15
Toyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength Steel Sheets 1. High strength steel sheet 2. Springback in bending 3. Stretch flangeability 4. Fracture 5. Galling and seizure 6. Wrinkling 7. Shearing 8. Tailored blank 9. Plastic joining Cold Stamping of High Strength Steel Sheets Forming of lightweight automobile parts Reduction in 100 kg weight: 1km/l Material High strength steel sheet (7.8) Aluminium (2.7), Magnesium (1.8), Titanum (4.5) Part Hollow parts One piece Simulation Finite element method Production of automobiles in countries Unit: 10,000 cars Thailand Japan China USA Germany Canada Korea UK France Italy India Russia Spain Brazil Mexico South Africa Brazil Toyota Prius Toyota Prius PHV Honda Fit-Jazz Environmentally friendly automobiles: Hybrid Nissan Leaf Mitsubishi i-MiEV Tesla Roadster Environmentally friendly automobiles: Electric

Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

Toyohashi University of Technology, Japan

Prof. Dr. Ken-ichiro Mori

Forming of High Strength Steel Sheets

1. High strength steel sheet2. Springback in bending3. Stretch flangeability4. Fracture5. Galling and seizure6. Wrinkling7. Shearing8. Tailored blank9. Plastic joining

Cold Stamping of High Strength Steel Sheets

Forming of lightweight automobile parts

Reduction in 100 kg weight: 1km/l

MaterialHigh strength steel sheet (7.8) Aluminium (2.7), Magnesium (1.8), Titanum (4.5)

Part Hollow parts One piece

Simulation Finite element method

Production of automobiles in countriesUnit: 10,000 cars

Thailand

Japan

China USA

Germany Canada

Korea

UK

France Italy

India

Russia

Spain

Brazil

Mexico

South AfricaBrazil

Toyota Prius

Toyota Prius PHV

Honda Fit-Jazz

Environmentally friendly automobiles: Hybrid

Nissan Leaf Mitsubishi i-MiEV

Tesla Roadster

Environmentally friendly automobiles: Electric

Page 2: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

High tensile strength steel

CO2 emission for producing automobile materials

Mild steel

Aluminium

Magnesium

Magnesium

Carbon fibers

CO2 Emission per producing 1 kg material (kg)

自動車使用におけるCO2排出量

CO2 emission

Recycle

Production Running time Scrapping

Reduction in weight

Specific strength for various sheet metals

Sheet Tensile strength

Specific gravity

Strength-to-specific gravity

ratioUltra high

strength steel980 -

1470MPa 7.8 126 -188MPa

High strength steel

490-790MPa 7.8 63-101MPa

Mild steel SPCC 340MPa 7.8 44MPaAluminium alloy

A6061(T6) 310MPa 2.7 115MPa

High strength steel sheets

1500

IF steel:

Ultra sheet

Die quenching

TRIP steel

DP steel

Tensile strength /MPa

Elon

gatio

n/%

Martensite steel

DP steel TRIP steelFerrite

Retained austeniteBainite

FerriteMartensite

High strength steel sheet

Load

High Strength Steel Sheet, HSS, AHSS, Ultra HSSTensile strength: 440, 490, 590 780, 1180 MPa

Pmax/A0

Pmax

Displacement

A0: initial cross-sectional area

Mechanism of strengthening of high strength steel sheet

Mild steel

Solid solution

Precipitation

Transformation

Martensite

Bainite

Page 3: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

Properties of high strength steel sheets

Elon

gatio

n (%

)

r-val

ueH

ole

expa

nsio

n ra

tio

(%)

Precipitation

Precipitation

Precipitation

Precipitation

Martensite

Martensite

Martensite

Bainite

Bainite

Bainite

Yield stress ratio

ULSAB-AVC (Ultra Light Steel Auto Body- Advanced Vehicle Concept)

Application of high strength steel sheets to automobile body

36% of total weight

Used steel sheets

Used steel sheets Results of ULSAB-AVC

Fuel consumption

Weight

Collision safety

Production cost

Gasoline GasolineDiesel Diesel

Page 4: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

Mild steel46%

Alumimium4.8%

Ultra HSS12.8%

HSS36.4%

Material percentage

Toyota Crown, 45% of body panels

Subaru Legacy

Application of high strength steel sheets to automobile body

High strength steel sheets: from 40% to 60%

8% reduction in weight

Mazda, Demio

OldNew

Mazda, Atenza: from 42% to 49%

Mazda, Atenza, Roadstar

Mazda, Roadstar, 1500MPa: 12% (green)

(a) 2004 (b) 2014

Chang in percentage of use of HSS

(a) 2004 (b) 2014

Use of HSS in automobile body panels

PillarBumper

Inner panelOuter panel

PillarBumper

Inner panelOuter panel

Increase in strength and reduction in weight

500 1000 1500 2000 500 1000 1500 2000Tensile strength /MPa

20

40

60

80

0

20

40

0Incr

ease

in b

endi

ng st

reng

th/%

Red

uctio

n in

wei

ght/

%

Tensile strength /MPa

Page 5: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

1. High strength steel sheet2. Springback in bending3. Stretch flangeability4. Fracture5. Galling and seizure6. Wrinkling7. Shearing8. Tailored blank9. Plastic joining

Cold Stamping of High Strength Steel Sheets Springback in bending

ε

σ Mild steel

Ultra HSS

Elastic recovery

Springback: largeAccuracy of shape: low Tensile

CompressiveLoading

UnloadingCompressive

Tensile

Springback

Wall wrap

Twisting

Longitudinal wrap

Deterioration in shape accuracy of formed parts Springback in hat-shaped bending of HSS

Tensile strength

Springback in bending

:SpringbackM :Bending moment (bt2/4)I :Geometrical moment of inertia (bh3/12) : Flow stressE :Young's modulust :Thickness :Bend angleR :Radius

M

E IR 3

~~R

tE

t

R

(a) Material (b) Thickness

5

4

3

2

1

0

曲げ角度 /º 曲げ角度 /º

スプ

リン

グバ

ック

角度

Effects of material and thicknessin V-shaped bending

Sprin

gbac

k/º

Bending angle /º Bending angle /º

Page 6: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

Punch corner radius / thickness

Effect of strength on springbackin hat-shaped bending

Effect of back pressure on springbackin U-shaped bending

Back pressure /MPa

Effect of strength on wrap in hat-shaped bending

ダイ肩R / 板厚

Die corner radius / thickness

Effect of blank holder force on wrapin hat-shaped bending

Blank holder force /kN

800kN CNC Servo Press

servo motor

conventional ti

me

Bottom dead centreaccuracy: 1mspeed: 150mm/s

ball screw

Feedback control

Direct driving type

90°

9.6

90°

9.6

Reduction in springback in V-shaped bending

Sheet

tf = t0

t 0

Reduction in thickness in bottoming

Page 7: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

(a) SPCC (b) SPFC980Yv=24mm/s, f=0%, T=0.5s3 times slower

Deformation behaviour in V-shaped bending

0.05 0.1 0.15 0.2 0.25 0.3

200

400

600

800

1000

1200

0

Flow

stre

ss /M

Pa

SPCC

SPFC440

A1050

SPFC980Y

SPFC780Y

A5083

Strain

1310564 s.131020 s.

1310291 s.131020 s.

131020 s.

131010 s.

131020 s.

1310992 s.

1310695 s. 131020 s.

1310451 s.13109104 s.

Flow stress curve of sheets at room temperatureLarge springback

Relationship between springback and forming speed in V-shaped bending (f=0%, T=0s)

0 10 20 30 40 50-2

0

2

4

6

8SPFC980Y,Nominal

SPFC440

SPCCSprin

gbac

k

Forming speed /mms-1

Sheet

SPFC980Y (DP), SPFC440 (IF), SPCC

Nominal thickness 1.2mm

SPCC

SPFC440

SPFC980Y(DP)

Scatter of initial thickness of sheets

nominal

1.18 1.19 1.2 1.21 1.220

10

20

30

40

Initial thickness t0 / mm

Num

ber o

f she

ets

Relationship between springback and forming speed in V-shaped bending (f=0%, T=0s)

0 10 20 30 40 50-2

0

2

4

6

8SPFC980Y, real

SPFC440

SPCCSprin

gbac

k

Forming speed /mms-1

0

10

20

30

40

250 500 750 1000

Tensile strength /MPa

Spr

ingb

ack

/mm

270MPa

590MPa

980MPa

Required tolerance

±0.5mm

Relationship between springback and tensile strength

Page 8: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

0 10 20 30 40 50-2

0

2

4

6

8

加工速度 v / mm・s-1

スプ

リン

グバ

ック

角度

Δθ

/ °

f=0%, T=0.1s

f=0.33%, T=0.1s

f=0.33%, T=0.5s

Effects of bottoming andholding time at bottom dead centre for SPFC980Y

Sprin

gbac

k an

gle

Forming speed /mms-1

-2.0

1.5/GPa

1.0

0.5

0

-0.5

-1.0

-1.5

(a) f=0% (b) f=0.33%

Distribution of stress in width direction just after unloading for finishing reduction in thickness

Kaewtatip, P., Prasitkhetkhan, N., Khantachawana, A., Premanond, V., Hato, R., Sresomreong, B., Koga, N., Proc. 9th ICTP, (2008).

Effect of bottoming

Nominal

Die surface

Afterforming

Springback

Expectation for springback

Prevention of springback by beads in side wall

Increase in stiffness

【Old shape】

【New shape】

Chamfer shape

Prevention of springback by chamfering Prevention of springback by control of blank holder force

Page 9: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

(a) Draw bending (b) Crash forming without blank holder

Prevention of springback by crash forming Prevention of springback by overrun inducing punch

Tensile strength /MPa

452

597

838

1025

1211

1520

Prevention of springback by overrun inducing punch Prevention of springback by crash forming

Prevention of springback by crash forming

980MPa

(a) Drawing (b) Restriking

Prevention of springback and twistingby restriking

Drawing

Restriking

Page 10: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

(a) Drawing (b) Slide locking

780MPa

Prevention of springback by slide locking

Chamfer

Push Back

590MPa, 1.0 mm

(b) Restriking(a) Bending

Prevention of springback and twistingby chamfered bending and push-back forming

FEM simulation

Difference from product

Adjustment

NG

OK

(a) Simulation(b) 1st

adjustment

Adjustment of die shape by finite element simulation

(c) 2nd adjustment

Effect of constitutive equations on calculated springback Effect of constitutive equations on calculated springback by finite element simulation

Strain

Stre

ss (M

Pa)

(a) Experimental result (980 MPa)

(b) Isotropic model (c) Yoshida-Uemori model

Isotropic modelYoshida-Uemori model

1. High strength steel sheet2. Springback in bending3. Stretch flangeability4. Fracture5. Galling and seizure6. Wrinkling7. Shearing8. Tailored blank9. Plastic joining

Cold Stamping of High Strength Steel Sheets

780MPa high strength steel formed product

Fracture

Cold stamping

SheetShearing Stretch flanging

TensileSheared edge

Bending

Small formability

Fracture in stretch flanging of high strength steel sheets

Page 11: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

Properties of high strength steel sheets

Elon

gatio

n (%

)

r-val

ueH

ole

expa

nsio

n ra

tio

(%)

Precipitation

Precipitation

Precipitation

Precipitation

Martensite

Martensite

Martensite

Bainite

Bainite

Bainite

Yield stress ratio

Steel sheets used for punching and stretch flanging

Sheet Thickness [mm]

Yield stress [MPa]

Tensile strength [MPa]

Elongation [%]

n-value

JSC980Y 1.41 620 1027 18.7 0.12JSC780Y 1.41 558 823 19.0 0.12JSC590R 1.40 446 600 26.2 0.14JSC440W 1.41 320 455 33.8 0.18JSC390W 1.39 283 389 35.8 0.18JSC270C 1.39 223 333 41.2 0.19

Shearing conditions

200 1.4

Punch

Punch

Die

Die

Sheet holder

Velocity: 30mm/s

Clearance ratio

Blank

200

c=10, 15, 20, 25%

JSC980, JSC780

155o

Sheet holder

Blank

Stretch flanging conditions

1.4

L

R51.4

R5Punch

Punch

Die

Die

Flange length, 1 mm interval

1.4

Blank155o

2Burr side

Sheet holder Sheet

holder

Velocity: 30mm/s

Concave blank

Effect of clearance ratio of occurrence of fracture(JSC980Y,L=15mm)

(a) c =20%

Fracture

1mm

Surface Sheared edge Surface Sheared edge

0.1mm

(b) c =15%

1mm

Burnish

Fracture

0.1mm

Fracture

No fracture

No fracture 5 10 15 20 25 300

20

40

60

Clearance ratio /%

Lim

iting

flan

ging

ratio

/%

JSC980

JSC780

Before bending

After bending

2mm

Limiting flanging ratio:

l1

l1 - l0

l0

l0

Relationship between limiting flanging ratioand clearance ratio

Crack

Page 12: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

(d) Punching

(a) Initial

s 1

(b) Shearing by upper punch

Stroke of upper punch

s 2

(c) Shearing by lower punch

Stroke of lower punch

Upper dieUpper punch

Load of lowerpunchLower punch

Lower die

Improvement of stretch flangeability by upper and Improvement of stretch flangeability by upper and lower punching

Upper and lower punching

Conventional(c=20%t)

600 800 10000

10

20

30

40

50

60

Lim

iting

exp

ansi

on ra

tio

/%

Tensile strength /MPa

Relationship between limiting expansion ratio and tensile strength

Smoothing

Sheet

Sheared edge

Shearing Stretch flanging

Tensile

DieConical punch

Sheet holderBlank

Compression Frac

ture

su

rfac

e

Smoothing of fracture surface on sheared edge with conical punch

Load

Conical punch

Blank (c=20%)

Sheet holder

Dir\e

Guide φ12

Punching load PFracture surface

side

Die

φ10.72

Blank (c=20%)30°

Smoothing of fracture surface on sheared edge with conical punch in punching

Conical punch

Sheet holder

(a) P=0 kN (b) P=6 kN (c) P=12 kN

(f) P=22 kN(e) P=20 kN(d) P=16 kN

Smoothing of fracture surface on sheared edge ofpunched sheet (JSC980Y)

Smoothed sheared edge (JSC980Y)

0 m

30 m

(a) P=0kN (Punched edge)

(b) P=22kN

0.3mm

(i) Surface (ii) Height (i) Surface (ii) Height

Page 13: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

5 10 15 20 25

30

60

90

120

150

180

210

0Sommthing load P /kN

Lim

iting

exp

ansi

on ra

tio/%

JSC390W

JSC980Y

JSC390W,electrical discharge machining

JSC980Y,electrical discharge machining

Improvement of limiting expansion ratio by smoothing (JSC980Y)

Punch

Sheet holder

Die

Sheet holder

Smoothing

BlankConical punch

Burr side

Die

Blankholder

15° 2.5

Conical punch φ45

P

Blank

Concave sheetPunch

Die

Smoothing of fracture surface on sheared edge with conical punch in punching

(c) P=9kN

BurnishedFracture

Rollover

Smoothed(b) P=2.5kN(a) P=0kN

1mm

0

20

40

60

80

100

Dep

th p

erce

ntag

e/%

Load P / kN

Rollover

Burnished

Frature

Smoothed

0 4 6 82

Sheared edge after smoothing (JSC780, c=20%) Improvement of limiting stretch flanging ratio (JSC780, c=20%)

0

20

40

60

80

0

0.5

1

1.5

荷重P /kN

Lim

iting

stre

tch

flang

ing

ratio

/%

Aver

age

surf

ace

roug

hnes

s of

frac

ture

surf

ace

Ra

/m

590MPa, no smoothing

4 6 82

Sheared edge before and after smoothing(JSC980Y, c=15%)

0.5mm

(a) P = 0 kN (b) P = 1 kN (c) P = 2 kN

BurnishedSmoothedFracture

Fractre

Smoothing load P /kN0.5 1 1.5 2

0

102030405060

Lim

iting

flan

ging

ratio

/%

590MPa, no smoothing

Improvement of limiting stretch flanging ratio (JSC980Y, c=15%)

Page 14: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

ダイス

凹形状ブランク

引張り小

(a) Before forming (b) During forming (c) After forming

ダイスダイス

Die

Blank

Gradual contact punch

Reduction in tensile stress

Die

Reduction in tensile stress at cornerusing gradual contact punch

Gradual contact punch

10o

45o

(a) Flat punch

(b) Gradual contact punch

Reduction in tensile stress

Tensile stress

Reduction in tensile stress at cornerusing gradual contact punch

Shearing conditions

Sheet Thick-ness /mm

Yield stress /MPa

Tensile strength /MPa

Elonga-tion /%

Reduction in area /%

n-value

JSC780Y 1.4 395 847 18.8 66 0.15JSC980Y 1.4 660 1014 16.4 45 0.15JSC1180Y 1.2 864 1209 10.8 46 0.14

Punch

Die

Blank

Punch

Die

Blank holder

Clearance ratio

200

c =10, 15, 20, 25%

R50

W0=200Blank holder

W/W0 = 0.1-1 = 0-85o

L = 0-27mm

Burr side

t

R5R5Punch

ダイ

W0=200

Sheet holder

Die

Punch

1. 4

=155,130,120o

Blank

2L

Stretch flanging conditions

Die

Punch

W Blank

Sheet holder

Sheet holder

Software LS-DYNASymmetry 1/2 model

Sheet Elastic-plastic shell elements

Tools RigidCoefficient of friction 0.15

Punch speed 100mm/s

Punch

Blank holder

Blank

Calculated conditions of stretch flanging

Die

Distribution of longitudinal strain by flat punch(JSC780, =0o , L=18mm)

Flat punch

Die

Longitudinal strain00.5 0.4 0.3 0.2 0.1

Page 15: Forming of High Strength Steel Sheets Cold …plast.me.tut.ac.jp/present/cold_stamping1.pdfToyohashi University of Technology, Japan Prof. Dr. Ken-ichiro Mori Forming of High Strength

Gradual contact punch

Die

Longitudinal strain00.5 0.4 0.3 0.2 0.1

Distribution of longitudinal strain by gradual contact punch(JSC780, =10o , W/W0=1.0, L=18mm)

(b) Gradual contact punch(=10o, W/W0=1.0)

(a) Flat punch (=0o)

00.5 0.4 0.3 0.2 0.1Longitudinal strain

Distribution of longitudinal strain by gradual contact punch(JSC780, L=17mm)

(b) Gradual contact punch(=10o, W/W0=1.0) No fracture

(a) Flat punch (=0o) Fracture205.9

20.9 22

.5

205.2

20.7 22

.8

Prediction of fracture at corner of 780MPa sheetusing gradual contact punch

Crack No crack

Prediction of fracture at corner of 980MPa sheetusing gradual contact punch

(a) Flat punch, =180º (b) Gradual contact punch,=170º

17.2

Flat punch

W/W0=0.2, =45o

13.7

18.0

(a) JSC980Y

(b) JSC1180Y

W/W0=0.2, =45o

21.9

Improvement of limiting flange height by gradual contact punch

Flat punch