18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . From MetaGAN to MetaGAIL Feng Xu LAMDA5, Nanjing University December 8, 2020

From MetaGAN to MetaGAIL - Home - LAMDA

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

From MetaGAN to MetaGAIL

Feng XuLAMDA5, Nanjing University

December 8, 2020

Page 2: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Table of Contents

MetaGAN

GANs and GAILs

MetaGAN and MetaGAIL

References

Page 3: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Table of Contents

MetaGAN

GANs and GAILs

MetaGAN and MetaGAIL

References

Page 4: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Introduction

MetaGAN: An Adversarial Approach to Few-Shot Learning. [1]Ruixiang Zhang et al. (Yoshua Bengio)Motivation:How to form generalizable decision boundaries from a small number oftranining samples in few shot learning?

Page 5: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Contribution

• Propose MetaGAN that unify supervised/semi-supervised few-shot learningnaturally

Page 6: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Formalization

Distribution of Tasks P(T)Training tasks (Ti)N

i=1, where T = (ST,QT)ST = Ss

T ∪ SuT,QT = Qs

T ∪ QuT, S/Q denote support/query set, s/u denote

superversied/unsupervisedSu

T = {x1, x2, ...XM},QsT = {(x1, y1), ...(XO, yO)}

Objective: Minimize prediction loss on a query set given support set

Page 7: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Trouble of GANs• GAN have trouble generating realistic samples in complex datasets• Easy to run into mode collapsing

Page 8: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

AlgorithmAssume a few-shot classifier pD(x;T) = (p1(x), p2(x), ...pn(x)), augmented with anadditional output pn+1(x) to model the probability that input data is fake. Theobjectives areDiscriminator:

LTD = Lsuperversied + Lunsupervised

Lsupervised = Ex,y∼QsTlogpD(y|x, y ≤ N)

Lunsupervised = Ex∼QuTlogpd(y ≤ N|x) + Ex∼pT

G(N + 1|x)

Generator:LT

G(D) = −Ex∼PTG[log(pD(y ≤ N|x))]

Overall:LD = maxDET∼P(T)LT

D

LG = minGET∼P(T)LTG

Page 9: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Practical implementation of meta Discriminator

• MAML:θ′d = θd − α∇θd lTDlTD = −Ex,y∼Ss

TlogpD(y|x, y ≤ N)− Ex∼Su

TlogpD(y ≤ N|x)− Ex∼pT

GlogpD(N + 1|x)

• Relation Network [2]: do classification via a deep distance metricLet ri,j = gψ(C(fϕ(xi), fϕ(xj)), xi ∈ Ss

T, xj ∈ QsT be the relevance score between

query xj and support xi, where gϕ is the relation module, fϕ is the embeddingnetwork, C is the concatenation operator. ri,j is computed computed via softmaxclassification

pD(y = k|xj) =exp(rk,j)

1 +∑N

i=1 exp(ri,j)

Page 10: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Practical implementation of Generator

A conditional generative mode: compress support dataset to a vector hT andconcatenate it with random noise z as input

1. Instance-Encoder Module:xi ∼ Ss

T → ei = Instance − Encoder(xi)

2. Feature-Aggregation Module: element wise operators such as average pooling,max pooling.

To make it harder for the generator to simply reconstricut its inputs

Page 11: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

An insight

(a) MetaGAN

Page 12: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Performance

(b) Supervised Case

(c) Semi-Supervised Case

Page 13: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Table of Contents

MetaGAN

GANs and GAILs

MetaGAN and MetaGAIL

References

Page 14: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

GAN/GAIL Framework

(d) GAN framework

(e) GAIL framework

Page 15: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

each GAN’s corresponding GAIL

• GAN [3] & GAIL [4]• CGAN [5] & CGAIL (additional label input)• InfoGAN [6] & InfoGAIL (learnt latent variable)• ACGAN & ACGAIL (augment D with an auxiliary classifier)• f-GAN & f-GAIL (minimize f-divergence of data distribution)• GoalGAN & GOALGAIL (Generate goals)• TripleGAN& TripleGAIL

Page 16: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Table of Contents

MetaGAN

GANs and GAILs

MetaGAN and MetaGAIL

References

Page 17: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

Table of Contents

MetaGAN

GANs and GAILs

MetaGAN and MetaGAIL

References

Page 18: From MetaGAN to MetaGAIL - Home - LAMDA

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

ReferencesRuixiang Zhang et al. “MetaGAN: An Adversarial Approach to Few-ShotLearning”. In: NIPS. 2018, pp. 2371–2380.Flood Sung et al. “Learning to Compare: Relation Network for Few-ShotLearning”. In: CVPR. IEEE Computer Society, 2018, pp. 1199–1208. url:http://openaccess.thecvf.com/content\_cvpr\_2018/html/Sung\_Learning\_to\_Compare\_CVPR\_2018\_paper.html.Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: NIPS. Ed. byZoubin Ghahramani et al. 2014, pp. 2672–2680.Jonathan Ho and Stefano Ermon. “Generative Adversarial Imitation Learning”. In:NIPS. 2016, pp. 4565–4573.Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets”. In:CoRR abs/1411.1784 (2014).Xi Chen et al. “InfoGAN: Interpretable Representation Learning by InformationMaximizing Generative Adversarial Nets”. In: NIPS. 2016, pp. 2172–2180.