28
Friction coefficient – shear displacement curve of kaolinite in different slip rate Presenter : Yi-Chia Chiang Advisor : Prof. Jia-Jyun Dong Date : 2020.03.27

Friction coefficient shear displacement

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Friction coefficient shear displacement

Friction coefficient – shear displacement curve of kaolinite in different slip rate

Presenter : Yi-Chia Chiang

Advisor : Prof. Jia-Jyun Dong

Date : 2020.03.27

Page 2: Friction coefficient shear displacement

Outline

1. Introduction

2. Methodology

3. Preliminary results

4. Preliminary conclusions

5. Future works

Page 3: Friction coefficient shear displacement

Introduction

β€’ The strength of sliding surface will be strongly affected by the slip rate and the sliding distance when the landslide occurs. (e.g., Tika and Hutchinson, 1999; Yang et al., 2014; Alonso et al., 2016).

Introduction Methodology Results Conclusions Future work

1

Page 4: Friction coefficient shear displacement

Introduction

β€’ Slip-dependence friction law

Introduction Methodology Results Conclusions Future work

2

Slip-strengthening

Slip-weakening

Lowslip rate

Intermediate slip rate

High slip rate

Page 5: Friction coefficient shear displacement

Introduction

β€’ Shear rate-dependence friction law

Introduction Methodology Results Conclusions Future work

3

Displacement (m)

Fric

tio

n c

oef

fici

en

t (-

)

Rate-strengthening

Rate-weakening

Shear rate V

The steady-state friction coefficient

𝝁𝒔𝒔

The steady-state friction coefficient

𝝁𝒔𝒔

Shear rate

𝒗

Shear rate

𝒗

Shear rate V

𝑉1

𝑉2

𝑉3

π‘½πŸ > π‘½πŸ > π‘½πŸ‘π‘½πŸ‘ > π‘½πŸ > π‘½πŸ

Page 6: Friction coefficient shear displacement

Purpose

1. Find out the reason that makes the difference of the strength measurement by rotary shear test.

2. Investigate the friction coefficient - shear displacement curve under different shear rate, and try to define the friction coefficient in more.

Introduction Methodology Results Conclusions Future work

4

Page 7: Friction coefficient shear displacement

Rotary shear test

Introduction Methodology Results Conclusions Future work

Rotational side

Stational side

πœŽπ‘›

β€’ A low to high rotary-shear frictional testing apparatus

5

Page 8: Friction coefficient shear displacement

Experiment conditions

β€’ Pre-consolidated : 1MPa

β€’ Normal stress : 1MPa (shear tests)

0.5~2MPa (Teflon calibration)

β€’ Shear rate : 10βˆ’7 ~ 1 m/s

β€’ Material : Kaolinite clay

β€’ Water condition : Room humidity

Introduction Methodology Results Conclusions Future work

6

Page 9: Friction coefficient shear displacement

Introduction Methodology Results Conclusions Future work

7

The reasons that make the difference of the strength measurement by rotary shear test.

Is shear displacement enough?

The way used to calculate 𝝁𝒔𝒔 ?

Page 10: Friction coefficient shear displacement

Shear rate : πŸπŸŽβˆ’πŸ•m/s

Introduction Methodology Results Conclusions Future work

8

𝝁𝒔𝒔= 0.39𝝁𝒔𝒔= 0.28𝝁𝒔𝒔= 0.29

Is it steady-state ?

Page 11: Friction coefficient shear displacement

Shear rate : πŸπŸŽβˆ’πŸ”m/s

Introduction Methodology Results Conclusions Future work

9

𝝁𝒔𝒔= 0.59 𝝁𝒔𝒔= 0.40 𝝁𝒔𝒔= 0.40

Page 12: Friction coefficient shear displacement

Shear rate : πŸπŸŽβˆ’πŸ“m/s

Introduction Methodology Results Conclusions Future work

10

𝝁𝒔𝒔= 0.49 𝝁𝒔𝒔= 0.41 𝝁𝒔𝒔= 0.48

Page 13: Friction coefficient shear displacement

Shear rate : πŸπŸŽβˆ’πŸ’m/s

Introduction Methodology Results Conclusions Future work

11

𝝁𝒔𝒔= 0.60 𝝁𝒔𝒔= 0.46 𝝁𝒔𝒔= 0.79

Page 14: Friction coefficient shear displacement

Shear rate : πŸπŸŽβˆ’πŸ‘m/s

Introduction Methodology Results Conclusions Future work

12

𝝁𝒔𝒔= 0.81 𝝁𝒔𝒔= 0.57 𝝁𝒔𝒔= 0.70

Page 15: Friction coefficient shear displacement

Shear rate : πŸπŸŽβˆ’πŸm/s

Introduction Methodology Results Conclusions Future work

13

𝝁𝒔𝒔= 0.82 𝝁𝒔𝒔= 0.74 𝝁𝒔𝒔= 0.90

Page 16: Friction coefficient shear displacement

Steady-state friction coefficient

Introduction Methodology Results Conclusions Future work

14

Page 17: Friction coefficient shear displacement

Introduction Methodology Results Conclusions Future work

15

𝝁- Displacement Curve pattern

Lowslip rate

Intermediate slip rate

High slip rate

Displacement (m)

Fric

tio

n c

oef

fici

ent

(-)

πŸπŸŽβˆ’πŸ•, πŸπŸŽβˆ’πŸ”m/s πŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/s

Increase to 1st peak and weaken to residual value

πŸπŸŽβˆ’πŸ•, πŸπŸŽβˆ’πŸ”m/sπŸπŸŽβˆ’πŸ•, πŸπŸŽβˆ’πŸ”m/s

Shear rate V

Rate-strengthening

Displacement (m)

Fric

tio

n c

oef

fici

en

t (-

)

Increase to 1st peak and weaken to residual value

Rate-strengthening

Rate-weakening

πŸπŸŽβˆ’πŸ~πŸπŸŽβˆ’πŸm/s

πŸπŸŽβˆ’πŸ~𝟏 m/s

πŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/sπŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/sπŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/sShear rate V

Shear rate V

Displacement (m)

Fric

tio

n c

oef

fici

ent

(-)

πŸπŸŽβˆ’πŸ“, πŸπŸŽβˆ’πŸ’, πŸπŸŽβˆ’πŸ‘m/s

Shear rate V

Two peaks appear before the friction coefficient reaches a steady state value

Rate-strengthening

Page 18: Friction coefficient shear displacement

Introduction Methodology Results Conclusions Future work

16

What is the reason that we need much longer shear displacement to reach the steady-state?

Rotary shear test vs Ring shear test

V=0 Vmax Vmin Vmax

Page 19: Friction coefficient shear displacement

Introduction Methodology Results Conclusions Future work

17

(Doung et al.,2018)

STEP 1

β€’Defined the curve of shear stress versus shear displacement

β€’Get πœπ‘, πœπ‘Ÿ, 𝐷𝑝, π·π‘Ÿ

Page 20: Friction coefficient shear displacement

Introduction Methodology Results Conclusions Future work

18

Page 21: Friction coefficient shear displacement

Introduction Methodology Results Conclusions Future work

19

STEP 1

β€’Defined the curve of shear stress versus shear displacement

β€’Get πœπ‘, πœπ‘Ÿ, 𝐷𝑝, π·π‘Ÿ

Shear rate V

Page 22: Friction coefficient shear displacement

STEP 2

β€’Cut the shear plane into 5 rings

β€’Calculate the shear rate of each ring

Introduction Methodology Results Conclusions Future work

20

V=0 Vmax

The shear rate and shear displacementon the shear plane are not uniformly

distributed from the outside to the inside

π‘πŸ

π‘πŸ

π‘πŸ’

π‘πŸ‘

π‘πŸ“

π•πŸ π‘½πŸ π‘½πŸ’π‘½πŸ‘ π‘½πŸ“

Page 23: Friction coefficient shear displacement

STEP 2

β€’Cut the shear plane into 5 rings

β€’Calculate the shear rate of each ring

Introduction Methodology Results Conclusions Future work

21

Shear rate V

Set π‘‰π‘’π‘ž = 10βˆ’4m/s

π‘‰π‘šπ‘Žπ‘₯ = 10βˆ’4m/s 𝑉0 = 0m/s

V1 9.0 Γ— 10βˆ’5m/s

V2 7.0 Γ— 10βˆ’5m/s

V3 5.0 Γ— 10βˆ’5m/s

V4 3.0 Γ— 10βˆ’5m/s

V5 1.0 Γ— 10βˆ’5m/sπ•πŸ π‘½πŸ π‘½πŸ’π‘½πŸ‘ π‘½πŸ“

Page 24: Friction coefficient shear displacement

STEP 3

β€’Calculate the shear stress of each ring

β€’Transform to the shear stress of the whole plane

Introduction Methodology Results Conclusions Future work

22

πœπ‘Žπ‘™π‘™ =𝑖=1𝑖=5

πœπ‘…π‘– Γ— 𝐴𝑅𝑖

π΄π‘Žπ‘™π‘™

πœπ‘Ÿπ‘Žπ‘™π‘™ =𝑖=1𝑖=5

πœπ‘Ÿπ‘…π‘– Γ— 𝐴𝑅𝑖

π΄π‘Žπ‘™π‘™Ο„Ri : Shear stress of RiARi : Area of Ri

π‘¨πŸ

π‘¨πŸ

π‘¨πŸ’

π‘¨πŸ‘

π‘¨πŸ“

Page 25: Friction coefficient shear displacement

Preliminary conclusions1. At the low (10βˆ’7, 10βˆ’6m/s) and high (10βˆ’2~1m/s) shear rates, the

friction coefficient increases with the increasing shear displacement

to a peak and then weakens to a steady state.

Introduction Methodology Results Conclusions Future work

23Displacement (m)

Fric

tio

n c

oef

fici

ent

(-)

πŸπŸŽβˆ’πŸ•, πŸπŸŽβˆ’πŸ”m/sπŸπŸŽβˆ’πŸ•, πŸπŸŽβˆ’πŸ”m/sπŸπŸŽβˆ’πŸ•, πŸπŸŽβˆ’πŸ”m/s

Shear rate V

πŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/s

Displacement (m)

Fric

tio

n c

oef

fici

ent

(-)

πŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/sπŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/sπŸπŸŽβˆ’πŸ, πŸπŸŽβˆ’πŸ, 𝟏 m/sShear rate V

Shear rate V

Page 26: Friction coefficient shear displacement

Preliminary conclusions2. The friction coefficient-shear displacement curve obtained from the

rotary shear test actually reflects the results of the weighted

average of different shear rates and displacements covered by the

sliding surface.

The complexity of the obtained results under medium shear rate is related to

this limitation of the rotary shear test.

Introduction Methodology Results Conclusions Future work

24Displacement (m)

Fric

tio

n c

oef

fici

ent

(-)

πŸπŸŽβˆ’πŸ“, πŸπŸŽβˆ’πŸ’, πŸπŸŽβˆ’πŸ‘m/s

Shear rate V

π•πŸπ‘½πŸ π‘½πŸ’π‘½πŸ‘ π‘½πŸ“

Page 27: Friction coefficient shear displacement

Future works

β€’ To do more calculation using the strength measurement results by

ring shear test at different slip rate.

β€’ To discuss the reasons that make the complexity of the obtained

results under medium shear rate .

Introduction Methodology Results Conclusions Future work

25

Page 28: Friction coefficient shear displacement

Thank you