FTIR Topic_Undesired Phenomena

  • Upload
    jusco

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    1/50

    1

    Error structure of spectroscopic data (NIR, FTIR etc)- and how to deal with them .

    Harald Martens and Achim Kohler

    Centre for Biospectroscopy and Data Modelling, Nofima Food, s,Norway

    CIGENE Center for Integrative Genetics, University of Life Sciences,s,

    Department of Mathematical Sciences and Technology (IMT), Norwegian

    University of Life Sciences, s, Norway

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    2/50

    2

    DNA mRNA Proteome Metabolome BiologicalStructure

    Environment, human activity

    Data analysis: Integrating different types of bio-dataLook for common variation patterns

    Make quantitative prediction and forecasting

    Identify outliers

    Otherphenotypes

    1D-, 2D -Electrophoresis

    MALDI-TOFLC-MS

    GC,LC(-MS)

    Sequencing,SNP, AFLP, NIR, FT-IR

    RamanFlourescenceSerotyping

    Realtime PCRMicro-array

    My own field:

    Measurements and modelling in systems biology

    Disease incidence

    VirulenceDrug sensitivityBiofilm formationSensory ScienceEconomy

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    3/50

    3

    DNA mRNA Proteome Metabolome BiologicalStructure

    Environment, human activity

    Otherphenotypes

    1D-, 2D -Electrophoresis

    MALDI-TOFLC-MS

    GC,LC(-MS)

    Sequencing,SNP, AFLP, NIR, FT-IR

    RamanFlourescenceSerotyping

    Realtime PCRMicro-array

    Now the real fun starts: feed-back !

    Disease incidence

    VirulenceDrug sensitivityBiofilm formationSensory ScienceEconomy

    High-dimensional dynamic, non-linear ODEs

    Spatial PDEs

    Possible, since we how are getting relevant and reliable

    high-throughput, high-dimensional instrumentation

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    4/504

    Biospectroscopy

    Wavelength ranges: UV-Vis (2500 nm Raman Scattering - - Fluorescence: (mainly

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    5/505

    Biospectroscopy

    Errors in measurements:

    White noise: Random measurement errors

    (usually heteroscedastic: higher numbers have higher errors)

    Coloured noise: Systematic errors Several undesired, but unavoidable interferants

    From measurement sample thickness,

    temp. effects From samples

    light scattering (simple, complicated) constituent interactions

    Several analytes, with overlapping spectra,

    Model-based pre-processing: Identify and correct for systematic errors . Turn systematic errors into valuable sources of information.

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    6/506

    Water variations in tissues Mie Scattering Dispersive artefact

    100015002000250030003500-0.8

    -0.6

    -0.4

    -0.2

    0

    0.20.4

    0.6

    0.8

    1

    Wavenumber [c m -1]

    Absorption

    Wavenumber-dependent effectsBaseline shift Multiplicative effect

    Examples for undesired phenomena in FTIR

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    7/507

    Chemical absorption Physical contribution

    Pre-Processing

    model

    Measured spectra

    Principle of model-based pre-processing:Mie Scattering of individual liver cancer cells in Synchrotron FTIR

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    8/508

    Example: Light microscopy of muscle,one wavelength in visible range

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    9/509

    Hyperspectral FTIR microscopy of same sample:

    Traditional Chemical image at the best wavelength(1240cm-1 ) - the UNIVARIATE TRADITION!

    like playing complex music on a grand piano with one finger at a time

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    10/5010

    Hyperspectral FTIR microscopy of same sample:

    Chemical image at same wavelength after pre-processing

    like playing SIMPLE music on a grand piano with one finger at a time

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    11/5011

    Hyperspectral FTIR microscopy of same sample:

    Chemical image from pre-processing parameters,based on all wavelengths

    like playing complex music on a grand piano with all fingers and toes (+ nose)

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    12/5012

    Analysing/Visualising estimated parameters/scatter effects

    Estimated parameters can be used for making physical images:

    b, proportional to the effective

    optical path length, is estimatedfor each pixel spectrum

    Kohler A, Bertrand D, Martens H, Hannesson K, Kirschner K, and Ofstad R (2007) Multivariate imageanalysis of a set of FTIR microspectroscopy images of aged bovine tissue combining image and design

    information. Analytical and Bioanalytical Chemistry 389, 1143-1153.

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    13/50

    13

    Pre-processing

    Model-based pre-processing: parameterize the problems Combine knowledge-driven and data-driven modelling

    Use linear data models (fast, simple, robust), but use both

    additive and multiplicative operators Complicated non-linear mathematical models replaced by

    bilinear, compressed summaries of model behaviour

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    14/50

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    15/50

    15

    Notation for model-based pre-processing:

    ref = a reference spectrumz = an input sample spectrum(EXAMPLE: z zTrue ! But zTrue = ref)

    m = mean of z,ref (and possibly some others)

    Error model: 1) m zTrue2) z= f(m) + random noise

    f()=is estimated from input spectra z and m

    Error correction: zCorr= zTrue = f-1(z)

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    16/50

    16

    0

    Spec tra z and ref

    0

    Mean and diff.

    00

    z vs Ref

    0

    zcorr.and Ref

    0

    0

    00 0

    0

    0

    00 0

    Wavelength Wavelength WavelengthAbsorb.(ref)

    Absorbance

    Absorbance

    Absorb.(s

    ample)

    Absorbance

    ref.

    Simple error types; assume z(true)=ref

    z = ref +a zc = z a

    Inputspectra

    Visualization tools Correctedspectra

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    17/50

    17

    Simple error types

    0

    Spec tra z and ref

    0

    Mean and diff.

    00

    z vs Ref

    0

    zcorr.and Ref

    0

    0

    00 0

    0

    0

    00 0

    Wavelength Wavelength WavelengthAbsorb.(ref)

    Absorbance

    Absorba

    nce

    Absorb.(s

    ample)

    Absorba

    nce

    ref.

    z = ref +a

    z = ref b

    z = ref b +a

    zcorr= z a

    zcorr= z / b

    zc = (z a ) / b

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    18/50

    18

    Simple error types

    0

    Spec tra z and ref

    0

    Mean and diff.

    00

    z vs Ref

    0

    zcorr.and Ref

    0

    0

    00 0

    0

    0

    00 0

    Wavelength Wavelength WavelengthAbsorb.(ref)

    Absorba

    nce

    Absorba

    nce

    Absorb.(s

    ample)

    Absorba

    nce

    ref.

    z = ref +a

    z = ref b

    z = ref b +a

    zcorr= z a

    zcorr= z / b

    zcorr

    = (z a ) / b

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    19/50

    19

    Simple error types

    0

    Spec tra z and ref

    0

    Mean and diff.

    00

    z vs Ref

    0

    zcorr.and Ref

    0

    0

    00 0

    0

    0

    00 0

    Wavelength Wavelength WavelengthAbsorb.(ref)

    Absorba

    nce

    Absorba

    nce

    Absorb.(s

    ample)

    Absorba

    nce

    ref.

    z = ref +a

    z = ref b

    z = ref b +a

    zcorr= z a

    zcorr= z / b

    zcorr

    = (z a ) / b

    Method: Multiplicative Signal Correction (MSC)or Standard Normal Variates (SNV)

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    20/50

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    21/50

    21

    Multiplicative Signal Correction and its

    extension (EMSC)

    Model: z = b m + a +

    zcorr= (z a ) / b

    MSC:

    i.e. z = b (m + cKanalytes + dGinterferants) + a +

    zcorr= (z a Ginterferants / b

    EMSC:Model: z = b zTrue + a +

    Regression b, a

    Regression b, , , a

    Assumption: z True= m + cKanalytes + dGinterferants

    Assumption: z True= m

    i.e. z = b m + Kanalytes + Ginterferants + a +

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    22/50

    22

    H.Martens is co-owner of EMSC patent, but academicuse is of course free.

    Algorithms for EMSC are available in Matlab Toolboxetc and in The Unscrambler, for free research use.

    Example: Model FTIR effects of varying

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    23/50

    23

    p y gsample temperature in aquous samples

    Input spectra: water atdifferent temperatures

    Simple EMSC

    Ginterferants =wavelengthdependent baseline

    EMSC with model ofwater, Kanalytes and itstemperature effects, Ginterferant

    Outside instrument range

    Example: Model FTIR effects of varying

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    24/50

    24

    p y gsample temperature in aquous samples

    Input spectra: water atdifferent temperatures

    Simple EMSC

    Ginterferants =wavelengthdependent baseline

    EMSC with model ofwater, Kanalytes and itstemperature effects, Ginterferant

    Outside instrument range

    Example: Model FTIR effects of varying

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    25/50

    25

    p y gsample temperature in aquous samples

    Input spectra: water atdifferent temperatures

    Simple EMSC

    Ginterferants =wavelengthdependent baseline

    EMSC with model ofwater, Kanalytes and itstemperature effects, Ginterferant

    Outside instrument range

    Input, EMSCZ.MAT Output, DataCase=155, EM SC, opt.an extra Bad spectrum, in addition to input

    )

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    26/50

    26

    0 20 40 60 80 1001.5

    2

    2.5

    3

    3.5

    Response

    Channel #

    0 20 40 60 80 1002.4

    2.5

    2.6

    2.7

    2.8

    Response

    Channel #

    0 20 40 60 80 100-1

    -0.5

    0

    0.5

    1

    Input, EMSCZ.MAT

    Mean-Centred

    Response

    Channel #

    0 20 40 60 80 100-0.04

    -0.02

    0

    0.02

    0.04

    Output, DataCase=155, EM SC, opt.an extra Bad spectrum, in addition to input

    Mean-Centred

    Response

    Channel #

    850 1050 nmMixtures ofprotein andstarchpowders

    Absorbancelo

    g(1/T)

    Example of EMSC:

    Pre-processing ofNIR spectra of

    powder mixtures

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    27/50

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    28/50

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    29/50

    More nasty error types

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    30/50

    30

    0

    z=Ref & nonlin. stray light

    0

    Mean and diff.

    00

    z vs Ref

    0

    zcorr.and Ref

    0

    0

    0

    0 0

    0

    0

    00 0

    Wavelength Wavelength WavelengthAbsorb.(ref)

    Absorbance

    Absorbance

    Absorb.(sam

    ple)

    Absorbance

    Responsecurvature

    e.g. straylight ordetectorsaturation

    z=f(ztrue)

    zcorr= f-1(z)

    Sidewaysshift

    (frominstrument orsample)

    zcorr= f-1(z)

    Randomnoise,

    hetero-scedastic

    zcorr= filt(z)

    Method: Non-linear parameter estimation or

    Extended Multiplicative Signal Correction (EMSC)

    y yp

    More nasty error types

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    31/50

    31

    0

    z=Ref & nonlin. stray light

    0

    Mean and diff.

    00

    z vs Ref

    0

    zcorr.and Ref

    0

    0

    0

    0 0

    0

    0

    00 0

    Wavelength Wavelength WavelengthAbsorb.(ref)

    Absorbance

    Absorbance

    Absorb.(sam

    ple)

    Absorbance

    Responsecurvature

    e.g. straylight ordetectorsaturation

    z=f(ztrue)

    zcorr= f-1(z)

    Sidewaysshift

    (frominstrument orsample)

    zcorr= f-1(z)

    Randomnoise,

    hetero-scedastic

    zcorr= filt(z)

    Method: Non-linear parameter estimation or

    Extended Multiplicative Signal Correction (EMSC)

    y yp

    Estimating baseline and multiplicative effect and pre processing

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    32/50

    32

    100020003000

    00.2

    0.4

    0.6

    0.8

    Wavenumber [c m -1]

    Absorbance

    0 0.2 0.4 0.6

    0

    0.20.4

    0.6

    0.8

    Absorbance

    Abs

    orbance

    01

    100020003000

    0

    0.2

    0.4

    0.6

    Wavenumber [cm -1]

    Absorbance

    0 0.2 0.4 0.6

    0

    0.2

    0.4

    0.6

    Absorbance

    Abs

    orbance

    01

    Estimating baseline and multiplicative effect and pre-processing

    Raw spectra MSC/EMSC (basic)

    Raw spectra vs. mean Corrected spectra vs. mean

    Examples for EMSC replicate correction (Ed Stark)

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    33/50

    33

    100020003000

    0

    0.1

    0.2

    0.3

    0.4

    0.50.6

    0.7

    Wavenumber [cm -1]

    Absorbance

    0 0.1 0.2 0.3 0.4

    0

    0.1

    0.20.3

    0.4

    0.5

    0.6

    0.7

    Absorbance

    Absorbance

    07

    100020003000

    00.1

    0.2

    0.3

    0.4

    0.5

    Wavenumber [cm -1]

    Absorbance

    0 0.1 0.2 0.3 0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Absorbance

    Absorbance

    07

    100020003000

    0

    0.1

    0.2

    0.3

    0.40.5

    Wavenumber [cm -1]

    Absorbance

    0 0.2 0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Absorbance

    Absorbance

    07

    Raw EMSC (basic) EMSC rep.

    Examples for EMSC replicate correction (Ed Stark)

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    34/50

    34

    100020003000

    0

    0.1

    0.2

    0.3

    0.4

    0.50.6

    0.7

    Wavenumber [cm -1]

    Absorbance

    0 0.1 0.2 0.3 0.4

    0

    0.1

    0.20.3

    0.4

    0.5

    0.6

    0.7

    Absorbance

    Absorbance

    07

    100020003000

    00.1

    0.2

    0.3

    0.4

    0.5

    Wavenumber [cm -1]

    Absorbance

    0 0.1 0.2 0.3 0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Absorbance

    Absorbance

    07

    100020003000

    0

    0.1

    0.2

    0.3

    0.40.5

    Wavenumber [cm -1]

    Absorbance

    0 0.2 0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Absorbance

    Absorbance

    07

    Raw EMSC (basic) EMSC rep.

    Examples for EMSC replicate correction (Ed Stark)

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    35/50

    35

    100020003000

    0

    0.1

    0.2

    0.3

    0.4

    0.50.6

    0.7

    Wavenumber [cm -1]

    Absorbance

    0 0.1 0.2 0.3 0.4

    0

    0.1

    0.20.3

    0.4

    0.5

    0.6

    0.7

    Absorbance

    Absorbance

    07

    100020003000

    00.1

    0.2

    0.3

    0.4

    0.5

    Wavenumber [cm -1]

    Absorbance

    0 0.1 0.2 0.3 0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Absorbance

    Absorbance

    07

    100020003000

    0

    0.1

    0.2

    0.3

    0.40.5

    Wavenumber [cm -1]

    Absorbance

    0 0.2 0.4

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Absorbance

    Absorbance

    07

    Raw EMSC (basic) EMSC rep.

    Examples for EMSC replicate correction

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    36/50

    36

    100020003000

    0

    0.2

    0.4

    0.6

    0.8

    1

    Wavenumber [cm -1]

    Absorbance

    100020003000

    -0.10

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Wavenumber [cm -1]

    Absorbance

    100020003000

    -0.2

    0

    0.2

    0.4

    Wavenumber [cm -1]

    Absorbance

    100020003000-0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    Wavenumber [cm -1]

    Absorbance

    100020003000

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Wavenumber [cm -1]

    Absorbance

    100020003000-0.04

    -0.02

    0

    0.02

    0.04

    Wavenumber [cm -1]

    Absorbance

    Kohler A, Bcker U, Warringer J, Blomberg A, Omholt SW, Stark E, Martens H (2008) Reducing inter-replicatevariation in FTIR spectrosocopy by extended multiplicative signal correction (EMSC). Applied Spectroscopy.

    Raw EMSC (basic) EMSC rep.

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    37/50

    37

    How to obtain more advanced pre-

    processing models

    1. By estimating unwanted variation from the data itself2. By estimating unwanted variation from mathematical

    models about known scatter effects, instrumentalinformation etc.

    But how to mix complicated mathematical models and simple,linear pre-processing models?

    Solution, e.g. for Mie light scattering ( lense effects ) ofindividual cells in synchrotron FTIR microscopy

    Estimating Mie scattering

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    38/50

    38

    Theory

    EMSC

    subspacemodel

    Kohler A, Sul-Suso J, Sockalingum GD, Tobin M, Bahrami F, Yang Y, Pijanka J, Dumas P, Cotte M, Martens H

    (2008) Estimating and correcting Mie scattering in synchrotron based microscopic FTIR spectra by extendedmultiplicative signal correction (EMSC). Applied Spectroscopy , 62, 259-266.

    Corrected spectra

    Mie scattering

    Using Mie scattering model for new samples

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    39/50

    39

    Chemical absorption Physical contribution

    Pre-Processing

    model

    Measured spectra

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    40/50

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    41/50

    and functionalgenomics for optimized milk and meat qualit

    Large-scale FTIR-bioscreening project in Norway

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    42/50

    42

    -0.02

    -0.01

    0

    0.01

    3 05 5. 53 6 2 83 9. 48 8 2 62 3. 44 2 40 7. 39 2 2 09 8. 75 2 1 88 2. 70 4 1 53 9. 34 2 1 32 3. 29 4 1 10 7. 24 6

    Variables

    Other components

    Cal. models

    WavenumberWavenumber

    Milk FTIR spectra:

    genomics for optimized milk and meat qualit

    6 million milk spectra/year

    Calibration milk samples

    Referencemeasurements,fatty acids (GC-MS)

    Feeding experiments:

    Pred. fatty acids etc

    Routine milk analysis:

    Background knowledge

    QTLs etc ?20K SNPs Heritability,feeding effects etc

    Cal. models FACombinations

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    43/50

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    44/50

    44

    DNA mRNA Proteome Metabolome BiologicalStructure

    Environment, human activity

    Otherphenotypes

    1D-, 2D -ElectrophoresisMALDI-TOF

    LC-MS

    GC,LC(-MS)

    Sequencing,SNP, AFLP, NIR, FT-IR

    Raman

    FlourescenceSerotyping

    Realtime PCRMicro-array

    Now the real fun starts: feed-back !

    Disease incidenceVirulence

    Drug sensitivityBiofilm formationSensory ScienceEconomy

    Models: Dynamic, non-linear ODEsSpatial PDEs

    Different feedback control (Jacobi matr.) in different parts ofstate space

    10000-dimensional input data

    Eigenvalues vs singular values of the Jacobi matr.

    Identify outliers

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    45/50

    45

    1000 1100 1200 1300 1400 1500 1600

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.16

    Input spectra

    Wavenumber

    Absorbance

    Wavenumber of the FTIR light

    FTIRligh

    ta

    bsorbanc

    e

    Monitoring dynamic processes

    by biospectroscopyA fermentation process in dairy industrymonitored by FTIR (ATR) for 26 hours

    Three first principal component scores

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    46/50

    46

    -0.02

    0

    0.020.04

    0.06

    0.08

    0.1

    0.12

    -0.05-0.04

    -0.03-0.02

    -0.010

    0.010.02

    0

    0.01

    0.02

    0.03

    PC 1,

    89.6 % variancePC 2,8.7 % variance

    PC3

    ,0.9%

    variance k5

    k3

    k4

    k2

    k1t = 0

    6 hrs

    19 hrs

    21.5 hrs

    26 hrs

    Semi-soft modelling of the process

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    47/50

    47

    s2-s

    1

    s3-s2

    s4

    -s3

    State fingerprints State amounts

    Wavenumber, cm -1 Time, hrs

    c1

    c

    2

    c3

    c4

    c5

    1000 1100 1200 1300 1400 1500 16000

    0.050.1

    0.15

    0 5 10 15 20 250

    0.5

    1

    1000 1100 1200 1300 1400 1500 1600-8-6-4-2

    02

    x 10-3

    0 5 10 15 20 250

    0.5

    1

    1000 1100 1200 1300 1400 1500 1600

    -50

    510

    x 10-3

    0 5 10 15 20 250

    0.5

    1

    1000 1100 1200 1300 1400 1500 1600

    0

    0.02

    0 5 10 15 20 250

    0.5

    1

    1000 1100 1200 1300 1400 1500 1600-2

    0246

    x 10-3

    0 5 10 15 20 250

    0.5

    1

    s1

    -0.02

    s5

    -s4

    N li d i d l id tifi ti

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    48/50

    48

    Non-linear dynamic model identification

    My other activity in CIGENE:

    Cell differentiation model: computer simulation, sensory analysis ofmathematical solutions

    The Physiome Project: human heart

    Individual heart muscle cell, 36 state variables, 72 param.

    Sets of adjacent, interacting cells Assessing large non-linear dynamic models too complex for theory

    Nominal-level (Leiden-school!) PLSR of rates vs states

    Study local Jacobians and their eigenvalues vs singular values

    Represent /replace a mathematical form by its behaviouralrepertoire, by exhaustive simulation (factorial designs to chosenresolution), in compressed Data Base.

    C l i

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    49/50

    49

    Conclusions

    Many error-types are in fact sources of valuable information. Model-based pre-processing: identify, quantify and separate out

    systematic error-types. Model-based pre-processing in biospectroscopy requires an

    understanding of the different errors that create the unwantedvariation.

    As usual: It is better to be approximately right than precisely wrong It is better to be aggressive/humble, than to be passive/arrogant

    .

    A k l d t

  • 8/12/2019 FTIR Topic_Undesired Phenomena

    50/50

    50

    Acknowledgements

    People who contributed:

    Centre for Integrative Genetics (CIGENE), Norw. U. Life Sci. : Stig Omholt, Erik Plahte, Arne Gjuvsland, Sigbjrn Lien,

    Hanne Gro Olsen, shild Randby

    NOFIMA /Matforsk:

    Achim Kohler, Ulrike Bdtker,Nils Kristian Afseth,Martin Hy

    TINE: Kjetil Jrgensen

    GENO: Morten Svendsen