36
ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016 Flywheel energy storage systems ECE-620 Ultra-wide-area resilient electrical energy transmission networks Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] October 24, 2016 Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 1 / 33

Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

.

.

ENERGYENERGYU.S. DEPARTMENT OF

Flywheel energy storage systemsECE-620 Ultra-wide-area resilient electrical energy transmission networks

Dr. Hector A. Pulgar, hpulgar@utk,Horacio Silva, Ph.D (c), [email protected]

October 24, 2016

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 1 / 33

Page 2: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

Outline

General description of energy storage systems

Flywheel modeling

Application of flywheels to improve power system dynamics

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 2 / 33

Page 3: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Example of storage systems:

Pumped hydro-power

Flywheels

Solid state batteries (Li-Ion, Ni-Cd, NAS)

Flow batteries (Redox, Vanadium Redox, Zinc-Bromine)

Compressed air energy

Thermal (Pumped heat electrical storage, hydrogen energy storage)

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 3 / 33

Page 4: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Technology Advantage Disadvantage P.A. E.A.Pumped hydro-power High E and low cost Special location ⊕

Flywheels High P Low E ⊕

Electrochemical capacitors Long lifespan Low E ⊕

Lead-acid battery Low cost Reduce lifespan ⊕ �

NAS Battery High P and E High cost andtemp

⊕ ⊕

Li-Ion Battery High P and E Cost and con-trol system

Compressed air High E and low cost Special location ⊕

⊕ Feasible and reasonable Source: Energy Storage Association

Feasible for this application� Feasible but economically unattractiveP Power P.A. Power applicationE Energy E.A. Energy application

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 4 / 33

Page 5: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Technology Energydensity(Wh/Kg)

Powerdensity(W/Kg)

Life cycles Timeresponse

Pumped hydro-power 0.3-1.5 — >25 yrs min

Flywheels 5-70 1,000-5,000 >20,000 ms

Electrochemical capacitors 5-25 >1,000 >20,000 < ms

Lead-acid battery 20-45 25-100 200-2,000 s

NAS Battery 120-240 120-220 3,000-9,000 s

Li-Ion Battery 100-200 360 500-4,000 s

Compressed air 10-30 — >25 yrs min

Source: R. Cardenas, An overview of systems for the storage of electrical energy, Workshop onStorage Systems, University of Chile, 2014

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 5 / 33

Page 6: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Pumped-hydro power (for E.A.)

C.H.

Q1

Q2 Q'2

Q'1

Water is sent to the upper pond when the marginal cost is low

The hydro potential is reserved for the hour when the marginal costis high

The pump-generation cycle has an efficiency around 70

In general...

If there exists an hour k with a high marginal cost (λk) and an hour iwith a low marginal cost (λi) such that λk >

λi

η the use of the pumpedhydro storage system is economically attractive.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 6 / 33

Page 7: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Example: Okinawa Yanbaru Pumped-Hydro Power Plant

First high head seawater pumped-hydro power plant

Maximum output 30MW

Maximum discharge of 26 m3/s

Upper pond is artificial, 150 m over the sea level, and 25 m deep

Lower reservoir is the Philippine Sea

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 7 / 33

Page 8: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Flywheels (for P.A.)

Store rotational kinetic energy in a rotating cylinder or disc

The amount of stored energy depends on the flywheels mass andspeed

Increasing the rotational speed allows storing more energy, butstronger materials are needed to avoid desintegration

To keep the energy for hours, mechanical friction needs to bereduced (flywheels with mechanical-bearing may even lose 50% ofenergy in a couple of hours)

High efficiency (>80%), long lifespan (≈20 years) and lowoperational and maintenance costs

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 8 / 33

Page 9: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Example: Stephentown Flywheel Plant, 20 MW, NY

With 200 flywheels, began operation in January 2011

Provides frequency regulation (≈30% of the NYISO ACE correction)

Flywheels perform between 3,000 to 5,000 full discharge cycles a year

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 9 / 33

Page 10: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Components and arrangement Source: Beacon Power LLC

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 10 / 33

Page 11: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Components and arrangement Source: Beacon Power LLC

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 10 / 33

Page 12: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Components and arrangement Source: Beacon Power LLC

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 10 / 33

Page 13: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

1. Introduction

Beacon Power 450 XP: Specifications

Characteristic 45 XPGrid output/supply voltage 3 phase, 600 V rms

Grid frequency 50/60 Hz

Nominal output rating Up to 360 kVA

Overload output capability 150% of nominal real and reactive power for 10seconds

Usable energy at full charge 36 kWh

Response time 15 ms or less from receipt of signal to start ofchanging output

Ramp time Full output in 100 ms from receipt of signal

Round trip efficiency 85%

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 11 / 33

Page 14: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

2. Flywheel modeling

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 12 / 33

Page 15: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

2. Flywheel modeling

Assumptions: Surface permanent magnetic machine (SPMM), fieldoriented control, and a simplified representation for converters areconsidered.

C

dc-link

C

dc-link

Flywheel Parallel Array

Aggregated model

Flywheel Parallel Array Equivalent (FPAE)

Step-uptransformer

Step-uptransformer

∼SPMMFlywheel

∼SPMMFlywheel

np

units

...

(a)

(b)

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 13 / 33

Page 16: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

2. Flywheel modeling

Mathematical representation of the FPAE:

1

ωbLd

diddt

= vd − rsid + ωrLqiq

1

ωbLq

diqdt

= vq − rsiq − ωr(Ldid + Φf )

2Hdωrdt

= Tm − Φf iq︸︷︷︸Te

Ceqdvcdt

=ωrTevc− ig

Pg = vcig

Open-loop fundamental FPAE model:

2H dωr

dt = −Φf iq

Ceqdvcdt =

ωrΦf iqvc

− igPg = vcig

where

vd = −ωrLqiqvq = ωrΦf

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 14 / 33

Page 17: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

2. Flywheel modeling

Validation using PLECS:

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14-800

-600

-400

-200

0

200

400

600

800

Mac

hin

e d-q

curr

ents

(A

)

id full

iq full

id prop.

iq prop.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14720

730

740

750

760

770

780

790

800

DC

Vol

tage

s (V

) vdc full

vdc prop.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Time (s)

0.6990

0.6992

0.6994

0.6996

0.6998

0.7000

0.7002

0.7004

0.7006

Fly

whee

l Spee

ds

(pu)

ω full

ω prop.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 15 / 33

Page 18: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

2. Flywheel modeling

Model and controllers:

Plant-levelfrequencycontroller

TwsTws+1

1+T1s1+T2s

1R

fmeas

fref

ωr

+

-

+

+

Pref1

SOC controller

F (s)S1

Pref2

SPMM & MS converter

Pfes12Hs

PF controller MS converter

KP+1

TP s1

TCs+1−Φf

Te+

-

imaxq

iminq

i∗q iq

Pmeas

Pref

×

(a) Active power loop

(Id + jIq)ejφ

+

Vtejφ

(c) Current source model

dc-link & GS converter

PfesKv+

1Tvs

1TCs+1

×÷ ÷1Ceqs igrid

ifes i∗gridic vc

Vt

PgId

vref vdc controller GS converterimaxgrid

imingrid

+

-

+

-

+-

+KQ+

1TQs

Imaxq

Iminq

1TCs+1

GS converterQ controller

I∗q

Qmeas

S2

Qref

Iq

(b) Reactive power loop

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 16 / 33

Page 19: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

2. Flywheel modeling

Model and controllers:

Plant-levelfrequencycontroller

TwsTws+1

1+T1s1+T2s

1R

fmeas

fref

ωr

+

-

+

+

Pref1

SOC controller

F (s)S1

Pref2

SPMM & MS converter

Pfes12Hs

PF controller MS converter

KP+1

TP s1

TCs+1−Φf

Te+

-

imaxq

iminq

i∗q iq

Pmeas

Pref

×

(a) Active power loop

(Id + jIq)ejφ

+

Vtejφ

(c) Current source model

dc-link & GS converter

PfesKv+

1Tvs

1TCs+1

×÷ ÷1Ceqs igrid

ifes i∗gridic vc

Vt

PgId

vref vdc controller GS converterimaxgrid

imingrid

+

-

+

-

+-

+KQ+

1TQs

Imaxq

Iminq

1TCs+1

GS converterQ controller

I∗q

Qmeas

S2

Qref

Iq

(b) Reactive power loop

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 17 / 33

Page 20: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels toimprove power system dynamics

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 18 / 33

Page 21: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Northern Chile InterconnectedSystem (NCIS)Installed capacity4,150 MWTotal demand2,400 MWMining companies90% of total demandH-constant inertia3.86 s based on installed powerRenewable energySolar (high potential)Storage systemsBESS, 12MW and 20 MWOperational issuesFrequency excursions (isolated)Oscillations (interconnected)

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 19 / 33

Page 22: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Base case (high demand scenario)Inter-area oscillation:

λ = −0.012 + j2.297fosc = 0.37 [Hz]σ = 0.53%

All other modes have damping ratiosabove 10%.

BES plants have marginal effects onthe inter-area mode damping due tolimitations imposed by dead-bands.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 20 / 33

Page 23: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Flywheel’s location analysis

x1 = A1x1 +B1u1

y1 = C1x1

}Open-loop system

x2 = A2x2 +B2u2

y2 = C2x2

}Controller

B`1

1s

A1

C`1

H(s)

u1 x1 y1

y2 u2

Closing the loop: u1 = y2

y1 = u2

H(s) = C2M(s)B2

M(s) = (sI −A2)−1

For a flywheel in bus `:

y1: Bus frequency

u1: Flywheel active power

++

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 21 / 33

Page 24: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Flywheel’s location analysis (eigenvalue and eigenvectors) If λ is theinter-area eigenvalue of interest, then right and left eigenvectors of theopen loop system are given by:

A1v = λv AT1 w = λw

In the closed-loop system:[x1

x2

]=

[A1 B`1C2

B2C`1 A2

]︸ ︷︷ ︸

Acl

[x1

x2

]⇒ Acl

[vcl,1vcl,2

]= λ

[vcl,1vcl,2

][wTcl,1 wTcl,2

]Acl = λ

[wTcl,1 wTcl,2

]By forcing vcl,1 = v and wcl,1 = w (open-loop eigenvectors), thenvcl,2 = M(λ)B2C

`1v and wTcl,2 = wTB`1C2M(λ)

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 22 / 33

Page 25: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Flywheel’s location analysis (eigenvalue and eigenvectors) We can showthat, in closed-loop, the sensitivity of the eigenvalue with respect to aparameter of the controller becomes:

λ′ = wTclA′clvcl (1)

= wT[I B`1C2M(λ)

] [ 0 B`1C′2

B′2C

`1 A′

2

] [I

M(λ)B2C`1

]v (2)

= wTB`1

(C ′

2M(λ)B2 + C2M(λ)A′2M(λ)B2 + C2M(λ)B′

2

)C`1v (3)

= wTB`1︸ ︷︷ ︸MC`

H(λ)′ C`1v︸︷︷︸MO`

(4)

MC: Mode controllabilityMO: Mode observability

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 23 / 33

Page 26: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Flywheel’s location analysis: Controllability index

λ′ = wTB`1︸ ︷︷ ︸MC`

H(λ)′ C`1v︸︷︷︸MO`

Observations:

H(λ) does not depend on the location

MO` ≈MOm for any buses ` and m

λ′ can be fairly considered to be proportional to MC`.

Thus, for location purposes, we define the controllability index as:

CI` =|MC`|

maxk |MCk| =|wTB`1|

maxk |MCk|

The bus ` with the highest controllability index would the most attractiveplace to install a flywheel.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 24 / 33

Page 27: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Argentina

Bolivia

Peru

Pac

ific

Oce

an

Salta

To equivalentmachine

Tocopilla

P. Almonte

Angamos

Parinacota

LagunasTarapaca

N. Victoria

El Abra

Collahuasi

Andes

Encuentro

Crucero

Thermal plant

Hydro plant

Solar plant

Wind farm

BES plant

Controllability index:

≥ 0.86

0.5

All 220 kV buses are considered asprospective locations of a flywheel plant.

108 scenarios are considered based on loadprofiles and generation dispatch:

Tocop

illa

El Abra

N. Vict

oria

Lagun

as

Collah

uasi

Tarapa

ca

P. Alm

onte.

0.76

0.78

0.8

0.82

0.84

0.86

CI

CI boxplot

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 25 / 33

Page 28: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Argentina

Bolivia

Peru

Pac

ific

Oce

an

Salta

To equivalentmachine

Tocopilla

P. Almonte

Angamos

Parinacota

LagunasTarapaca

N. Victoria

El Abra

Collahuasi

Andes

Encuentro

Crucero

Thermal plant

Hydro plant

Solar plant

Wind farm

BES plant

Controllability index:

≥ 0.86

0.5

All 220 kV buses are considered asprospective locations of a flywheel plant.

108 scenarios are considered based on loadprofiles and generation dispatch:

Tocop

illa

El Abra

N. Vict

oria

Lagun

as

Collah

uasi

Tarapa

ca

P. Alm

onte.

0.76

0.78

0.8

0.82

0.84

0.86

CI

CI boxplot

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 25 / 33

Page 29: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Argentina

Bolivia

Peru

Pac

ific

Oce

an

Salta

To equivalentmachine

Tocopilla

P. Almonte

Angamos

Parinacota

LagunasTarapaca

N. Victoria

El Abra

Collahuasi

Andes

Encuentro

Crucero

Thermal plant

Hydro plant

Solar plant

Wind farm

BES plant

Controllability index:

≥ 0.86

0.5

When a flywheel plant is connected to thebuses, actual inter-area eigenvalue showshigh agreement with respect to CI:

Location Eigenvalue f [Hz] σ [%]

No FES −0.012 + i2.297 0.37 0.53

Parinacota −0.243 + i2.448 0.39 9.9

P. Almonte −0.303 + i2.324 0.37 12.0

Tarapaca −0.303 + i2.289 0.36 13.1

Collahuasi −0.293 + i2.293 0.36 12.7

Lagunas −0.295 + i2.282 0.36 12.8

N. Victoria −0.294 + i2.284 0.36 12.8

El Abra −0.283 + i2.319 0.37 12.1

Tocopilla −0.294 + i2.228 0.35 13.1

Andes −0.139 + i2.294 0.37 6.0

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 26 / 33

Page 30: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Argentina

Bolivia

Peru

Pac

ific

Oce

an

Salta

To equivalentmachine

Tocopilla

P. Almonte

Angamos

Parinacota

LagunasTarapaca

N. Victoria

El Abra

Collahuasi

Andes

Encuentro

Crucero

Thermal plant

Hydro plant

Solar plant

Wind farm

BES plant

Controllability index:

≥ 0.86

0.5

Generators speed when flywheel plant isinstalled in two locations:

Time (s)0 2 4 6 8 10

Spee

d (p

u)

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008Without FESFES AndesFES Tarapaca

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 27 / 33

Page 31: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

3. Application of flywheels

Argentina

Bolivia

Peru

Pac

ific

Oce

an

Salta

To equivalentmachine

Tocopilla

P. Almonte

Angamos

Parinacota

LagunasTarapaca

N. Victoria

El Abra

Collahuasi

Andes

Encuentro

Crucero

Thermal plant

Hydro plant

Solar plant

Wind farm

BES plant

Controllability index:

≥ 0.86

0.5

Flywheel power for the aforementionedlocations:

Time (s)0 2 4 6 8 10

FES

Pow

er (

MW

)

-60

-40

-20

0

20

40

60FES AndesFES Tarapaca

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 28 / 33

Page 32: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

Conclusions

Comprehensive electro-mechanical model for a flywheel plant hasbeen derived.

When applied to the NCIS, at the optimal location, the dampingratio of the inter-area mode is increased from 0.55% to 12.7%.

The proposed controllability index does not strongly depends onoperational conditions.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 29 / 33

Page 33: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

Homework

In page 23,

a. Derive equation (1)

b. Show that equations (3) and (4) are equals.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 30 / 33

Page 34: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

References

1. H. Silva, H. Pulgar-Painemal, J. Mauricio, “Flywheel energy storage model, controland location for improving stability: The Chilean case,” submitted to the IEEETransactions on Power Systems, April 2016 (under review)

2. F. Pagola, I. Perez-Arriaga, G. Verghese, “On sensitivities, residues andparticipations: Applications to oscillatory stability analysis and control,” IEEETransactions on Power Systems, Vol. 4, No. 1, Feb 1989.

3. J. Chow, J. Sanchez-Gasca, H. Ren, and S. Wang, “Power system dampingcontroller design using multiple input signals,” IEEE Control Systems, Vol. 20, No.4, pp. 82-90, Aug 2000.

4. M. Aboul-Ela, A. Sallam, J. McCalley, and A. Fouad, “Damping controller designfor power system oscillations using global signals,” IEEE Transactions on PowerSystems, Vol. 11, No. 2, pp. 767-773, May 1996.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 31 / 33

Page 35: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

Acknowledgement

ENERGYENERGYU.S. DEPARTMENT OF

This material is based upon work supported by the National ScienceFoundation under Grant No. 1509114. This work also made use of

Engineering Research Center shared facilities supported by theEngineering Research Center Program of the National Science

Foundation and the Department of Energy under NSF Award No.EEC-1041877 and the CURENT Industry Partnership Program.

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 32 / 33

Page 36: Flywheel energy storage systems - ECE-620 Ultra-wide-area ...web.eecs.utk.edu/~hpulgar/Material/HPulgar_Oct19_2016.pdf · ECE-620 Flywheel energy storage systems Knoxville, TN, October

ECE-620 Flywheel energy storage systems Knoxville, TN, October 19 2016

Thanks for your attention

Questions?

Dr. Hector A. Pulgar, hpulgar@utk, Horacio Silva, Ph.D (c), [email protected] 33 / 33