36
1 Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University Motivation Simulation Studies Experimental Studies/Plans

Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

  • Upload
    arnon

  • View
    24

  • Download
    0

Embed Size (px)

DESCRIPTION

Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University. Motivation Simulation Studies Experimental Studies/Plans. HIGH ENERGY MUON COLLIDER PARAMETERS. p ’s in red m ’s in green. Drift region for  decay  30 m. P beam (few MW). - PowerPoint PPT Presentation

Citation preview

Page 1: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

1

Frictional Cooling for a Muon ColliderA. Caldwell

MPI f. Physik/Columbia University

• Motivation

• Simulation Studies

• Experimental Studies/Plans

Page 2: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

2

HIGH ENERGY MUON COLLIDER PARAMETERS

Baseline parameters for high energy muon colliders. From “Status of Muon ColliderResearch and Development and Future Plans,” Muon Collider Collaboration, C. M.Ankenbrandt et al., Phys. Rev. ST Accel. Beams 2, 081001 (1999).

COM energy (TeV) 0.4 3.0p energy (GeV) 16 16p’s/bunch 2.5 1013 2.5 1013

Bunches/fill 4 4Rep. rate (Hz) 15 15p power (MW) 4 4/ bunch 2 1012 2 1012

power (MW) 4 28Wall power (MW) 120 204Collider circum. (m) 1000 6000Ave bending field (T) 4.7 5.2rms p/p (%) 0.14 0.16

6D (m)3 1.7 10 10 1.7 10 10

rms n ( mm mrad) 50 50

* (cm) 2.6 0.3

z (cm) 2.6 0.3

r spot (m) 2.6 3.2 IP (mrad) 1.0 1.1Tune shift 0.044 0.044nturns (effective) 700 785

Luminosity (cm 2 s 1) 1033 7 1034

Page 3: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

3

’s in red ’s in green

P beam (few MW)

TargetSolenoidal Magnets: few T … 20 T

Drift region for decay 30 m

Simplified emittance estimate:At end of drift, rms x,y,z approx 0.05,0.05,10 m Px,Py,Pz approx 50,50,100 MeV/c

Normalized 6D emittance is product divided by (mμc)3

drift6D,N 1.7 10-4 (m)3

Emittance needed for Muon Collider collider

6D,N 1.7 10-10(m)3

This reduction of 6 orders of magnitude must be done with reasonable efficiency !

Page 4: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

4

Muon Cooling

Muon Cooling is the signature challenge of a Muon Collider

Cooler beams would allow fewer muons for a given luminosity, thereby• Reducing the experimental background• Reducing the radiation from muon decays• Reducing the radiation from neutrino interactions• Allowing for smaller apertures in machine elements, and so driving the cost down

Page 5: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

5

Frictional CoolingFrictional Cooling

• Bring muons to a kinetic energy (T) where dE/dx increases with T

• Constant E-field applied to muons resulting in equilibrium energy

• Big issue – how to maintain efficiency

• Similar idea first studied by Kottmann et al., PSI

1/2 from ionization

Ionization stops, muon too slow

Nuclear scattering, excitation, charge exchange, ionization

Page 6: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

6

Problems/comments:Problems/comments:• large dE/dx @ low kinetic energy

low average density (gas)• Apply E B to get below the dE/dx peak

F = q(E + vxB) – dT/dx • has the problem of Atomic capture small above electron binding

energy, but not known. Keep T as high as possible

• Slow muons don’t go far before decayingd = 10 cm sqrt(T ) T in eV

so extract sideways (E B ) has the problem of Muonium formation

dominates over e-strippingin all gases except He

Page 7: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

7

For , energy lower by M/MP

Neutralization Stripping

From Y. Nakai, T. Shirai, T. Tabata and R. Ito, At. Data Nucl. Data Tables 37, 69 (1987)

Page 8: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

8

Frictional Cooling: particle trajectory

** Using continuous energy loss

Page 9: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

9

Frictional Cooling: stop the

Optimize for low initial muon momentum, + phase rotation

• High energy ’s travel a long distance to stop• High energy ’s take a long time to stop

Plots for1. 10-4 g/cm3 He

Page 10: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

10

Cooling cells

Phase rotation sections

Not to scale !!

Schematic Layout for Collider Scheme Studied

Page 11: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

11

Detailed Simulation

Full MARS target simulation, optimized for low energy muon yield: 2 GeV protons on Cu with proton beam transverse to solenoids (capture low energy pion cloud).

Page 12: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

12

Target System • cool + & - at the same time• calculated new symmetric magnet with gap for target

GeV

Page 13: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

13

Target & Drift Optimize yield

• Optimize drift length for yield• Some ’s lost in Magnet aperture

Page 14: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

14

28m

0.4m

’s in red ’s in green

View into beam

GEANT simulation

Page 15: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

15

Phase Rotation

• First attempt simple form• Vary t1,t2 & Emax for maximum low energy yield

Page 16: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

16

He gas is used for +, H2 for -.

Cooling cell simulation

• Individual nuclear scatters are simulated – crucial in determining final phase space, survival probability.•Incorporate scattering cross sections into the cooling program•Include - capture cross section using calculations of Cohen (Phys. Rev. A. Vol 62 022512-1)

• Electronic energy loss treated

as continuous

Page 17: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

17

Scattering Cross Sections

•Scan impact parameter and calculate (b), d/d from which one can get mean free path

•Use screened Coulomb Potential (Everhart et. al. Phys. Rev. 99 (1955) 1287)

•Simulate all scatters >0.05 rad•Simulation accurately reproduces ICRU tables for protons

Page 18: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

18

Barkas Effect

•Difference in + & - energy loss rates at dE/dx peak•Due to charge exchange for + •parameterized data from Agnello et. al. (Phys. Rev. Lett. 74 (1995) 371)

•Only used for the electronic part of dE/dx

Page 19: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

19

Trajectories in detailed simulation

Final stages of muon trajectory in gas cell

Lorentz angle drift, with nuclear scattering

Transverse motion Longitudinal motion

Motion controlled by B field

Page 20: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

20

F = q(E+vB)-dT/dx

Oscillations about equilibrium define emittance.

Dangerous because of - capture possibility

vxB dominates

E dominates

Page 21: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

21

E

Initial reacceleration regionAfter gas cell, E(z,t)

T = 4 ns at Z=444mP = 200 MeV/cEff = 40%gas Reacc section

Page 22: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

22

Yields & Emittance

Look at muons coming out of 11m cooling cell region after initial reacceleration.

Yield: approx 0.002 per 2GeV proton after cooling cell.

Need to improve yield by factor 5 or more to match # /proton/GeV in specifications.

Emittance: rms x = 0.015 m y = 0.036 m z = 30 m ( actually ct)

Px = 0.18 MeVPy = 0.18 MeVPz = 4.0 MeV

6D,N = 5.7 10-11 (m)3

Page 23: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

23

Problems/Things to investigate…

• Extraction of s through windows in gas cell •Must be very thin to pass low energy s•Must be reasonably gas tight

• Can we apply high electric fields in gas cell without breakdown (large number of free electrons, ions) ? Plasma generation screening of field. • Reacceleration & bunch compression for injection into storage ring• The capture cross section depends very sensitively on kinetic energy & falls off sharply for kinetic energies greater than e- binding energy. NO DATA – simulations use theoretical calculation• +…

Page 24: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

24

First try to demonstrate frictional cooling with protons.

4 MeV p

RARAF Facility – Nevis Lab/Columbia University

VandeGraaf accelerator for biomedical research

Page 25: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

beamH2

+

Page 26: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

26

Contains 20nm window

Proton beam

Gas cell

Accelerating grid

Vacuum chamber

To MCP

Si detector

Page 27: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

27

Page 28: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

28

Page 29: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

29

The proton energy spectrum from the Si calculated using SRIM (J. F. Ziegler, J. P. Biersack and U. Littmark, Pergamon Press,

1985). The transport through the gas performed with our detailed simulation. Need first to fix the window thickness and gas pressure.

Min Kin Energy fixed by reacc potential

Page 30: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

30

Calibration Data:3 distances, no cell, no grid

Time resolution of system=17ns

Protons have 100-200 KeV after Si window. Good agreement with SRIM.

Page 31: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

31

Add cell, no gas, no E field. Extract effective window thickness by comparison with simulation. Much thicker than expected !

Add gas, still no field. Gas pressure extracted from comparison with simulation. Compatible with expectations.

Page 32: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

32

Summary of calibration using the time spectrum

Page 33: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

33

After background subtraction, see no hint of cooled protons. Also predicted by simulation. Problem – windows too thick, acceptance, particularly for slow protons, too small. Need to repeat the experiment with solenoid, no windows.

Page 34: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

34

Future Plans

• Frictional cooling tests at MPI with 5T Solenoid, alpha source• Study gas breakdown in high E,B fields• R&D on thin windows• Beam tests with muons to measure capture cross section

-+He He+ e+’s

muon initially captured in large n orbit, then cascades down to n=1. Transition n=2n=1 releases few KeV x-ray.

Si drift detectorDeveloped my MPIHLL

Page 35: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

35

Lab situated at MPI-WHI inMunich

Page 36: Frictional Cooling for a Muon Collider A. Caldwell MPI f. Physik/Columbia University

36

Conclusions

• Muon Collider complex would be a boon for physics

• We need to solve the muon cooling problem

• Different schemes should be investigated• We are doing some simulation and

experimental studies of frictional cooling. So far, so good, but a long way to go !