54
F O T O S Feasibility study for Optical Tracking Of Satellites GNOSIS Precision SSA Workshop 9 July 2020 Thomas Wijnen Remko Stuik Michiel Rodenhuis Marco Langbroek Petra Wijnja (TU Delft, RNLAF) (Leiden Observatory) (Leiden Observatory) (Leiden Observatory) (RNLAF)

FOTOS GNOSIS workshop · 2020. 7. 14. · FOTOS2 Refinement New techniques Build on & refine MASCARA/bRing data & routines. FOTOS2 Refinement New techniques Build on & refine

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • F O T O SFeasibility study forOptical Tracking Of Satellites

    GNOSIS Precision SSA Workshop

    9 July 2020

    Thomas Wijnen Remko Stuik

    Michiel Rodenhuis Marco Langbroek

    Petra Wijnja

    (TU Delft, RNLAF) (Leiden Observatory) (Leiden Observatory) (Leiden Observatory) (RNLAF)

  • Instrument

    FoV: 53 x 74 degrees24 x 36 mm interline CCD24 mm f/1.4 Canon lens

  • Credit: G.-J. Talens

  • -Subtract 2 images

    Observations

    Reduction

    Line recognition

    Line fitting

    Orbit determination

    Precision & quality

    Method

  • -Data reduction

  • 1. Subtract 2 consecutive images

    -Data reduction

  • 1. Subtract 2 consecutive images

    -Data reduction

  • 1. Subtract 2 consecutive images

    -Data reduction

  • 1. Subtract 2 consecutive images

    -Data reduction

  • 1. Subtract 2 consecutive images

    -Data reduction

    2. Mask the stars

  • 1. Subtract 2 consecutive images

    -Data reduction

    2. Mask the stars3. Enhance the tracks

  • 1. Subtract 2 consecutive images

    -Data reduction

    I. Binary image with pixel values > μ + 2.5 σII. Binary image with pixel values > μ + 1 σIII. Dilate 2.5 σ image IV. Multiply diluted with 1 σ imageV. Convolution to check for ≥6 adjacent nonzero pixels

    2. Mask the stars3. Enhance the tracks

  • -Line recognition

  • • Hough transform

    -Line recognition

  • • Hough transform

    -Line recognition

  • • Hough transform

    -Line recognition

  • -Line fitting

  • 1. Ransac

    -Line fitting

  • 1. Ransac

    -Line fitting

  • 1. Ransac

    -Line fitting

  • 1. Ransac

    -Line fitting

  • 1. Ransac2. Determine endpoints

    -Line fitting

  • 1. Ransac2. Determine endpoints

    -Line fitting

  • 1. Ransac2. Determine endpoints

    -Line fitting

  • 1. Ransac2. Determine endpoints

    -Line fitting

  • 1. Ransac2. Determine endpoints

    -Line fitting

  • 1. Ransac2. Determine endpoints

    -Line fitting

  • 1. Ransac 2. Determine endpoints

    -Line fitting

  • Orbit determination

    -

  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









  • Orbit determination

    -1. Gauss method (6 sky coordinates to 6 orbital elements) 









    2.Least square fitting to SGP4 propagation

  • Predict second passage -Precision & Quality

    'unknown' TLE

    known TLE

  • Averaged over 1 night -Precision & Quality

    'unknown' TLE

    known TLE

  • �4 �2 0 2 4Time to local midnight [hours]

    0

    50

    100

    150

    200

    250

    300

    350

    400N

    sat

    Passed LEO satellites

    Found LEO satellies

    Selectivity

  • �4 �2 0 2 4Time to local midnight [hours]

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90Per

    cent

    age

    foun

    d

    Selectivity

  • �4 �2 0 2 4Time to local midnight [hours]

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90Per

    cent

    age

    foun

    d

    Selectivity

  • Take-away points

    • Simple, low-cost set-up (not dedicated to SSA)


    • Able to automatically detect satellites & 
 determine orbital parameters 


    • Large fraction of objects in LEO is recognised 


    • Satellites with unknown TLE’s require multiple passages

  • FOTOS2

  • FOTOS2

    Refinement New techniques

  • FOTOS2

    Refinement New techniques

    Build on & refine MASCARA/bRing data & routines

  • FOTOS2

    Refinement New techniques

    Build on & refine MASCARA/bRing data & routines

    GEO satellites with BlackGEM

  • Full field:13x Full Moon

    Two geostationary satellites as seenby BlackGEM proto-type MeerLICHT: Thor 5 & 6

    BlackGEM spatial resolution@ GEO orbit: 170m

    26 kilometer!

  • FOTOS2

    Refinement New techniques

    Build on & refine MASCARA/bRing data & routines

    GEO satellites with BlackGEM

  • FOTOS2

    Refinement New techniques

    Build on & refine MASCARA/bRing data & routines

    GEO satellites with BlackGEM

    Characterisation with spectro(polari)metry

  • FOTOS2

    Refinement New techniques

    Build on & refine MASCARA/bRing data & routines

    GEO satellites with BlackGEM

    Characterisation with spectro(polari)metry

    NEO