23
S1 Supporting information CsRe 2 F 7 @Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization Synthesis to Multi- Functional Applications Jiangkun Chen a,b,c , Shaoxiong Wang a,b,c , Jidong Lin a,b,c , Daqin Chen a,b,c,* [a] College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China * Corresponding author. E-Mail: [email protected] [b] Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005, China [c] Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S1

Supporting information

CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion

Luminescence: from In-Situ Nanocrystallization Synthesis to Multi-

Functional Applications

Jiangkun Chena,b,c, Shaoxiong Wanga,b,c, Jidong Lina,b,c, Daqin Chena,b,c,*

[a] College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China

*Corresponding author. E-Mail: [email protected]

[b] Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005, China

[c] Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China

Electronic Supplementary Material (ESI) for Nanoscale.This journal is © The Royal Society of Chemistry 2019

Page 2: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S2

Theoretical calculation laser-irradiation-induced temperature for Er: CsYb2F7@glass. Based

on the Boltzmann distribution theory, UC fluorescence intensity ratio (FIR) of Er3+ 2H11/2 and 4S3/2

thermally coupled states satisfies the following equation:

(1)525

545

= exp( ) exp( )H H H H

S S S S B B

I g A w E EFIR CI g A w k T k T

where I525 and I545 are the integrated UC intensities corresponding to the 2H11/2→4I15/2 and

4S3/2→4I15/2 transitions of Er3+, respectively, g, A, σ and w are the degeneracy, the spontaneous

radiative transition rate, the fluorescence cross-section and the angular frequency of emission

transitions from the 2H11/2 or 4S3/2 excited state to the 4I15/2 ground state of Er3+, ΔE is the energy gap

of the two thermally coupled states, kB is the Boltzmann constant, T is the absolute temperature, and

C is the constant. Eq. (1) can be expressed as the follow:

(2)( ) ( ) ( )B

ELn FIR Ln Ck T

The plot of Ln(FIR) versus inverse absolute temperature is linear and the slope ( ) and B

Ek

intercept ( ) can be determined via the linear fitting of experiment data. According to Eq. ( )Ln C

(1), FIR alters in terms of temperature while this FIR also depends on laser pumping power,

therefore temperature can be correlated with pumping power by the following equation:

(3)

[ ( ) ( )]B

ETk Ln C Ln FIR

where all the parameters have their usual meanings. As a consequence, the temperature in the Er:

CsYb2F7@glass sample induced by laser photothermal effect can be evaluated.

Page 3: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S3

Table S1 Crystallographic data of CsGd2F7, showing possible 8 cation sites of Gd. The data for the

other CsRe2F7 compounds are similar. [S1]

[S1] K. Friese, N. Khaidukov, A. Grzechnik, Twinned CsLn2F7 compounds (Ln=Nd, Gd, Tb, Er, Yb): The role of a highly symmetrical cation lattice with an arrangement analogous to the Laves phase MgZn2. Zeitschrift für Kristallographie - Crystalline Materials. 2016, 231, DOI: 10.1515/zkri-2016-1972.

Atom X Y Z Uiso

Cs1 0.16251(2) 0.08903(2) 0.07580(2) 0.01965(9)Cs2 0.16784(2) 0.07660(2) 0.42425(2) 0.02243(10)Cs3 0.35333(2) 0.42573(2) 0.58117(2) 0.01848(9)Cs4 0.315461(18) 0.416092(18) 0.920588(19) 0.01485(7)Gd1 0.409549(11) 0.344796(10) 0.220919(13) 0.00585(4)Gd2 0.407914(11) 0.070520(10) 0.253225(13) 0.00601(4)Gd3 0.185212(10) 0.341803(10) 0.279355(13) 0.00579(4)Gd4 0.088215(11) 0.431558(10) 0.746485(13) 0.00575(4)Gd5 0.090222(11) 0.160077(10) 0.748438(13) 0.00592(4)Gd6 0.317906(10) 0.158727(10) 0.754130(13) 0.00620(4)Gd7 0.001401(10) 0.249843(10) 0.492695(12) 0.00648(4)Gd8 0.499928(11) 0.250234(10) 0.507500(12) 0.00679(4)F1 0.4205(2) 0.33383(18) 0.03976(19) 0.0176(10)F2 0.47143(18) 0.10718(16) 0.08637(19) 0.0150(8)F3 0.11304(19) 0.3092(2) 0.1213(2) 0.0232(10)F4 0.32105(15) 0.41672(15) 0.15250(17) 0.0098(6)F5 0.39210(18) 0.19534(15) 0.1770(2) 0.0142(7)F6 0.24459(16) 0.00391(15) 0.2304(2) 0.0134(7)F7 0.01106(15) 0.00348(15) 0.2504(2) 0.0124(6)F8 0.24811(16) 0.24264(16) 0.2515(2) 0.0140(7)F9 0.05449(16) 0.19118(15) 0.3225(2) 0.0153(7)F10 0.05165(16) 0.35736(16) 0.3256(2) 0.0133(7)F11 0.34567(15) 0.41885(15) 0.34517(17) 0.0103(6)F12 0.4509(2) 0.3160(2) 0.3797(2) 0.0237(12)F13 0.38632(18) 0.11122(17) 0.4223(2) 0.0171(8)F14 0.16492(16) 0.33016(20) 0.46060(19) 0.0182(8)F15 0.03126(19) 0.39133(17) 0.57452(19) 0.0164(8)F16 0.03442(19) 0.14130(16) 0.57554(19) 0.0165(8)F17 0.35684(17) 0.35684(17) 0.5848(2) 0.0165(8)F18 0.16671(16) 0.08251(15) 0.65466(17) 0.0101(6)F19 0.43925(16) 0.43925(16) 0.6774(2) 0.0161(8)F20 0.09720(19) 0.29931(16) 0.6926(2) 0.0186(9)F21 0.09720(19) 0.49515(15) 0.73895(19) 0.0119(6)F22 0.25433(16) 0.25433(16) 0.7499(2) 0.0123(6)F23 0.49281(16) 0.49280(15) 0.7778(2) 0.0131(6)F24 0.0131(6) 0.29690(16) 0.8088(2) 0.0185(7)F25 0.16355(15) 0.08395(14) 0.84842(16) 0.0095(6)F26 0.11183(16) 0.39401(16) 0.91592(19) 0.0137(7)F27 0.11487(16) 0.22308(17) 0.91730(18) 0.0140(7)F28 0.35557(17) 0.14311(17) 0.92848(19) 0.0166(7)

Page 4: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S4

Table S2 Nominal glass compositions (mol%) for all the investigated fluoride-embedded glasses.

The samples were prepared by melt-quenching and subsequent heat-treatment at a certain

temperature for 2 h. Hexa, cub and orth represents hexagonal, cubic and orthorhombic phases,

respectively.

Glass composition(mol%)

Re3+ radius(Å)

Crystallizaiton T&time

Crystallized phase

49SiO2-10Al2O3-12Cs2O-15CsF-14LaF3 RLa=1.19 700℃/2h hexa-CsLa2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14CeF3 RCe=1.15 800℃/2h hexa-CsCe2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14PrF3 RPr=1.14 800℃/2h hexa-CsPr2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14NdF3 RNd=1.12 800℃/2h hexa-CsNd2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14SmF3 RSm=1.10 800℃/2h hexa-CsSm2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14EuF3 REu=1.09 800℃/2h hexa-CsEu2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14GdF3 RGd=1.08 900℃/2h hexa-CsGd2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14TbF3 RTb=1.06 900℃/2h hexa-CsTb2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14DyF3 RDy=1.05 900℃/2h hexa-CsDy2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14HoF3 RHo=1.04 950℃/2h hexa-CsHo2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14YF3 RY=1.04 950℃/2h hexa-CsY2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14ErF3 REr=1.03 950℃/2h hexa-CsEr2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14TmF3 RTm=1.02 950℃/2h hexa-CsTm2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14YbF3 RYb=1.01 950℃/2h hexa-CsYb2F7

49SiO2-10Al2O3-12Cs2O-15CsF-14LuF3 RLu=1.00 950℃/2h hexa-CsLu2F7

59SiO2-10Al2O3-12Cs2O-5CsF-14ScF3 RSc=0.89 750℃/2h hexa-CsSc2F7

55SiO2-6Al2O3-12Na2O-19NaF-8YF3 650℃/2h hexa-NaYF4

55SiO2-11Al2O3-7Na2O-19NaF-8YbF3 650℃/2h cub-NaYbF4

53SiO2-6Al2O3-12K2O-15KF-14YbF3 750℃/2h hexa-KYbF4

41SiO2-6Al2O3-9K2O-19KF-25YbF3 750℃/2h orth-KYb2F7

Page 5: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S5

Table S3 The calculated lattice constants (a&c) of CsRe2F7 NCs inside glass based on XRD

patterns. The lattice constants show a rise tendency as Re3+ radius gradually increases.

Table S4 The calculated temperature (Tc) of Er: CsYb2F7@glass sample induced by laser irradiation

with various power density. As a comparison, the actually measured temperature (Tm) recorded by

a laser sight infrared thermometer is provided.

Laser power density (W/cm2) FIR Tc (℃) Tm (℃)

55 0.701 202 200

95 0.957 282 299

130 1.274 393 366

170 1.634 496 487

195 1.963 635 599

230 2.547 837 825

275 3.001 1154 -

Re3+ Sc3+ Lu3+ Yb3+ Tm3+ Er3+ Y3+ Ho3+ Dy3+

R (Å) 0.89 1.00 1.01 1.02 1.03 1.04 1.04 1.05

a (Å) 7.625 7.790 7.806 7.818 7.809 7.910 7.951 8.036

c (Å) 18.571 19.062 19.145 19.170 19.188 19.224 19.287 19.332

Re3+ Tb3+ Gd3+ Eu3+ Sm3+ Nd3+ Pr3+ Ce3+ La3+

R (Å) 1.06 1.08 1.09 1.10 1.12 1.14 1.15 1.19

a (Å) 7.976 8.101 8.108 8.139 8.191 8.297 8.370 8.418

c (Å) 19.404 19.476 19.503 19.611 19.908 19.926 20.052 20.205

Page 6: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S6

Figure S1 Schematic illustration of a typical CsLu2F7 crystal structure. The ionic sites in the unit

cell are tabulated in Table S1. Inset is the detailed crystallographic data. [S2]

[S2] V. N. Makhov, N. M. Khaidukov, D. Lo, M. Kirm, G. Zimmerer, Spectroscopic properties of

Pr3+ luminescence in complex fluoride crystals. Journal of Luminescence, 2003, 102-103, 638.

10 nm10 nm

Figure S2 HRTEM image of an individual CsLu2F7 NC inside glass.

CsLu2F7 NC

Page 7: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S7

400 800 1200 1600

CsLu2F7@glass

PG1046776595447

Tran

mitt

ance

(%)

Wavenumber (cm-1)Figure S3 FTIR spectra of precursor glass (PG) and the corresponding CsLu2F7@glass.

200 400 600 800 1000 1200 1400

CsLu2F7@glass

Inten

sity

(nm

)

Raman shift (cm-1)

PG

Figure S4 Raman spectra of precursor glass and the corresponding CsLu2F7@glass.

Page 8: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S8

1000 800 600 400 200 0

Lu 4dSi 2p

Al 2pC 1s

Cs 3dO 1s

PG

CsLu2F7@glass

Inten

sity

(a.u

.)

Binding energy (eV)

F 1s

(a)

108 104 100 96

(b) Si 2p

PG

CsLu2F7@glass

Inte

nsity

(a.u

.)

Binding energy (eV)84 80 76 72 68

(c) Al 2p

PG

CsLu2F7@glass

Inten

sity (

a.u.)

Binding energy (eV)544 540 536 532 528

(d) O 1s

PG

CsLu2F7@glass

Inten

sity

(a.u

.)

Binding energy (eV)

740 735 730 725 720

(e) Cs 3d

PG

CsLu2F7@glass

Inten

sity

(a.u

.)

Binding energy (eV)208 204 200 196

(f) Lu 4d

PG

CsLu2F7@glass

Inten

sity

(a.u

.)

Binding energy (eV)696 692 688 684 680

(g) F 1s

PG

CsLu2F7@glass

Inten

sity

(a.u

.)

Binding energy (eV)

Figure S5 (a) XPS full spectra for precursor glass and the corresponding CsLu2F7@glass. High-

resolution XPS spectra of (b) Si 2p, (c) Al 2p, (d) O 1s, (e) Cs 3d, (f) Lu 4d and (g) F 1s for precursor

glass and CsLu2F7@glass samples.

Page 9: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S9

400 450 500 550 600 650 700 750

Eu: CsLu2F7 @glass

Wavelength (nm)

Eu-doped PG

Norm

alize

d in

tensit

y (a

.u.)

xenon lamp (ex=393 nm) 5D0

7F3

7F3

5D0

7F2

5D0

7F1

5D0

7F0 7F

4 5D

0

7F2

5D1

7F1

5D1

7F2

5D2

5D2

7F0

5D1

7F0

5D2

0 10 20 30 40

Eu-doped PG Eu: CsLu2F7 @glass

Inten

sity

(a.u

.)

Time (ms)Figure S6 PL spectra and decay curves for Eu-doped precursor glass and Eu: CsLu2F7@glass.

400 450 500 550 600 650 700 750

Eu: CsLa2F7@glass

Wavelength (nm)

Eu-doped PG

Nom

alize

d In

tensit

y (a

.u.)

0 10 20 30 40

Inten

sity

(a.u

.)

Time (ms)

Eu-doped PG Eu: CsLa2F7 @glass

Figure S7 PL spectra and decay curves for Eu-doped precursor glass and Eu: CsLa2F7@glass.

400 450 500 550 600 650 700 750

Eu: CsGd2F7 @glass

Wavelength (nm)

Eu-doped PG

Nom

alize

d In

tensit

y (a

.u.)

0 10 20 30 40

Eu-doped PG Eu: CsGd2F7@glass

Inten

sity

(a.u

.)

Time (ms)Figure S8 PL spectra and decay curves for Eu-doped precursor glass and Eu: CsGd2F7@glass.

Page 10: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S10

450 500 550 600 650 700 750

Eu-doped PG

Norm

alize

d in

tensit

y (a

.u.)

Wavelength (nm)

Eu: CsY2F7 @glass

0 10 20 30 40

Eu-doped PG Eu: CsY2F7 @glass

Inten

sity

(a.u

.)

Time (ms)Figure S9 PL spectra and decay curves for Eu-doped precursor glass and Eu: CsY2F7@glass.

400 450 500 550 600 650 700 750

Eu: CsYb2F7 @glass

Wavelength (nm)

Eu-doped PG

Nom

alize

d In

tensit

y (a

.u.)

0 5 10

Eu-doped PG Eu: CsYb2F7 @glass

Inten

sity

(a.u

.)

Time (ms)Figure S10 PL spectra and decay curves for Eu-doped precursor glass and Eu: CsYb2F7@glass.

400 450 500 550 600 650 700 750

Eu: CsSc2F7 @glass

Eu-doped PGNom

alize

d In

tensit

y (a

.u.)

Wavelength (nm)

0 10 20 30 40

Eu-doped PG Eu:CsSc2F7 @glass

Inten

sity

(a.u

.)

Time (ms)Figure S11 PL spectra and decay curves for Eu-doped precursor glass and Eu: CsSc2F7@glass.

Page 11: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S11

0

1

2

3 Eu-doped PG Eu:CsRe2F7@glass

CsSc2F 7

CsLu 2F 7

CsYb 2F 7

CsY 2F 7

CsGd 2F 7

ED/M

D (a

.u.)

CsLa 2F 7

Figure S12 Emission intensity ratio between electric dipolar (ED) 5D0→7F2 transition and magnetic

dipolar (MD) 5D0→7F1 one for the Eu: CsRe2F7@glass (Re=La, Gd, Y, Yb, Lu, Sc) samples and the

corresponding Eu-doped precursor glasses.

400 450 500 550 600 650 700 750

x40

Yb/Er: CsLu2F7 @glass

PG

Wavelength (nm)

UC in

tensit

y (a

.u.)

Figure S13 UC emission spectra for Yb/Er-doped precursor glass and Yb/Er: CsLu2F7@glass.

Page 12: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S12

400 500 600 700

UC in

tensit

y (a

.u.)

Wavelength (nm)

x17

Yb/Ho: CsLu2F7 @glass

PG

Figure S14 UC emission spectra for Yb/Ho-doped precursor glass and Yb/Ho: CsLu2F7@glass.

400 500 600 700

Wavelength (nm)

PG

UC in

tensit

y (a

.u.)

Yb/Tm: CsLu2F7 @glass

x10

Figure S15 UC emission spectra for Yb/Tm-doped precursor glass and Yb/Tm: CsLu2F7@glass.

Page 13: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S13

400 500 600 700

PG

x3

UC in

tensit

y (a

.u.)

Wavelength (nm)

Yb/Er: CsLa2F7 @glass

Figure S16 UC emission spectra for Yb/Er-doped precursor glass and Yb/Er: CsLa2F7@glass.

400 450 500 550 600 650 700 750

Wavelength (nm)

x10

PG

UC in

tensit

y (a

.u.) Yb/Er: CsGd2F7 @glass

Figure S17 UC emission spectra for Yb/Er-doped precursor glass and Yb/Er: CsGd2F7@glass.

Page 14: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S14

400 500 600 700

x20

Yb/Er: CsY2F7 @glass

PG

UC in

tensit

y (a

.u.)

Wavelength (nm)

Figure S18 UC emission spectra for Yb/Er-doped precursor glass and Yb/Er: CsY2F7@glass.

400 500 600 700

PG

Yb/Er: CsYb2F7 @glass

UC in

tensit

y (a

.u.)

Wavelength (nm)

x5

Figure S19 UC emission spectra for Yb/Er-doped precursor glass and Yb/Er: CsYb2F7@glass.

Page 15: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S15

0 2 4 6 8

(a)ex=980nm em=545nm

PG Yb/Er:CsY2F7 @glass

Log [

UC in

tensit

y (a.u

.)]

Time (ms) 0 2 4 6 8

(b)

PG Yb/Er:CsY2F7 @glass

Log [

UC in

tensit

y (a.u

.)]

Time (ms)

ex=980nm em=655nm

0 2 4 6 8

(c)ex=980nm em=545nm

Log

[UC

inten

sity

(a.u

.)]

Time (ms)

PG Yb/Er:CsGd2F7 @glass

0 2 4 6 8

(d)

PG Yb/Er:CsGd2F7 @glass

ex=980nm em=655nm

Log [

UC in

tensit

y (a.u

.)]

Time (ms)

0 2 4 6

(e)

PG Yb/Er:CsLu2F7 @glass

ex=980nm em=545nm

Log [

UC in

tensit

y (a.u

.)]

Time (ms)0 2 4 6

(f) PG Yb/Er:CsLu2F7 @glass

ex=980nm em=655nm

Log

[UC

inten

sity(

a.u.)]

Time (ms)

0 2 4

(g) ex=980nm em=541nm

PG Yb/Ho:CsLu2F7 @glass

Log

[UC

inten

sity

(a.u

.)]

Time (ms)0 2 4 6

(h) ex=980nm em=480nm PG Yb/Tm:CsLu2F7 @glass

Log

[UC

inten

sity

(a.u

.)]

Time (ms)

Figure S20 (a-f) UC decay curves for Yb/Er-doped precursor glass and Yb/Er: CsRe2F7@glass

(Re=Y, Gd, Lu) by monitoring Er3+ green and red emissions. (g) UC decay curves for Yb/Ho-doped

precursor glass and Yb/Ho: CsLu2F7@glass by monitoring Ho3+ red emission. (h) UC decay curves

for Yb/Tm-doped precursor glass and Yb/Tm: CsLu2F7@glass by monitoring Tm3+ blue emission.

Page 16: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S16

0

2

4

6

8

10

12

3.132.70

10.84

1.381.100.36

CsSc2F7CsLu2F7

CsYb2F7

CsY2F7CsGd2F7

R/G

ratio

CsLa2F7

Figure S21 UC red-to-green ratio for Yb/Er: CsRe2F7@glass (Re=La, Gd, Y, Yb, Lu, Cs) samples.

Insets are the corresponding UC emissive photographs under irradiation of 980 nm laser

10 20 30 40 50 60 70 80

Inten

sity

(a.u

.)

2 (degree)

JCPDS NO.16-0334

(a)

Figure S22 (a) XRD pattern and (b) HAADF-STEM image of Yb/Er: NaYF4@glass sample. Bars

represent diffraction data of hexagonal NaYF4 crystal (JCPDS No. 16-0334). The precipitated phase

inside glass is hexagonal NaYF4, and the particle sizes are in the range of 40~100 nm.

(b)

NaYF4 NCs

glass matrix

Page 17: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S17

400 500 600 700

(a)

x3Yb/Er:NaYF4

Yb/Er:CsLu2F7

UC

inte

nsity

(a.u

.)

Wavelength (nm)

400 500 600 700

(b)

Yb/Tm:CsLu2F7

Wavelength (nm)

x13

Yb/Tm:NaYF4

UC

inte

nsity

(a.u

.)

400 500 600 700

Yb/Ho:NaYF4

UC

inte

nsity

(a.u

.)

Wavelength (nm)

Yb/Ho:CsLu2F7

x5

(c)

Figure S23 Comparison of UC emission profile and intensity between Yb/Ln: CsLu2F7@glass and

Yb/Ln: NaYF4@glass: (a) Ln=Er, (b) Ln=Tm, (c) Ln=Ho. The corresponding spectra are recorded

under the identical conditions.

400 500 600 700

0.0

0.4

0.8

1.2

1.6

2.0(a)

Er: CsYb2F7@glass

Nor

mal

ized

inte

nsity

(a.u

.)

Wavelength (nm)

Figure S24 (a) 980 nm laser power density (55~275 W/cm2) dependent UC emission spectra of Er:

CsYb2F7@glass samples. Arrow represents elevation of laser power density. (b) Color coordinates

of UC luminescence for Er: CsYb2F7@glass in CIE diagram with increase of laser powder density.

Insets show remarkable change of UC emissive color for Er: CsYb2F7@glass samples irradiated by

elevated laser power density (from bottom to top).

(b)

Page 18: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S18

0 1 2 3 4 5 60

2

4

6

8

10 (a)

R/G

inte

grat

ed ra

tio (a

.u.) 55 W/cm2

230 W/cm2

Cycling number 10 20 30 40 50 60 70

(b) Er: CsYb2F7@glass

After laser irradiation

Inte

nsity

(a.u

.)

2 (degree)

Pristine

JCPDS NO.43-0505

Figure S25 (a) Er3+ red-to-green UC emissive ratio for Er: CsYb2F7@glass in cycles of low laser

power density (55 W/cm2) and high laser power density (230 W/cm2). (b) XRD patterns of pristine

Er: CsYb2F7@glass and the sample after laser irradiation for 6 cycling times.

0

5

10

15

20

25

4F7/22H11/24S3/24F9/24I9/24I11/2

4I13/2

4I15/2

2F5/2

2F7/2

Ener

gy (1

03 cm-1

)

Yb3+ Er3+

980

nm la

ser

Thermally coupled states

400 500 600 700

(b) 95 W/cm2In

tens

ity (a

.u.)

Wavelength (nm)

2H11/2 4S3/2

4F9/2

Rat

io(F

/S)=

0.22

:1

400 500 600 700

(c) 170 W/cm2

2H11/2

4S3/2

Wavelength (nm)

4F9/2

Inte

nsity

(a.u

.)

Wavelength (nm)

Rat

io(F

/S)=

0.34

:1

400 500 600 700

4F9/2

4S3/2Inte

nsity

(a.u

.)

Wavelength (nm)

275 W/cm22H11/2

Rat

io(F

/S)=

0.52

:1

(d)

Figure S26 (a) Energy levels of Yb3+ and Er3+, Yb-to-Er energy transfer UC processes and Er3+

2H11/2 and 4S3/2 thermally couple states of in Er: CsYb2F7@glass. (b-d) Laser power dependent UC

emission spectra. The peak ratio between4S3/2→4I15/2 transition and 4F9/2→4I15/2 one is provided.

(a)

Page 19: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S19

400 450 500 550 600 650 700

power increasing

Norm

alize

d in

tensit

y (a

.u.)

Wavelength (nm)

Figure S27 980 nm laser power dependent UC emission spectra of Er: CsYb2F7@glass recorded at

a low temperature (77 K).

10 20 30 40 50 60 70

Inten

sity

(a.u

.)

2(degree)

JCPDS No.77-2043

Er: NaYbF4@glass

10 20 30 40 50

Er: KYbF4@glass

Inten

sity

(a.u

.)

2 (degree)

JCPDS No.27-0457

10 20 30 40 50

JCPDS No. 27-0459

Er: KYb2F7@glass

2 (degree)

Inten

sity

(a.u

.)

Figure S28 XRD patterns of (a) Er: NaYbF4@glass, (b) Er: KYbF4@glass and (c) Er:

KYb2F7@glass samples. Bars represent cubic NaYbF4 (JCPDS No. 77-2043), hexagonal KYbF4

(JCPDS No. 27-0457) and orthorhombic KYb2F7 (JCPDS No. 27-0459) crystals diffraction data.

(a) (b)

(c)

Page 20: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S20

400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

Er: NaYbF4@glassN

orm

alize

d in

tensit

y (a

.u.)

Wavelength (nm)400 500 600 700

0.0

0.2

0.4

0.6

0.8

1.0

Norm

alize

d in

tensit

y (a

.u.)

Wavelength (nm)

Er: KYbF4@glass

400 450 500 550 600 650 7000.0

0.2

0.4

0.6

0.8

1.0

Norm

alize

d in

tensit

y (a

.u.)

Wavelength (nm)

Er: KYb2F7@glass

Figure S29 980 nm laser power density (55~275 W/cm2) dependent UC emission spectra of (a) Er:

NaYbF4@glass, (b) Er: KYbF4@glass and (c) Er: KYb2F7@glass samples. Arrows represent

elevation of laser power density.

50 100 150 200 250 3000

200

400

600

800

1000

1200

CsYb2F7-Calculated values CsYb2F7-Measured data KYb2F7-Measured data KYbF4-Measured data NaYbF4-Measured data

T (℃

)

Laser power density ( W/cm2) Figure S30 Experimental measured temperatures for the Er: NaYbF4@glass, Er: KYbF4@glass, Er:

KYb2F7@glass and Er: CsYb2F7@glass samples exposed to different 980 nm laser power densities.

Theoretical calculated temperature values based on repopulation of Er3+: 2H11/2 and 4S3/2 thermally

coupled states for Er: CsYb2F7@glass are also provided.

(c)

(a) (b)

Page 21: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S21

500 520 540 560 580 600

UC in

tensit

y (a.u

.)

Wavelength (nm)

293K 313K 333K 353K 373K 393K 413K 433K 453K

(a)

500 520 540 560 580 600

0.0

0.2

0.4

0.6

0.8

1.0(b)

Temperature increasing

Norm

alize

d Inte

nsity

(a.u.

)

Wavelength (nm)

280 320 360 400 4400.1

0.2

0.3

0.4

0.5

0.6 Experimental Data

FIR

T (K)0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4(d)

Experimental data Fitting curve

Ln (F

IR)

1/T (K-1)

Slope=-1088 ± 19Intercept=1.91 ± 0.05

Figure S31 (a) Temperature (313~453 K) dependent UC emission spectra of Er: CsYb2F7@glass.

(b) Normalized UC emission spectra of (a). (c) FIR values versus temperature. (d) Monolog plot of

FIR versus inverse absolute temperature. The fitting line is also provided in (d).

Figure S32 Real-time observation of the change of UC emissive color for Er: CsYb2F7@glass on a

hot plate with elevation of temperature from 30 oC to 550 oC under the irradiation of fixed laser

power (500 mW). The temperature of sample from left to right is 30 oC, 100 oC, 200 oC, 300 oC,

400 oC, 500 oC and 550 oC.

(c)

Page 22: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S22

350 400 450 500

Ce (x mol%): CsLu2F7

100%

20%

10%

5%

2.8%

1.4%

0.7%

Wavelength (nm)

PL in

tens

ity (a

.u.)

0.1 0.2 0.3 0.4 0.5

(b)

1.4%

0.7%

Time (s)

Ce (x mol%): CsLu2F7

PL in

tens

ity (

a.u.

)

100%

20%

10%

5%

2.8%

Figure S33 Ce doping content (0.7~100 mol%) dependent PL spectra and decay behaviors for Ce:

CsLu2F7@glass.

400 450 500 550 600 650 700 750

UC in

tensit

y (a

.u.)

Wavelength (nm)

0 day 1 day 3 days 7 days 15 days 30 days

Yb/Er: CsLu2F7@glass

400 450 500 550 600 650 700 750

UC in

tensit

y (a

.u.)

Wavelength (nm)

0 day 1 day 3 days 7 days 15 days 30 days

Yb/Er: CsLu2F7@glass powders

0 5 10 15 20 25 300

20

40

60

80

100

Relat

ive i

nten

sity

(%)

Time (day)

Yb/Er: CsLu2F7 @glass

0 5 10 15 20 25 300

20

40

60

80

100

Relat

ive i

nten

sity

(%)

Time (day)

Yb/Er: CsLu2F7 @glass powders

Figure S34 (a, b) UC emission spectra of Yb/Er: CsLu2F7@glass and the corresponding powders

immersing in water for different times (0~30 days). (c, d) UC integrated intensities versus

immersing durations in water solution.

(a)

(a) (b)

(c) (d)

Page 23: Functional Applications Supporting information ...S1 Supporting information CsRe2F7@Glass Nanocomposites with Efficient Up-/Down-Conversion Luminescence: from In-Situ Nanocrystallization

S23

0 2 4 6

Yb/Er: CsLu2F7@glass in waterLo

g [U

C in

tensit

y (a

.u.)]

Time (ms)

0 day 1 day 3 days 7 days 15 days 30 days

ex=980 nm em=545 nm

0 2 4 6 8

Yb/Er: CsLu2F7@glass in water

Log

[UC

inten

sity

(a.u

.)]

Time (ms)

0 day 1 day 3 days 7 days 15 days 30 days

ex=980 nm em=655 nm

0 2 4 6

0 day 1 day 3 days 7 days 15 days 30 days

Log

[UC

inten

sity

(a.u

.)]

Time (ms)

ex=980 nm em=545 nmYb/Er: CsLu2F7@glass in oil solution

0 2 4 6 8

Yb/Er: CsLu2F7@glass in oil solution

Log

[UC

inten

sity

(a.u

.)]

Time (ms)

0 day 1 day 3 days 7 days 15 days 30 days

ex=980 nm em=655 nm

Figure S35 UC decay curves of Yb/Er: CsLu2F7@glass immersing in solution for different

durations (0~ 30 days): (a, b) in water by monitoring Er3+ green and red emissions, (c, d) in oil

solution by monitoring Er3+ green and red emissions.

(a) (b)

(c) (d)