27
ELECTRONIC STRUCTURE OF ETHYNYL SUBSTITUTED CYCLOBUTADIENES Frank Lee Emmert III , Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Embed Size (px)

Citation preview

Page 1: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

ELECTRONIC STRUCTURE OF ETHYNYL SUBSTITUTED CYCLOBUTADIENES

Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko

Purdue University, West Lafayette, IN 47907

Page 2: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Fullerene formationBergman

CyclizationRing

Closure

Retro [2+2]

Coalescence and

Annealing

Hunter, J. M.; Fye, J. L.; Roskamp, E. J.; Jarrold, M. F. J. Phys. Chem. 1994, 98, 1810−1818.

Proposed mechanism for the formation of fullerenes.

Page 3: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

H H

HH

1,2,3,4-tetraethynylcyclobuta-1,3-diene

Fullerene formation

HH

H

H

1,2,3-triethynylcyclobuta-1,3-diene

H

H

H

H

1,2-diethynylcyclobuta-1,3-diene

H

H H

H

1,4-diethynylcyclobuta-1,3-diene

H

H

H H

1-ethynylcyclobuta-1,3-diene

HH

H H

cyclobuta-1,3-diene

H

H

H

H

1,3-diethynylcyclobuta-1,3-diene

We cut the alkyne tails and looked at ethynyl substituted cyclobutadienes.

Page 4: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

H H

HH

1,2,3,4-tetraethynylcyclobuta-1,3-diene

Fullerene formation

We calculated:equilibrium geometries adiabatic S-T gap energiesvertical S-T gap energiesstabilization energy of the ethynyl

substituentsspin densities (not discussed)natural charges (not discussed)

H

H

H H

1-ethynylcyclobuta-1,3-diene

HH

H H

cyclobuta-1,3-diene

H

H

H

H

1,3-diethynylcyclobuta-1,3-diene

Page 5: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Cyclobutadiene orbitalsSinglet cyclobutadiene undergoes Jahn-Teller distortion and becomes

rectangular.

1.34211.3676

1.56861.5679

1.43911.43961.4516

MP2EOM-SF-CCSD

ROMP2UMP2EOM-SF-CCSD

Triplet

Singlet

Singlet cyclobutadiene undergoes Jahn-Teller distortions to make a rectangular structure. Spin Flip variant of the Equation of Motion Coupled Cluster with single and double excitations was

emplolyed. Accuracy of Møller-Plesset 2nd order perturbation theory was tested employing both a restricted open shell

and unrestricted reference

SingletTriplet

L. V. Slipchenko and A. I. Krylov J. Chem. Phys. 2002, 117, 4694

Page 6: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Optimized singlet geometries

1 2

34

56

EOM-SF-CCSD/cc-pVDZ

Singlet Bond Lengths (Å)

Molecule 1 2 3 40-c 1.567 1.367 1.567 1.3671-c 1.557 1.353 1.557 1.371

2-c short 1.551 1.368 1.551 1.3702-c long 1.563 1.374 1.554 1.3742-c trans 1.564 1.377 1.564 1.377

3-c 1.542 1.385 1.546 1.3794-c 1.558 1.388 1.558 1.388

Ethynyl Substituents (Å)

bond 5 6average 1.42 1.22

Main pattern of alternating bond lengths does not change with substituent addition.

The singlet geometries become more square with increased diradical character.

Substituent bond lengths remain nearly constant.

Page 7: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Optimized triplet geometries

1 2

34

56

EOM-SF-CCSD/cc-pVDZ

Triplet Bond Lengths (Å)

Molecule 1 2 3 40-c 1.451 1.451 1.451 1.4511-c 1.466 1.466 1.438 1.4382-c 1.455 1.483 1.455 1.423

2-c trans 1.453 1.453 1.453 1.4533-c 1.456 1.442 1.442 1.4564-c 1.456 1.456 1.456 1.456

Ethynyl Substituents (Å)

bond 5 6average 1.42 1.22

Square structure is maintained when substituents are added symmetrically.

The triplet geometries have increasing bond lengths; decreasing the aromaticity.

Substituent bond lengths remain nearly constant.

Page 8: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Adiabatic energies

0-c 1-c 2-c short 2-c trans 2-c long 3-c 4-c0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

EOM-SF-CCSD UMP2

ROMP2 ROCCSD(T)

Ene

rgy

(eV

)

The singlet triplet gap decreases with substituent addition.UMP2 does not follow the trend of decreasing singlet-triplet gap energy.Main source of error is spin contamination of the triplet state.

Page 9: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

MP2 vertical energies

Vertical S-T gaps should be larger at singlet geometries and smaller at triplet geometries.

MP2 cannot properly describe the diradical singlet state at the triplet geometries where the two π-orbitals of the ring are degenerate.

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

0-c 1-c 2-c short 2-c long 2-c trans 3-c 4-c

Ene

rgy

(eV

)

RMP2//UMP2 UMP2//RMP2

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

0-c 1-c 2-c short 2-c long 2-c trans 3-c 4-c

Ene

rgy

(eV

)

RMP2//ROMP2 ROMP2//RMP2

Adiabatic S-T Gap

Vertical S-T gap at triplet geometry

Vertical S-T gap at singlet geometry

S

T

Page 10: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

EOM vertical energies

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0-c 1-c 2-c trans 2-c long 2-c short 3-c 4-c

Ene

rgy

(eV

)

EOM-SF-CCSD Singlet

EOM-SF-CCSD TripletAdiabatic S-T Gap

EOM-SF-CCSD shows correct vertical behavior for all substituents.Vertical S-T gap energies decrease with substituent addition at the singlet

geometries while remaining almost constant at the triplet geometries.

MP2 had a lot of trouble and CCSD(T) would have a lot of trouble because it is mostly a problem of the HF reference.

S

T

Page 11: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

EOM vertical energies

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0-c 1-c 2-c trans 2-c long 2-c short 3-c 4-c

Ene

rgy

(eV

)

EOM-SF-CCSD Singlet

EOM-SF-CCSD TripletAdiabatic S-T Gap

Adiabatic S-T Gap

The triplet surface is becoming flatter or the singlet geometry is becoming more like the triplet geometry.

S

T

ST

Page 12: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Isodesmic Reactions

CH3 H C4H(4-n)(CCH)n + nCH41. C4H4 + n

H C4H(4-n)(CCH)n + n2. C4H4 + n

H C4H(4-n)(CCH)n + n3. C4H4 + n

H C4H(4-n)(CCH)n + n4. C4H4 + n

H C4H(4-n)(CCH)n + n5. C4H4 + n

CH3 H C4H(4-n)(CCH)n + nCH41. C4H4 + n

H C4H(4-n)(CCH)n + n2. C4H4 + n

H C4H(4-n)(CCH)n + n3. C4H4 + n

Isodesmic

Homodesmotic

Isodesmic reactions preserve the number and type of bonds (single, double, triple).

Homodesmotic reactions preserve the hybridization, the number and types of bonds of the carbon atoms, and the number of hydrogen atoms bonded to individual carbon atoms.

Wheeler, S.E., et al., J. Am. Chem. Soc., 2009. 131(7): p. 2547.

Page 13: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Stabilization energiesProduct Eqn. 1 Eqn. 2 Eqn. 3. Eqn. 4 Eqn. 5

Singlet RMP2

1-c -11.74 -3.73 -4.26 -2.40 -1.712-cs -24.73 -8.69 -9.77 -6.05 -4.662-cl -24.17 -8.14 -9.22 -5.49 -4.102-ct -23.08 -7.04 -8.12 -4.40 -3.013-c -36.75 -12.70 -14.32 -8.73 -6.654-c -50.01 -17.95 -20.11 -12.66 -9.88

Triplet ROMP2

1-c -12.07 -4.05 -4.59 -2.73 -2.042-cs -26.38 -10.35 -11.42 -7.70 -6.312-cl -26.38 -10.35 -11.42 -7.70 -6.312-ct -23.48 -7.45 -8.53 -4.80 -3.413-c -37.92 -13.87 -15.49 -9.91 -7.824-c -51.70 -19.63 -21.79 -14.34 -11.56

Both the triplet and the singlet are stabilized with substituent addition.The triplet is more stabilized then the singlet.Each reaction gives the same pattern and S-T differences.

Page 14: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

ConclusionsS-T gaps are decreased with ethynyl substituent addition

but the singlets are always lower in energy.

Results are effected by spin contamination of the triplet states; UMP2 fails to properly describe the system.

Based on isodesmic reactions, triplet states becomes more stabilized then the singlet states as substituents are added.

Page 15: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Acknowledgements:Thank you:

Professor McMahon – University of WisconsinLevi Haupert

Visualization Software:MacMolPltChemBioDraw12

Packages:Q-ChemGAMESSCFOUR

Funding provided by:ACS-PRFPurdue University

Page 16: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Thank you

Page 17: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

H H

HH

Graphene and fullerene formation

Bergman Cyclization

Ring Closure

Retro [2+2]

Coalescence and

Annealing

Hunter, J. M.; Fye, J. L.; Roskamp, E. J.; Jarrold, M. F. J. Phys. Chem. 1994, 98, 1810−1818.

Page 18: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Cyclobutadiene orbitals

Cyclobutadiene undergoes Jahn-Teller distortions.

SingletTriplet

Page 19: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Optimized Geometries1.43911.43961.4516

1.43501.46131.4385

1.44731.42171.4666

1.44731.42171.4666

1.43501.46131.4385

1.45511.40661.4830

1.44081.44011.4553

1.43681.49331.4239

1.44081.44011.4551

1.44451.44411.4536

1.44471.47291.4563

1.44471.47291.4564

1.44991.42441.4427

1.44981.42441.4426

1.45221.45091.4562

Singlet Triplet

1.35341.3724

1.58161.5578

1.55101.5576

1.34211.3717

1.34211.3676

1.56861.5679

1.35471.3749

1.59991.5631

1.35471.3749

1.53021.5546

1.56211.5510

1.34241.3707

1.36871.3859

1.56441.5559

1.35281.3779

1.54271.5453

1.36881.3855

1.57991.5467

1.35281.3798

1.36891.3884

1.55871.5478

Page 20: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Adiabatic energies

0-c 1-c 2-c short 2-c trans 2-c long 3-c 4-c0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

UEOM ROEOM UMP2

ROMP2 UCCSD(T) ROCCSD(T)

Ene

rgy

(eV

)

The singlet triplet gap decreases with substituent addition. UMP2 does not follow the trend of decreasing singlet-triplet gap energy. Main source of error is spin contamination.

Page 21: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Natural Charges Singlets-0.072

-0.187

-0.097

-0.146

-0.209

-0.076

-0.067

-0.173

-0.147

-0.040

-0.175

-0.078

-0.176

-0.075

-0.161

-0.079

-0.011

-0.040

-0.011

-0.081

-0.205

-0.181

( -0.837) ( -0.629) ( -0.428)

( -0.430)

( -0.426)

( -0.234)

( -0.045)

-0.169

-0.094

-0.119

-0.080

-0.157

-0.118

-0.066

-0.077

-0.165

-0.151

Page 22: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Natural Charges Triplets

-0.210

-0.184

-0.085

-0.082

-0.170

-0.085

-0.168

-0.047-0.165

-0.127

-0.079

-0.050

-0.021

-0.161

-0.012

-0.205

( -0.841) ( -0.627) ( -0.421)

( -0.430) ( -0.235) ( -0.048)

-0.173

-0.076

-0.089

-0.079

-0.159

-0.115

-0.148

-0.080

Page 23: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Spin Densities

0.4990.530

0.1220.831

0.5270.663

0.003-0.652

0.5000.596

0.003-0.665

0.1250.836

0.5370.651

0.3330.239

0.4050.425

0.001-0.571

0.4060.468

0.4290.614

0.0920.691

0.4020.414

0.3450.088

(1.999, 2.123)

(1.873, 1.944)

(1.741, 1.783)

(1.623, 1.703)

(1.714, 1.738)

(1.609, 1.659)

0.0920.662

0.002-0.545

0.4060.426

0.001-0.649

0.0940.807

0.4720.186

0.0950.705

0.001-0.578

0.0050.010

0.0410.267

0.018-0.035

-0.065-0.294

0.0150.107

-0.067-0.316

0.0440.310

0.0280.047

0.003-0.014

0.0070.298

-0.051-0.247

0.014-0.154

0.0190.252

0.0360.202

0.0190.017

-0.003-0.104

(0.020, 0.040)

(0.048, 0.075)

(0.062, 0.066)

(0.052, 0.178)

(0.066, 0.100)

(0.076, 0.068)

0.0340.170

-0.051-0.227

0.019-0.209

-0.056-0.340

0.0370.395

0.0190.156

0.0380.279

-0.053-0.277

HF Triplet

ROEOM Triplet

Page 24: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Spin Densities-0.067-0.314

0.0570.330

0.019 0.083

0.009-0.035

0.0050.009

-0.071-0.320

0.0230.039

0.0580.323

-0.002-0.016

0.0220.074

-0.005-0.065

-0.060-0.294

0.0470.298

-0.054-0.274

0.0530.347

-0.063-0.325

0.021-0.054

0.0200.120

0.0140.012

-0.053-0.272

-0.001-0.032

0.001 0.012

(0.021, 0.038) (0.029, 0.028) (0.041, 0.047)(0.033, 0.017)

(0.033, 0.003) (0.045, 0.013) (0.054, 0.047)

0.0510.312

0.016 0.101

0.000-0.100

-0.066-0.304

0.0540.288

-0.010-0.221

0.0140.169

-0.045-0.272

0.0380.312

0.0430.278

Page 25: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Optimized singlet geometries

1 2

34

56

EOM-SF-CCSD/cc-pVDZ

Singlet Bond Lengths (Å)

Molecule 1 2 3 40-c 1.5679 1.3676 1.5679 1.36761-c 1.5578 1.3534 1.5576 1.3717

2-c short 1.5510 1.3687 1.5510 1.37072-c long 1.5631 1.3749 1.5546 1.37492-c trans 1.5644 1.3779 1.5644 1.3779

3-c 1.5427 1.3855 1.5467 1.37984-c 1.5587 1.3884 1.5587 1.3884

Ethynyl Substituents (Å)

bond 5 6average 1.42 1.22

Main pattern of alternating bond lengths does not change with substituent addition.

The singlet geometries have decreasing single bond lengths and increased double bond lengths; becoming more square.

Substituent bond lengths remain nearly constant.

Page 26: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Optimized triplet geometries

1 2

34

56

EOM-SF-CCSD/cc-pVDZ

Triplet Bond Lengths (Å)

Molecule 1 2 3 40-c 1.4516 1.4516 1.4516 1.45161-c 1.4666 1.4666 1.4385 1.43852-c 1.4553 1.4830 1.4551 1.4239

2-c trans 1.4536 1.4536 1.4536 1.45363-c 1.4563 1.4426 1.4427 1.45644-c 1.4562 1.4562 1.4562 1.4562

Ethynyl Substituents (Å)

bond 5 6average 1.42 1.22

Square structure is maintained when substituents are added symmetrically.

The singlet geometries have decreasing single bond lengths and increased double bond lengths, becoming more square.

Page 27: Frank Lee Emmert III, Stephanie Thompson, and Lyudmila V. Slipchenko Purdue University, West Lafayette, IN 47907

Stabilization energiesProduct Eqn. 1 Eqn. 2 Eqn. 3. Eqn. 4 Eqn. 5

Singlet RMP2

1-c -11.74 -3.73 -4.26 -2.40 -1.712-cs -24.73 -8.69 -9.77 -6.05 -4.662-cl -24.17 -8.14 -9.22 -5.49 -4.102-ct -23.08 -7.04 -8.12 -4.40 -3.013-c -36.75 -12.70 -14.32 -8.73 -6.654-c -50.01 -17.95 -20.11 -12.66 -9.88

Triplet ROMP2

1-c -12.07 -4.05 -4.59 -2.73 -2.042-cs -26.38 -10.35 -11.42 -7.70 -6.312-cl -26.38 -10.35 -11.42 -7.70 -6.312-ct -23.48 -7.45 -8.53 -4.80 -3.413-c -37.92 -13.87 -15.49 -9.91 -7.824-c -51.70 -19.63 -21.79 -14.34 -11.56

Product Eqn. 1 Eqn. 2

Singlet RCCSD(T)

1-c -10.71 -3.422-cs -22.05 -7.482-cl -21.67 -7.102-ct -21.16 -6.583-c -32.74 -10.884-c -44.21 -15.06

Triplet ROCCSD(T)

1-c -12.34 -5.052-cs -26.85 -12.272-cl -26.85 -12.272-ct -22.65 -8.073-c -37.03 -15.164-c -49.12 -19.97

CH3 H C4H(4-n)(CCH)n + nCH41. C4H4 + n

H C4H(4-n)(CCH)n + n2. C4H4 + n

H C4H(4-n)(CCH)n + n3. C4H4 + n

H C4H(4-n)(CCH)n + n4. C4H4 + n

H C4H(4-n)(CCH)n + n5. C4H4 + n