16
Fluoropolymers 2 Properties

Fluoropolymers 2 - Springer

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fluoropolymers 2 - Springer

Fluoropolymers 2Properties

Page 2: Fluoropolymers 2 - Springer

TOPICS IN APPLIED CHEMISTRYSeries Editor: Alan R. Katritzky, FPS

University of FloridaGainesville, FloridaGebran J. Sabongi3M CompanySt. Paul, Minnesota

Current volumes in the series:

ANALYSIS AND DEFORMATION OF POLYMERIC MATERIALSPaints, Plastics, Adhesives, and InksJan W. Gooch

CHEMISTRY AND APPLICATIONS OF LEUCO DYESEdited by Ramaiah Muthyala

FLUOROPOLYMERS 1: SynthesisFLUOROPOLYMERS 2: PropertiesEdited by Gareth Hougham, Patrick E. Cassidy, Ken Johns,and Theodore Davidson

FROM CHEMICAL TOPOLOGY TO THREE-DIMENSIONALGEOMETRYEdited by Alexandru T. Balaban

LEAD-BASED PAINT HANDBOOKJan W. Gooch

ORGANIC PHOTOCHROMIC AND THERMOCHROMICCOMPOUNDSVolume 1: Main Photochromic FamiliesVolume 2: Physicochemical Studies, Biological Applications, andThermochromismEdited by John C. Crano and Robert J. Guglielmetti

ORGANOFLUORINE CHEMISTRYPrinciples and Commercial ApplicationsEdited by R. E. Banks, B. E. Smart, and J. C. Tatlow

PHOSPHATE FIBERSEdward J. Griffith

RESORCINOLIts Uses and DerivativesHans DresslerA Continuation Order Plan is available for this series. A continuation order will bring delivery of eachnew volume immediately upon publication. Volumes are billed only upon actual shipment. For furtherinformation please contact the publisher.

Page 3: Fluoropolymers 2 - Springer

Fluoropolymers 2Properties

Edited by

Gareth HoughamIBM T. J. Watson Research CenterYorktown Heights, New York

Patrick E. CassidySouthwest Texas State UniversitySan Marcos, Texas

Ken JohnsChemical and PolymerWindlesham, Surrey, England

Theodore DavidsonPrinceton, New Jersey

Kluwer Academic PublishersNEW YORK BOSTON , DORDRECHT, LONDON, MOSCOW,

Page 4: Fluoropolymers 2 - Springer

©2002 Kluwer Academic PublishersNew York, Boston, Dordrecht, London, Moscow

All rights reserved

Print 1999 Kluwer Academic / Plenum Publishers, New York

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.comand Kluwer's eBookstore at: http://www.ebooks.kluweronline.com

Print ISBN

0-306-46919-7eBook ISBN

©

0-306-46061-0

Page 5: Fluoropolymers 2 - Springer

Contributors

Shinji Ando, Science and Core Technology Group, Nippon Telegraph andTelephone Corp. Musashino-shi, Tokyo 180, Japan. Present address: Departmentof Polymer Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152,Japan

Karol Argasinski, Ausimont USA, Thorofare, New Jersey 08086

S. V. Babu, Department of Chemical Engineering, Clarkson University, Potsdam,New York 13699

Warren H. Buck, Ausimont USA, Thorofare, New Jersey 08086

Jeffrey D. Carbeck, Department of Chemical Engineering, MassachusettsInstitute of Technology, Cambridge, Massachusetts 02139. Present address:Department of Chemical Engineering, Princeton University, Princeton, NewJersey 08544

Stephen Z. D. Cheng, Maurice Morton Institute and Department of PolymerScience, University of Akron, Akron, Ohio 44325-3909

Theodore Davidson, 109 Poe Road, Princeton, New Jersey 08540

C. R. Davis, IBM, Microelectronics Division, Hopewell Junction, New York12533

Ronald K. Eby, Institute of Polymer Science, University of Akron, Akron, Ohio44325

v

Page 6: Fluoropolymers 2 - Springer

v i Contributors

F. D. Egitto, IBM, Microelectronics Division, Endicott, New York 13760

Barry L. Farmer, Department of Materials Science and Engineering, Universityof Virginia, Charlottesville, Virginia 22903

Vassilios Galiatsatos, Maurice Morton Institute of Polymer Science, University ofAkron, Akron, Ohio 44325-3909. Present address: Huntsman Polymers Corpora-tion, Odessa, Texas 79766

Raj N. Gounder, The Boeing Company, Seattle, Washington 98 124-2499

Mark Grenfell, 3M Company, St. Paul, Minnesota 55144-1000

Frank. W. Harris, Maurice Morton Institute and Department of Polymer Science,University of Akron, Akron, Ohio 44325-3909

David B. Holt, Department of Materials Science and Engineering, University ofVirginia, Charlottesville, Virginia 22903

Gareth Hougham, IBM, T. J. Watson Research Center, Yorktown Heights, NewYork 10598

Ken Johns, Chemical and Polymer (UK), Windlesham, Surrey, GU20 6HR,United Kingdom

Fuming Li, Maurice Morton Institute and Department of Polymer Science,University of Akron, Akron, Ohio 44325-3909

Shiow-Ching Lin, Ausimont USA, Thorofare, New Jersey 08086

Roberta Marchetti, Centro Ricerche & Sviluppo, Ausimont S.p.A., 20021Bollate, Milan, Italy

Tohru Matsuura, Science and Core Technology Group, Nippon Telegraph andTelephone Corp., Musashino-shi, Tokyo 180, Japan

Re’gis Mercier, UMR 102, IFP/CNRS, 69390 Vernaison, France

Stefano Radice, Centro Ricerche & Sviluppo Ausimont S.p.A., 20021 Bollate,Milan, Italy

Paul Resnick, DuPont Fluoroproducts, Fayetteville, North Carolina 28306

Page 7: Fluoropolymers 2 - Springer

Contributors vii

Gregory C. Rutledge, Department of Chemical Engineering, MassachusettsInstitute of Technology, Cambridge, Massachusetts 02139

Aldo Sanguineti, Centro Ricerche & Sviluppo, Ausimont S.p.A., 20021 BollateMilan, Italy

Shigekuni Sasaki, Science and Core Technology Group, Nippon Telegraph andTelephone Corp., Musashino-shi, Tokyo 180, Japan

Massimo Scicchitano, Centro Ricerche & Sviluppo, Ausimont S.p.A., 20021Bollate, Milan, Italy

B. Jeffrey Sherman, Maurice Morton Institute of Polymer Science, University ofAkron, Akron, Ohio 44325-3909

Bernard Sillion, UMR 102, IFP/CNRS, 69390 Vernaison, France

Carrington D. Smith, UMR 102 IFP/CNS 69390 Vemaison, France. Presentaddress: Air Products and Chemicals Inc., Allentown, Pennsylvania 18195-1501

Gordon Stead, Chemical and Polymer (UK), Windlesham, Surrey, GU20 6HR,United Kingdom

William Tuminello, DuPont Company, Experimental Station, Wilmington, Dela-ware 19880-0356

Stefano Turri, Centro Ricerche & Sviluppo, Ausimont S.p.A., 20021 Bollate,Milan, Italy

Richard Thomas, DuPont, Jackson Laboratory, Deepwater, New Jersey 08023

Huges Waton, CNRS Service Central d’Analyses, 69390, Vemaison, France

David K. Weber, 101 County Shire Drive, Rochester, New York 14626

Sheldon M. Wecker, Abbot Laboratories, Abbott Park, Illinois 60064

Page 8: Fluoropolymers 2 - Springer

Preface

The fluorine atom, by virtue of its electronegativity, size, and bond strength withcarbon, can be used to create compounds with remarkable properties. Smallmolecules containing fluorine have many positive impacts on everyday life ofwhich blood substitutes, pharmaceuticals, and surface modifiers are only a fewexamples.

Fluoropolymers, too, while traditionally associated with extreme high-performance applications have found their way into our homes, our clothing,and even our language. A recent American president was often likened to thetribology of PTFE.

Since the serendipitous discovery of Teflon at the DuPont Jackson Laboratoryin 1938, fluoropolymers have grown steadily in technological and marketplaceimportance. New synthetic fluorine chemistry, new processes, and new apprecia-tion of the mechanisms by which fluorine imparts exceptional properties allcontribute to accelerating growth in fluoropolymers.

There are many stories of harrowing close calls in the fluorine chemistry lab,especially from the early years, and synthetic challenges at times remain daunting.But, fortunately, modem techniques and facilities have enabled significant stridestoward taming both the hazards and synthetic uncertainties,

In contrast to past environmental problems associated with fluorocarbonrefrigerants, the exceptional properties of fluorine in polymers have greatenvironmental value. Some fluoropolymers are enabling green technologiessuch as hydrogen fuel cells for automobiles and oxygen-selective membranesfor cleaner diesel combustion.

Curiously, fluorine incorporation can result in property shifts to opposite endsof a performance spectrum. Certainly with reactivity, fluorine compounds occupytwo extreme positions, and this is true of some physical properties of fluoro-polymers as well. One example depends on the combination of the low electronicpolarizability and high dipole moment of the carbon–fluorine bond. At oneextreme, some fluoropolymers have the lowest dielectric constants known. Atthe other, closely related materials are highly capacitive and even piezoelectric.

i x

Page 9: Fluoropolymers 2 - Springer

x Preface

Much progress has been made in understanding the sometimes confoundingproperties of fluoropolymers. Computer simulation is now contributing to thiswith new fluorine force fields and other parameters, bringing realistic predictionwithin reach of the practicing physical chemist.

These two volumes attempt to bring together in one place the chemistry,physics, and engineering properties of fluoropolymers. The collection wasintended to provide balance between breadth and depth, with contributionsranging from the introduction of fluoropolymer structure-property relationships,to reviews of subfields, to more focused topical reports.

GGH

Acknowledgments

Gareth Hougham thanks G. Teroso, IBM, K. C. Appleby, D. L. Wade, R. H.Henry, and IS. Howell.

Patrick Cassidy expresses his appreciation to the Robert A. Welch Foundation, theNational Aeronautics and Space Administration, the National Science Foundation,and the Institute for Environmental and Industrial Science at Southwest TexasState University.

Ken Johns thanks Diane Kendall and Catherine Haworth, Senior Librarian, of thePaint Research Association.

Theodore Davidson wishes to acknowledge his students and collaborators whohave shared in the work on polytetrafluoroethylene. Sincere thanks go to ProfessorBernhard Wunderlich for providing the stimulus for a career in polymer science.

Page 10: Fluoropolymers 2 - Springer

Contents

I. Processing, Structure, and Properties

1. A Perspective on Solid State Microstructure inPolytetrafluoroethyleneTheodore Davidson, Raj N. Gounder,David K. Weber, and Sheldon M. Wecker1.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2. Background Information about PTFE . . . . . . . . . . . . . . . . . . . 51.3. Materials, Processing, and Measurement Methods. . . . . . . . . . . . 81.4. Wide-Angle X-Ray Diffraction: Line-Broadening for Crystallite

Size and Strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.5. Morphology of PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.6. Orientation Measured from Inverse Pole Figures. . . . . . . . . . . . . 121.7. Orientation Measured by Broad-Line NMR . . . . . . . . . . . . . . . . 171.8. IR Dichroism of PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.9. Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.10. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. Teflon® AF: A Family of Amorphous Fluoropolymers withExtraordinary PropertiesPaul R. Resnick and Warren H. Buck2.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2. Preparation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.3. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.4. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.5. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi

.

Page 11: Fluoropolymers 2 - Springer

xii Contents

3. Supercritical Fluids for Coatings-From Analysis to Xenon:A Brief OverviewKen Johns and Gordon Stead3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.2. Supercritical Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.3. Solubility of Silicone and Fluoro Compounds . . . . . . . . . . . . . . 373.4. Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.5. Xenon and Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.6. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Material Properties of Fluoropolymers and Perfluoroalkyl-BasedPolymersRichard R. Thomas4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2. Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.3. The Carbon–Fluorine Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.4. Chemical Inertness and Thermal Stability . . . . . . . . . . . . . . . . . 534.5. Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.6. Repellency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.7. Electrooptical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.8. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654.9. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5. Excimer Laser-Induced Ablation of DopedPoly(Tetrafluoroethylene)C. R. Davis, F. D. Egitto, and S. V. Babu5.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1. Material Processing Challenges. . . . . . . . . . . . . . . . . . . . 695.1.2. Excimer Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2. Laser Ablation of Neat PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . 735.3. Doping of Neat PTFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795.4. Laser Ablation of Doped PTFE . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1. Effect of Dopant Concentration . . . . . . . . . . . . . . . . . . . . 895.4.2. Threshold Fluence versus Absorption Coefficient . . . . . . . 995.4.3. Optimizing Absorption Coefficient . . . . . . . . . . . . . . . . 1005.4.4. Modeling Ablation Rates of Blends . . . . . . . . . . . . . . . . 1015.4.5. Subthreshold Fluence Phenomena . . . . . . . . . . . . . . . . . 104

5.5. Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . 1065.6. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Page 12: Fluoropolymers 2 - Springer

Contents xiii

6. Novel Solvent and Dispersant Systems for Fluoropolymers andSiliconesMark W Grenfell6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116.2. Perfiuorocarbons and Their Advantages . . . . . . . . . . . . . . 1126.3. Fluoropolymer Dispersions . . . . . . . . . . . . . . . . . . . . . . 1126.4. Amorphous Fluoropolymer Solvents . . . . . . . . . . . . . . . . 1156.5. Mixtures and Blends . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.1. Higher Solvency Azeotropes and Mixtures . . . . . . . . . 1166.5.2. Mixtures for Materials Compatibility . . . . . . . . . . . . . 1176.5.3. Silicone Solvent . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6. Gas Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186.7. Environmental Considerations . . . . . . . . . . . . . . . . . . . . . . . . 1196.8. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7. Fluoropolymer Alloys: Performance Optimization of PVDF AlloysShiow-Ching Lin and Karol Argasinski7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217.2. Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1. Quenched PVDF Blends . . . . . . . . . . . . . . . . . . . . . . . 1227.2.2. Blends with Maximized Crystallinity . . . . . . . . . . . . . . . 1237.2.3. Blends without Thermal Treatment . . . . . . . . . . . . . . . . 124

7.3. Crystallinity and Melting-Temperature Depression. . . . . . . . . . . 1257.4. Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277.5. Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287.6. Weatherability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347.8. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8. Solubility of Poly(Tetrafluoroethylene) and Its CopolymersWilliam H. Tuminello8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1378.2. Atmospheric and Autogenous Pressure . . . . . . . . . . . . . . . . . 1388.3. Superautogenous Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428.5. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Page 13: Fluoropolymers 2 - Springer

xiv Contents

9. Structure–Property Relationships of Coatings Based onPerfluoropolyether MacromersStefano Turri, Massimo Scicchitano, Roberta Marchetti,Aldo Sanguineti, and Stefano Radice9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459.2. The Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1479.3. Thermal and Mechanical Properties of Z Coatings . . . . . . . . . . 1539.4. Optical and Surface Properties of Z Coatings . . . . . . . . . . . . . . 1599.5. Chemical Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659.6. Weatherability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1679.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1679.8. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

II. Modeling and Simulation

10. Molecular Modeling of Fluoropolymers: PolytetrafluoroethyleneDavid B. Holt, Barry L. Farmer, and Ronald K. Eby10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17310.2. Force Fields and Molecular Mechanics Calculations . . . . . . . . . 17510.3. Dynamics Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.3.1. Disordering Chain Motions in Solid StatePoly(Tetrafluoroethylene) . . . . . . . . . . . . . . . . . . . . . . 180

10.3.2. Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18110.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

10.4. Force Field Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 18710.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18810.6. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11. Material Behavior of Poly(Vinylidene Fluoride) Deduced fromMolecular ModelingJeffrey D. Carbeck and Gregory C. Rutledge11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

11.1.1 Relevant Aspects of Poly(Vinylidene Fluoride) . . . . . . . 19111.1.2. Challenges to a Detailed Molecular Model . . . . . . . . . . 193

11.2. Model of Crystal Polarization . . . . . . . . . . . . . . . . . . . . . . . . 19511.3. The Local Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19811.4. Piezoelectricity and Pyroelectricity: The Coupling of Thermal,

Elastic, and Dielectric Properties . . . . . . . . . . . . . . . . . . . . . . 19911.4.1. The Dielectric Constant . . . . . . . . . . . . . . . . . . . . . . . 20011.4.2. Elasticity and Piezoelectricity . . . . . . . . . . . . . . . . . . . 201

Page 14: Fluoropolymers 2 - Springer

Contents x v

11.4.3. Pyroelectricity and Thermal Expansion . . . . . . . . . . . . 20311.5. Mechanical Relaxation and Phase Transition . . . . . . . . . . . . . . 203

11.5.1. Conformational Defects as Mechanisms . . . . . . . . . . . . 20311.5.2. The αc Relaxation in PVDF . . . . . . . . . . . . . . . . . . . 20511.5.3. Implications for More Complex Processes . . . . . . . . . . 207

11.6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20911.7. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

12. Application of Chemical Graph Theory for the Estimation ofthe Dielectric Constant of PolyimidesB. Jeffrey Sherman, and Vassilios Galiatsatos12.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21312.2. Quantitative Structure–Property Relationships Based on Group

Contribution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21412.3. Application of Chemical Graph Theory to QSPR . . . . . . . . . . . 21512.4. Prediction of Dielectric Constant . . . . . . . . . . . . . . . . . . . . . . 21712.5. Calculations and Comparison with Experiment. . . . . . . . . . . . . 22012.6. Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22712.7. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

III. Fluorine-Containing Polyimides

13. Fluorine-Containing PolyimidesGareth Hougham13.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23313.2. Structure versus Properties of General Polyimides . . . . . . . . . . . 244

13.2.1. Structure–Property Relationships in FluorinatedPolyimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

13.2.2. Evolution of Fluorinated Polyimide Properties . . . . . . . 24613.3. Structure–Property Generalizations . . . . . . . . . . . . . . . . . . . . . . 250

13.3.1. Dielectric Properties . . . . . . . . . . . . . . . . . . . . . . . . . 25013.3.2. Glass Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 25913.3.3. ß-Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26613.3.4. Thermal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

13.4. Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27113.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27113.6. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

.

Page 15: Fluoropolymers 2 - Springer

x v i Contents

14. Synthesis and Properties of Perfluorinated PolyimidesShinji Ando, Tohru Matsuura, and Shigekuni Sasaki14.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

14.1.1. Near-IR Light Used in Optical TelecommunicationSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

14.1.2. Integrated Optics and Optical Interconnect Technology. . 27814.1.3. Polymeric Waveguide Materials for Integrated Optics . . . 27914.1.4. Optical Transparency of Fluorinated Polyimides at

Near-IR Wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . 28014.1.5. The Effect of Perfluorination on Optical Transparency . . 282

14.2. Characterization and Synthesis of Materials for PerfluorinatedPolyimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28314.2.1. Reactivity Estimation of Perfluorinated Diamines . . . . . 28314.2.2. Reactivity and Structural Problems of an Existing

Perfluorinated Dianhydride . . . . . . . . . . . . . . . . . . . . . 28814.2.3. Synthesis of a Novel Perfluorinated Dianhydride . . . . . . 289

14.3. Synthesis and Characterization of Perfluorinated Polyimides . . . . 29014.3.1. Synthesis of Perfluorinated Polyimide

(10FEDA/4FMPD) . . . . . . . . . . . . . . . . . . . . . . . . . . 29014.3.2. Imidization Process Estimated from NMR

and IR Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29214.4. Optical, Physical, and Electrical Properties of Per-fluorinated

Polyimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29514.4.1. Optical Transparency at Near-IR and Visible

Wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29514.4.2. Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . 29814.4.3. Thermal, Electrical, and Other Optical Properties. . . . . . 298

14.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30114.6. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

15. Synthesis and Properties of Partially Fluorinated Polyimides forOptical ApplicationsTohru Matsuura, Shinji Ando, and Shigekuni Sasaki15.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

15.1.1. Conventional Polyimides . . . . . . . . . . . . . . . . . . . . . . 30515.1.2. Optical Applications of Polyimides . . . . . . . . . . . . . . . 30715.1.3. Fluorinated Polyimides for Optical Components . . . . . . 309

15.2. Synthesis and Properties of Fluorinated Polyimides . . . . . . . . . . 31015.2.1. High-Fluorine-Content Polyimide: (6FDA/TFDB) . . . . . 31015.2.2. Rigid-Rod Fluorinated Polyimides: PMDA/TFDB,

P2FDA/TFDB, P3FDA/TFDB, and P6FDA/TFDB . . . . . 314

Page 16: Fluoropolymers 2 - Springer

Contents xvii

15.2.3. Fluorinated Copolyimides . . . . . . . . . . . . . . . . . . . . . . 31715.3. Optical Properties of the Fluorinated Polyimides . . . . . . . . . . . 321

15.3.1. Optical Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32215.3.2. Refractive Index and Birefringence . . . . . . . . . . . . . . . 328

15.4. Optical Application of Fluorinated Polyimides . . . . . . . . . . . . . 33615.4.1. Optical Interference Filters on Optical Fluorinated

Polyimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33615.4.2. Optical Waveplates . . . . . . . . . . . . . . . . . . . . . . . . . . 33715.4.3. Optical Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . 340

15.5. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34815.6. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

16. Novel Organo-Soluble Fluorinated Polyimides for Optical,Microelectronic, and Fiber ApplicationsFrank W. Harris, Fuming Li, and Stephen Z. D. Cheng16.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35116.2. Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35216.3. Solution Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35216.4. Anisotropic Structure in Aromatic Polyimide Films. . . . . . . . . . 35616.5. Thin-Film Properties and Applications. . . . . . . . . . . . . . . . . . . 35716.6. Structure and Tensile Properties of Polyimide Fibers . . . . . . . . . 36116.7. Thermal and Thermooxidative Stability of Polyimide Fibers. . . . 36516.8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36816.9. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

17. Application of 19 F-NMR toward Chemistry of Imide Materials inSolutionCarrington D. Smith, Régis Merçier, Huges Waton,and Bernard Sillion17.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37117.2. Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

17.2.1. Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37317.2.2. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

17.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37417.3.1. Model Compound Studies. . . . . . . . . . . . . . . . . . . . . . 37417.3.2. Applications of 19F-NMR to Imide and Amic Acid

Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37917.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39717.5. References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401