21
FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1) , Christiane Schmullius (1) Maurizio Santoro (2) , Pang Yong (3) , Li Zengyuan (3) (1) Department of Earth Observation, Friedrich-Schiller University Jena, Germany (2) Gamma Remote Sensing Gümligen, Switzerland (3) Chinese Academy of Forestry, Institute of Forest Resource Information Technique Beijing, China

FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

Embed Size (px)

Citation preview

Page 1: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE

Oliver Cartus (1), Christiane Schmullius (1)

Maurizio Santoro (2), Pang Yong (3), Li Zengyuan (3)

(1) Department of Earth Observation,

Friedrich-Schiller University

Jena, Germany

(2) Gamma Remote Sensing

Gümligen, Switzerland

(3) Chinese Academy of Forestry,

Institute of Forest Resource

Information Technique

Beijing, China

Page 2: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Background

The ERS-1/2 tandem mission has created a huge interferometric dataset (1995-2000)

It is known that ERS-1/2 „tandem“ coherence

can be used for biomass estimation in boreal forest with high accuracy

Kättböle, Sweden, RMSE = 21 m3/ha

Conclusion: multi-temporal winter coherence data is most suitable

(Santoro et al, 2002)

… for small managed test sites

Coherence depends on meteorological and environmental conditions

The behaviour of coherence found in a small test site cannot be

transferred to large areas automatically

Page 3: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Background

0 50 100 150 200 250 300 3500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NE - 01-02 Jan. 96

0 50 100 150 200 250 300 350 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stem volume [m3/ha]

Coh

eren

ce

Chunsky N - 29-30 Dec.95

0 50 100 150 200 250 300 350 400 450 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stem volume [m3/ha]

Coh

eren

ce

Primorsky E - 09-10 Oct. 97

0 50 100 150 200 250 300 350 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NE - 22-23 Sep. 97

Coherence - stem volume relationship strongly varies

with meteorological and environmental conditions

Page 4: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

SIBERIA Project – Central Siberia (Wagner et al.,

2003)

Area covered: 1.000.000 km2 ; Accuracy > 90%

It could be shown that ERS-1/2 „tandem“ coherence

can be used for biomass estimation in boreal forest at large scale

Background

… with an ERS-1/2 tandem dataset acquired only in fall and with a narrow range of baselines

Histogram-based training of an empirical model, which relates coherence to stem

volume, could be done

Method cannot be used for multi-seasonal & multi-baseline data

Page 5: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Data: Overview of test sites and ERS-1/2 coherence imagery

Coherence measurements at the test sites

Coherence modelling

Model training: A new VCF-based model training procedure

Regression-based vs. VCF-based training procedure

Classification Accuracy

Application of the new approach for Northeast China

Overview

Page 6: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Forest inventory data

For each stand measurements of:

Stem volume [m^3/ha]

Height, DBH, dominant Species,

Relative Stocking RS [%]

are available.

Red = RS >80 %

Blue = RS<30 %

Page 7: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

ERS-1/2 Mosaic

R: Coherence

G: Sigma nought (ERS-1)

B: Sigma nought ratio

223 coherence scenes

Baselines: 0 - 400 m

ERS-1/2 tandem data

Acq. date Area Bn Weather conditions

29.12.199530.12.1995

Chunsky N 171 m

T1≈-10° C,

T2≈-23° C,

WS1≈6 m/s,

WS2≈ 0 m/s,

SD: 18 cm

01.01.199602.01.1996

Bolshe NE 144 m

T≈-20 °C, WS1≈ 5-6 m/s,

WS2 < 3 m/s,

SD: 16 cm, Snowfall

14.01.199615.01.1996

Chunsky N & E 65 m

T1≈-18° C,

T2≈-23° C,

WS < 2 m/s,

SD: 27 cm

22.09.199723.09.1997

Bolshe NE 260 mT1≈16 °C, T2≈19°C,

WS< m/s, Rain on 21st

25.09.199726.09.1997

Bolshe NE & NW 233 mT1≈20 °C, T2≈13°C,

WS < 2 m/s

27.10.199728.10.1997

Bolshe NE 158 m T≈2 °C, WS < 1 m/s

28.05.199829.05.1998

Bolshe NE & NW 313 mT1≈26 °C, T2≈19°C,

WS < 3 m/s

Processing:

Co-registration, 2x10 multi-looking, common-band filtering, adaptive coherence estimation (3x3 to 9x9), Geo-coding using the SRTM-C DEM,

Pixel size = 50x50 m

Page 8: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Coherence measurements at the test sites

RS > 50 %

Area > 3 ha

RS > 30 %

Area > 3 ha

(Santoro et al. 2007)

r = -0.746 r = -0.895

r = -0.746r = -0.678

Page 9: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

,,(*1)(0

0

0

0

nvolV

for

vegveg

V

for

grgrfor BheeV

Ground contribution Vegetation contribution

• gr and 0gr represent ground temporal coherence and backscatter

• veg and 0veg represent vegetation temporal coherence and backscatter

• is related to the forest transmissivity (~0.003 - 0.007 for ERS)

• Volume decorrelation related to

• h, Height allometric equation to express it as a function of stem volume

• Bn, perpendicular baseline

• α, two-way tree attenuation 1 – 2 dB/m depending on season (Askne et al. 1997)

Voveg

Vogr

ofor ee 1

ground coherence temporal decorrelation

canopy coherence temporal and volume decorrelationForest coherence is the sum of

Interferometric Water Cloud Model

Page 10: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Question:

How to calculate the unknowns of the model for each frame without ground-truth data?

Page 11: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

What is VCF?

The Modis Vegetation Continuous Field product (VCF) provides global sub-pixel estimates of landscape components (tree cover, herbaceous cover and bare cover) at 500 m pixel size (Hanson et al. 2002). Why is VCF important in this context?

Because coherence and VCF contain similar information

Model training based on VCF

Page 12: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Temporal decorrelation

Compensation for residual ground coherence

Page 13: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Forest transmissivity β

Regression-based estimation of all 5 unknowns

0 50 100 150 200 250 300 350 4000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stem volume [m3/ha]

Are

a F

ill F

acto

r

Valid range of area fill factor

alfa = 1 dB/m

alfa = 2 dB/m

= 0.007

= 0.003

29-30 Dec 14-15 Jan 14-15 Jan 01-02 Jan 09-10 Oct 22-23 Sep 25-26 Sep 27-28 Oct 28-29 May25-26 Sep 28-29 May0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

[h

a/m

3 ]

29-30 Dec 14-15 Jan 14-15 Jan 01-02 Jan 09-10 oct 22-23 Sep 25-26 Sep 27-28 Oct 28-29 May25-26 Sep 28-29 May0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

V

Page 14: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Regression- vs. VCF-based model training

Dashed line- regression

Solid line - VCF

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NE 22-23 Sep. 97

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Bolshe NE 22-23 Sep. 97

RMSE [m3/ha]:97.5532

Rel. RMSE:0.55211

R2:0.55721

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NE 27-28 Oct. 97

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Bolshe NE 27-28 Oct. 97

RMSE [m3/ha]:108.048

Rel. RMSE:0.61934

R2:0.57076

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NE 25-26 Sep. 97

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Bolshe NE 25-26 Sep. 97

RMSE [m3/ha]:86.9621

Rel. RMSE:0.70848

R2:0.7433

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NW 25-26 Sep. 97

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Bolshe NW 25-26 Sep. 97

RMSE [m3/ha]:127.5837

Rel. RMSE:0.51953

R2:0.29388

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NW 28-29 May 98

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Bolshe NW 28-29 May 98

RMSE [m3/ha]:146.2137

Rel. RMSE:0.59977

R2:0.17445

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Chunsky N 29-30 Dec. 95

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Chunsky N 29-30 Dec. 95

RMSE [m3/ha]:60.5459

Rel. RMSE:0.40057

R2:0.76815

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Chunsky N 14-15 Jan. 96

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Chunsky N 14-15 Jan. 96

RMSE [m3/ha]:79.591

Rel. RMSE:0.52838

R2:0.84288

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Chunsky E 14-15 Jan. 96

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Chunsky E 14-15 Jan. 96

RMSE [m3/ha]:83.7119

Rel. RMSE:0.64967

R2:0.73466

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Bolshe NE 01-02 Jan. 96

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Bolshe NE 01-02 Jan. 96

RMSE [m3/ha]:73.3475

Rel. RMSE:0.42926

R2:0.59476

0 100 200 300 4000

0.5

1

Stem volume [m3/ha]

Coh

eren

ce

Primorsky E 09-10 Oct. 97

0 100 200 300 400-15

-10

-5

0

Stem volume [m3/ha]

Inte

nsity

[dB

]

0 100 200 300 400 5000

100

200

300

400

500

GT stem volume [m3/ha]Est

imat

ed s

tem

vol

ume

[m3/

ha]

Primorsky E 09-10 Oct. 97

RMSE [m3/ha]:77.3648

Rel. RMSE:0.58907

R2:0.74532

Page 15: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Variability of coherence within frames

Sandy soils, Peat soils

Variability of ground coherence Variability of coherence of dense canopies

Page 16: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

0 0.2 0.4 0.6 0.8 10

0.5

1

FID Training

VC

F T

rain

ing

gr

& veg

-12 -10 -8 -6-12

-10

-8

-6

FID Training

VC

F T

rain

ing

0gr

& 0veg

[dB]

0 0.2 0.4 0.6 0.8 10

0.5

1

FID Training

VC

F T

rain

ing

gr

& veg

-12 -10 -8 -6-12

-10

-8

-6

FID Training

VC

F T

rain

ing

0gr

& 0veg

Variability of coherence within frames

Training for the whole frame

Restricted

Page 17: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Stem volume retrieval

0 20 40 60 800

102030405060708090

100

RS [%]

Rel

. RM

SE

[%]

Bolshe NE 01-02 Jan. 96

0 20 40 60 800

102030405060708090

100

RS [%]

Rel

. RM

SE

[%]

Chunsky N 29-30 Dec. 95

VCFFID

0 20 40 60 800

102030405060708090

100

RS [%]

Rel.

RMSE

[%]

Chunsky N 14-15 Jan. 96

0 20 40 60 800

102030405060708090

100

RS [%]

Rel.

RMSE

[%]

Chunsky E 14-15 Jan. 96

0 20 40 60 800

102030405060708090

100

RS [%]

Rel.

RMSE

[%]

Chunsky E 14-15 Jan. 96

0 20 40 600

50

100

150

Min. rel. stock [%]

RM

SE

[m

3 /ha]

Bolshe NE 01-02 Jan. 96

0 20 40 600

102030405060708090

100

Min. rel. stock [%]

Rel

. R

MS

E [

%]

>3ha

> 6ha

Page 18: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Test site & image 0-20 20-50 50-80>80

[m3/ha]Overall

Acc. [%]kappa

Chunsky N29-30 Dec.95

78.680.4

38.826.4

12.48.0

93.997.2

81.182.1

0.690.68

Chunsky E14-15 Jan.96

65.673.3

39.826.9

29.231.4

87.484.9

70.572.5

0.540.54

Bolshe NE22-23 Sep.97

8.172.3

14.128.7

51.130.0

92.884.6

37.069.0

0.220.52

Bolshe NW25-26 Sep.97

81.082.0

67.867.8

34.130.9

78.176.8

75.675.0

0.620.62

Classification accuracy

Classes according to the SIBERIA map:

0-20,20-50,50-80,>80 m^3/ha

Green: VCF-based training

Red: Regression-based training

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

SD

0 10 20 30 40 500

20

40

60

80

100

SD

Acc

urac

y [%

]

0 0.5 10

0.5

1

AllUnfrozenFrozen

Page 19: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

Forest Map of Northeast China

Page 20: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

The new VCF-based classification approach is a fast and easy to apply method to map forest stem volume

Weak points: 1) Low accuracy of intermediate classes (20-50,50-80 m3/ha)

multi-temporal combination of results obtained from winter coherence images – unfortunately not

possible with the ERS dataset available

2) Siberian boreal forest – Chinese cold-temperate forests: Are there differences in coherence?

Conclusions

Page 21: FSU Jena – Department of Earth Observation CREATION OF LARGE AREA FOREST BIOMASS MAPS FOR NE CHINA USING ERS-1/2 TANDEM COHERENCE Oliver Cartus (1), Christiane

FSU Jena – Department of Earth Observation

0 100 200 3000

0.5

1

Aspect angle [°]

Coh

eren

ce

18-19 Jan. 96, Bn = 148 m

15°

10°

0 100 200 3000

0.5

1

Aspect angle [°]

Coh

eren

ce

28-29 Mar. 96, Bn = 101 m

0 100 200 3000

0.5

1

Aspect angle [°]

Coh

eren

ce

22-23 Feb. 96, Bn = 40 m

Topography

Increasing influence of spatial decorrelation for longer baselines

Topographic modification of temporal decorrelation (wind

field?) of dense forests