Fluidmech in Pipe Velocity Shear Profile

Embed Size (px)

Citation preview

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    1/46

    FULLY DEVELOPED PIPE ANDCHANNEL FLOWSKUMAR DINKAR ANAND3 rd YEAR, MECHANICAL ENGG.IIT-KHARAGPURGUIDANCE : PROF. S CHAKRABORTYINDO-GERMAN WINTER ACADEMY-DECEMBER 2006: THE OUTLINE : Hydraulically developing flow through pipes and channels andevaluation of hydraulic entrance length. Hydraulically fully developed flows through pipes and channels . Hydraulically fully developed flow through non-circular ducts. Definition of Thermally fully developed flow and analysis of thermallyfully developed flow through pipe and channels. Analysis of the problem of Thermal Entrance: The Graetz Problem.Fully Developed Flows There are two types of fully developed flows :1.) Hydraulically Fully Developed Flow2.) Thermally Fully Developed FlowContdHydraulically Fully Developed FlowDefinition: As fluid enters any pipe or channel , boundary layers keep on growingtill they meet after some distance downstream from the entrance region. After this

    distance velocity profile doesn't change, flow is said to be Fully Developed.Analysis of fluid flow before it is fully developed:Velocity in the core of the flow outside the boundary layer increases withincreasing distance from entrance. This is due to the fact that through any crosssection same amount of fluid flows, and boundary layer is growing.This meanshence0 > dx dU0 < dx dpWhere U=Free stream velocity in the core before flow is fully developedp= Free stream pressureContd

    Schematic picture of internal flow through a pipe :Velocity Profile ,Using the boundary conditions :1.) At2.) At3.) AtWe get the velocity profile as :Contd2) ( cy by a y u + + =d = y U u =0 = ud = y

    0 =

    y

    u2) ( ) ( 2) (d d y yUy u- =0 = yWhere Free stream velocity of entering flui

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    2/46

    Free stream core velocity insi

    e the tubeCore velocity of fully

    evelope

    flowRa

    ius of pipeNow from the principle of conservation of mass :Hence ,Cont

    =U= U --+ =RRRUr

    r ur

    r R Uddp p p02

    2 2 *r R y - == R=eU2) / ( 6 / 1 ) / ( 3 / 2 11R R UUd d + -=

    22) / ( 6 / 1 ) / ( 3 / 2 1) / ( ) / ( 2R Ry yUud dd d+ --

    =\ - + - =d dr r t0 02} ) / 1 ( ) / 1 ( / { dy U u

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    3/46

    dxdUU dy U u U u UdxdwBounda

    y Laye

    momen

    um in

    eg

    al equa

    ion:Whe

    e, Shea

    s

    ess a

    wall,F

    om Be

    noulli's Equa

    ion fo

    f

    ee s

    eam flow

    h

    ough co

    e:Using Navie

    -S

    okes equa

    ion a

    he wallCon

    d

    0 ==ywyu txpdxdU

    U- =r1022==

    yyuxpSolving fo

    bounda

    y laye

    hickness :In

    eg

    a

    e momen

    um In

    eg

    al Equa

    ionUsing

    he bounda

    y condi

    ion a

    Fo

    de

    e

    mina

    ion of En

    ance Leng

    h :pu

    ing a

    We ge

    he exp

    ession fo

    En

    ance Leng

    h as:Con

    d) ( d0 = d 0 = x) (eLR = deL x =

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    4/46

    ) (eLDeDLRe 03 . 0 =Analytical ex ression for Entrance Length :Hence it can be observe

    that our ex ression for Entrance Length

    iffersfrom the analytical ex ression

    ue to the following reasons:1.) We have assume arabolic velocity rofile in the boun ary layer2.)We have not use

    the Navier Stokes boun

    ary equation at wall for velocity rofile

    etermination3.) We are

    oing boun

    ary layer analysis which gives a roximate resultsCont ) (eLDeDLRe 06

    . 0=2) / ( ) / ( 2 d d y yUu- =022=

    =yyux

    2) / ( 6 / 1 ) / ( 3 / 2 11R R U

    Ud d + -=Schematic icture of internal flow through a channel:Velocity ProfileUsing the boun ary con itions :1.) At2.) At3.) At

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    5/46

    We get the velocity rofile as :Cont

    2) ( cy by a y u + + =0 = y 0 = ud = y U u =d = y 0 =

    y

    u2) ( ) ( 2) (d d y yUy u- =Here , Distance between the arallel lates of channelWi th of the ChannelFree stream velocity of entering flui

    Free stream velocity insi

    e channelCore velocity of fully

    evelo e

    flowEntrance LengthHy

    raulic DiameterCont

    = D= W

    =U= U=eU=eL=HD D

    WWDPA H2244 = = =From the rinci le of conservation of mass:Hence when flow is fully evelo eCont

    -

    + =d d ) 2 / (0 02 2 *DU y u y D U\) / ( 3 / 2 11

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    6/46

    D UUd -=\) / ( 3 / 2 1) / ( ) / ( 22Dy yUudd d--=) 2 / ( D = d= U U e 5 . 1From Boun

    ary layer momentum integral equation :Where, Shear stress at wall,

    From Bernoulli's Equation for free stream flow through core:Using Navier Stokes equation at the wallCont

    - + - =d dr r t0 02} ) / 1 ( ) / 1 ( / { dy U udxdUU dy U u U u U

    dxdw0 ==ywyu tx

    pdxdUU- =r10

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    7/46

    22==yyu

    xpSolving fo

    bounda

    y laye

    hickness :In

    eg

    a

    e momen

    um In

    eg

    al Equa

    ionUsing

    he bounda

    y condi

    ion a

    Fo

    de

    e

    mina

    ion of En

    ance Leng

    h :pu

    ing a

    We ge

    he exp

    ession fo

    En

    ance Leng

    h as:ORCon

    d) ( d0 = d 0 = x

    ) (eLeL x = R = d) (eLDeDLRe 025 . 0 =

    HDHeDLRe 00625 . 0 =Analytical ex ression for Entrance Length :Hence it can be observe

    that our ex ression for Entrance Length

    iffersfrom the analytical ex ression ue to the following reasons:1.) We have assume

    arabolic velocity rofile in the boun

    ary layer2.) We have not use the Navier Stokes boun ary equation at wall forvelocity rofile

    etermination

    3.) We are

    oing boun

    ary layer analysis which gives a

    roximate results.Cont

    ) (eLDeDLRe 05

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    8/46

    . 0=2) / ( ) / ( 2 d d y yUu- =022==yyux

    ) / ( 3 / 2 11

    D UUd -=Analysis of fully

    evelo e

    flui

    flow:Fully Develo e

    Flow Through a Pi e: From Equation of continuity in cylin rical coor inates:for an incom ressible flui

    flowing through a i eCont

    0 ) (1=

    +xurur rrHere, ra

    ial velocityaxial velocityra

    ius of i e

    No flui

    ro

    erty varies with ,,at wall of the i ehence it is zero everywhere.Hence Equation of continuity re

    uces to :Momentum Equation in ra ial coor inate:Cont

    =ru= u

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    9/46

    = aq0 =ru , 0 =xu) (r u u =, 0 =rp ) (x p p =Momentum E uation in axial

    irection :) (

    r

    ur

    r

    r

    x

    p =Solving above diffe

    en

    ial equa

    ion in (

    ) using

    he bounda

    y condi

    ions:1.) Axial veloci

    y (u) is ze

    o a

    wall of pipe (

    =R)2.) Veloci

    y is fini

    e a

    he pipe cen

    e

    line (

    =0).We ge

    he fully developed veloci

    y p

    ofile:Con

    d

    -

    - =2214 ar

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    10/46

    x auShea

    S

    ess Dis

    ibu

    ion :Shea

    s

    ess ,Maximum shea

    s

    ess a

    wall ,

    = =xp

    d

    du

    x2 t

    =xp a20tCon

    dHence i

    can be obse

    ved

    ha

    Shea

    s

    ess dec

    eases f

    ommaximum

    o ze

    o a

    pipecen

    e

    line and

    hen inc

    eases

    o maximum again a

    wall.Volume Flow Ra

    e :

    volume flow

    a

    e ,- = =

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    11/46

    x

    aur r Qa0482ppNow in a fully

    evelo e

    flow ressure gra

    ient is constant ,Hence ,( )L

    L x

    ent exit- =

    -=\L

    aQp84

    =Cont

    Average Velocity :Average velocity ,- = = =

    x aaQAQV p 82

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    12/46

    2Maximum Velocity :At the oint of maximum velocity ,0 =

    r

    uThis corres on

    s to core of i e ,0 = rHence Vx

    aU u ur2420 max=

    - = = ==Con

    dFully Developed Flow

    h

    ough Channel :F

    om equa

    ion of con

    inui

    y wi

    hin

    he en

    ance leng

    h : 0 =+

    yvxuIn en

    ance leng

    h bounda

    y laye

    s g

    owing ,0 xu0 v

    It means flow is not parallel to walls in entrance regionCont

    ) (aE uation of Continuity for an incompressible flui in fully evelope region :0 =xu

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    13/46

    ) (y u u =Momentum e uation in y

    irection (transverse

    irection) :0 =yp) (x p p =Momentum e uation in x

    irection (along length of channel) :

    =

    22yuxpSolving above diffe

    en

    ial equa

    ion in y using bounda

    y condi

    ions :u(y)=0 a

    y=0 and y=aCon

    dWe ge

    he veloci

    y p

    ofile :

    -

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    14/46

    =ayayxp au

    222 Shea

    S

    ess Dis

    ibu

    ion :-

    =

    =21ayxpayuyx t Shea

    S

    ess ,

    Maximum Shea

    S

    ess a

    walls , - =x

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    15/46

    a20tCon

    dHence i

    can be obse

    ved

    ha

    Shea

    s

    ess dec

    eases f

    ommaximum

    o ze

    o a

    cen

    eof

    he channel and inc

    eases

    o maximum again a

    wall.Volume Flow Ra

    e :

    Volume flow

    a

    e pe

    uni

    wid

    h of channel,30121axpudy Qa

    - = =Con

    dAve

    age Veloci

    y :2121

    axpaQV

    - = =Ave

    age Veloci

    y ,Maximum Veloci

    y:A

    he poin

    of maximum veloci

    y , 0 =yu

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    16/46

    This co

    esponds

    o cen

    e of channel ,2ay =Hence , V axpu u23

    812max= - = =

    Con

    dFully Developed Flow Th

    ough Non-Ci

    cula

    Duc

    s :) ( Ellip

    ical C

    oss Sec

    ion :As flow is fully developed in

    he ellip

    ical sec

    ion pipe :0 = =z yu uF

    om equa

    ion of con

    inui

    y fo

    incomp

    essible flow :, 0 =+

    +zuyuxuzy

    x0 =xu x) , ( z y u ux x= \

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    17/46

    Cont

    12222=

    +

    bzayMomen

    um Equa

    ion in x-di

    ec

    ion :

    +=2222z

    uyuxpx xBounda

    y condi

    ion : on0 =x

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    18/46

    u12222=

    +

    bzaySolu

    ion P

    ocedu

    e :Use ,Such

    ha

    non ze

    o cons

    an

    s and

    o be de

    e

    mined using :1c2c22

    21) , ( ) , ( z c y c z y u z y ux x+ +=1.)2.) is cons

    an

    on

    he wall .0 ) , (2=

    z y u x) , ( z y u x Con

    dUsing

    he assumed veloci

    y p

    ofile and solving

    he momen

    umequa

    ion using

    wo s

    a

    ed condi

    ions:21) , ( a c z y u x - =, along the wall

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    19/46

    Using La lace maximum criteria ( Maximum an

    minimum of a functionsatisfying La lace equation lies on the boun

    ary) :over entire

    omain . ) , (21const a c z y u x = - =We get our velocity rofile as :

    - -+

    - =22222 22 2121) , (

    bzayb ab ax

    z y u xCon

    dVolume

    ic Flow Ra

    e :Volume flow

    a

    e ,

    dAbzayb ab axpdA z y u Q

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    20/46

    ion

    ionx

    - -+

    - = =sec sec22222 22 2121) , (

    \2 23 34 b ab axpQ+

    - =pCont Thermally Fully Develo e

    Flows :

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    21/46

    ) ( Thermally fully

    evelo e

    flow through a i e :Cont

    When flui

    enters the tube with tube walls at a

    ifferent tem eraturefrom the flui tem erature , thermal boun ary layer starts growing. After some

    istance

    ownstream (thermal entry length) thermally fully

    evelo e

    con

    ition is eventually reache

    :Thermally fully

    evelo e

    con

    ition is

    ifferent from Hy

    raulicfully evelo e con ition ., 0 =xu, 0 xTfor hy

    raulic fully

    evelo e

    flowat any ra ial location for thermally fully evelo eflow as convection heat transfer is occurring.Cont

    Con

    ition for Thermally Fully Develo e

    Flow :Because of convective heat transfer , continuously changes

    with axial coor

    inate x .) (r TCon

    ition for fully

    evelo e

    thermal flow is

    efine

    as :0) ( ) () , ( ) (=

    --x T x Tx r T x Txm ssThis means although tem erature rofile changes with xBut the relative tem erature rofile

    oes not change with x.) (r TCont

    Here , = ) (x T s= ) (x T m Mean Tem eratureMean Tem erature ( ) is efine as: ) (x T mSurface Tem erature of the i evAc vmc mT

    A uc

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    22/46

    Tc&=rThe

    mal Ene

    gy

    anspo

    ed by

    he fluid as i

    moves pas

    anyc

    oss sec

    ion ,m vAc v

    T c m TdA uc Ec&&= =rF

    om New

    on's Law of Cooling : ) (m s sT T h - =Since there is continuous heat transfer between flui

    an

    walls : 0 x

    T mCont

    0) ( ) () , ( ) (=-

    -x T x Tx r T x Txm ssFrom the

    efinition of thermally fully

    evelo e

    flow :Hence , ) () ( ) ( ) ( ) () , ( ) (0

    0x fx T x TrTx T x Tx r T x Trm sr r

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    23/46

    r rm ss--=

    --==Here is ra

    ius of the i e . ) (0r

    From Fourier's heat con

    uction law at the wall an

    Newton

    s law of cooling:[ ] ) ( ) (00x T x T hrTkyTk m sr r

    y ys- ==

    - ==

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    24/46

    =Hence ,) (x fkhHere , Local convection heat transfer coefficient= h= k Coefficient of thermal con

    uction (flui

    )Hence, h is infinite in theBeginning (boun

    ary layersjust buil ing u ), then ecaysex onentially to a constantvalue when flow is fully

    evelo e

    (thermally )an

    thereafter remains constant.Cont

    t f

    x,f

    hhx

    Com

    etition between Thermal an

    Velocity boun

    ary Layers :This com etition is ju

    ge

    by a

    imensionless number , calle

    Pran

    tl number .=anPr

    Where , Ki

    em

    tic frictio

    coefficie

    t (mome

    tum diffusivity) = =rn= =pckra Therm l diffusivity

    tPr

    ddWhere , = d Velocity boun ary layer thickness=tdThermal boun ary layer thickness= n Positive ex onentCont If ,

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    25/46

    1 Pr1 PrIt means Velocity Boun

    ary Layer grows faster than Thermalboun ary layer. Hence flow first hy raulically evelo e anthen thermally

    evelo e

    .If ,It means Thermal Boun

    ary Layer grows faster than Velocityboun ary layer. Hence flow first thermally evelo e an thenhy

    raulically

    evelo e

    .) ( Hence if, an

    flow is sai

    to be thermally

    evelo e

    it meansFlow is alrea

    y hy

    raulically

    evelo e

    .1 Pr) (Similarly if, an

    flow is sai

    to be hy

    raulically

    evelo e

    itMeans flow is alrea

    y thermally

    evelo e

    .1 PrCont

    ) ( Usually surface con

    itions of i e fixe

    by im osing con

    itions :1.) Surface tem erature of i e is ma

    e constant ,2.) Uniform surface heat flux ,. const T s =. const q s =Constant Surface Heat Flux :

    From the

    efinition of fully

    evelo

    e

    thermal flow:0) ( ) () , ( ) (=--

    x T x Tx r T x Txm ssdxdTT TT TdxdT

    T TT TdxdTxTmm ss sm s

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    26/46

    s s--+--- =Cont

    From Newton's Law of cooling :) (m s sT T h - =. const s =As, hence,

    x

    T

    x

    Tm s

    =. const

    x T

    x

    TxTm s= = =Hence using

    efinition of thermally fully

    evelope

    flow

    an

    Newton's Law:sTmT. const s =s

    Cont

    Neglecting viscous issipation, energy e uation :

    =

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    27/46

    +

    T

    Tvx

    TuaAssumi g the flow to be both hydr ulic lly d therm lly developed :, 0 =xu, 0 = vdxdTx

    Tm=, 1 220

    - =r

    ru umHe ce e ergy equ tio reduces to :

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    28/46

    -

    =

    2012 1

    dxdT u

    T

    m maCo td,V u m =dxdTxTm=

    I tegr ti g e ergy equ tio usi g bou d ry co ditio s :1.) Temper ture , is fi ite t ce tre , ) , ( x r T0 = r) (0x T Ts r r==

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    29/46

    We get Temper ture profile :2.) Temper ture ,

    -

    + - =204

    02041161163 2) ( ) , (rrr

    rdxdT r ux T x r Tm msaFrom defi itio of me temper ture ,vA

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    30/46

    c vmc mTdA ucTc&=r

    - =dxdT r ux T x Tm ms ma2

    04811) ( ) (Co tdFrom the pri ciple of e ergy co serv tio :Pdx q dqs co v=dxm&m

    Tm mdT T +x) (pv) ( ) ( pv d pv +r1= vspecificvolume,) ( pv T c d m dqm v conv

    += &Fo

    an ideal gas, ,mRT pv = R c cv p+ =Pe

    ime

    e

    ,\ Pdx q dT c m dqs m p conv

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    31/46

    = = &\ ( )m sp ps mT Tc mPhc mP q

    dxdT- ==& &Co tdD P p =

    =42Du mmpr &DHence combining

    he equa

    ions ob

    ained by in

    eg

    a

    ion of ene

    gy

    equa

    ion in bounda

    y laye

    and conse

    va

    ion of ene

    gy equa

    ion :kD qdxdT

    ux T x Ts m ms m- =

    - = -48114811) ( ) (20

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    32/46

    a\\ ( ) ) ( ) (4811) ( ) ( x T x TkhDx T x Ts m s m- = -\ 36 . 41148= = =khDNu DHe ce Nusselt umber for fully developed flow through circul r pipeexposed to u iform he t flux o its surf ce is co st t ,i depe de t of

    xi l loc tio ,Rey old's umber d Pr dtl umber .) (Co tdCo st t Surf ce Temper ture :

    From the defi

    itio

    of fully developed therm

    l flow :0) ( ) () , ( ) (=--

    x T x Tx r T x Txm ssdxdTT TT TdxdT

    T TT TdxdTxTmm ss sm s

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    33/46

    s s--+--- =0 =

    x

    T sConstant surface temperature ,\--=

    dxdTT TT TxTmm ssCo tdHe ce it c be see th t , depe ds o r di l coordi te.

    Fully developed temper

    ture profile for co

    st

    t w

    ll temper

    turehe ce differs from co st t surf ce he t flux co ditio .xT. co st T s =mTs

    qCo tdNeglecti g viscous dissip tio , e ergy equ tio :

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    34/46

    =+

    T

    TvxTuaAssumi g the flow to be both hydr ulic lly d therm lly developed :, 0 =xu

    , 0 = v, 1 220

    - =rru um,

    V u m =--

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    35/46

    =dxdTT TT TxTmm ssCo tdHe ce bou d ry l yer e ergy equ tio becomes :m ss m mT TT TrrdxdT urT

    r r --

    - =

    20

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    36/46

    12 1aAbove equ tio is solved usi g iter tive procedure :66 . 3 =DNuCo tdFully developed therm l flow through ch el :) ( Ch el w lls subjected to co st t he t flux :Here we co sider ch el with := =sq=sT= ) , ( x r T=mT= W ,

    Depth of ch

    el Width of ch

    elHe t flux t the w llsTemper ture of fluid flowi g through ch elTemper ture t the w llMe Temper ture or Bulk Temper tureCo tdNeglecti g viscous dissip tio , e ergy equ tio :22yTyT

    vxTu=+a

    = = W P 2= = = = W

    WPAD H 224 4Hydr ulic di meter

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    37/46

    perimeterAssumi g the flow to be both Hydr ulic lly d therm lly developed :, 0 =xu, 0 = v. co stdxdTxTm= =

    - - =

    - =a

    yayuayayxp a

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    38/46

    um2 2262 Con

    dHe

    e, =mu Mean veloci

    y , is defined as :x

    p aAudAucAcmc- = =

    rr122Now solving fo

    bounda

    y laye

    ene

    gy equa

    ion :2 13246 126 c y cay

    aydxdT uTm m+ +

    - - =aCo st ts of i tegr tio obt i ed usi g :1.) t ( s temper ture profile issymmetric he ce h s extremev lue t ce tre.), 0 =dydT2

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    39/46

    y =Co td2.) t the w ll ,

    y y = = & 0sT T =sT c = 2Hence we obtain the temperature profile :

    + - - = -12 6 126324

    y

    y

    ydxdT uT Tm msaFrom the defi itio of me temper ture,vA

    c vmc mTdA ucTc&=r

    - = -dxdT uT Tm ms ma

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    40/46

    214017Co tdFrom co serv tio of e ergy method ( simil r to c se of pipe):( )m sp ps mT Tc mPhc mP qdxdT- ==& &He ce combi i g temper ture profile d co serv tio of e ergy :( )s mp

    ms mT Tc mPh uT T - = -& a214017Usi g , ( ) , W u mmr = & , 2W P =

    ,pckra = D H 2 & =( )17140 2= =k

    hNu

    HDCo tdTherm l E tr ce : The Gr etz Problemu rx00T0

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    41/46

    T0TwT0rProblem St teme t:Fluid i iti lly t u iform temper turee ters i to pipe t surf ce temper ture differe t th the fluid. Flow ssumed to be Hydr ulic lly developed .Co td...wTPr dtl umber of fluid is high , he ce therm l e tr ce st rts f rdow stre m.Flow lre dy hydr ulic lly developed. Pr dtl umber of fluid is high , he ce therm l e tr ce st rts f rdow stre m.Flow lre dy hydr ulic lly developed. Here , U iform temper ture of fluid before therm l e tr ce =0T=

    wT U iform surf ce temper ture of w lls= ) , ( r x TFluid temper ture i therm l e tr ce regioAs the flow is hydr ulic lly fully developed :, 1 220

    - =r

    ru umNeglecti g viscous dissip tio , bou d ry l yer e ergy equ tio :

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    42/46

    =

    T

    xT

    uaCo tdBou d ry Co ditio s :1.) t2.) t, 0 x0T T =, 0 xwT x r T = ) , (0

    Solutio

    :Solutio do e with the help of o dime sio l v ri bles.,0*T TT TTww--= ,

    0*rrr =Pr Re0*dxx =Here ,, Re

    0nmu d=kc p nran= = Pr

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    43/46

    He ce e ergy equ tio reduces to :( )

    -=**** 2* **

    *12rTrrr rxTCo tdBou d ry co ditio i terms of o dime sio l v ri bles :, 1 )

    0 ,(* *= r T 0 ) , 1 (* *= x TSolvi g the e ergy equ tio usi g v ri ble sep r tio method :) ( ) ( ) , (* * * *x g r f x r T = Usi g ,the p rticul r solutioi e ergy equ tioWe obt i :( )

    .122* **co stf r rf f rg

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    44/46

    g= - =- + =lHence , ( )* 22 exp x C g l - =( ) 0 12* * 2 *= - + + f r r f f r lContdHence the particu ar so ution wi be :) ( ) 2 exp( ) , (* *2* **r f x C x r Tn n n nl - =

    From the princip

    e of

    inearity and superposition : ==- =nnn n nr f x C x r T0* *2* * *

    ) ( ) 2 exp( ) , ( l1 ) 0 ( =nf0 ) 1 ( =nf, for simp icity, using the boundary condition0 ) , 1 (* *= x TUsing the other condition ,

    === =nnn nr f C r T0* * *

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    45/46

    ) ( 1 ) 0 , (To be determined using theory of orthogona

    functions.,nCContd--=10*2* *10* * *) 1 () 1 (22

    dr f r rdr f r rCnnnUsing theory of orthogona

    functions :Now the rest of the prob em is numerica y so ved for Nusse t Number :( )( )-

    -=-*2 2*22 exp ) 1 ( 22 exp ) 1 (x f Cx f C

    Nun n n nn n nxl llcontd: KEY QUESTIONS : IF FLOW THROUGH A PIPE OR CHANNEL IS SAID TO BEHYDRAULICALLY FULLY DEVELOPED DOES THIS IMPLY

  • 8/21/2019 Fluidmech in Pipe Velocity Shear Profile

    46/46

    THERMALLY FULLY DEVELOPED AND VICE VERSA ???? IF TWO PLATES IN THE CHANNEL ARE MAINTAINED ATDIFFERENT TEMPERATURES THEN WHAT WILL BE THECRITEREA FOR THERMALLY FULLY DEVELOPED FLOW ????THANK YOU FOR YOUR COOPERATIONTHE END