAutopilotSuite:http://ardupilot.com/?utm_source=Store&utm_medium

=navigation&utm_campaign=Click+from+Store)

$250

Multiplexer

Thisoptionprovidesaninterfacethatcanbeusedtoswitchcontrolofuptoseven(7)servosorESCfromtwoindependentcontrolsources(e.g.,servoRXorservocontroller).Thedetailsof

thisoptionincludethefollowing:

• Mastercontroller(inputA)determinescontrolorder(i.e.,whichinputhascontrol),unlesssignallossisdetected

(theninputBcontrolsservosuntilinputAconnectionrestored).

o Themastercontrollermusthaveaneighth(8)

channelavailabletoserveasaswitcho Replacesbuddy-boxconfigurationsofhobby

radios

• 4.8to6Vpowerrequired• 1.69”(L)x.7”(W)x.25”(H)• 0.53oz

$25

OnboardSensorOptionsThefollowingoptionscanbeusedtoobtaindatapertainingtoeithertheoperatingenvironment(e.g.,exteroceptive)orthestateoftheAirVehicleElement(e.g.,proprioceptive).Thefollowingtableissubdividedintoanalogsensors,digitalsensors,complexsensors,andsensorcapture,interpretation,and

loggingoptions.Table4.AirVehicleElement–AdditionalOnboardSensorOptions

Page 57: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page52

Component Description CostPerItem

NOTE:Useofthesesensorsrequiresadevice(eitherOPTIONAorOPTIONBundertheSensorCapture,Interpretation,andLoggingOptionssectionofthistable)tointerpret,log,storethecaptured/measured

data.

AnalogSensors

NOTE:Theuseoftheanalogsensorsrequiresanopenanaloginputconnectiononaprocessingdevicesuchasamicrocontrollerordatalogger.Digitalsensorsgenerateavariablesignal(i.e.,0to5V)thatisreportedtotheconnectedprocessingdevice.SeeTheBasics-SensorOutputValuesforfurtherdetail

regardinganalogsensors(http://www.seattlerobotics.org/encoder/jul97/basics.html)

Altimetersensor

• Measuresupto20,000’abovesealevel(ASL)with1’(0.3m)resolution

• 0.15oz

• 1.1”(L)x.62”(W)x.4”(H)• Requires4to16Vpower

$40

3-axisaccelerometer

• Measuresaccelerationsupto7G(intheX,Y,andZaxes

oftheairframe)• 0.15oz

• 1.1”(L)x.62”(W)x.4”(H)• Requires4to16Vpower

$30

Airspeedsensor

• Measuresfrom2to350mph(usingpitottube)with

1mphresolution• 0.15oz• 1.1”(L)x.62”(W)x.4”(H)

$45

Servocurrent

monitor

• Measuresfrom0to5Awith0.01Aresolution

• Weightandsizearenegligible(>0.01oz)

$25

Page 58: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page53

Component Description CostPerItem

Temperaturesensor

• Measurestemperatureupto420degreesF• Weightandsizearenegligible(>0.01oz)

$10

RPMsensor(halleffect)

• MeasuresRPMupto50K(usingattachedmagnet)• Weightandsizearenegligible(>0.01oz)

$10

RPMsensor(optical)

• MeasuresRPMupto50K(withoutuseofmagnet)• Weightandsizearenegligible(>0.01oz)

$15

Single-axisgyroscope

• Measuresangularratewitha+/-500degreespersecondrange

• Requires4to6Vpower• 0.28oz• 1.02”(L)x1.06”(H)x0.45”(H)

• NOTE:thissensorisnotcompatiblewithoptionA-OnscreenDisplay(OSD)andDataloggerwithLimitedTelemetryReporting

$35

Page 59: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page54

Component Description CostPerItem

DigitalSensors

NOTE:Theuseofthedigitalsensorsrequiresanopendigitalinputconnectiononaprocessingdevicesuchasamicrocontrollerordatalogger.Digitalsensors,alsoreferredtoasdigitalpulse-width

modulation(PWM)devices,generateadiscretesignal(i.e.,onorofforsteppedpositionssuchas9-bitvaluewithrangeof0to359)thatisreportedtotheconnectedprocessingdevice.SeeTheBasics-SensorOutputValues(http://www.seattlerobotics.org/encoder/jul97/basics.html)andPWM

(http://arduino.cc/en/Tutorial/PWM)forfurtherdetailregardingdigitalsensors.

DigitalThermometerSensor

• Measurestemperaturefrom-55to+125degreesCwithresolutionof+/-0.5degreeC

• Requires2.7to5.5VDC(1mAmaxcurrent)

• Connectstodigitalinputportonprocessingdevice• Weightandsizearenegligible(>0.01oz)

$6

DigitalCompassSensor

• Measuresmagneticheading(single-axis)with0.1degreeresolution(3to4degreesaccuracy)

• 5Vpowerrequired• Connectstodigitalinputportonprocessingdevice• 1.33”(L)x1.25”(W)x0.1”(H)

• 0.03oz

$45

Snap-actionSwitch

• Single-pole,double-throw(SPDT)momentaryswitch• Canbeusedtoidentifyifanybaydoors/accesspanels

areopenorifretractablegearareintheup/down

position• Connectstodigitalinputportonprocessingdevice• 0.39”(L)x0.25”(W)x0.40”(H)

• 0.1oz• 5A@125/250VAC

$1

Page 60: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page55

Component Description CostPerItem

InfraredDistanceSensor

• Measuresdistancesfrom2to10cm(configurablebetweenthisrange)

• Usefultodetermineifrotary-wingaircraftareontheground(i.e.,contactmadewithgroundduringlanding/takeoff)

• Requires5V(lessthan10mA)• Connectstodigitalinputportonprocessingdevice• Singlebitoutput(discretetrueorfalse)

• 1.02”(L)x0.79”(W)x0.15”(H)• 0.15oz

$10

Page 61: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page56

ComplexSensors

NOTE:Thefollowingareexamplesofsensorsthatrequirecomplexinterfacesuchastransistor-transistorlogic[TTL]serialormultipleformsofinterfacing(e.g.,analog,digital,orcombination).Useofthese

optionsrequirestheuseofeitheramicrocontrollertointerpretthedata(viaTTLinterface)oradedicateddataradiotosenddatatothegroundcontrolstationforinterpretation(alsoviaTTLinterface).Ifaradioisselectedastheinterfacemethod,oneradiopersensorwouldberequired(beawareof

frequencymappingconsiderations).

9-Degreeoffreedom(DOF)Inertialmeasurementunit

(IMU)

Adeviceusedtomeasurethevelocity,orientation,andgravitationalforces.Thisoptionisaprimarycomponentofaninertialnavigationsystemthatistypicallyusedtoprovidedata

toanautopilotorgroundcontrolstation.Thedetailsofthisoptionincludethefollowing:

• 3-axisgyroscope(one16-bitreadingperaxis;reconfigurabletoa+/-250,500,or2000degreeper

secondrange)• 3-axisaccelerometer(one12-bitreadingperaxis;

reconfigurabletoa+/-2,4,8,or16grange)

• 3-axismagnetometer(one12-bitreadingperaxis;reconfigurabletoa+/-1.3,1.9,2.5,4.0,4.7,5.6,or8.1gaussrange)

• Requires2.5to5.5Vpower• 0.02oz

• 0.8”(L)x0.5”(H)x0.1”(H)• Interface(s)

o Atransistor-transistorlogic(TTL)serialinterface

tomicrocontrollercanbeimplementedasasingleconnectiontoreportdatafromallsensorelementssimultaneously

o [or]Eachconstituentsensorelement(e.g.,eachgyroscopeaxis,accelerometeraxis,andmagnetometeraxis)canbeconnectedto

microcontrolleranaloginputs(requiresnine[9]analoginputconnections)

• NOTE:ThissensorisnotcompatiblewithoptionA-

OnscreenDisplay(OSD)andDataloggerwithLimitedTelemetryReporting

$40

Page 62: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page57

GlobalPositioningSystem(GPS)Sensor

DevicethatreceivesGPSsignalstodeterminepositionontheEarth.Thedetailsofthisoptionincludethefollowing:

• Provideslatitude,longitudeandaltitude

• ReceivesGPSsignals/dataonupto66channels• Outputsdatainmorethansix(6)differentNational

MarineElectronicsAssociation(NMEA)GPSsentencesto

aTTL-levelserialport• 10Hzupdaterate• Requires3to4.2Vpower

• RedLEDtoindicateGPSfixornofixconditions• Capableofsatellite-basedaugmentationsystem(SBAS)

orQuasi-ZenithSatelliteSystem(QZSS)

o Wideareaaugmentationsystem(WAAS)o EuropeangeostationaryNavigationOverlay

Service(EGNOS)

o Multi-functionalSatelliteAugmentationSystem(MSAS)

o GPSandGeoAugmentedNavigation(GAGAN)

• Integratedceramicantenna• Canacquireafixfromcoldstartwithin32seconds

(acquireswithhot-startinone[1]second)

• RequiresTTLserialinterfacetomicrocontroller• NOTE:Useofthisoptionrequirestheuseofeithera

microcontrollertointerpretthedata(viaTTLinterface)

oradedicateddataradiotosenddatatothegroundcontrolstationforinterpretation(alsoviaTTLinterface).

$50

Page 63: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page58

SensorCapture,Interpretation,andLoggingOptions

OnscreenDisplay(OSD)and

DataloggerwithLimitedTelemetryReporting

Low-fidelitytelemetry/onboardsensingoptionthatcanbeconnectedtoavideomoduletodisplaytheonboardsensordata

onthevisualfirstpersonview(FPV)camerafeedfromtheAirVehicleElement.Itprovidesthecapabilitytorecordthedatalocally(i.e.datalog)forreviewinpostprocess(i.e.,afterflight)

ortooverlayitontheFPVvideofeedfromaCCD/CMOScameraontheaircraft.Thedetailsofthisoptionincludethefollowing:

• NOTE:AnFPVcameraandassociatedtransmitter(onboard)/receiver(onground)combination

MUSTbeusedifthisoptionisselected• OSD–providesrealtimeaircraftsensordataover

existingvideolink

o 0.5ozo 0.5”(W)x1”(L)x0.25”(H)o 7to14Vpowerrequired

• Datalogger–torecordandstorethesensordataforlaterreview(i.e.postprocess;requiresuseofaPC)

o 0.8oz

o 0.75”(W)x1”(L)x0.25”(H)o 7to14Vpowerrequiredo Adjustableloggingrate(50samplespersecond

tooneeveryfiveminutes)! Powerreadings(current,voltage,

milliamp-hours,wattage)! Signalstrengthreading(receivedsignal

strengthindication[RSSI])

• GPS(position,altitude,speed,arrowtostartinglocation,distancefromstartinglocation)

o 0.4oz

o 0.5”(W)x0.5”(L)x0.25”(H)

$250

Page 64: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page59

Microcontroller

High-fidelity/onboardsensingoptionthatcanbeconnectedtoacommunicationdevice(i.e.,telemetryradio)usingaserial

interfacetotransmitanaloganddigitalsensordatatoaPC.Thedetailsofthisoptionincludethefollowing:

• High-fidelitytelemetrycapture,logging,andreporting• NOTE:Ifthisoptionistobeusedtogatherlive

telemetryfromtheAirVehicleElementitREQUIREStheuseofadata/telemetrytransceiver

• Limitedbytheavailabilityofinputs/outputs(i.e.,analog

ordigital)o 12analog(theseinputscanalsobeconfigured

toprovidecontrolofupto12hobbyservosor

ESCs)o 6digital(0to5V)

• 1.8”(L)x1.10”(W)x0.40”(H)

• 0.35oz• 5to16Vpowerrequired• MultipleinterfacesavailableforconnectionwithaPC

o USB–Directconnectionfordebugging,tetheredcontrol,ordatatransfer(e.g.,sensordata)

o TTLadapter/Serial(RS-232)–Directorremote

(usingtransceiver)connectionfordebugging,tetheredorremotecontrol,ordatatransfer

• Mustusesoftwareapplicationtocontrolservos,readsensordata,anddisplaydata

• Mustmapoutthefollowing:

o Analogsensorinputs/outputs(i.e.,identifytheconnectiontypeandfunctionofeachport)

o Digitalsensorinputs

o UsercontrolinputsfromPC(e.g.,joystickaxis,joystickbutton,orcontrolonapplicationtoservomovement)

$100

PropulsionThepropulsionsystemsforsmallaircraftareeitherinternalcombustionenginesorelectricmotors.Glowfuelorgasolinearethecommonfuelsourcesforinternalcombustionengineswithtwo-andfour-strokevarietiesavailable.Therearemanymanufacturersofsmallaircraftengines.Afewofthemare

listedbelow.

• O.S.Engines• SaitoEngines

Page 65: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page60

• EvolutionEngines• ZenoahEngines

Electricmotorsareeitherbrushlessorbrushed,butbrushlessmotorsaretypicallymoreoftenusedwithsmallaircraft.Therearemanymanufacturersofbrushlessmotors.Afewofthemarelistedbelow.

• AXi• E-flite• Hacker• Jeti• Neu

Therequiredpowerfromthepropulsionsystemwillbebasedonthesizeoftheaircraft.Forfixed-wingaircraft,thepropulsionsystemisdesignedtoprovidethethrustrequiredtocounterthedrag.Excessthrustisneededtoallowtheairplanetoaccelerateandclimb.Forrotorcraft,thepropulsionsystem

providestheliftinordertokeeptheaircraftintheair.OnlinehobbystoresforRCaircraftareagreatsourceofinformationonpricingofthedifferentpropulsionsystems.Thehobbystoresarealsoagoodresourcetodeterminethetypicalsizeofpropulsionsystemsusedonaircraftofdifferentweights.

Numerousonlinehobbystoresexist.Twolargehobbysitesareprovidedbelow

• HorizonHobby(https://www.horizonhobby.com)• TowerHobbies(http://www.towerhobbies.com)

Page 66: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page61

VI.Command,Control,andCommunications(C3)SelectionGuidelinesandCatalogWhileyourteamreviewsyourcurrenttheoryofoperation(thatyoudefinedbasedonguidanceinsectionVI.AirVehicleElementSelectionGuidelinesandCatalogOptions),thinkabouthowyouplantointeractingwithyoursystem.Considerthefollowingquestions:

• Willyourelyonthemajorityofyourflightoperationsbeingcontrolledautonomouslywith

parametersbeinguploadedtoanonboardautopilotorwillyouuseamixofautonomyandmanualflightcontrol(i.e.,semi-autonomy)topurposefullydeviatefromapre-establishedflightplantomovetospecificareas?

• Doyouplanonmanuallyflyingtheaircraftusinganegocentric/firstpersonview?Howwillyouobtainthevisualfromtheaircraft?

• Howwillyouincorporatesecondarycontroltoimprovesafetyofthesystem?Willyouusea

hobbygraderadioorasecondGCS?• WillyouneedtomapcontrolstouserinputdevicessuchasaUSBjoystickorhandheldhobby

radio?

o Elevator(pitch)control–JoystickY-axiso Ailerons(roll)control–JoystickX-axiso Rudder(yaw)control–JoystickZ-axis

o Throttle(engineRPM)control–JoystickRz• HowdoyouplantodisplaythevisualandtelemetrydatacomingbackfromyourUAV?Hereare

someexamplestoconsider:

o DisplaytheFPVcamerafeedonbothasetofgoggles(pilot)andasecondaryLCDscreenforothersontheteamtoobserve

o OverlaythetelemetrydataontheOSDanddepictontheGCSlaptop

o DisplaythetelemetrydataonadedicatedLCDscreen• Willyouhavetocontendwithanyvisuallineofsightobstructionsintheareayouwillbeflying?

Howwillyouensureyoumaintaincommunications?

• Whatisthemaximumrangeforthecommunicationssignalyouwillneedtoestablishandmaintain?

Carefullyconsideralloftheuserinteractionsandcommunicationthatwillbenecessarytosupportyourproposedtheoryofoperationforthischallengescenario.Aswithprevioussectionsyouarefreeto

modifyorchangeeachoftheseoptionsasyoudeemnecessary(pleaseprovidesupportingrationaleandatleastthesamelevelofdetailasisprovidedhereintheengineeringnotebook).Keepinmindyouwillneedtodetermineaccuratecoststopurchaseandintegratethecomponents.Thefollowingrepresent

thecontrolprocessing,display,andcommunicationsoptionsassociatedwithC3.

Page 67: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page62

Table5.C3Element–Control/DataProcessingandDisplayEquipmentOptions

Component Description CostPerItem

Hobby-gradeRemoteControl(R/C)Radio

Thisisatypical10-channelradiosystem(2.4Ghzspreadspectrum)usedtocontrolrobotics,modelairplanes,and

modelhelicopters.Thedetailsofthisoptionincludethefollowing:

• ServoReceiver(RX)–deviceonboardtheUAVthatcontrolsservos/actuatorsandreceivescontrol

commandsfromTX.NOTE:CommunicationsRXisbuiltintothisdevicesonofurthercommunicationsequipmentisnecessarytosupportoperations

o Requires4.8to6Vpower(e.g.,dedicatedbatteryorBEC)

o 2.4Ghzfrequency

o 2.06”(L)x1.48”(W)x0.63”(H)o 0.72ozo Diversityreceiver(selectsbestsignalfrom

dualbuilt-inantenna)• Transmitter(TX)–handhelddevicethatremains

onthegroundandsendscontrolcommandstoRX.

NOTE:CommunicationsTXisbuiltintothisdevicesonofurthercommunicationsequipmentis

necessarytosupportoperationo Twocontrolsticks(fourchannels)o Sixtoggleswitches

o Two(2)proportionalsliderswitches(replacesfunctionalityoftwoofthesixtoggleswitches)

o Requires9.6Vpower(fromincluded700mAhNiCdbattery)

• Thissystemisformanualorsemi-autonomous

operations(usinganautopilot)

$750

Page 68: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page63

Component Description CostPerItem

Tablet/PhoneControl

AportablesystemthatcanbeusedtocontroltheAirVehicleElement(UAV).Thedetailsofthisoptioninclude

thefollowing:

• Airbornecontroller-onboardtheUAV,receivescontrolcommandsfromandrelaysonboardsensordatatotheGCS(e.g.,pairingofserialservo

controlleranddatatransceiver).o Serialservocontrollerislimitedtomono-

directionalcommunication(controldata

fromGCStoUAV)o Microcontrollerrequiresbi-directional

communication(controldatafromGCSto

UAV,telemetrydatafromUAVtoGCS)o NOTE:Useofthisoptionrequiresselection

ofanAutopilot,SerialServoControlleror

MicrocontrollerunderAirVehicleElement-AdditionalAirVehicleElement-ComponentOptions(Table3andTable4)

andaDataTransceiverfromTable6.• Ground-basedcontroller–TabletorPhone–serves

asGCSsystemforcaptureofuserinput(control

commands),captureandinterpretationoftelemetrydata,anddisplayofvehiclestate.NOTE:

RequiresaDataTransceiverfromTable6.o Touchscreendisplay(inappropriatefor

manualcontrolmode)

o AndroidoriOSoperatingsystemo 64GBinternalmemory

Thissystemisappropriateforautonomousoperations(noadditionalGCSsidecomponentsnecessary)orsemi-

autonomous(whencombinedwithmanualcontrolsystem)

$400

Page 69: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page64

Component Description CostPerItem

PC(Laptop)Control

AsystemthatcanbeusedtocontroltheAirVehicleElement(UAV).Thedetailsofthisoptionincludethe

following:

• Airbornecontroller-onboardtheUAV,receivescontrolcommandsfromandrelaysonboardsensordatatotheGCS(e.g.,pairingofserialservo

controlleranddatatransceiver)o Serialservocontrollerislimitedtomono-

directionalcommunication(controldata

fromGCStoUAV)o Microcontrollerrequiresbi-directional

communication(controldatafromGCSto

UAV,telemetrydatafromUAVtoGCS)o NOTE:Useofthisoptionrequiresselection

ofanAutopilot,SerialServoControlleror

MicrocontrollerunderAirVehicleElement-AdditionalAirVehicleElement-ComponentOptions(Table3andTable4)

andaDataTransceiverfromTable6.• Ground-basedcontroller–Laptop(e.g.,Panasonic

Toughbook)–servesasGCSsystemforcaptureof

userinput(controlcommands),captureandinterpretationoftelemetrydata,anddisplayof

vehiclestate.o Requires12to32VDCpowerconnection

foroperationalperiodsthatexceedsfour

hourso 15.4”display(1920x1200)o Windows7operatingsystem

o Inteli5(2.80Ghzprocessor)o 4GBmemoryo 256GBSolidStateDrive(SSD)

o AMDRadeonHD7750MVideoCardo NOTE:Useofthisoptionrequiresselection

ofaDataTransceiverfromTable6.

• USBjoystick(e.g.,ThrustmasterHOTASWarthogJoystick)forcaptureofusercontrolinputs(frompilot)

• Thissystemisappropriateformanual,semi-autonomous,orautonomousoperations

$4,000(excluding

communicationsandservocontroller

equipment)

Page 70: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page65

Component Description CostPerItem

DedicatedPortableGroundControlStation

(GCS)

ThissystemoperateshasallthesamefeaturesandrequirementsofthePC(Laptop)Control,butalsoincludes

thefollowing:

• IntegratedLaptopDockingStation• Hot-swappablelithium-ionbatterieswithtwohour

duration

• Two(2)12V/50Wpoweroutputs• 17”TouchScreenDisplay• 12to32VDCinputrangeforexternalpower

• Over-voltage,overcurrent,andreversepolaritypowerprotection

• Integratedruggedizedcasefortransport(with

handles,wheels,andstraps)

$10,000

(excludingcommunications

andservocontroller

equipment)

PostProcessorPC(Desktop)

Thissystemisusedtoanalyzethecapturedsensordata.Thedetailsofthisoptionincludethefollowing:

• Desktopconfiguration(e.g.,HPZ820Workstation),builtforhigh-endcomputingandvisualization

• Requires12to32VDCpower(forPCandMonitor)• XEONProcessor(2.5GHz),64-bitSix-core

Processor

• 16GBDDR3Memory• 1TBharddrive• Windows10(64-bit)

• NVIDIAQuadroK40003GBGraphicsCard• 24”LCDMonitor(1920x1200)

$6,000

Page 71: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page66

Component Description CostPerItem

PostProcessorPC(Laptop)

Thissystemisusedtoanalyzethecapturedsensordata.Thedetailsofthisoptionincludethefollowing:

• Laptopconfiguration(e.g.,HPEliteBook8770w

MobileWorkstation)• Requires12to32VDCpowerconnectionfor

operationalperiodsthatexceeds5.5hours

• Inteli7(2.7GHz),64-bitfour-coreProcessor• 8GBDDR3Memory• 180GBSSD

• Windows10(64-bit)• NVIDIAQuadroK3000M2GBGraphicsCard• 17.3”LCDMonitor(1920x1080)

$3,500

AdditionalLCDDisplay

Provideadditionaldisplayformirroringofexistingviews

(e.g.,FPVview,telemetry,orcontrols)orextendingdesktopofcontrolsystem.Thedetailsofthisoptionincludethefollowing:

• 24”LCDMonitor(1920x1200)

• Requires12to32VDCpower

$200

FirstPersonView(FPV)Goggles

Videogogglesusedtoprovideaclosedvisualviewingenvironmentforoperator.Thedetailsofthisoption

includethefollowing:

• Glasslenswithrefractiveopticalengine• Rubbereyecupsforambientlightreduction• 30degreesfieldofview(FOV)

• Imagesize:45”@7’• Requires7to13Vpower• 640x480VGA

• NTSCorPAL(autoselected)• 3.5mmAVinport

$300

Table6.C3Element–CommunicationEquipmentOptions

Page 72: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page67

Component Description CostPerItem

DataandTelemetryCommunications

DataTransceiverSet

(900Mhz)–LowRange

Thissetoftransceiversallowsforwirelesscommunicationof

data(i.e.,controlcommandsortelemetry)onthe900Mhzfrequencyband.Thedetailsofthisoptionincludethefollowing:

o NOTE:Thisoptionisnotappropriatefortransferof

detailedPayload/visualsensordata.• Range

o Indoor/Urban:upto2,000’

o Outdoor/lineofsight:1milewith3dBidipoleantenna

• Sensitivity:-121dBm

• Transmitpowerupto20dBm(100mW)• Airdataratesupto250kbps• Frequencyhoppingspreadspectrum

• Airborneelement(onboard)o 0.2ozo Serialconnection

o 0.75”(L)x0.25”(W)x0.1”(H)o RP-SMAantennaconnector(3dBidipole

antennaincluded)

o 2.7to3.6Vpowerrequired• Groundbasedelement(connectedtoGCS)

o USBinterface(noexternalpowerrequired)o Allotherdetailssameasairborneelement

$90

Page 73: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page68

Component Description CostPerItem

DataTransceiverSet

(900Mhz)–HighRange

Thissetoftransceiversallowsforwirelesscommunicationof

data(i.e.,controlcommandsortelemetry)onthe900Mhzfrequencyband.Thedetailsofthisoptionincludethefollowing:

o NOTE:Thisoptionisnotappropriatefortransferof

detailedPayload/visualsensordata.• Range

o Indoor/Urban:upto2,000’

o Outdoor/lineofsight:6.3mileswith3dBidipoleantenna

• Sensitivity:-101dBmat200kbpsor-110dBmat10

kbps• Frequencyband:902to928MHz• Transmitpowerupto24dBm(250mW)

• Airdataratesupto250kbps• Frequencyhoppingspreadspectrum• Airborneelement(onboard)

o 0.4ozo Serialconnectiono 1.3”(L)x1”(W)x0.25”(H)

o RP-SMAantennaconnector(3dBidipoleantennaincluded)

o 2.1to3.6Vpowerrequired• Groundbasedelement(connectedtoGCS)

o USBinterface(noexternalpowerrequired)

o Allotherdetailssameasairborneelement

$135

Page 74: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page69

Component Description CostPerItem

DataTransceiverSet

(2.4Ghz)–LowRange

Thissetoftransceiversallowsforwirelesscommunicationof

data(i.e.,controlcommandsortelemetry)onthe2.4Ghzfrequencyband.Thedetailsofthisoptionincludethefollowing:

o NOTE:Thisoptionisnotappropriatefortransferof

detailedPayload/visualsensordata.• Range

o Indoor/Urban:upto300’

o Outdoor/lineofsight:1milewith3dBidipoleantenna

• Sensitivity:-100dBmat250kbps

• Frequencyband:2.4GhzISM• Transmitpowerupto18dBm(63mW)• Airdataratesupto250kbps

• Directsequencespreadspectrum• Airborneelement(onboard)

o 0.4oz

o Serialconnectiono 1.3”(L)x1”(W)x0.25”(H)o RP-SMAantennaconnector(3dBidipole

antennaincluded)o 2.8to3.4Vpowerrequired

• Groundbasedelement(connectedtoGCS)o USBinterface(noexternalpowerrequired)o Allotherdetailssameasairborneelement

$100

Page 75: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page70

Component Description CostPerItem

DataTransceiverSet

(2.4Ghz)–HighRange

Thissetoftransceiversallowsforwirelesscommunicationof

data(i.e.,controlcommandsortelemetry)onthe2.4Ghzfrequencyband.Thedetailsofthisoptionincludethefollowing:

o NOTE:Thisoptionisnotappropriatefortransferof

detailedPayload/visualsensordata.• Range

o Indoor/Urban:upto300’

o Outdoor/lineofsight:2milewith3dBidipoleantenna

• Sensitivity:-100dBmat250kbps

• Frequencyband:2.4GhzISM• Transmitpowerupto18dBm(63mW)• Airdataratesupto250kbps

• Directsequencespreadspectrum• Airborneelement(onboard)

o 0.4oz

o Serialconnectiono 1.3”(L)x1”(W)x0.25”(H)o RP-SMAantennaconnector(3dBidipole

antennaincluded)o 2.1to3.6Vpowerrequired

• Groundbasedelement(connectedtoGCS)o USBinterface(noexternalpowerrequired)o Allotherdetailssameasairborneelement

$125

Video/SensorCommunications

NOTE:Thefollowingoptionsarenotappropriateforpairingwithsensorsthatcapturevisualdata

requiringsignificantprocessing(e.g.,multispectralcameraorLiDAR).TheyaremostappropriateforusewithCCD/CMOScamerastocapturevisualdetailsoftheremoteoperatingenvironmenttoincreasesituationalawarenessoroperatetheAirVehicleElementusingFPVvisuals.

Page 76: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page71

Component Description CostPerItem

900MHzVideo

System–LowPower(200mW)

Thisradio(RXandTX)allowsforwirelesstransmissionand

receiptofcameravideo(e.g.,low-fidelityFPV)onthe900Mhzfrequencyband.Thedetailsofthisoptionincludethefollowing:

• Range:.5mile

• AirborneTX(onboard)o Power:200mW(23dBm)o ReceiverSensitivity:-85dBm

o 0.53ozo 12Vpowerrequiredo 1.22”(L)x.94”(W)x0.39”(H)

o 4channels(910MHz,980MHz,1010MHz,and1040MHz)

o RP-SMAantennaconnector(3dbigaindipole

antennaincluded)• GroundbasedRX

o 4.06oz

o 12VDCpowerrequiredo 4.53”(L)x2.64”(W)x0.83”(H)o 3.5mmAVoutport

o RP-SMAantennaconnector(3dbigaindipoleantennaincluded)

$60

Page 77: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page72

Component Description CostPerItem

900MHzVideo

System–HighPower(1500mW)

Thisradio(RXandTX)allowsforwirelesstransmissionand

receiptofcameravideo(e.g.,low-fidelityFPV)onthe900Mhzfrequencyband.Thedetailsofthisoptionincludethefollowing:

• Range:1.8miles

• AirborneTX(onboard)o Power:1,500mW(32dBm)o ReceiverSensitivity:-85dBm

o 3ozo 12Vpowerrequiredo 2.83”(L)x1.71”(W)x0.48”(H)

o 4channels(910MHz,980MHz,1010MHz,and1040MHz)

o RP-SMAantennaconnector(3dbigaindipole

antennaincluded)• GroundbasedRX

o 4.06oz

o 12VDCpowerrequiredo 4.53”(L)x2.64”(W)x0.83”(H)o 3.5mmAVoutport

o RP-SMAantennaconnector(3dbigaindipoleantennaincluded)

$120

Page 78: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page73

Component Description CostPerItem

2.4GHzVideoSystem

–LowPower(200mW)

Thisradio(RXandTX)allowsforwirelesstransmissionand

receiptofcameravideo(e.g.,low-fidelityFPV)onthe2.4GHzfrequencyband.Thedetailsofthisoptionincludethefollowing:

• Range:0.34miles

• AirborneTX(onboard)o Power:200mW(23dBm)o ReceiverSensitivity:-85dBm

o 0.09ozo 3.7to5Vpowerrequiredo 0.7”(L)x0.72”(W)x0.18”(H)

o 4channels(2.414GHz,2.432GHz,2.450GHz,and2.468GHz)

o Whipantenna(fixed,1.8dBigain)

• GroundbasedRXo 4.06ozo 12VDCpowerrequired

o 4.53”(L)x2.64”(W)x0.83”(H)o 3.5mmAVoutporto RP-SMAantennaconnector(3dbigaindipole

antennaincluded)

$35

Page 79: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page74

Component Description CostPerItem

2.4GHzVideoSystem

–HighPower(500mW)

Thisradio(RXandTX)allowsforwirelesstransmissionand

receiptofcameravideo(e.g.,low-fidelityFPV)onthe2.4GHzfrequencyband.Thedetailsofthisoptionincludethefollowing:

• Range:0.75miles

• AirborneTX(onboard)o Power:500mW(27dBm)o ReceiverSensitivity:-85dBm

o 3ozo 12Vpowerrequiredo 2.83”(L)x1.71”(W)x0.48”(H)

o 4channels(2.414GHz,2.432GHz,2.450GHz,and2.468GHz)

o RP-SMAantennaconnector(3dbigaindipole

antennaincluded)• GroundbasedRX

o 4.06oz

o 12VDCpowerrequiredo 4.53”(L)x2.64”(W)x0.83”(H)o 3.5mmAVoutport

• RP-SMAantennaconnector(3dbigaindipoleantennaincluded)

$75

Page 80: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page75

Component Description CostPerItem

5.8GHzVideoSystem

–LowPower(400mW)

Thisradio(RXandTX)allowsforwirelesstransmissionand

receiptofcameravideo(e.g.,low-fidelityFPV)onthe5.8GHzfrequencyband.Thedetailsofthisoptionincludethefollowing:

• Range:0.57miles

• AirborneTX(onboard)o Power:400mW(26dBm)o ReceiverSensitivity:-85dBm

o 1.0ozo 7to12Vpowerrequiredo 1.69”(L)x0.94”(W)x0.48”(H)

o 8channels(5.705GHz,5.685GHz,5.665GHz,5645GHz,5.885GHz,5.905GHz,5.925GHz,and5.945GHz)

o RP-SMAantennaconnector(3dbigaindipoleantennaincluded)

• GroundbasedRX

o 4.06ozo 12VDCpowerrequiredo 4.53”(L)x2.64”(W)x0.83”(H)

o 3.5mmAVoutporto RP-SMAantennaconnector(3dbigaindipole

antennaincluded)

$100

Page 81: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page76

Component Description CostPerItem

5.8GHzVideoSystem

–HighPower(1000mW)

Thisradio(RXandTX)allowsforwirelesstransmissionand

receiptofcameravideo(e.g.,low-fidelityFPV)onthe5.8GHzfrequencyband.Thedetailsofthisoptionincludethefollowing:

• Range:1.06miles

• AirborneTX(onboard)o Power:1000mW(30dBm)o ReceiverSensitivity:-85dBm

o 3ozo 12to15Vpowerrequiredo 2.83”(L)x1.71”(W)x0.48”(H)

o 8channels(5.705GHz,5.685GHz,5.665GHz,5645GHz,5.885GHz,5.905GHz,5.925GHz,and5.945GHz)

o RP-SMAantennaconnector(3dbigaindipoleantennaincluded)

• GroundbasedRX

o 1.0ozo 12VDCpowerrequiredo 4.53”(L)x2.64”(W)x0.83”(H)

o 3.5mmAVoutporto RP-SMAantennaconnector(3dbigaindipole

antennaincluded)

$125

AntennaOptions

NOTE:ThefollowingoptionsareappropriateforextendingtherangeoftheData/TelemetryCommunicationoptionsortheVideo/SensorCommunicationoptions.However,itisessentialthattheappropriatefrequencytypebematched(i.e.,900Mhzantennawith900MHzTXorRX),otherwisethe

antenna,RX,andTXwillnotworkcorrectly.Thefollowingcalculatorcanbeusedtocalculatewirelesscommunicationranges(andanticipatedincreasesthroughuseofdifferingantennae):http://hobbywireless.com/Easy%20Wireless%20Range%20Calculator.htm

Page 82: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page77

Component Description CostPerItem

PatchAntenna

(900Mhz)-GroundBased

Improvescommunicationrange,butmustbepointedinthe

samegeneraldirectionastheopposingunit(e.g.,transmitter,receiver,ortransceiver).Thedetailsofthisoptionincludethefollowing:

• Gain:8dBi

• BeamWidth:75degrees(Horizontal)x60degrees(Vertical)

• 8.5”(L)x8.5”(W)x0.98”(H)

• Expectarangeboostofapproximately100%(multipleexistingrangeby2)

• NOTE:NotsuitableformountingonAirVehicle

Element.Recommendconsiderationofadiversityreceiverandtrackingdevice(notincludedascatalogoptions)forusewiththiscomponent.

$55

YAGI-Directional

Antenna(900MHz)–GroundBased

Significantlyimprovescommunicationrange,butmustbe

alignedwiththeopposingunit(e.g.,transmitter,receiver,ortransceiver).Thedetailsofthisoptionincludethefollowing:

• Gain:13dBi• BeamWidth:30degrees(Horizontal)x30degrees

(Vertical)• 57”(L)x1”(W)x1”(H)

• Expectarangeboostofapproximately300%(multipleexistingrangeby4)

• NOTE:NotsuitableformountingonAirVehicle

Element.Recommendconsiderationofadiversityreceiverandtrackingdevice(notincludedascatalogoptions)forusewiththiscomponent.

$60

Page 83: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page78

Component Description CostPerItem

PatchAntenna

(2.4Ghz)-GroundBased

Improvescommunicationrange,butmustbepointedinthe

samegeneraldirectionastheopposingunit(e.g.,transmitter,receiver,ortransceiver).Thedetailsofthisoptionincludethefollowing:

• Gain:8dBi

• BeamWidth:75degrees(Horizontal)x65degrees(Vertical)

• 4.5”(L)x4.5”(W)x0.98”(H)

• Expectarangeboostofapproximately110%(multipleexistingrangeby2.1)

• NOTE:NotsuitableformountingonAirVehicle

Element.Recommendconsiderationofadiversityreceiverandtrackingdevice(notincludedascatalogoptions)forusewiththiscomponent.

$40

YAGI-Directional

Antenna(2.4GHz)–GroundBased

Significantlyimprovescommunicationrange,butmustbe

alignedwiththeopposingunit(e.g.,transmitter,receiver,ortransceiver).Thedetailsofthisoptionincludethefollowing:

• Gain:13dBi• BeamWidth:45degrees(Horizontal)x40degrees

(Vertical)• 22.8”(L)x1.5”(W)x1.5”(H)

• Expectarangeboostofapproximately360%(multipleexistingrangeby4.60)

• NOTE:NotsuitableformountingonAirVehicle

Element.Recommendconsiderationofadiversityreceiverandtrackingdevice(notincludedascatalogoptions)forusewiththiscomponent.

$60

Page 84: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page79

Component Description CostPerItem

PatchAntenna

(5.8Ghz)-GroundBased

Improvescommunicationrange,butmustbepointedinthe

samegeneraldirectionastheopposingunit(e.g.,transmitter,receiver,ortransceiver).Thedetailsofthisoptionincludethefollowing:

• Gain:8dBi

• BeamWidth:75degrees(Horizontal)x60degrees(Vertical)

• 4.5”(L)x4.5”(W)x1”(H)

• Expectarangeboostofapproximately115%(multipleexistingrangeby2.15)

• NOTE:NotsuitableformountingonAirVehicle

Element.Recommendconsiderationofadiversityreceiverandtrackingdevice(notincludedascatalogoptions)forusewiththiscomponent.

$55

YAGI-Directional

Antenna(5.8GHz)–GroundBased

Significantlyimprovescommunicationrange,butmustbe

alignedwiththeopposingunit(e.g.,transmitter,receiver,ortransceiver).Thedetailsofthisoptionincludethefollowing:

• Gain:13dBi• BeamWidth:30degrees(Horizontal)x30degrees

(Vertical)• 16.5”(L)x3.25”(W)x1.5”(H)

• Expectarangeboostofapproximately360%(multipleexistingrangeby4.60)

• NOTE:NotsuitableformountingonAirVehicle

Element.Recommendconsiderationofadiversityreceiverandtrackingdevice(notincludedascatalogoptions)forusewiththiscomponent.

$70

Page 85: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page80

VII.SupportEquipmentSelectionGuidelinesandCatalogAswithprevioussectionsyouarefreetomodifyorchangeeachoftheseoptionsasyoudeemnecessary

(pleaseprovidesupportingrationaleandatleastthesamelevelofdetailasisprovidedhereintheengineeringnotebook).Keepinmindyouwillneedtodetermineaccuratecoststopurchaseandintegratethecomponents.Thefollowingrepresentthesupportequipmentoptionstocompleteyour

UASdesign.

Table7.DescriptionofUAVComponents

Component Description CostPerItem

Shelter/Trailer

Streamline

Fleet

Armada

Essentiallyamobileofficeandworkshop,thiswillprovidethedeskspacefortheworkstationsoutlinedabove,aswellasroomtotransporttheaircraft,tools,fuel,

generators,andothersupportequipment.Thetrailerscanbeconnectedtoexternalpower(30A,120V)topowerlights,airconditioning,andequipment.

Thereareseveraldifferentsizestoaccommodateyour

team’sparticularUASconfigurationsandcontrolrequirements.ThesizeisindicatedbythenumberofUAVRacksthatcanbeinstalledwithintheShelter.A

singleUAVRackcanholdeithertwoUAVsthatare5ftorlessinlengthoroneUAVthatis10ftorlessinlength.Thefollowingrepresentthemodelsavailable:

• TheStreamlineSheltermodelsupportsone(1)

UAVRack(6’x12’,3,000GVWR,singleaxle)• TheFleetSheltermodelsupportstwo(2)UAV

Racks(6’x16’,7,000GVWR,tandemaxle)

• TheArmadaSheltermodelsupportsthree(3)UAVRacks(7’x10’,7,000GVWR,tandemaxle)

$5,000

Streamline

$7,500

Fleet

$10,000

Armada

Page 86: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page81

Component Description CostPerItem

AC/DCBatteryCharger

Deviceusedtobalanceandchargeuptotwobatteriessimultaneously(eachupto6cells).Thedetailsofthis

optionincludethefollowing:

• SupportsLi-Po,Li-Ion,LiFe,NiMh,andNiCdbatteries

• RequiresDC11to18V(30A)

• Dischargerate:0.1to5.0A(maximum25W,total50W)

• ChargeRate:0.1to10.0A(maximum200W,

total400W)

$150

InternalCombustionFlightLineKit

Equipmentusedtostartandtroubleshootaninternalcombustionengine.Thiskitincludesthefollowing:

• Storagecontainer• Enginestartermotor

• Glowplugstarter• Battery• Powermonitor

$130

CarTopLauncher

Deviceusedtolaunchafixed-wingAirVehiclefromtheroofofacar.Thedetailsofthisoptionincludethe

following:

• ReleaseMechanism:ActuatedbyUAVrotation• Starter:Heavyduty12-24VDC• BatteryType:Removable,Lithium-Ion

• BatteryCapacity:43Wh• CarMountType:THULERapidAero™LoadBars• Weight:21.39lb(9.7kg)

$3,000

Page 87: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page82

Component Description CostPerItem

PneumaticCatapult

Deviceusedtolaunchafixed-wingAirVehiclefromtheground.Thedetailsofthisoptionincludethefollowing:

• 6kJman-portablecatapult

• 23m/smaximumspeed• Remotecontrolboxwithadvancedsafety

features(e.g.,audiblealarm,voltageand

pressuredisplays,permanentlaunchcounter)• Integratedcompressorwithreversepolarity

protection,thermalshutdownandpressurerelief

valve• Reliablecarriagewithfoldablelegs,ropelength

adjustmentandsafetypin.Carriageismadeof

hardanodizedaluminumformaximumwearresistance

$28,000

PowerGenerator-Lightweight

Deviceusedtogeneratepower.Thedetailsofthisoptionincludethefollowing:

• Produces2,000W(16.7A)maximum/1,600W

(13.3A)rated• 12VDCoutput• Weight:47lb

• NoiseLevel:59dB(a)ratedload(1,600W),53dB(A)¼load

• Fuelefficiency:9.6hrpergallonofunleadedgasoline(0.95galloncapacity)

• Emptyweight:46.3lb

• Includespowerinverter(safeforPCequipment)• 98.5ccenginedisplacement• Thisgeneratorcanbeconnectedinparallelwith

anotherofthesametypetoproduceadditionalpower

$1,150

Page 88: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page83

Component Description CostPerItem

PowerGenerator–Heavy

Deviceusedtogeneratepower.Thedetailsofthisoptionincludethefollowing:

• Produces4,000W(33.3/16.7A)maximum,

3,500W(29.21/14.6A)rated• 120/240Voutput• Weight:155lb

• NoiseLevel:72dB(a)@ratedload(1,600W)• Runtimepertank(6.3gallons):9.4hr@rated

load(3,500W),15.7hr@½load

• Emptyweight:155lb• DoesNOTincludespowerinverter(unsafeforPC

equipmentwithoutlineconditioner)

• 270ccenginedisplacement

$1,800

LineConditioner

Devicethatconditionspowerforusewithsensitiveelectronics(i.e.,protectsfrombrownoutsandovervoltages).Thedetailsofthisoptionincludethe

following:

• 15Acircuitbreaker• 1200Woutputrating• EMI/RFIlinenoisefiltering

• 120VAC,10A,60Hz• Four(4)poweroutlets• 2.09lb

• NOTE:IfthePowerGenerator–HeavyoptionisselectedtopowerGCSequipment,this

componentwillbenecessary.

$100

Page 89: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page84

VIII.UASPersonnel/LaborGuidelinesThecostsofthesystemarenotsolelymeasuredintermsofthecosttopurchaseindividualcomponents,

butarealsoreflectiveoftheengineeringefforttodesignandtestthesystemandthecosttooperateandmaintainthesystem,onceithasbeencompleted.Thefollowingsubsectionsprovidethedetailsforbothofthesepersonnelandlaborareas.Whendocumentingdesign,consideryourownhoursspent

performingtasksinsupportofeachoftheseroles.However,doNOTentereachoftheserolesandtheassociatedhoursastheEngineeringLaborcostvaluesforyourdesigneffort.Instead,useyourownexperienceandobservations,coupledwithresearchregardingtypicaltimetoperformsuchactivities

andguidancefromyourindustrymentorstoidentifyestimatedeffortsrequiredtoperformnecessaryactionstocompile,deliver,andtestanequivalentdesign.Usethisexperiencetobetterunderstandwhatroleswouldberequired,ataminimum,tocreateyourdesignfromconceptiontofinaldelivery.

Engineering/DesignPersonnelandTeamMemberRolesTeammembersshouldberecruitedtoprovideavarietyofskillstotheteam.Thereshouldbedistinct

divisionsoflaborintherolesandfunctionsofeachteammember.Theexactsetofteamroleswillbeuptotheteamandmayvarybasedonlocalexpertiseandstrategy.Notethatnoteveryroleneedstobefilledandsometeammembersmayhavemultiplerolesdependingonavailableexpertiseandinterest.

NOTE:Pleasekeepinmind,itisnotnecessarytorecordactualtimespentworkingtowardscompletionoftasksin

assignedrolesasthesenumberswillnotbethevaluesenteredintothecostcalculations(i.e.,EngineeringLabor).Instead,thepurposeistogiveyouimportantexperiencetobetterunderstandtheintricaciesofdesignandprovide

anestimateofwhatwouldberequiredtoperformthiswork.Thevaluesenteredintothecostcalculationsshouldbeestimatesofwhatyoubelieveitwouldtakeexperiencedlabortodevelopandbuildyourteamsolution.Pleasetalk

toyourmentorstoworkongeneratingaccurateestimates.

Thenatureofeachteamwilldeterminehowitfunctions.Forinstance,teamsthatmeetafterschoolwillfaceadifferentsetofneedsthanteamsthatfunctionwithinaclassroom.YourTeacher/Coachwillhelp

youdecidewhichapproachwillworkbestinyourcommunity.Noteverymemberoftheteamneedstobeanexpertintheuseofallthetools.However,atleastoneteammember,theProjectEngineershouldpossessahighdegreeofskillwiththesoftware.Itisrecommendedthatallteammembershavea

workingknowledgeofthesetools.Thetoolsareprovidedtotheteamsforfree.Keepinmind,youshouldtrackyourlaborexpendedonthisprojectforeachroleinordertobetterunderstandengineeringlaborcostforthedeterminationofyourfinalUASdesigncost.Thefollowingrepresentthesuggested

rolesforyourteam:

NOTE:Full-timeEquivalent(FTE)isusedtoindicateonepersonassignedfull-timetothedesignatedrole.Forthis

competition,fractionalFTEswillnotbeallowed.Foroperationalcostcalculationpurposes,fractionsofanhour

shouldberoundeduptothenexthighestinteger.Costsarenotdependentonindividualsalaries,butareinstead

tiedtothevalueacompanyassignstotherolewhentheirservicesarequantifiedandpassedontoanexternal

customer.Usethisopportunitytodeterminecompetitiveratestoperformtherequiredtasksbyprofessionalsinthe

Page 90: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page85

industry.Researchperhourcostsandfeelfreetoreplacethesevalueswithwhatyoufind,aslongasthevaluescan

beconfirmedfrommultiplesourcesandaredocumentedinyourEngineeringDesignNotebook.

1) ProjectManager[$75/hr.costper1.0FTE]:TheProjectManagerwillberesponsibleforrecruitingawinningteamandleadingstrategydesign.TheProjectManagerisresponsiblefor

theoverallsuccessoftheproductorprogram.TheProjectManageristheindividualresponsibleformanagingtheprojectplananddeliverables,ensuringthatallprojectteammembershavethenecessaryresourcesrequiredtocompletetheproject,andreportingstatusfortheteam,

trackingtimelineandmilestones,andquality.Manytimesthisindividualplaysadditionalrolesintheproject.TheProjectManagerleadsthecross-functionalteamandistypicallyresponsibleforthedevelopmentoftheoverallproduct,program,orEngineeringDesignNotebook.Several

interrelatedsub-projectactivitiesengagedinbyteammembersareoftenmonitoredbythisrole.

2) DesignCoordinator[$50/hr.costper1.0FTE]:TheDesignCoordinatorrolearisesifyourteamis

composedofmembersthataregeographicallydispersed.Therolewillnotapplyifyourteamiswithinasingleclass.TheDesignCoordinatoractsastheliaisonbetweenthedesignpartnerandotherinternalengineeringteams.TheDesignCoordinatorisoftenresponsibleforintegrating

newormodifieddesigndataintotheoverallproductdesign.TheDesignCoordinatoristheprimaryinterfacewiththethird-partypartner.TheDesignCoordinatorcoordinatespartnerengineeringresourcesandiseitherlocatedlocallyinanotherclassattheteam'sschool,or

remotelyinanotherschool.3) Systems&TestEngineer[$50/hr.costper1.0FTE]:TheSystemsEngineerdefinestheproduct

architecture,itsmodules,andinterfaces.Heorshehasultimateresponsibilityforensuringthe

variouspartsoftheproductwillworktogetherasawholewhenfinallyassembled.Thisroleprovidesdirectiontothedesignteam,manageinterfaces,andparticipateindesignreviews.TheTestEngineerisresponsiblefortestingprototypesofdesignsandpre-productionproducts

createdbythedesignteam,reviewstestcasesgeneratedbythedesignteam,andcollaborateswiththedesignteamduringthetestingphase.Thisroleistheliaisonwithanengineeringmentor,assistingtheteamwiththeincorporationofengineeringadvice.Thispersonmayalso

beaprojectsimulationengineerontheteam.4) SimulationEngineer[$50/hr.costper1.0FTE]:TheSimulationEngineeristheexpertinthe

authenticsimulationandmodelingtools,suchas3DCADandWindchill.TheSimulationEngineer

managestheWindchillDigitalProjectSpaceandisresponsibleforsimulationandmodelingapplicationinteroperability,filecompatibilities,andfiletransfer.

5) ProjectScientist[$50/hr.costper1.0FTE]:TheProjectScientistshouldhaveabackgroundin

physicsorarelatedfield.Thisrolewillberesponsibleforthescientificintegrityoftheapproachandfortranslatingthescientificprinciplesintotheteam’sengineeringdesign.Thisroleistheliaisonwithasciencementor,assistingtheteamwiththeincorporationofscientificadvice.

6) ProjectMathematician[$50/hr.costper1.0FTE]:TheProjectMathematicianshouldhaveabackgroundinmathematics,withaminimumofalgebraandtrigonometry.Thisrolewillberesponsibleforthemathematicalintegrityoftheapproachandfortranslatingthemathematical

principlesandapplicationsintotheteam’sengineeringdesign.

Page 91: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page86

7) ProjectCommunicator(orCommunicationsSpecialist)[$50/hr.costper1.0FTE]:TheProjectCommunicatorintegratesideas,approaches,andapplicationsfromthedesignteamintowritten

documents,videos,andpresentations.Thisroleisresponsiblefortheteam'sbrand.Thispersonrepresentstheteamtothemediaandwillworkwiththeteacher/coachtocoordinateeventactivities.

DesignConstruction/AssemblyPersonnelSomeoftheelementsyouidentifyinyourdesignmayrequirecustomization,modification,and/or

assembly.Forthoseitemsyouwillneedtodeterminearole(notfilledbyanactualteammember),alaborrate,andtheamountoftimetocompletethetask.Forexample,ifyouareproposingthemodification/manualconstructionofanelementyouwouldidentifythatrole(e.g.,technician[wing

construction]),anappropriatelaborrate($25/hr),andtheestimatedhoursthetaskwouldtaketocomplete(e.g.,15hours).Thefollowingrepresentsamplerolesandrates:

1) AssemblyTechnician[$25/hr.costper1.0FTE]:AnAssemblyTechniciancanbeusedtoconstructandassembleawing,fuselage,orothercustomdesignedcomponent.Theyare

knowledgeableofmaterials,includingthemillingofmetal(e.g.,computernumericalcontrol[C&C]),coveringofwings(e.g.,applicationofplasticshrinkwrapfilm),applicationoffiberglass,andvacuumformingofplastics.

2) ElectronicsTechnician[$25/hr.costper1.0FTE]:AnElectronicsTechniciancanbeusedtodesign,develop,test,manufacture,install,andrepairbothelectricalandelectronicequipment.

TypicallyaFederalCommunicationsCommission(FCC)and/orAircraftElectronicsTechnician(AET)certificationisrequired.

3) AircraftMaintenanceTechnician[$25/hr.costper1.0FTE]:AnAircraftMaintenanceTechnician

(AMT)holdsamechaniccertificateissuedbytheFAAtoservice,troubleshoot,andrepairaircraft.

OperationalandSupportPersonnelAnyUASperformingremotesensingforprecisionagriculturerequireavarietyofrolestobefulfilledby

personnelonthegroundinordertoensuresafeandsuccessfulapplicationexecution.Differentaircraft

andapplicationtypeswillrequiredifferentrolesandthereforedifferentnumbersofgroundsupport

personnel.Forthepurposesofthiscompetitionabasicminimumgroundpersonnelconfigurationcan

beassumed.Deviationsarepermitted,butmustbejustifiedwithsupportingrationale.Thetypicalroles

areoutlinedasfollows:

1) PayloadOperator[$35/hr.fullyloadedcostper1.0FTE]:Thispersonisrequiredwhenpayload

dataistelemeteredfromtheaircraftorrequiresmanualoperationduringtaskexecution.This

personwilltypicallysitatagroundstationinteractingwithagraphicaluserinterface(GUI)for

thepurposeofcontrollingthepayloadoperationsinreal-time.Forasensorpayload,thiswill

involvemonitoringthesensorpayloadstatusanddatatelemetryfromtheaircraft,steeringthe

payload(i.e.directingwherethecameraispointing),anddirectingtheaircraftoperatorwhere

toflytheaircraft.Foraerialspraying,thisrolecouldbeutilizedtodeterminepositionofaircraft,

Page 92: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page87

enable/disablespraying,andverifyresults.Theexactnatureofthisrolewillbedrivenbythe

sensorpayloadselection.

2) DataAnalyst[$50/hr.fullyloadedcostper1.0FTE]:Thispersonisrequiredwhenpayload

sensordatafromtheunmannedaircraftcannotbeprocessedinreal-time.Thisrolecanbea

requirementfortelemetereddatawherereal-timesearchalgorithmsarenotavailableatthe

groundstation.Thisroleisalsoarequirementwhensensordataisrecordedonboardthe

aircraftfordownloadandanalysisuponaircraftrecovery(i.e.,nodatatelemetry).Thisrolemay

ormaynotberequired,dependingonthesensorpayloadselection.

3) RangeSafety/AircraftLaunch&Recovery/Maintenance[$35/hr.fullyloadedcostper1.0FTE]:

Thisindividualcanbeassignedmultiplenon-concurrentroles,andistypicallyahighlyqualified

technician.Rangesafetyincludesensuringfrequencyde-conflictionpriortoandduring

applicationexecutionaswellasairspacede-confliction.Thisindividualwillbetrainedintheuse

andoperationofaspectrumanalyzertoensurethatthecommunicationsandaircraft

operationsfrequenciesarenotconflictingwithotherpotentialoperationsinthearea.This

individualwillalsomonitorairtrafficchannelstoensurethattheairspaceremainsfreeduring

thetask.Thisindividualwillberesponsibleforcoordinatingwiththeairtrafficmanagement

personnelinadvanceoftheoperationtoensurethattheappropriateairspacerestrictionsare

communicatedtopilotedaircraftoperatinginthearea.Thisindividualmayalsoberesponsible

foraircraftlaunchandrecoveryoperationsaswellasanyrequiredmaintenance(e.g.refueling

orrepairs)inbetweenflights.

4) LaunchandRecoveryAssistants[$15/hr.fullyloadedcostper1.0FTE]:Inthecaseofsome

largerunmannedaircraftoperatinginunimprovedareas(e.g.,group3UAS),oneortwo

assistantsmayberequiredtohelppositiontheaircraftontothelaunchsystem(e.g.,catapult)

andtorecovertheaircraftfromthecapturemechanism(e.g.,snagline).

5) SafetyPilot[$35/hr.fullyloadedcostperassignedFTE]:Thisindividualisresponsiblefor

bringingtheaircraftsafelyinforrecovery.Forthiscompetition,wewillassumeline-of-sight

(LOS)operationatalltimes,meaningthatthesafetypilotwillneedtobeabletoobservethe

aircraftatalltimesduringflight.Duringsemi-autonomousflightoperations,thesafetypilotis

responsibleforimmediatelytakingovercommandoftheaircraftandbriningitsafelytothe

groundshoulditexhibitunanticipatedflightbehaviors,orinthecaseofpilotedaircraftentering

theflightoperationsareaascommunicatedbytherangesafetyofficer.Thisroleisalsoreferred

toasthe“Observer”,responsibleformaintainingVLOSwiththeaircraft.

6) OperationalPilot[$35/hr.fullyloadedcostper1.0FTE]:Inthecaseofautonomousorsemi-

autonomousoperations,theoperationalpilotisresponsibleformonitoringaircraftstate

(attitude,altitude,andlocation)toadjustingaircraftflightpathasrequiredforsuccessofthe

applicationtask.Thepilotwilltypicallyspendmostoftheoperationlookingatascreenatthe

groundcontrolstationmonitoringthetelemetryfromtheaircraft’son-boardflightcontrol

computer,andadjustingtheaircraft’sprogrammingasnecessary.

Page 93: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page88

IX.FlightPlanningGuidelinesYourteammustcreateaFlightPlanthatdocumentshoweachAirVehicleElement(UAV)inyourUAS

designwillbeflownandhowthepayloadwillbeoperatedinordertocompletetheapplication:• TakeoffandInitialClimb• Surveyingcroparea

• CoordinatedTurns• Approach,Landing,andRefueling/Maintenance• TotalFlightTimeCalculation

NOTE:Ahypotheticalprecisionagriculturalscenariocanincludeoperationalphasesbeingrepeated,and

performedinnon-sequentialorder.

ForallportionsoftheFlightPlan,payparticularattentiontotheforwardspeedoftheaircraft.Iftheaircraftistravellingtooquickly(tooslowly)ortoohigh(toolow)thentheaircraftmightnotusethedetectionpayloadtoitsfullestpotential.

TakeoffandInitialClimbDuringtakeoffandtheinitialclimb,thesizeofthesensorfootprintchangesbasedonaltitude.Untilthe

aircrafthasreachedasufficientaltitude,thegroundcoveredbythesensorfootprintwillnotbeusableforconsistentdatacapture,becauseofvariationinsensorperception.

DataCaptureduringStraightandLevelFlightOneofthebasicflightmaneuversforremotesensingisstraightandlevelflight.Duringstraightandlevelflight,theUAVtravelsinastraightlineataconstantspeedandaltitudewhilethesensorpayload

capturesdatabelow,coveringlongstretchesofterrain.Yourteammustdeterminehowitwantstooperatethesensorpayload(pan,tilt,zoom)whiletheUAVisinstraightandlevelflight.Twomethodsareoutlinedbelow.

Method1:(Basic)Keepthesensorpayloadpointeddownward.Ifthesensorpayloadispointedstraightdownwardduringstraightandlevelflight(zeroroll,zeropitch),

thenthecamerafootprintbecomesarectanglewithaforwardlengthandasidewayswidthdeterminedbycalculatingthepositionsofthecornersofthecamerafootprint.Thismethodcreatesalongrectangleofcoverageareawhosewidthisthesameasthesidewayswidthofasinglecamerafootprintandwhose

lengthisstretchedtobecomewhateverdistancetheUAVcontinuestotravelinstraightandlevelflight(seeFigure10earlier).

Forthismethod,yourteamwillpickaflightaltitude,flightspeed,andthezoomedcamerafieldofviewtobeusedinstraightandlevelflight.ShowthattheUAVflightspeedisslowenoughfordetection.This

canbedemonstratedbycalculatingthatthedistancetravelledbytheUAVduringthedetectiontime(flightspeedtimesdetectiontime)isnotgreaterthantheforwardcamerafootprintlength.

Page 94: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page89

Method2:(Advanced)Sweepthesensorpayloadbackandforth.Amoreadvancedmethodfordatacaptureduringstraightandlevelflightistosweepthesensorpayloadleftandrighttoincreasethewidthofthecoverageareabeyondthewidthofasinglecamerafootprint.Thismethodrequiresadditionalanalysistoconfirmthatthefullareatracedduringeachsweepcycleis

coveredforthefulldurationofthedetectiontimerequirement.Teamsusingthisoptionmustconsiderthefollowing:

• Whenthesensorpayloadisnotpointedstraightdown,itisnolongerrectangular.Ifcamera

pitchiszero,butthecameraisrolledtotheleftortheright,thenthecamerafootprintistrapezoidal.Ifboththepitchandrollvaluesarenon-zero,thecamerafootprintbecomesageneralquadrilateral.

• Theangularrateatwhichthesensorpayloadissweptbackandforthcannotexceedthelimitsofthesensorpayloadasspecifiedinthepayloadcatalog.

• Thecoverageareaforthesweepingmotionmustbeshownforafullcycle.

• Atthemaximumrollvalueused,thefarcornersofthecamerafootprintmustbeshowntobewithintheviewablecone.

• Thesensorpayloadmustbrieflypauseatthemaximumpanleftandpanrightpositionssothat

theedgesoftheseregionsarecovered.• TheUAVforwardflightspeedmustbeslowenoughtobecompatiblewiththesweepingmotion

sothatthesubjectarea(i.e.,sectionsorindividualcomponentsofthecrop)wouldremain

withinacamerafootprintwithnocoveragegaps.

DataCaptureduringaCoordinatedTurnTheUAVmustbeabletoturnaroundtocontinuescanningthearea.Yourteammayfinditusefultouseturnsofdifferentradiitofullycoveryourdatacapturearea.Duringacoordinatedturn,thebodyoftheUAVisrolledtoprovidealiftingforcewhichpointstowardthecenteroftheturningarc.Thetighterthe

turn,themore“g”sarepulledbytheUAV,increasingthestressonthewings.YourwingsmustbedesignedtosustainthetightestturnradiususedinyourMissionFlightPlanwiththeappropriatesafetyfactor.

Duringacoordinateturn,camerafootprintrotatesastheUAVrotatesabouttheturn(seeFigure11

earlier).Iftheforwardflightspeedismaintainedfromstraightandlevelflightduringacoordinatedturn,thenthemiddleofeachcamerafootprintwillcoverthegroundforthesameduration;however,attheinsideoftheturnthegroundwillbecoveredbyalongerdurationandattheoutsideoftheturnthe

groundwillbecoveredbyashorterduration.Thecoveragedurationofthisoutsideedgemustbelongerthantherequireddetectiontimetocontributetothetotalcoveragearea.

FlightPathforFullCoverageoftheSubjectAreaIntheprecisionagricultureremotesensingapplication,oneoftheprimarygoalsistoscantheentiresubjectcroparea.TheflightmaneuverscalculatedinyourMissionFlightPlanbecomebuildingblocksto

documenthowyourUAVswouldflytocovertheentirearea.StraightandLevelFlightManeuverscanbestretchedlongerasneeded.CoordinatedTurnFlightManeuverscanbecreatedfordifferentradius

Page 95: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page90

values(seeFigure12earlier).CreateaflightpathforfullcoverageofthesearchareainsupportofyourMissionFlightPlan.

Approach,Landing,andRefueling/MaintenanceWhileconductingamissionortask,eachUAVwillhavetoreturntobaseandlandatsomepoint.This

willhappenateitheraplannedtime,suchasforrefuelingorattheendofthemission,oratanunplannedtime,formaintenance,erraticbehavior,etc.InyourMissionFlightPlan,describethisprocessanddemonstratethateachUAVinthesystemhasenoughfueltocompleteitsportionofthe

taskandreturnhomeandland.Ifrefuelingisrequired,documentthiswiththeFlightPath.Forinternalcombustionenginedesigns,adda5%fuelmargintoaccountforfuelthatcouldgetstuckinthecornersofthefueltank.

TotalMissionTimeCalculationThefinalportionofyourteam’sMissionFlightPlanistotabulatethetotalmissiontimerequiredto

setuptheUAS,launcheachUAV,flythechosenflightpathtoscantheentireareawithallUAVs,refuelasrequired,returntobase,land,andbreakdownthesystemtoloaditbackintothetrailer/shelter.

CommunicationsConsiderationsYouwillwanttoprovideadetaileddescriptionofhowyouwillmaintaincommunicationand

coordinationamongalltheaircraft,ensuresafety,andfullycoverthesubjectarea.

SpectrumAuthorizationandTransmissionRulesInaccordancewiththeFAANotice8900.227UnmannedAircraftSystems(UAS)OperationalApproval,

thereareseveralimportantconsiderationsnecessarytousecommunicationsequipment.

1. Everyuser(operator)musthavetheappropriateNationalTelecommunicationsandInformationAdministration(NTIA)orFederalCommunicationsCommission(FCC)authorizationorapprovaltotransmitusingradiofrequencies(RF).TheseRFareusedintheuplinkanddownlinkportionof

theUAScommunicationsfortransmissionandreceiptofcontrolcommands,telemetry,andsensor/payloadinformation.Thisisachievableusinglicensedbands,whichrequireanoperatorlicensesuchasanAmateurRadioLicense–TechnicianClass(validfortenyears).Beawarethat

eachlicensetypehasrestrictionsconcerningtheuseofspecificfrequenciesandtransmissionpowerlimits.

2. Non-Federalpublicagencies(otherpublicentitiesandcivilUASusers)generallyrequireanFCC

approvedlicensetotransmitonfrequenciesotherthantheunlicensedbands(900MHz,2.4GHz,and5.8GHz).However,keepinmindthattherearelimitationsonthetransmissionpowerusedbyunlicensedoperatorsontheunlicensedbands(seePart15oftheCodeofFederal

RegulationsTitle47regardingRadioFrequencyDevicesandtheirtechnicalrequirements).Itshouldbenotedthatinaccordancewith47CFR97,§97.215Telecommandofmodelcraft,anamateurstationtransmittingsignalstocontrolamodelcraftmaybeoperatedasfollows:

Page 96: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page91

a. Thestationidentificationprocedureisnotrequiredfortransmissionsdirectedonlytothemodelcraft,providedthatalabelindicatingthestationcallsignandthestation

licensee'snameandaddressisaffixedtothestationtransmitter.b. Thecontrolsignalsarenotconsideredcodesorciphersintendedtoobscurethe

meaningofthecommunication.

c. Thetransmitterpowermustnotexceed1Watt(W).3. DepartmentofDefense(DOD)agenciestypicallydemonstrateUASspectrumauthorization

throughaSpecialTemporaryAuthorization(STA)issuedbytheNTIAorafrequencyassignment

intheGovernmentMasterFile(GMF).4. Non-DODFederalpublicagencies(e.g.,NASA,USCG,andUSCBP)alsorequireanSTAissuedby

theNTIAorfrequencyassignmentintheGMF.

PreventingInterferenceWhenoperatingmultipleaircraftorincloseproximitytootheraircraftinanareayouwillneedto

preventcommunicationsinterferenceamongthevariousaircraftandthegroundcontrol.Thiscanbeaccomplishedusingavarietyofmethods,includinguseoffrequencyhoppingequipment,frequencymanagement,staggeringflights,anddirectionaltrackingantennae.ThefollowingfiguredepictssixUAS

operatinginafivemilebyfivemilesubjectareausinglow-powercommunications(onemilerange)andtheresultinginterferencethatcouldoccurfromoverlappingcoverage.

Figure18.SixUASwithlow-powercommunicationsoperatinginsubjectarea(interference).

Page 97: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page92

UseofMultipleAntennaeItispossibletousemultiplecommunicationpathswithasingleaircraftthroughemploymentofamultiplexerdeviceonboardtheUAV.Amultiplexerisadevicethatprovidesauserwiththeabilitytoselectoneofseveralinputsanddesignateastheprimary(single)signal.Usingsuchadevicemakesit

possibletomonitorthereceivedsignalstrengthindication(RSSI)ofeachinputandselecttheonewiththeleastnoise,strongestsignal,ormostreliablesignal(strongestovertime;averaged).InmanycasesthesedevicescanbeconfiguredtomonitorRSSIandautomaticallyselectonethatmeetsdesired

conditions(e.g.,leastnoise,strongest,reliable).Whenamultiplexerisintegratedintoacommunicationsystem,itbecomespossibletouseseveraltransmittersfromthegroundcontrolstation;eachfittedwith

theirownantenna.Thisstrategycanbeemployedtosupportuseofomni-directional(circularradius)anddirectionalantennae(e.g.,Yagi-Uda,lens,orpatch).Thefollowingfiguredepictsuseofamultiplexerdevice(inred)tosupportbothlineofsight(LOS)andbeyondlineofsight(BLOS)

communications.

Figure19.UASfeaturinguseofamultiplexer(inred).

UseofTrackingAntennaTrackingantennafeatureamovingbasethatcanchangethepitchandyaw(heading)oftheantennaor

antennae.Theycanbemanuallycontrolledbyhandorautomatedthroughuseoftelemetry.Inorderto

Page 98: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page93

automate,thepositionandorientationofboththetrackingantennaandtheUAV(airvehicleelement)mustbeknownandcommunicatedtothegroundcontrolstation.Usinggeometry-basedalgorithmsthe

groundcontrolstationwilldeterminetheappropriatepitchandyawtoorientthetrackingantennasothatitpointsatandtrackstheaircraftwhileinflight(seethefollowingfigure).

Figure20.TrackingAntennaexample.

Inaddition,directional(highlyfocused;e.g.,patch,Yagi-Uda,orlens)antennacanalsobeusedin

combinationwithatrackingandpointingbasetoavoidoccurrencesofinterferencebymaintainingeitherverticalorhorizontalseparation(seethefollowingfigure).

Page 99: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page94

Figure21.Multipleaircraftanddirectionalantennaseparationexample.

Page 100: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page95

X.BusinessCaseGuidelines

TheRWDCcanbeviewedasaprojectthatprogressesthroughtheprovenprototypeoutsideofthecurrentFAApart107regulationstoshowthatthepart107islimitingtheopportunitiestomakemoneywithunmannedsystems.YourteamshoulddevelopabusinesscasethatincludesthenecessaryinformationrequiredbytheFAAandcompaniesthatyoucanperformthespecifiedmissionsforprecisionagriculturemoreeffectivelyandsafelyunrestrictedbythepart107regulations.YourplanshouldshowthatbygoingoutsideoftheregulationsthatyoucansafelymakeasignificantlygreaterprofitthantheDJIAgrasMG-1andtheeBeeSQthatoperateinsideoftheregulations.Tofollowisanelaborationofthefivekeycomponentsofabusinesscasethatwillassistyouincreatingasuccessfulplan.Thinkoffollowingkeycomponentsofabusinesscasetohelpyoudevelopyourbusinesscasesection:

1.Providestherationaleforaproductdevelopmenteffort

2.Explainsthemeansbywhichtheprojectwillproduceareturnoninvestment

3.Outlinestheoverallfeasibilityandrisks

4.Explainsthecompetitivelandscape

5.Providestheoverallscope,timeframe,andfundingrequirements

Rationale

Whywouldyoutakethisservicetomarket?Theinvestmentcommunityisbyitsverynaturehighlyskepticalofnewproductideas.Thisisbecausemostnewbusinessideasdonotsucceed.Thecaseforfullcommercialdevelopmentofaproductmustdemonstratethatitmeetsacompellingneedinthemarket.Further,potentialcustomerswhohavethiscompellingneedmustbeshowntobewillingtopayfortheproductatapricethataddressesallcostsoftheproductincludingresearchanddevelopment(R&D),manufacturing,operations,overheadcosts,thecostofcapital(i.e.,thereturnonthefundinginitiallyinvestedintheproduct),andtheFAAwantstomakesureyouareoperatingsafelywhereyouareoutsideoftheregulations.

ReturnonInvestment

Willyourproposedbusinessmakemoney?Itisuptoyoutoexplainhowyouintendtomakemoneywiththisservice,aswellasthelikelihoodofsuccess.Therearemanythingstoconsiderwhenyoumaketheargumentthatyourplanwilllikelybeprofitable.Forthisyearschallengewearegivingyouthecompetitorthatyouaretryingtodobetterthansofirst,youmustdecidehowyouwillprovidethe

Page 101: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page96

serviceswillareaskingyoutocomplete,alongwiththeassociatedtargetmarketanditssizeandgrowthparameters.Themarket,marketsize,andproposedcompellingneedforthebusinessprovidesomeindicationofthepossiblepricelevelofyourproduct,butitisimportanttorememberthatprofitabilityisthedifferencebetweenthecostoftheserviceanditsprice.Thecaseforthereturnoninvestmentmustalsodemonstratethattheservicemaybedoneatareasonablecostthatwillsupportatargetprofitmargin.Thisshouldbecarefullyconsideredassomeapplicationsforyourproductmaybemorecostlythanothers—andcorrespondingly—somemarketsmaybefarmorepricesensitivethanothers.Thebasicproductandmarketentrystrategyshouldbeclearlyunderstoodsothatyouhaveabasisformakingcost/benefittrade-offanalyses.

FeasibilityandRisk

Canyourdesignperformhowyousayitwillwhenperformingthisservice?Areyouadequatelyaccountingforsafelyintheareasthatyouplantogooutsideofthepart107regulations?Areyouabletoperformthetasksbetter/moreprofitablythanthegivenexistingsystem?BeforeattemptingtoconvincetheinvestmentcommunityandtheFAAthatyourteamiscapableofdevelopingandlaunchingthisplaninthemarket,youmustbeconvincedyourself.Itisatthisstageofdevelopingtheplanandthebusinesscasethatexperiencecounts.Ifyouarenotcertainoftherisksorofyourowncapability,don’tneglecttoreachouttosubjectmatterexperts.Also,rememberthatwhenseekingfundingfromtheinvestmentcommunitysuchasventurecapital,youaredealingwithindividualswhohavefundedmanysimilarventuresandarequiteawareofthelimitationsofdevelopmentteams,andtherisksthatcangetinthewayofsuccessfulmarketlaunches.Besure,therefore,tointensivelybrainstormpossiblerisks.Youdonotwanttoleavesomethingoutofyourbusinesscase,orbeaskedsomethingbyapotentialinvestor—andareunabletogiveananswer.

CompetitiveLandscape

ForthisyearsChallengeyouwillbecomparingyourdesigntotheDJIAgrasMG-1andtheeBeeSQaspairofUAV’susedtodetectandsprayforCornBillbugsonafieldofDentcorn(Zea mays var. indentata). ThedesignsgiventoyouoperateinsideofFAApart107regulations.YouareseeingifthereisanopportunitytoperformthetasksofsprayinganddetectionwithadesignthatisnotlimitedbythePart107regulations.Belowarethespecificationsofthepricingandexpensesthatthecombinedsystemhastocompletethemissionsoverafieldof2milesby2miles(2560acres).InthisChallengeyoushouldassumethatyoumustdoyourdetectionovertheentirefield.Whencalculatingcreatingasprayingplanyoumustassumethat10%ofthefieldisinfestedwithCornBillbugs(256acres).TheSolvitolPesticidewillkilloftheinfestationintheappropriatevolumesspecifiedinthevolumesection.Thecompetitorthatyouwillbeworkingagainstwillbeassumedtohave1DJIAgrasMG-1and1eBeeSQtocompletetheremissionandwewillnotbeaccountingforthecostofSolvitolPesticide.

CompetitorsPerformance

SpecificationsforDJIAgrasMG-1andtheeBeeSQtreatmentofthefield:

eBeeSQ

• Willcompletethefielddetectioninapproximately5hours(asspecifiedinperformance)• Thecostofthedetectionwillbe$175($35perhourX5hoursforthepilotfortheentirefield

Page 102: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page97

• BatteriesarechargedwithaDieselGeneratoratacostof.4gallonsperhour.Thecostofchargingthebatteriesis$4.10(.4gallonsperhourX5hoursX$2.05pergallonofDiesel)

• Aircraftcost$10,490• Dataanalysissoftwarecost$1,500(doneinrealtime).

DJIAgrasMG-1

• Willcompletethesprayinginapproximately36.6hoursoftreatmentdoneover3daysofdaylightflighttocompletethesprayingofthe256acreinfestedareaofthefield.

• Thecostofpilotingforthesprayingis$1281($35perhourX36.6hoursofpilotingtime)• Costoflaunchrecoveryassistancewhoalsoreplacespesticide$549($15perhourX36.6hours

ofmissiontime)• BatteriesarechargedwithaDieselGeneratoratacostof.4gallonsperhour.Thecostof

chargingthebatteriesis$30.02(.4gallonsperhourX36.6hoursX$2.05pergallonofDiesel)• Aircraftcost$15,000

Costtotreatjustthesamplefieldisapproximately$32,500($29,029.12+$3,470.88(profit))

Thecostperacrebasedonthesamplemissionflightisapproximately$12.70peracre($32,500/2560acres)

Forthiscompetitivelandscapeyouwillbecomparingyourselfwiththegivensystemabove.Youmaychoosetotargetfieldsofdifferentsizesandfindouthowyoursystemscalesincomparisontothesystemabove.Ataminimumyouwillbeabletoshowhowyoursystemisabletodothedetectionandsprayingofthefieldbetterthanthesystemabove.Youmaychoosetoamortizeorspreadyourcostsoverflyingovermultiplefieldsoryoumaydecidetojustbereallyefficientoverone.Themostimportantthingyoushouldkeepinmindfromabusinessstandpointisthatyoushouldbemakingagreaterprofit.Ifyouflythefieldfasteryoumaybeabletoflyovermorefieldsthanthegivensystem.Ifyoucandoitcheaperyoumightbeabletoperformthemissionsforlessmoneyorincreaseyourprofitmargins.Thesearethethingsyoushouldtakeintoaccountwhencomparingyoursystemwiththeexistingsystem.

MakingaCaseofCostSavingsforFarmers

Overallwhenyouaredesigningaplanforyoursystemyoushouldkeepinmindthatyourcustomerisafarmer.Keepinmindthatyouarenotthefarmerandthatyouarenotsellingyoursystemtoafarmer.Insteadyourdesignisusedtoperformaserviceforthefarmertohelpthefarmereliminateaninfestationthatishurtinghiscrops.Thedistinctionofyourselfasaseparatefromthefarmerandnotsellingaproducttothefarmerisanimportantonewhenyoudesignyoursystemandcreateabusinesscase.Whatisimportanttokeepinmindisthatyoushouldbetryingtoincreasethefarmer’sprofitsbyimprovinghiscropyield.ThewayyouhelphimwiththatisbyeliminatingtheCornBillbugthatisdestroyingthefarmer’scrops.Bypayingyoumoneyheorshecangetmoneyfromcropsthatwouldotherwisebedead.WhatyoushouldtrytodoismakesurethatthecostyougivetofarmersislessthatthetotallossesheorshewouldsufferfromtheCornBillbugsdamagetohisorherfield.Forthisscenariowehavegivenyouafewvariablesthatcanhelpyoufigureouthowmuchyoucansavethe

Page 103: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page98

farmer.Belowarethecalculationsofhowmuchafarmermightbeabletosaveperacreandforthesamplefieldfromyourtreatmentoftheinfestation.Forthesecalculationsrememberthatthegivenvaluesarearangeofpossibledamageover10%ofthefieldassumingthatthefieldhastheworstlevelofcropdeathfromtheinfestation.YoushouldtrytobewellundercosttothefarmergivenbelowbecausethereisachancetheCornBillbugsdoeslessdamagethantheamountgiven.

Potentialcroploss

Givens

• 10%offieldsinfested• 40%oftheinfestedcropsarelost• Thefieldis2560acres• Thecornproduces175.3BushelsperAcre• Thecostofthecornis$3PerBushel

GivenFieldLoss

$53,852.16totallossonthefield=(2560acresX175.3BushelsperacreX$3perBushelX10%infestation)X40%croplossperinfestedacre

Averagelossperacre

$21.04perAcre

Savingsthefarmermakeswithgivensolution

Peracresavings=$8.34

Fieldsavings=$21,350.40

Amortization(optional)

Youmayalsoseehowyoucanimproveyourcostsbyamortizingyourcostsspreadingyourfixedcostsorcostforyouraircraftovermorethanonemission.Amortizingyourcostsisfairlysimple,asabusinessyouwouldlikelywanttoflyovermorethanonefieldinayear.Amortizingyourcostsspreadsyourfixedcostsoverthecourseofthenumberofmissionsyouplanonflying.Amortizingisgreatforspreadingyourcostsoutoverthelifeoftheequipment.Seeasamplebelow.

Costpermission(field)=(fixedcost/numberofmissions)+variablecosts

Summary

Ifyourteamisabletodefinitivelyanswerthe“Who?(resources)What?(scope),When?(schedule),Where?(market),How?(feasibilityanddesigntradeoffs),andWhy?(compellingneed,returnoninvestment)”,thenyourchancesofreceivingfundingforacommercialdevelopmentandmarketlaunch

Page 104: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page99

riseconsiderably.Belowisadditionalinformationtohelpyouwitheachofthesectionsofthebusinesscaseinyourengineeringdesignnotebook.

MakingaStrategy

Youcanhaveyourdesigngetusedonlargerorsmallerfieldsthanthegivenoneassumingthe10%cropinfestation.Itisimportanttocomeupwithaplanforbecomingsuccessfulinyourbusiness.Creatingabusinessstrategywillhelpyoutokeepyourdesigndecisionsalignedwithyourbusinessplan.Ifyourdesigndecisionsaremadewithoutconsideringhowtheyfitintoyourstrategythenyourbusinessplanwillnotworkandyouwillhaveahardertimejustifyingyourdesigndecisionsinyourbusinesscasesection.Thereare2broadstrategiestoconsiderwhensellingaproduct,allproductsaretryingtodooneofthe2andproductsthattrytodobothstrategiesatthesametimetendtohavetroubleormaylosemoney.Thefirststrategyistobealowcostprovider.Alowcostprovidertriestosellthecheapestoptionpossibleforaproduct.Lowcostproviderstrytomakemoneybysellingalotofproductsmakingalowprofitoneachitemsold.Anexampleofalowcostproviderwouldbeaflipphoneorapayphone.Thesecondstrategyistobeadifferentiator.ADifferentiatortriedtodosomethingbetterthanthealternativeortriestoappealtoaparticulargroupinthemarket.DifferentiatorswhotrytodosomethingbetterthananyoneelseusuallypickoneareaofabusinesstobebetteratthaneveryoneelselikeNordstromclothingstoretriestohavebetterservicethanotherdressclothingstores.Becauseadifferentiatordoesajobormakesaproductbettertheyareabletochargemoremoneyforit.Theotherdifferentiatorthatcaterstoaparticulargroupmightnotbethebestinanareabutitcatersitsbusinesstoaparticulargroup.YoucouldforexamplebebetterthananyotherUAVathelpingcranberryfarmersbecauseofthedesignyouhave.Whenmakingyourmarketingstrategyyouneedtoresearchwhatisouttherethatdoesthejobsthatyouwantyouraircrafttodo.MakesuretogetasenseofthecostofthecurrentoptionanddecideifyourUAVcandothejobfaster,cheaperorbetter.UsetheresearchtoassesswhatotheroptionsfarmersmayuseinsteadofpurchasingyourUAV.Keepinmindsomeoftheoptionsmaybetocheckthingsbyhavingapersonwalkthroughthefield.

Cost/BenefitAnalysis

Whenyouareresearchingwhatoptionsareavailabletothefarmeryoushouldkeeptrackofthecostsofdifferentwaystodothejob(s)yourUAVcando.UseyourresearchtoassessthehowthemissionsyourUASdoescomparewiththewaysthosetasksaredonewithtraditionalagriculture.ExplainhowyourUASaccomplishesitsmissionseitherbetterorcheaperthanthegivensystem.ExplainwhyyouchosethecomponentsincludedonyourUAS.Describehowthecomponentsofyourdesignaddvaluebyeitheraddingmoremissionsorimprovingperformanceforyoursystem.Explainhowyoubalancedhigherperformanceofexpensivecomponentswithanincreasedcostofcomponents.Alsomakesuretohownotbeingconfinedbypart107allowedyoutoimproveyourdesignsefficiencyandperformancewhilemaintainingsafety.

Page 105: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page100

XI.3DCADModelRequirementsThree-dimensionalCADmodelsareprovidedtorepresentthethreebaselineexampleunmannedaircraftplatformsincludedinthechallenge(e.g.,fixed-wingpusher,fixed-wingtractor,andhybrid).Each

teamisencouragedtomodifythesemodelstobegraphicallyrepresentativeofanyunmannedaircraftdesignsincludedintheirsubmission.Itisalsopermissibletocustomcreatea3DCADmodelinCreoforeachunmannedaircraftdesign.Thefinished3DCADmodelmustmeetthefollowingrequirements(i.e.,

basicitemstokeepinmindwhendesigningfor3Dprinting):

NOTE:Whenyouaredesigninga3Dmodelforprintorvideothereislittleneedtopayanyattentiontoreality.Mostscenesandobjectswillonlycontainthemeshesthatarevisible;objectsdonotneedtophysicallyconnect.

1. Objectsmustbeclosed:3Dprintingcompaniesliketocallthisbeing'watertight'.Itcan

sometimesbeapaintoidentifywherethisproblemoccursinyourmodel.2. Objectsmustbemanifold:Thefulldefinitionofmanifoldisquitemathematic.Forourpurposes,

ameshwillbecomenon-manifoldifithasedgesthataresharedbetweenmorethantwofaces

(seeFigure22).

Figure22.3Dcubeswithonecommonedge.

3. Observethemaximumsizeandwall-thickness:Themaximumsizeofyourobjectandthe

minimumwall-thicknessdependontheproductionmethodthatyouareplanningtouse.4. Correctnormal:Allsurfacesofyourmodelshouldhavetheir“normal”pointinginthecorrect

direction.Whenyourmodelcontainsinverted“normal”3Dprinterscannotdeterminetheinside

oroutsideofyourmeshormodel.

Page 106: FY18 RWDC State Unmanned Aerial System Challenge ... · Unmanned Aerial System Challenge: Practical Solutions to ... , Real World Design Challenge ... , unmanned aerial vehicle [UAV])

FY18RealWorldDesignChallenge Page101

Whilemodelingfor3DPrintingisquitedifferentfrom'traditional',itisnotdifficult-ifyoukeeptheconstraintsinmindfromthestart.

XII.AdditionalInformationandResources• RWDCContentWebinars

o OverviewofUnmannedSystemso SystemsEngineeringandVehiclePerformanceFactors

o PrecisionAgricultureandApplicationofUnmannedSystemso BusinessCaseandCostConsiderations

• RWDCSitewithFAQs,tutorials,Mathcadmodules,materialallowables,andothersupporting

materials:http://www.realworlddesignchallenge.org/• Thefollowingrepresenttherecommendedbaselineremoteairvehicleelement(i.e.,UAV)

platformsforthischallenge:

o Fixed-wingPusherUASDesigno Fixed-wingTractorUASDesigno Rotary-wingUASDesign

o MultirotorUASDesigno HybridUASDesign

• Mentorsfromtheaerospaceanddefenseindustry,governmentagenciesandhighereducation

• BaselineCADmodelsforeachbaselineremotevehicleelementtobeprovided

PTCTools• PTCCreo2.0andMathcadPrime2.0• MathcadandExcelsizing,performance,andcostworksheets

TeamSubmissionsTheEngineeringDesignNotebooksubmissionincludingthebusinessplanandappendicesmustbe80

pagesorless.DetailedinformationregardingwhatmustbedocumentedcanbefoundintheScoringRubric.

Scoring• Teams’submissionswillbeevaluatedbasedoncriteriaoutlinedintheRWDCFY18State

ChallengeScoringRubricandinreferencetotheexamplemissionscenario

• TechnicalscoringwillbebasedondeliverablestobeincorporatedintheEngineeringDesignNotebook

• EngineeringDesignNotebooksshouldfollowtheparagraphorderoftheScoringRubric

• Judgeswillbelookingforabilitytoexpresscomprehensionandlinkagebetweenthedesignsolutionswithwhatstudentshavelearned

• Specificrecognitionwillbegivenfordesignviability,manufacturability,innovation,business

plandevelopment,andadditionalapplicationbeyondprecisionagriculture