1
Methodology In our original approach [6], we represented the Indian summer monsoon rain (ISMR) by the JJAS total precipitation P over India, and the ENSO by the JJA average surface pressure difference pdiff between Tahiti and Darwin or the average sea surface temperature T in a “Nino box”. Here, instead of e.g. spatial averages, we project the full (JJA mean) fields of P, p, T onto dominant modes of variability, be it an EOF, or dominant modes concerning, specifically, the ENSO-IM relationship. We define the teleconnection as the Pearson’s correlation coefficient between scalars; e.g.: or between PCs belonging to the EOF/MCA/CCA modes, but we average <> over the ensemble members instead of time. Due to the finite ensemble size N, fine details of the response are masked by “noise”, and even the nonstationarity is hard to see/detect. To this end, as a quantitative strategy, we deploy the Mann-Kendal (MK) test to detect nonstationarity in the Fisher transform z = arctan(r), which follows approximately a normal distribution of standard deviation (N - 3) -1/2 . In terms of the linear regression model Ψ = Φ + , the correlation coefficient can be written as: To attribute temporal forced changes of the ensemble-wise r, we evaluate the time series of the ensemble-wise 1. ENSO variability ! ; 2. ENSO-IM “coupling” a being the regression coefficient; 3. Noise strength ξ. r = hpdif f P i-hpdif f ihP i q (hp 2 dif f i-hpdif f i 2 )(hP 2 i-hP i 2 ) Findings No changes of EOF, MCA, CCA modes on the ENSO side (Fig. 1a); some change in the late 21 st c. under RCP8.5 on the IM side (Fig. 1b). A robust picture of long-term strengthening of the ENSO-IM teleconnection wrt. the most dominant (first) EOF/MCA/CCA modes. Although the strengthening is declining. In the 21 st c. alone typically no significant change can be detected, only in the 20 th c., but as the 20 th c. period is extended steadily into the future, the test statistics is typically steadily increasing, hinting at a continued increase of r (Fig. 3). As for the drivers (Fig. 2), 1. Up to a point in time, ENSO variability typically increases (SST) or stagnates (SLP): +ve or no contribution; 2. The coupling is typically strengthening throughout: +ve contribution; 3. The noise strength is typically increasing throughout: –ve contribution. Both an increasing ENSO variability (1.) and the remaining two factors (2. and 3.) combined can contribute to an increase of r. That is, the strengthening coupling typically dominates over an increasing noise strength. ENSO variability declines in the second half of the 21 st c., upon a seemingly abrupt turn of the trend. This decline can make r decline too, although this effect can be muffled by the accelerating change in the other factors. Forced response of the El Niño–Southern Oscillation-Indian monsoon teleconnection in the MPI-GE Tamás Bódai 1,2 , Gábor Drótos 3 , Tímea Haszpra 4 1 Center for Climate Physics, Institute for Basic Science, Korea, 2 Pusan National University, 3 Instituto de Física Interdisciplinar y Sistemas Complejos, 4 Eötvös University Budapest The ENSO has a global reach in shaping local weather, but affects tropical and subtropical regions the most [1]. The teleconnection of the ENSO with the Asian monsoon systems has the greatest impact on human life, and severe episodes in the late XIX. century lead to the discovery of the ENSO [2]. The ENSO-Indian monsoon (IM) teleconnection seems to have been weakening in the recent decades in the view of running correlations [3]. However, not necessarily as a contradiction, the MPI-GE [4] was found recently [5] to feature a strengthening of the ENSO-IM teleconnection in a correct ensemble- based framework [6]. Although certain discrepancies between the analysed representations of the ENSO-IM teleconnection exist [6] (Figs. 2, 3). OBJECTIVE: Here we aim to examine the robustness of the forced change of the relationship by § Separating spatial characteristics via using the snapshot EOF analysis [7], Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA); and § Decomposing the forced change of the correlation coefficient, in terms of a regression model, into three components. [1] Neelin, J. D. et al. (1998) J. Geophys. Res. Ocean. 103, 14261–14290. [2] Mike Davies. Late Victorian Holocaust, Verso (2000). [3] Kumar, K.K. et al. (1999) Science 284:2156-2159. [4] Maher, N. et al. (2019) JAMES, 11(7):2050—2069. [5] Bodai, T. et al. (2020) J. Clim. 33(6):2163—2182. [6] Tel, T. et al. (2020) J. Stat. Phys. doi.org/10.1007/s10955-019-02445-7 [7] Haszpra, T. et al. (2020) ESD 11(1): 267—280. 0 0.2 0.4 0.6 0.8 |r| SST Nino3 0 0.2 0.4 0.6 0.8 SST Nino3.4 0 0.2 0.4 0.6 0.8 EOF1 0 0.2 0.4 0.6 0.8 EOF1-EOF1 0 0.2 0.4 0.6 0.8 MCA1 0 0.2 0.4 0.6 0.8 CCA1 0.6 0.8 1 1.2 0.6 0.7 0.8 0.9 1 15 20 25 30 15 20 25 30 15 20 25 30 10 15 20 25 0 1 2 3 4 /a 0 1 2 3 4 20 30 40 50 60 20 30 40 50 60 10 15 20 25 30 5 10 15 20 0 0.5 1 a 10 -5 0 0.5 1 10 -5 2 3 4 5 6 10 -6 2 3 4 5 6 10 -6 3 4 5 6 10 -6 4 5 6 7 8 10 -6 0 100 200 year since 1880 4 5 6 7 8 10 -6 0 100 200 4 5 6 7 8 10 -6 0 100 200 0.8 1 1.2 1.4 1.6 10 -4 0 100 200 0.8 1 1.2 1.4 1.6 10 -4 0 100 200 6 8 10 12 10 -5 0 100 200 4 6 8 10 10 -5 0 0.2 0.4 0.6 0.8 |r| SOI 0 0.2 0.4 0.6 0.8 box-SOI 0 0.2 0.4 0.6 0.8 EOF1 0 0.2 0.4 0.6 0.8 EOF1-EOF1 0 0.2 0.4 0.6 0.8 MCA1 0 0.2 0.4 0.6 0.8 CCA1 80 90 100 110 120 60 80 100 120 2000 2500 3000 3500 4000 2000 2500 3000 3500 4000 2000 2500 3000 3500 4000 1000 1500 2000 2500 3000 100 200 300 400 /a 50 100 150 200 250 0 0.5 1 1.5 2 10 4 5000 10000 15000 2000 3000 4000 5000 1000 1500 2000 2500 3000 2 4 6 8 a 10 -8 2 4 6 8 10 10 -8 0 1 2 3 4 10 -8 1 2 3 4 10 -8 2 3 4 5 10 -8 2 4 6 8 10 -8 0 100 200 year since 1880 4 6 8 10 10 -6 0 100 200 4 5 6 7 8 10 -6 0 100 200 1 1.2 1.4 1.6 10 -4 0 100 200 1 1.2 1.4 1.6 10 -4 0 100 200 6 8 10 12 10 -5 0 100 200 6 7 8 9 10 10 -5 r = 1 q 1+( σ/a σΦ ) 2 < l a t e x i t s h a 1 _ b a s e 6 4 = " a c X u U L b d 1 + E Y D P / D o d N z 2 T 9 r r W E = " > A A A C J n i c b V D L S s N A F J 3 U V 6 2 v q E s 3 w S J U h J q U i m 4 K R T c u K 9 g H N D F M p p N 2 6 O T h z E Q s Y b 7 G j b / i x k V F x J 2 f 4 r Q N q K 0 H L p w 5 5 1 7 m 3 u P F l H B h m p 9 a b m l 5 Z X U t v 1 7 Y 2 N z a 3 t F 3 9 1 o 8 S h j C T R T R i H U 8 y D E l I W 4 K I i j u x A z D w K O 4 7 Q 2 v J n 7 7 A T N O o v B W j G L s B L A f E p 8 g K J T k 6 j V W s 3 0 G U W r J 1 O b 3 T K T W S W m m 2 J z 0 A + i m 9 i O R p 1 D + v B s D I u X x X U V K V y + a Z X M K Y 5 F Y G S m C D A 1 X H 9 u 9 C C U B D g W i k P O u Z c b C S S E T B F E s C 3 b C c Q z R E P Z x V 9 E Q B p g 7 6 f R M a R w p p W f 4 E V M V C m O q / p 5 I Y c D 5 K P B U Z w D F g M 9 7 E / E / r 5 s I / 8 J J S R g n A o d o 9 p G f U E N E x i Q z o 0 c Y R o K O F I G I E b W r g Q Z Q Z S R U s g U V g j V / 8 i J p V c p W t X x 2 U y 3 W L 7 M 4 8 u A A H I I S s M A 5 q I N r 0 A B N g M A T e A F j 8 K Y 9 a 6 / a u / Y x a 8 1 p 2 c w + + A P t 6 x t Y c q b y < / l a t e x i t > Figure 1. Temporal-mean 1st EOF (left), MCA (middle), CCA (right) modes in four (rows) consecutive 50 year time windows starting from 1900. (a) ENSO, characterised by SST; (b) Indian monsoon. For (b), we also have correlation maps: the corr’ coeff’ between the gridpoint-wise precipitetation and PC1 of EOF1. Figure 2. Time series of the ensemble-wise correlation coefficients r between scalar time series e.g. Nino3 and ISMR, or PCs of EOFs or those of MCA and CCA modes (one column for each). Below each r(t) are corresponding time series for ENSO variability ! , ENSO-IM coupling/reg’ coeff a, noise strength ξ. On the left (right) ENSO characterisation is based on the SST (SLP). Figure 3. Mann- Kendall test statistics based on some of the r(t) seen in Fig. 2. Top (bottom) block of four is based on the SST (SLP). 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 Nino3-ISMR CCA1 MCA1 EOF1 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 1900 1950 2000 2050 2100 1900 1950 2000 2050 2100 ZMK Ending year Starting year 3.48 1.96 0 1.96 3.48 SOI-ISMR CCA1 MCA1 EOF1

Forced response of the El Niño–Southern Oscillation-Indian … · 2020-05-08 · Methodology • In our original approach [6], we represented the Indian summer monsoon rain (ISMR)

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Forced response of the El Niño–Southern Oscillation-Indian … · 2020-05-08 · Methodology • In our original approach [6], we represented the Indian summer monsoon rain (ISMR)

Methodology• In our original approach [6], we represented the Indian summer monsoon

rain (ISMR) by the JJAS total precipitation P over India, and the ENSO by the JJA average surface pressure difference pdiff between Tahiti and Darwin or the average sea surface temperature T in a “Nino box”.

• Here, instead of e.g. spatial averages, we project the full (JJA mean) fields of P, p, T onto dominant modes of variability, be it an EOF, or dominant modes concerning, specifically, the ENSO-IM relationship.

• We define the teleconnection as the Pearson’s correlation coefficient between scalars; e.g.:

• or between PCs belonging to the EOF/MCA/CCA modes,• but we average <> over the ensemble members instead of time. • Due to the finite ensemble size N, fine details of the response are masked

by “noise”, and even the nonstationarity is hard to see/detect. To this end, as a quantitative strategy, we deploy the Mann-Kendal (MK) test to detect nonstationarity in the Fisher transform z = arctan(r), which follows approximately a normal distribution of standard deviation (N - 3)-1/2.

• In terms of the linear regression model Ψ = 𝑎Φ+𝜉, the correlation coefficient can be written as:

• To attribute temporal forced changes of the ensemble-wise r, we evaluate the time series of the ensemble-wise

1. ENSO variability 𝜎!; 2. ENSO-IM “coupling” a being the regression coefficient;3. Noise strength 𝜎ξ.

r =hpdiffP i � hpdiff ihP iq

(hp2diff i � hpdiff i2)(hP 2i � hP i2)<latexit sha1_base64="3kVgk8TvGjpw17pqQtGqMC6UaNc=">AAACnHichVFbS8MwGE3rbc7b1Dd9MDiE+eDohqA+CEMRvCBUcBdYt5Fm6RaWpjVJhVH6r/wlvvlvzLbOyyZ4IHA453zJl+9zQ0alsqwPw1xYXFpeyaxm19Y3Nrdy2zs1GUQCkyoOWCAaLpKEUU6qiipGGqEgyHcZqbuD65FffyVC0oA/q2FIWj7qcepRjJSWOrk3cel4AuHYYYj3GIFhJ+5Sz0tsR0yEEzhrpc5UniaT2JEvQsWF2Xy7/O9d7fLxV5n9V97+DiZJJ5e3itYYcJ6UUpIHKexO7t3pBjjyCVeYISmbJStUrRgJRbFuPOtEkoQID1CPNDXlyCeyFY+nm8AjrXShFwh9uIJj9WdFjHwph76rkz5SfTnrjcS/vGakvPNWTHkYKcLx5CEvYlAFcLQq2KWCYMWGmiAsqO4V4j7Sy1J6oVk9hNLsl+dJtVy8KFpPp/nKVTqNDNgHh6AASuAMVMAtsEEVYGPPqBh3xr15YN6YD+bjJGoaac0u+AWz9glVYs2J</latexit><latexit sha1_base64="3kVgk8TvGjpw17pqQtGqMC6UaNc=">AAACnHichVFbS8MwGE3rbc7b1Dd9MDiE+eDohqA+CEMRvCBUcBdYt5Fm6RaWpjVJhVH6r/wlvvlvzLbOyyZ4IHA453zJl+9zQ0alsqwPw1xYXFpeyaxm19Y3Nrdy2zs1GUQCkyoOWCAaLpKEUU6qiipGGqEgyHcZqbuD65FffyVC0oA/q2FIWj7qcepRjJSWOrk3cel4AuHYYYj3GIFhJ+5Sz0tsR0yEEzhrpc5UniaT2JEvQsWF2Xy7/O9d7fLxV5n9V97+DiZJJ5e3itYYcJ6UUpIHKexO7t3pBjjyCVeYISmbJStUrRgJRbFuPOtEkoQID1CPNDXlyCeyFY+nm8AjrXShFwh9uIJj9WdFjHwph76rkz5SfTnrjcS/vGakvPNWTHkYKcLx5CEvYlAFcLQq2KWCYMWGmiAsqO4V4j7Sy1J6oVk9hNLsl+dJtVy8KFpPp/nKVTqNDNgHh6AASuAMVMAtsEEVYGPPqBh3xr15YN6YD+bjJGoaac0u+AWz9glVYs2J</latexit><latexit sha1_base64="3kVgk8TvGjpw17pqQtGqMC6UaNc=">AAACnHichVFbS8MwGE3rbc7b1Dd9MDiE+eDohqA+CEMRvCBUcBdYt5Fm6RaWpjVJhVH6r/wlvvlvzLbOyyZ4IHA453zJl+9zQ0alsqwPw1xYXFpeyaxm19Y3Nrdy2zs1GUQCkyoOWCAaLpKEUU6qiipGGqEgyHcZqbuD65FffyVC0oA/q2FIWj7qcepRjJSWOrk3cel4AuHYYYj3GIFhJ+5Sz0tsR0yEEzhrpc5UniaT2JEvQsWF2Xy7/O9d7fLxV5n9V97+DiZJJ5e3itYYcJ6UUpIHKexO7t3pBjjyCVeYISmbJStUrRgJRbFuPOtEkoQID1CPNDXlyCeyFY+nm8AjrXShFwh9uIJj9WdFjHwph76rkz5SfTnrjcS/vGakvPNWTHkYKcLx5CEvYlAFcLQq2KWCYMWGmiAsqO4V4j7Sy1J6oVk9hNLsl+dJtVy8KFpPp/nKVTqNDNgHh6AASuAMVMAtsEEVYGPPqBh3xr15YN6YD+bjJGoaac0u+AWz9glVYs2J</latexit><latexit sha1_base64="3kVgk8TvGjpw17pqQtGqMC6UaNc=">AAACnHichVFbS8MwGE3rbc7b1Dd9MDiE+eDohqA+CEMRvCBUcBdYt5Fm6RaWpjVJhVH6r/wlvvlvzLbOyyZ4IHA453zJl+9zQ0alsqwPw1xYXFpeyaxm19Y3Nrdy2zs1GUQCkyoOWCAaLpKEUU6qiipGGqEgyHcZqbuD65FffyVC0oA/q2FIWj7qcepRjJSWOrk3cel4AuHYYYj3GIFhJ+5Sz0tsR0yEEzhrpc5UniaT2JEvQsWF2Xy7/O9d7fLxV5n9V97+DiZJJ5e3itYYcJ6UUpIHKexO7t3pBjjyCVeYISmbJStUrRgJRbFuPOtEkoQID1CPNDXlyCeyFY+nm8AjrXShFwh9uIJj9WdFjHwph76rkz5SfTnrjcS/vGakvPNWTHkYKcLx5CEvYlAFcLQq2KWCYMWGmiAsqO4V4j7Sy1J6oVk9hNLsl+dJtVy8KFpPp/nKVTqNDNgHh6AASuAMVMAtsEEVYGPPqBh3xr15YN6YD+bjJGoaac0u+AWz9glVYs2J</latexit>

Findings• No changes of EOF, MCA, CCA modes on the ENSO side (Fig. 1a); some change in the late 21st c. under RCP8.5 on the IM side (Fig. 1b).• A robust picture of long-term strengthening of the ENSO-IM teleconnection wrt. the most dominant (first) EOF/MCA/CCA modes.• Although the strengthening is declining. In the 21st c. alone typically no significant change can be detected, only in the 20th c., but as the 20th c. period is extended steadily into the future, the test statistics is typically steadily increasing, hinting at a continued increase of r (Fig. 3). • As for the drivers (Fig. 2),

1. Up to a point in time, ENSO variability typically increases (SST) or stagnates (SLP): +ve or no contribution;

2. The coupling is typically strengthening throughout: +vecontribution;

3. The noise strength is typically increasing throughout: –vecontribution.

• Both an increasing ENSO variability (1.) and the remaining two factors (2. and 3.) combined can contribute to an increase of r. That is, the strengthening coupling typically dominates over an increasing noise strength. • ENSO variability declines in the second half of the 21st c., upon a seemingly abrupt turn of the trend.• This decline can make r decline too, although this effect can be muffled by the accelerating change in the other factors.

Forced response of the El Niño–Southern Oscillation-Indian monsoon teleconnection in the MPI-GETamás Bódai1,2, Gábor Drótos3, Tímea Haszpra41Center for Climate Physics, Institute for Basic Science, Korea, 2Pusan National University, 3Instituto de FísicaInterdisciplinar y Sistemas Complejos, 4Eötvös University Budapest

• The ENSO has a global reach in shaping local weather, but affects tropical and subtropical regions the most [1].

• The teleconnection of the ENSO with the Asian monsoon systems has the greatest impact on human life, and severe episodes in the late XIX. century lead to the discovery of the ENSO [2].

• The ENSO-Indian monsoon (IM) teleconnection seems to have been weakening in the recent decades in the view of running correlations [3].

• However, not necessarily as a contradiction, the MPI-GE [4] was found recently [5]to feature a strengthening of the ENSO-IM teleconnection in a correct ensemble-based framework [6].

• Although certain discrepancies between the analysed representations of the ENSO-IM teleconnection exist [6] (Figs. 2, 3).

• OBJECTIVE: Here we aim to examine the robustness of the forced change of the relationship by

§ Separating spatial characteristics via using the snapshot EOF analysis [7], Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA); and

§ Decomposing the forced change of the correlation coefficient, in terms of a regression model, into three components.

[1] Neelin, J. D. et al. (1998) J. Geophys. Res. Ocean. 103, 14261–14290. [2] Mike Davies. Late Victorian Holocaust, Verso (2000). [3] Kumar, K.K. et al. (1999) Science 284:2156-2159. [4] Maher, N. et al. (2019) JAMES, 11(7):2050—2069. [5] Bodai, T. et al. (2020) J. Clim. 33(6):2163—2182. [6] Tel, T. et al. (2020) J. Stat. Phys. doi.org/10.1007/s10955-019-02445-7 [7] Haszpra, T. et al. (2020) ESD 11(1): 267—280.

0

0.2

0.4

0.6

0.8

|r|

SSTNino3

0

0.2

0.4

0.6

0.8

SSTNino3.4

0

0.2

0.4

0.6

0.8

EOF1

0

0.2

0.4

0.6

0.8

EOF1-EOF1

0

0.2

0.4

0.6

0.8

MCA1

0

0.2

0.4

0.6

0.8

CCA1

0

0.2

0.4

0.6

0.8

EOF2

0

0.2

0.4

0.6

0.8

EOF2-EOF2

0

0.2

0.4

0.6

0.8

MCA2

0

0.2

0.4

0.6

0.8

CCA2

0.6

0.8

1

1.2

0.6

0.7

0.8

0.9

1

15

20

25

30

15

20

25

30

15

20

25

30

10

15

20

25

8

10

12

14

16

8

10

12

14

16

5

10

15

6

8

10

12

14

0

1

2

3

4

/a

0

1

2

3

4

20

30

40

50

60

20

30

40

50

60

10

15

20

25

30

5

10

15

20

0

0.5

1

1.5

2104

0

1000

2000

3000

4000

5

10

15

20

0

20

40

60

0

0.5

1

a

10-5

0

0.5

110-5

2

3

4

5

610-6

2

3

4

5

610-6

3

4

5

610-6

4

5

6

7

810-6

0

1

2

3

410-6

0

2

4

610-6

0

0.5

1

1.510-5

0

0.5

110-5

0 100 200

year since 1880

4

5

6

7

8

10-6

0 100 2004

5

6

7

8

10-6

0 100 2000.8

1

1.2

1.4

1.610-4

0 100 2000.8

1

1.2

1.4

1.610-4

0 100 2006

8

10

1210-5

0 100 2004

6

8

1010-5

0 100 2000.8

0.9

1

1.1

1.2

10-4

0 100 200

0.8

1

1.2

1.410-4

0 100 2004

6

8

1010-5

0 100 200

6

8

10

1210-5

0

0.2

0.4

0.6

0.8

|r|

SOI

0

0.2

0.4

0.6

0.8

box-SOI

0

0.2

0.4

0.6

0.8

EOF1

0

0.2

0.4

0.6

0.8

EOF1-EOF1

0

0.2

0.4

0.6

0.8

MCA1

0

0.2

0.4

0.6

0.8

CCA1

0

0.2

0.4

0.6

0.8

EOF2

0

0.2

0.4

0.6

0.8

EOF2-EOF2

0

0.2

0.4

0.6

0.8

MCA2

0

0.2

0.4

0.6

0.8

CCA2

80

90

100

110

120

60

80

100

120

2000

2500

3000

3500

4000

2000

2500

3000

3500

4000

2000

2500

3000

3500

4000

1000

1500

2000

2500

3000

1000

1500

2000

1000

1500

2000

1000

1500

2000

2500

1000

1500

2000

100

200

300

400

/a

50

100

150

200

250

0

0.5

1

1.5

2104

5000

10000

15000

2000

3000

4000

5000

1000

1500

2000

2500

3000

0

0.5

1

1.5

2105

0

5

10

15105

1000

2000

3000

4000

0

2000

4000

6000

8000

2

4

6

8

a

10-8

2

4

6

8

1010-8

0

1

2

3

410-8

1

2

3

410-8

2

3

4

510-8

2

4

6

810-8

0

1

2

3

410-8

0

1

2

3

410-8

2

4

6

810-8

0

2

4

6

10-8

0 100 200

year since 1880

4

6

8

1010-6

0 100 2004

5

6

7

810-6

0 100 2001

1.2

1.4

1.610-4

0 100 200

1

1.2

1.4

1.610-4

0 100 2006

8

10

1210-5

0 100 200

6

7

8

9

10

10-5

0 100 200

8

9

10

11

1210-5

0 100 2000.8

0.9

1

1.1

1.210-4

0 100 2004

6

8

1010-5

0 100 200

6

7

8

9

10

10-5

r =1q

1 + (�⇠/a��

)2

<latexit sha1_base64="acXuULbd1+EYDP/DodNz2T9rrWE=">AAACJnicbVDLSsNAFJ3UV62vqEs3wSJUhJqUim4KRTcuK9gHNDFMppN26OThzEQsYb7Gjb/ixkVFxJ2f4rQNqK0HLpw5517m3uPFlHBhmp9abml5ZXUtv17Y2Nza3tF391o8ShjCTRTRiHU8yDElIW4KIijuxAzDwKO47Q2vJn77ATNOovBWjGLsBLAfEp8gKJTk6jVWs30GUWrJ1Ob3TKTWSWmm2Jz0A+im9iORp1D+vBsDIuXxXUVKVy+aZXMKY5FYGSmCDA1XH9u9CCUBDgWikPOuZcbCSSETBFEsC3bCcQzREPZxV9EQBpg76fRMaRwppWf4EVMVCmOq/p5IYcD5KPBUZwDFgM97E/E/r5sI/8JJSRgnAodo9pGfUENExiQzo0cYRoKOFIGIEbWrgQZQZSRUsgUVgjV/8iJpVcpWtXx2Uy3WL7M48uAAHIISsMA5qINr0ABNgMATeAFj8KY9a6/au/Yxa81p2cw++APt6xtYcqby</latexit>

Figure 1. Temporal-mean 1st EOF (left), MCA (middle), CCA (right) modes in four (rows) consecutive 50 year time windows starting from 1900. (a) ENSO, characterised by SST; (b) Indian monsoon. For (b), we also have correlation maps: the corr’ coeff’ between the gridpoint-wise precipitetation and PC1 of EOF1.

Figure 2. Time series of the ensemble-wise correlation coefficients r between scalar time series e.g. Nino3 and ISMR, or PCs of EOFs or those of MCA and CCA modes (one column for each). Below each r(t) are corresponding time series for ENSO variability 𝜎!, ENSO-IM coupling/reg’ coeff a, noise strength 𝜎ξ. On the left (right) ENSO characterisation is based on the SST (SLP).

Figure 3. Mann-Kendall test statistics based on some of the r(t) seen in Fig. 2. Top (bottom) block of four is based on the SST (SLP).

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

−ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

Nino3-ISMR

CCA1MCA1

EOF1

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

−ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

1900

1950

2000

2050

2100

1900 1950 2000 2050 2100

ZMK

Endi

ng y

ear

Starting year

−3.48

−1.96

0

1.96

3.48

SOI-ISMR

CCA1MCA1

EOF1