16
IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 1 Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells Werner Sitte Chair of Physical Chemistry, University of Leoben, Austria

Fuel Cell Research Activities at the University of Leoben ... · IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 2 hLifetime/degradation Reduced degradation rate of thermally

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 1

    Fuel Cell Research Activities at the University of Leoben

    Focus: Solid Oxide Fuel Cells

    Werner Sitte

    Chair of Physical Chemistry, University of Leoben, Austria

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 2

    Lifetime/degradationReduced degradation rate of thermally activated cell degradation mechanismsReduced corrosion rate of chromium-based alloys and steels for interconnectsMetal, metal-ceramic (compressible) seals and non crystallizing glassStability of contact coatingsLower sensitivity for combined thermal-redox cycles

    CostsLifetimeCheap interconnect chromium alloys / steels and BOP materialsIndustrial, cost effective manufacturing processes

    Fuel flexibility and high efficiencyH2 and reformatesInternal reforming of NG (simplest and most efficient system)

    - Low catalytic activity for carbon deposition

    State-of-the-art and motivation for research on IT-SOFCs

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 3

    7 Universities

    11 R&D organisations

    3 Industrial companies, all SMEs

    ECN NetherlandsHTceramix SwitzerlandCEA FranceEMPA SwitzerlandFZJ GermanyImperial College United Kingdom

    Uni Karlsruhe GermanyUni St.Andrews United KingdomUni Oxford United KingdomUni Leoben AustriaCNRS Bordeaux FranceTOFC Denmark AECA (NTDA-SOFC) SpainNRC CanadaDICP ChinaIPMS UkraineSJTU ChinaBIC RussiaPMI BelarusVTT FinlandRisø - DTU Denmark

    Project Consortium

    Participation of University of Leoben in the Integrated Project SOFC600 (2006-2010)

  • SOFC600: Component and cell development

    10-100 cm2 cellASR < 0.5 ohm.cm2

    Degradation rate < 1 mohm.cm2/khr

    LSC

    LSCF

    PSCF

    LNF

    LN

    PN

    LSC-GCO

    Cr-resistance

    Porosity

    Nano-LSC

    YDC

    Barrier LayerGrain size

    20GCO

    NN

    Screen printing

    PVDPowder

    Layer Thickness

    Sintering

    Reactivity

    Lateral conductivity

    Anode substrate

    Wet deposition

    Ni/YSZ

    Microstructure

    Particle size

    Milling

    Ni/ScZ

    Ni/GCO

    LST

    Poreformer

    SYT

    Impedance

    Robustness

    Redox

    Ni-salt

    ImpregnationS-tolerance

    Coking

    Milling

    S/C

    PolarisationCeria

    CatalystInternal reforming

    Dilatometry

    Expansion

    MgO

    Grain boundary Aging

    Ionic radius

    Dopant

    Partial oxygen pressure

    Ce-reduction

    Grain size

    10Sc1CeZr

    Oxygen ionic conductivity

    LiMOCVD

    Thin film

    8YSZStabilityKinetics

    Yb-ZrHf-Zr

    Y-Ce-Sc-ZrEB-PVD

    Phase transition

    J-V curve

    Cell housing

    Contacting

    Current collector gridCell temperature

    Area specific resistance

    Cell area

    Cell housing

    Cell integrationGas flow

    Sealing

    Cell compositionCo-firing

    Oxide anode

    Reference cells

    CO2

    © Integrated Project SOFC600 (SES6-2006-020089), F. van Berkel

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 5

    SOFC cell at 600oCArea Specific Resistance (ASR) below 0,5 Ω.cm2

    Degradation rate below 0.05% / 1000 hours (1 mohm.cm2/khr)Robustness: 200 redox cycles, internal reforming capability, reduced coke formation activity

    Aim for components:Anode (WP1.1) < 0.3 ohm.cm2

    Cathode (WP1.2) < 0.15 ohm.cm2

    Electrolyte (WP1.3) < 0.1 ohm.cm2

    Cell (WP1.4) < 0.5 ohm.cm2

    550 600 650 700 750 800

    250

    500

    750

    1000

    1250

    1500

    1750

    2000

    2250

    2500

    status 2003/04 (CORE-SOFC)

    projecttarget

    AS

    R /

    cm

    2

    Temperature / °C

    tentative status 2005 (REALSOFC)

    Overall Achievements Cell Development SOFC600

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 6

    SOFC CathodesOxygen exchange properties

    of BSCF, LSCF, NDNincluding

    long time stability in real atmospheres

    SOFC Electrolytes Sc-ZrO2

    bulk and grain boundary conductivity = f(T, pO2)ageing studies

    poröses NiO/YSZH2 e-

    e-e-

    H2O

    dichtes YSZ

    poröses dotiertes CeO2

    poröses LSCF

    e-e-

    e-O2

    O2-

    Quelle: ECN Niederlande

    University of Leoben: SOFC Activities

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 7

    BSCF in different atmospheresCO2-free atmosphere: Reversible oxygen exchange of perovskite phase (ABO3-δ)

    CO2-rich atmosphere: Onset of oxygen exchange shifted towards higher T

    E. Bucher et al., in Proc. 8th Eur. SOFC Forum, 2008, p. A0603.

    )pO,T(f]V[

    Oe2V(g)O

    2O

    xOO22

    1

    =δ=

    ⇔′++••

    ••

    SOFC cathodes: BSCF

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 8

    Long term stability of the oxygen exchange kinetics of Nd2NiO4+δ(NDN) and La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) in dry and wet atmospheres at 700°C

    T=700°C

    SOFC cathodes: LSCF vs. NDN

    A. Egger et al., J. Electrochem. Soc., in press (2010)

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 9

    0.0 0.5 1.0 1.5 2.0 2.50.0

    0.5

    1.0

    1.5

    2.0

    2.5Rel

    CPEgb

    Rgb

    CPEel CPEbulk

    Rbulk Lss

    p(O2) = 0.21 bar, T = 300°C 1%-H2/Ar , T = 300°C

    -Z'' /

    cm

    Z' / MΩ cm0.0 0.5 1.0 1.5 2.0 2.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5Rel

    CPEgb

    Rgb

    CPEel CPEbulk

    Rbulk Lss

    -Z'' /

    cm

    Z' / MΩ cm

    p(O2) = 0.21 bar, T = 300°C 1%-H2/Ar , T = 300°C

    Ce0.12Y0.08Sc0.6Zr3.2O7.66Y0.2Sc0.6Zr3.2O7.60

    Impedance spectra in oxidizing and reducing atmospheres (300 C)

    Sc-doped zirconia electrolytes

    [W. Preis, A. Egger, J. Waldhäusl, W. Sitte, E. de Carvalho, J.T.S. Irvine, SOFC XI, ECS Transactions 25 (2009) 1635-1642]

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 10

    1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8-8

    -6

    -4

    -2

    0

    2

    4

    EA = (1.05 ± 0.02) eV560 < T/°C < 700

    EA = (1.27 ± 0.01) eV300 < T/°C < 560

    EA = (0.92 ± 0.02) eV560 < T/°C < 700

    EA = (1.24 ± 0.01) eV300 < T/°C < 560

    heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C)

    ln(σ

    T / S

    cm

    -1 K

    )

    103 (T / K)-11.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

    -8

    -6

    -4

    -2

    0

    2

    4

    EA = (1.27 ± 0.01) eV300 < T/°C < 560

    EA = (0.99 ± 0.03) eV560 < T/°C < 700

    EA = (1.27 ± 0.01) eV300 < T/°C < 560

    EA = (0.99 ± 0.03) eV560 < T/°C < 700

    103 (T / K)-1

    ln

    ( σT

    / S c

    m-1 K

    )

    heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C)

    Ce0.12Y0.08Sc0.6Zr3.2O7.66Y0.2Sc0.6Zr3.2O7.60

    Comparison between Y0.2Sc0.6Zr3.2O7.60 and Ce0.12Y0.08Sc0.6Zr3.2O7.66: heating in air (oxidizing conditions) and cooling in 1%-H2/Ar after reduction at 700°C for approx. 4 days

    Bulk conductivity as a function of temperature in oxidizing and reducing atmospheres

    Sc-doped zirconia electrolytes

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 11

    Comparison between Y0.2Sc0.6Zr3.2O7.60 and Ce0.12Y0.08Sc0.6Zr3.2O7.66: heating in air (oxidizing conditions) and cooling in 1%-H2/Ar after reduction at 700°C for approx. 4 days

    Ce0.12Y0.08Sc0.6Zr3.2O7.66Y0.2Sc0.6Zr3.2O7.60

    1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    EA = (1.28 ± 0.01) eV

    EA = (1.28 ± 0.01) eV

    heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C)

    ln(σ

    T / S

    cm

    -1 K

    )

    103 (T / K)-11.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    EA = (1.30 ± 0.01) eV

    EA = (1.27 ± 0.01) eV

    heating in air (300 → 700°C) cooling in 1% - H2 / Ar (700 → 300°C)

    ln(σ

    T / S

    cm

    -1 K

    )

    103 (T / K)-1

    Grain boundary conductivity as a function of temperature in oxidizing and reducing atmospheres

    Sc-doped zirconia electrolytes

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 12

    -24 -20 -16 -12 -8 -4 0

    0.01

    0.1

    T = 700°C

    σ bul

    k / S

    cm

    -1

    log[p(O2) / bar]

    Y0.20Sc0.6Zr3.2O7.60 Ce0.08Y0.12Sc0.6Zr3.2O7.64 Ce0.10Y0.10Sc0.6Zr3.2O7.65 Ce0.12Y0.08Sc0.6Zr3.2O7.66 Ce0.16Y0.042Sc0.6Zr3.2O7.68 Ce0.20Sc0.6Zr3.2O7.70

    Bulk conductivity

    -24 -20 -16 -12 -8 -4 0

    0.01

    0.1

    σ tot

    al /

    S c

    m-1

    log [p(O2) / bar]

    Y0.20Sc0.6Zr3.2O7.60 Ce0.08Y0.12Sc0.6Zr3.2O7.64 Ce0.10Y0.10Sc0.6Zr3.2O7.65 Ce0.12Y0.08Sc0.6Zr3.2O7.66 Ce0.16Y0.042Sc0.6Zr3.2O7.68 Ce0.20Sc0.6Zr3.2O7.70

    Total (bulk + gb) conductivity

    All samples containing ceria show a remarkable decrease of theionic conductivity at p (O2) < 10-15 bar

    This effect is even more pronounced for grain boundaries

    Electrical conductivity as a function of p(O2) at 700°C

    Sc-doped zirconia electrolytes

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 13

    0 1000 2000 3000 4000 5000 6000

    0.02

    0.04

    0.06

    0.081%-H2/Ar

    bulk grain boundaries total (= bulk + gb)

    σ / S

    cm

    -1

    t / hours

    air

    Aging study of (CeO2)0.01(Sc2O3)0.10(ZrO2)0.89 at 700° under 1%-H2/Ar

    Sc-doped zirconia electrolytes

    [W. Preis, A. Egger, J. Waldhäusl, W. Sitte, E. de Carvalho, J.T.S. Irvine, SOFC XI, ECS Transactions 25 (2009) 1635-1642]

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 14

    Outlook: Research on SOFC components for stationary and mobile applications

    SOFC CathodesCathodes for solid oxide fuel cells with respect to long term stability under real operating conditions including failure analysis of degraded cathodes

    - Partners: AVL List GmbH and FZ Jülich

    Structure-property relations of thin film SOFC cathodes(oxygen exchange properties, defect chemistry)

    - Partners: Joanneum Research Forschungsgesellschaft mbH, TU Wien

    SOFC ElectrolytesDevelopment of co-doped Sc-zirconia electrolytes(bulk and grain boundary conductivity as function of temperature and oxygen partial pressure, defect chemistry, ageing studies)

    - Partner: University of St. Andrews, UK

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 1515

    Research Co-operations

    Financial Support

    ...

    ...

    Acknowledgment

    http://www.steiermark.at/http://www.klimafonds.gv.at/home/aktuelles.htmlhttp://www.mcl.at/

  • IEA Workshop Advanced Fuel Cells, TU Graz, 01.09.2010 16

    Thank you for your attention!

    Foliennummer 1Foliennummer 2Foliennummer 3SOFC600: Component and cell development �Foliennummer 5Foliennummer 6BSCF in different atmospheresFoliennummer 8Foliennummer 9Foliennummer 10Foliennummer 11Foliennummer 12Foliennummer 13Foliennummer 14Foliennummer 15Foliennummer 16