10
Functional Devices, P.G., ENST 1 Functional Devices for all Optical Networks EurOpnet 2001 Tutorial, January 30 Philippe Gallion Ecole Nationale Supérieure des Télécommunications URA CNRS 820 46, rue Barrault, 75634 Paris Functional Devices, P.G., ENST 2 New Optical Functional Devices 1 - Interest in All Optical Signal Processing 2 - Physics Phenomena 3 - Wavelength Conversion 4 - Nonlinear Mirror Demultiplexing 5 - 3R Regeneration 6 - Conclusion Functional Devices, P.G., ENST 3 1 - Interest in All Optical Signal Processing Bandwidth requirement OTDM versus (D)WDM From Optoelectronic to «All Optical» Signal Processing Functional Devices, P.G., ENST 4 Bandwidth requirement Bandwidth: 1nm @1.55 μ = 125Ghz @ 193THz - Today radio-frequency range < 100GHz - Overall optical fiber bandwidth: few 10THz btwn 1.3 & 1.5μ - Erbium amplifier bandwidth: few THz btwn1.53 & 1.56μ - Today needs : 100 Gbit/s to 1 Tbit/s per fiber? - Electronic bandwidth : few 10GHz Up to now: - Optical transmissions - Commutation, Routing & Processing in electronic domain - O/E & E/O conversions : slow, expensive (packaging), noisy, scrambling of the optical phase, lack of transparency... How to increase the bandwidth? Functional Devices, P.G., ENST 5 The first reported WDM experiment: Rê Horaky (the sun at noon) transmits a WDM light beam to the praying Tapéret (800-900 B.C.) Le Louvre, Paris Functional Devices, P.G., ENST 6 OTDM versus (D)WDM Mux R2 R1 Ri Optical Link E/O R2 R1 Ri E/O E/O λ 1 λ 2 λ ι λ 1 λ 2 λ 3 E/O E/O E/O λ 1 λ 2 λ ι Demux Wavelength Division Multiplexing (WDM) Optical Time Domain Multiplexing (OTDM) Ri Mux R2 R1 Optical Link E/O R2 R1 Ri E/O E/O λ λ λ λ λ λ E/O E/O E/O λ Demux λ Single λ Optical Source

Functional Devices for all Optical Networks

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 1

Functional Devices

for all Optical NetworksEurOpnet 2001 Tutorial, January 30

Philippe GallionEcole Nationale Supérieure des Télécommunications

URA CNRS 82046, rue Barrault, 75634 Paris

Functional Devices, P.G., ENST 2

New Optical Functional Devices

• 1 - Interest in All Optical Signal Processing• 2 - Physics Phenomena• 3 - Wavelength Conversion• 4 - Nonlinear Mirror Demultiplexing• 5 - 3R Regeneration• 6 - Conclusion

Functional Devices, P.G., ENST 3

1 - Interest in All Optical Signal Processing

• Bandwidth requirement• OTDM versus (D)WDM• From Optoelectronic to «ÊAll OpticalÊ» Signal Processing Ê

Functional Devices, P.G., ENST 4

Bandwidth requirement

• Bandwidth: 1nm @1.55 µ = 125Ghz @ 193THz- Today radio-frequency range < 100GHz- Overall optical fiber bandwidth: few 10THz btwn 1.3 & 1.5µ- Erbium amplifier bandwidth: few THz btwn1.53 & 1.56µ- Today needs : 100 Gbit/s to 1 Tbit/s per fiber?- Electronic bandwidth : few 10GHz

• Up to now:- Optical transmissions- Commutation, Routing & Processing in electronic domain- O/E & E/O conversions : slow, expensive (packaging), noisy, scrambling of the

optical phase, lack of transparency...

• How to increase the bandwidth?

Functional Devices, P.G., ENST 5

The first reported WDMexperiment:

Rê Horaky(the sun at noon)

transmits aWDM light beam

to the praying Tapéret(800-900 B.C.)

Le Louvre, Paris

Functional Devices, P.G., ENST 6

OTDM versus (D)WDM

Mux R2

R1

Ri

OpticalLink

E/O

R2

R1

Ri E/O

E/O

λ1

λ2

λι

λ1

λ2

λ3

E/O

E/O

E/O

λ1 λ2 λι

Demux

• Wavelength Division Multiplexing (WDM)

• Optical Time Domain Multiplexing (OTDM)

Ri

Mux R2

R1Optical

Link

E/O

R2

R1

Ri E/O

E/O

λ

λ

λ

λ

λ

λ

E/O

E/O

E/Oλ Demuxλ

Single λOpticalSource

Page 2: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 7

From Optoelectronic to «ÊAll OpticalÊ» Signal Processing

• Transmission– OTDM versus (D)WDM– Pulse generation & pulse shaping– Dispersion compensation...

• Routing– Wavelength Conversion– Fix and programmable Optical Add & Drops (OAD)– Restauration– Optical Cross Connect (OXC)…

• Optical signal processing– Optical Demultiplexing– Address label reading– Clock (phase) Recovery– Optical Regeneration : Re-amplification, Re-timing, Re-shaping (3R)...

• Supervision: “Êwave watcherÊ”• ...

Functional Devices, P.G., ENST 8

2 - Physical Phenomena

• Semiconductors Inter-band Dynamics• Semiconductors Intra-band Dynamics• Non-linearities in optical fiber

Functional Devices, P.G., ENST 9

Semiconductors Inter-band Dynamics• Gain and refractive index dependent on the carrier density

Gain saturation

• Typical time constant from 0,1 to 1 ns determined by the effective carrierlifetime

• Strong effect: power < 1mw, interaction length ≈ few 100µ• Phase-amplitude coupling :

α = few units

τeff−1 = τs

−1

Differential spontaneous emission rate

1 2 3 + ∂ GP( ) ∂N

Differential stimilated emission rate

1 2 4 4 3 4 4

τ s = Spontaneous carrier lifetime (↓ when I ↑) P = Photon density

α = ∆ ′ n ∆ ′ ′ n with n = ′ n − j ′ ′ n

G(N) = A(N − N0 )A = Differential gainG = Optical gainN0 = Carrier density for transparency

Functional Devices, P.G., ENST 10

ChirpingÊ in a SOA

• When the optical Power increases :- The carrier density decreases- The refractive index increases (plasma effect)- The optical frequency decreases

Functional Devices, P.G., ENST 11

Semiconductors Intra-band Dynamics

• A strong stimulated rate disturbs quasi-equilibrium

– ε gain compression factor– P photons density

• ps time constant determined by intra-band thermalizations• Gain compression (or compression)

– qlq % (heterostructure)– 10% (quantum wells )

G(N, P) = A(N − N0 )(1 − εP)

Pump

Gain suppression dip

Gain saturation level

Functional Devices, P.G., ENST 12

Cross Gain Modulation (XGM)

Gain

Gain Max

Pinput

3dB

Psaturation

E1 = I1 exp jϕ1 E2 = I2 exp jϕ2 with I2 << I1

Two beams with intensity I1

and I2 in the same SOA

When I1 saturates the gain, I2experiments also a reduced gain :

XGM

E2 experiments also the index changeassociated to the gain change (XPM)

XGM

Page 3: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 13

Nonlinear Index and Cross Phase modulation (XPM)

• Carrier heating– Large bandwidth (<10nm) , asymmetrical– High nonlinear index (α near 1)

• Spectral hole burning– Low bandwidth(<10nm) symmetrical– Low nonlinear index (α near 0)

Gain

Frequency

Index

FrequencyLasingFrequency

LinearNonlinear

Kramers-Kronig’s

Transformation(Hilbert’s

Transformation)E1 = I1 exp jϕ1

E2 = I2 exp jϕ2

XPM

Functional Devices, P.G., ENST 14

Four Wave Mixing (FWM) in Semiconductor Optical Amplifier (SOA)

• Physical origins:– Interband for low frequencies : carrier density modulation,– Intraband for high frequencies : nonlinear gain i.e. carrier heating , spectral-hole-

burning, 2 photon absorption, Kerr effect• Application to Wavelength conversion, 3R regeneration, Spectrum inversion• Spurious effect in WDM systems

Functional Devices, P.G., ENST 15

FWM New Frequencies Generation in WDM Systems

Input Output

Functional Devices, P.G., ENST 16

Nonlinearities in optical fiber• Optical Kerr effect

– Polarization:

– Index:

• Self Phase Modulation (SPM) & Cross Phase Modulation (XPM)• Low effect but transverse confinement and longitudinal integration

• Very fast effects but:– Walk off problems– Other concurrent nonlinear effects

P(E) = ε0 χ(1)Elinear1 2 3 + 2χ (2)E2

=0 (symetry)1 2 4 3 4 + 4χ

(3)E3

Kerr effect1 2 4 3 4 + ....

n(ω, I) = n(ω)dispersion{ + n2 I

Kerr effect { with I = E2 2Z0

∆ϕ =2πλ0

n2LS

Ρ ∆ϕ = π for PL = 1W.kmL = length ≈ kmS = cross section ≈ 50µ2λ0 = wavelength =1,5µP = optical poower

Functional Devices, P.G., ENST 17

Self Phase Modulation (SPM)& Cross Phase Modulation (XPM)

• Self Phase Modulation (SPM)

• Cross Phase Modulation (XPM)

E = I exp jϕ

E1 = I1 exp jϕ1E2 = I2 exp jϕ2

with I2 << I1

SPM

XPM

Functional Devices, P.G., ENST 18

Nonlinear Propagation: Soliton• Linear Propagation:

• Nonlinear Propagation:

k(ω) =ω0

vϕ+ (ω − ω0 )

vG

+ (ω − ω0 )2

2!∂∂ω

1vG

Phase Enveloppe Enveloppe Propagation Propagation Distorsion

k(ω) =ω0

vϕ+ (ω − ω0 )

vG

+ (ω − ω0 )2

2!∂∂ω

1vG

+ ... + γI

Phase Enveloppe Enveloppe Nonlinearities Propagation Propagation Distorsion

Page 4: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 19

3 - Wavelength Conversion• Wavelength converter• Cross Gain Modulation (XGM) in an SOA• Cross Phase Modulation (XPM) in an SOA• Gain Modulation in Semiconductor Laser (SCL)• Wavelength conversion in bistable Laser Structure• Four Wave Mixing (FWM) in a SOA

Functional Devices, P.G., ENST 20

Wavelength Converter

• Wavelength routing• Wavelength re-use• WDM network reconfiguration• Optical circuit & packet (ATM…IP) switching

↓ tuning control

λin →

Modulated optical input

λout →

Modulatedoptical output

↑ gain control

Wavelengthconverter

Functional Devices, P.G., ENST 21

ATM Matrix for wavelength routing

1

N

1

K

K

1

K 1

0xT

(K-1)xT

N''

1'

Wavelength encoder Spatial switch

MemoryStar coupler

CONTROL UNIT

Inpu

ts

Out

puts

Wavelength converter

Optical gateDelay line D

Coupler 1:K

FilterDetector

1''

N'

D

D

Europeen Project ACTS OPEN et KEOPSFunctional Devices, P.G., ENST 22

Expected Properties• All optical device:

– Transparent to modulation format– Bit rate independent: 155Mb/s à 10 Gb/s….40Gb/s– No clock recovery requirement

• Flexible implementation– Speed (10 Gbit/s and more)– Wide conversion range– Up conversion & down conversion allowed– Polarization independent– Input wavelength rejection

• No BER penalty (cascability)– High extinction (on /off) ratio– No jitter– No chirp– Amplification of the signal level– Pulse reshaping…

All of them together ?

Functional Devices, P.G., ENST 23

Optoelectronic conversion v.s. all optical conversion

• Optoelectronic conversion– No bit rate transparency– Bit rate bottleneck– Noise– Cost (packaging)

• All optical conversion– Bit rate transparency– High bit rate– Possible pulse regeneration– Integration: low cost

λElectronicalprocessing

λ 1 2

OpticalProcessing

λ λ21

Functional Devices, P.G., ENST 24

Cross Gain Modulation (XGM) in an SOA(TU Denmark)

The carrier depletioninduced by (λ1)modulated signalamplification reduce theavailable gain for theCW signal (λ2)amplification

CWλ2

λ1

filterλ 1

λ 2 λ2

Page 5: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 25

Performances for XGM in an SOA

• Large conversion range:– Few10nm, i.e. few 1000GHz– Gain bandwidth limited

• Modulation bandwidth:– Few 10 Gbit/s– Carrier lifetime limited

• Low chirp

• But:– Inverted modulation (even cell number required)– External output carrier generation– High driving signal level: 0 to -10 dBm– Low on/off ratio: 5 to 10 dB

Functional Devices, P.G., ENST 26

Cross Phase Modulation (XPM) in an SOA Mach Zendher Interferometer (MZI) Conversion

• Cross Phase Modulation (XPM)• Low control power ( only a phase shift π is required)• Accurate control power• Polarization independent• Possible up conversion and down conversion• Low chirp• 40 Gbit/s operation already demonstrated• Optical Cross Connect (OXC) 16x10 Gbit/s already demonstrated

SOA

SOA

CouplerCoupler

filterInput signal

CW signal

Converted signal

Functional Devices, P.G., ENST 27

Gain Modulation in Semiconductor Laser (SCL) Oscillator

• The carrier depletion induced by (λ1) signal injection reduce the availablegain for the CW lasing (λ2) operation

• Gain and index changes result in simultaneous AM and FM (i.e. chirped)output

• Few10 Gbit/s, On/Off Ratio > 10dB, Pcontrol = few dBm

Bragg region

Ι1 Ι2 ΙB

filterλ 1

λ 2 λ 2

λ 1

AM and FM

Functional Devices, P.G., ENST 28

Wavelength Conversion in Bistable Laser Structure

• Saturable absorption– Non injected (i.e. unpumped) region– Vanish out under light injection

• Operation up to 40GBit/s demonstrated• Possible re-timing operation by simultaneous optical or

electrical clock modulation

active region Bragg region

reff ( ω )

Ι 1 Ι 2 Ι B

active region

saturable absorber

λ2λ1

Functional Devices, P.G., ENST 29

Output Wavelength Tuning

• Mode hopping• Progressive index saturation results in tuning efficiency (slope) reduction

0 20 40 60 80 1001551.0

1552.0

1553.0

1554.0

Injection current in the Bragg section (mA)

Lasing wavelength (nm)

Lasing wavelength vs. injection current in the Bragg section

Functional Devices, P.G., ENST 30

Optical Bisability

The bistability improve the on/off ratio)Reshaping possibility

t

Pin

Pin

PoutPout

Page 6: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 31

BER influence

10-10

10-8

10-6

10-4

10-2

-22 -20 -18 -16 -14 -12Received power (dBm)

Bistable laserReference

Bit-error-rate

Low degradation (or small improvement!) of the BER allows large scale cascability

Functional Devices, P.G., ENST 32

Four Wave Mixing (FWM) in a SOA

1545 1555 1565

-40

-20

0

Wavelength (nm)

Powe

r (dB

m) Pump

SignalConjugatedSignal

Beating at the frequencydifference ωSIGNAL-ωPUMP

SOAsignal

pump

• Applications :– Wavelength conversion– All optical clock recovery– Spectrum inversion

• Spurious effect:– Diaphotie in WDM systems

Functional Devices, P.G., ENST 33

Conversion efficiencyη =

POUTCONJUGATED

PINPROBE SIGNAL

Functional Devices, P.G., ENST 34

SOA Four Wave Mixing Efficiency(BT Labs)

104

20

101 102 103-40

-30

-20

-10

0

10

Eff

icie

ncy

(dB

)

Detuning (GHz)

20

Eff

icie

ncy

(dB

)

101 102 103 104-40

-30

-20

-10

0

10

Detuning (GHz)

simulationexperiment

• Physical origins:– Interband for low frequencies : carrier density modulation,– Intraband for high frequencies : nonlinear gain i.e. carrier heating , spectral-

hole-burning, 2 photon absorption, Kerr effect• Takes benefit of built-in gain

Interband Interband+

intraband

Functional Devices, P.G., ENST 35

FWM Performances(ENST)

• Transparency for the modulation format• High bit rate• Wide conversion range (65nm) by multiple conversion• Polarization dependent

Functional Devices, P.G., ENST 36

4 - Optical Demultiplexing by Nonlinear Mirror

• Optical Linear Mirror Loop• Optical Nonlinear Mirror Loop• Nonlinearity realization• SLALOM• 4x10GBit/s Demultiplexing

Page 7: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 37

Optical Linear Mirror LoopLinear Optical Loop Mirror (LOLM)

COUPLEUR

BOUCLE LINEAIRE ET RECIPROQUE

(1−α)1/2

α1/2j

E

E

E

0

R

T

• Repartition coefficients for intensity :

• Repartition coefficients for amplitude :

• Transmitted reflected fields for E0 =1:

• In linear regime output port is the input port (mirror)

A= : (1 − α) and A× : α

a= : (1 −α )1/ 2 and a× : jα1/ 2

ER = 2a=a× = 2 jα1 / 2 (1 −α )1/ 2 = j for α = 1/ 2ET = a=

2 + a×2 = (1− α ) − α = 0 for α = 1/ 2

Incident

Transmitted

Reflected LinearReciprocal

LoopCoupler

Functional Devices, P.G., ENST 38

Nonlinear Optical Loop Mirror (NLOLM)

• Clockwise & unclockwise equal intensities : NL phase shift are identical• Tuning for a nonlinear phase difference de phase equal to π• Tradeoff between contrast (α ≈ 1/2) & sensitivity (α ≠ 1/2)• High level signal (1) transmission (NL regime)• Low level signal (0) reflection (NL effects are negligible)

COUPLEUR BOUCLE NON-LINEAIRE

E

E

E

0

R

T

(1−α)1/2expj Φ NL1

expjα1/2j Φ NL2

Non LinearLoop

Coupler

Incident

Transmitted

Reflected

Functional Devices, P.G., ENST 39

Non linearity realizationFiber or semiconductor amplifier

• 1 - Cross phase Modulation (XPM) in a fiber (NOLM)- Very fast(>100GHz)- High optical driving signal level (10 to 30dBm)- Long length(1km)

• 2 - Cross phase Modulation (XPM) in SC amplifier (SLALOM)Semiconductor Laser Amplifier in a Loop Optical Mirror

- Fast (<20GHz, inter-band & <100GHz intra-band)- Low optical driving signal level ((-10 à 10dBm)- Compact (<1mm)

• Utilizations :- Intensity Filter- Correlator- Demuliplexer ....

Functional Devices, P.G., ENST 40

SLALOMSemiconductor Laser Amplifier in a

Loop Optical Mirror

≈Filtre

coupleur 50/50

coupleur 100/0

contrôle (pompe)

données démultiplexées

t

SOA

données multiplexéesInput data

Output data

Control data (pump)

Functional Devices, P.G., ENST 41

4x10GBit/s Demultiplexing(HHI)

Functional Devices, P.G., ENST 42

5 - 3R Regeneration

Re-amplification, Re-timing, Re-shaping (3R)

• Re-amplification• Pulse reshaping by nonlinear filtering• Re- timing (Re-synchronization)• Clock (phase) recovery• 3R Regeneration• MZI all optical regeneration• All optical regeneration using FWM in SOA

Page 8: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 43

Re-amplification

PIN

POUT Non linear transfert function

Signal

Signal

Noise

Noise

• Re-amplification is limited by accumulated ASE and limited amplifier outputpower• On/off ratio improvement by nonlinear response• Different processing for weak (0) & strong (1) signals• Act as digital electronics

PIN

POUT Non linear transfert function

Noise

Noise

Functional Devices, P.G., ENST 44

AmplifiedSpontaneous

Emission (ASE)Suppression

(France Telecom)

Functional Devices, P.G., ENST 45

Noise Suppression & Intensity Modulation(Tokyo Institute of Technology)

• Intensity noise of a spectrum-sliced incoherent source

• Gain saturated SOA with currentmodulation

• Beat noise reduction• Noise error floor observed with

LiNbO3 linear modulation isremoved

Functional Devices, P.G., ENST 46

Pulse reshaping by nonlinear filtering

PIN

POUT

tt

Input

Outputs

reflected transmitted

Non linear transfert function

Functional Devices, P.G., ENST 47

Re-timing (Re-synchronization)

Clock Recovery

OpticalGate

Input

Output

Input

GateOpening

Outputafter the Gate

Output after PowerControl

de la porteFunctional Devices, P.G., ENST 48

Clock (phase) recovery

- Large wavelength deviation (13 nm)- Low time jitter (11 ps)- High bit-rate (3.8 GHz).

Mode locked laser

Clock signal

1 1 1 0 1 0

Self-Pulsating laser

Clock signalR.Z. Data Sequence

1 1 1 0 1 0

Page 9: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 49

Self Pulsating Laser

Laser DFB Autopulsant

I1 I2

t

puissance optique

TAP = 1/f AP

• Self pulsation origins:– Instabilities in longitudinal carrier or field distributions (Spatial-Hole Burning)– Dispersive self Q-switching associated to the negative slope of the Bragg grating

Self pulsating laser

Ouput power

Functional Devices, P.G., ENST 50

Synchronization time(HHI)

• 10 Gbit/s• 1ns (10 “one” bits)

locking time• Synchronization resist

to > 100 “zero” bits

• Compatible with IPpacket switching

a - data signalb - clock signalc - recovered clock signal

Functional Devices, P.G., ENST 51

Jitter & AmplifiedSpontaneous

Emission (ASE)Suppression

(France Telecom)

Functional Devices, P.G., ENST 52

3R Regeneration

Amplification

Power Control

ClockRecovery

OpticalGate

Non-linear Filter

Input

Output

Reamplification

Reshaping

Retiming

Functional Devices, P.G., ENST 53

MZI all optical regeneration - 1

SOA

SOA

Coupler Coupler

filterClock signalRegenerated signal

Input signal

Input signal

• XPM is the key phenomena• Up to 40Gbit/s operation demonstrated

Functional Devices, P.G., ENST 54

MZI all optical regeneration - 2(Alcatel Corporate Research Center)

• 2 cascaded MZI to improve nonlinear response• 20 and 40 Gbit/s operation• 1.2 dB penalty• Polarization insensitivity and10 dB power dynamic range

Page 10: Functional Devices for all Optical Networks

Functional Devices, P.G., ENST 55

All optical regeneration using FWM in SOA(ENST)

• PUMP = SIGNALPROBE =CLOCK

• The squaring improvedthe On/off ratio

• The pulse overlap is thecorrelation process betweenclock and signal

4

6

8

10

12

14

2 4 6 8 10 12

Input extinction ratio (dB)

Oup

ut e

xtin

ctio

n ra

tio

(dB

)

0 dB improvement

Theoretical limitPFWM ∝ PPUMP

2 .PPROBE

l Psignal/P clock = 20 dB∆ Psignal/P clock = 10 dB

Functional Devices, P.G., ENST 56

Nonlinear Fiber Devices

Semiconductor Optical Devices(Intraband dynamics)

Semiconductor Optical Devices(Interband dynamics)

Fast electronical Devices

High IntegrationElectronical Devices

10 7 10 8 109 10 10 1011 10 12 (Hz)

Conclusion - 1

IntegrationPossibility

Functional Devices, P.G., ENST 57

Conclusion - 2• Nonlinearity allows light with light interaction

–They are the key phenomena for all optical devices

• Nonlinearity is spurious in analog devices and systems• Digital electronics takes benefit if it at each step

–They are the key phenomena for optical regeneration

• The all optical processing do not exist!– It a user (system) point of view– Electrons play a key role in light- matter interaction–The speedy user have no time left to look at it

• Wide range of functional devices is today available• Are this grapes too unripe? (Jean de La Fontaine)