93
JSC “ELECTRONSTANDARTPRIBOR” Fire Detection Introduction JSC “ELECTRONSTANDARTPRIBOR”, RUSSIA JSC “ELECTRONSTANDARTPRIBOR” 28, Zatsepa street., Moscow, RUSSIA, 115054 Tel. (495) 6332244 Fax. (495) 6332244 Email: [email protected] www.esp.com.ru

Flame Detection System

Embed Size (px)

DESCRIPTION

FDS

Citation preview

  • JSCELECTRONSTANDARTPRIBOR FireDetectionIntroduction

    JSCELECTRONSTANDARTPRIBOR,RUSSIA

    JSCELECTRONSTANDARTPRIBOR28,Zatsepa

    street.,Moscow,RUSSIA,115054Tel.(495)6332244Fax.(495)6332244

    Email:[email protected]

  • FireDetectionIntroduction TableofContents

  • FireDetection

    TableofContents

    1.

    Whatisfiredetection?2.

    Whatclassesoffiredetectorsareavailableinthe

    market? Smoke Heat Gas Flame

    3.

    Classesofflamedetectors SingleUVdetectors IR/UVdetectors MultiSpectrumIRdetectors Visualflameimagingdetectors

  • FireDetection

    TableofContents

    4.

    Performancecharacteristicsofflame detectors

    5.

    Fieldofview

    6.

    Potentialfalsealarm

    sources

    7.

    Howtochooseflamedetectortypesand locations

    8.

    Motivatorstoinstallfire/flamedetectors

    9.

    Competitivesummarymatrix

  • Whatisfiredetection?

  • Whatisfiredetection?

    Theobjectiveofafiredetectionforthe

    petroleumindustryistorapidly detectafirewherepersonnel,high

    value,andcriticalequipmentmaybe involved.Oncedetected,executive

    actionisinitiatedtoalertpersonnel forevacuationwhilesimultaneously controllingandsuppressingthefire

    incident.

    Hydrocarbonvaporsimmediatelyburn

    withflametemperaturesthatare considerablyhigherthanthatof

    ordinarycombustibles.Forthis reasondamagefromahydrocarbon

    fireismuchmoreseverethanfrom anordinarycombustiblefire.

  • Mainchemicalreactionis

    HC+O2

    =CO2

    +H2

    O

  • ClassesofFireDetectorsOffered intheMarket

    SmokeDetectors ThermalorHeatDetectors GasDetectors FlameDetectors

  • SmokeDetectorsSmokedetectorsareemployedwherethe

    typeoffireanticipatedandequipment

    protectionneedsafasterresponsetime

    thanheatdetectors.Asmokedetector

    willdetectthegenerationoftheinvisible

    andvisibleproductsofcombustionbefore

    temperaturechangesaresufficientto

    activateheatdetectors.Theabilityofa

    smokedetectortosenseafireis

    dependentontherise,spread,rateof

    burn,coagulationandairmovementof

    thesmokeitself.Wherethesafetyof

    personnelisaconcern,itiscrucialto

    detectafireincidentatitsearlystages

    becauseofthetoxicgases,lackofoxygen

    thatmaydevelop,andobscurationof

    escaperoutes.Smokedetectionsystems

    shouldbeconsideredwhenthesefactors

    arepresent.

  • ThermalorHeatDetectors

    Heatdetectorsareslowerthanothertypesof

    detectiondevicestorespondtoafire,since

    theyrespondtotheheatofafire.

    Therearetwocommontypesofheatdetectors

    fixedtemperatureandrateofrise.Bothrelyon

    theheatofthefireincidenttoactivateasignal

    device.Fixedtemperaturedetectorssignal

    whenthedetectionelementisheatedtoa

    predeterminedtemperaturepoint.Rateofrise

    detectorssignalwhenthetemperaturerisesat

    arateexceedingapredeterminedamount.

    Rate

    ofrisedevicescanbesettooperate

    rapidly,areeffectiveacrossawiderangeof

    ambienttemperatures,usuallyrecyclerapidly

    andcantolerateaslowincreaseinambient

    temperatureswithouteffectinganalarm,and

    recycleautomaticallyonadropinambient

    temperature.

  • TypesofHeatDetectors

    FixedTemperature

    Signaldeviceisactivatedbythe heatofthefirewhenthe

    detectionelementisheatedtoa predeterminedtemperature

    point.

    RateofRise

    Signaldeviceisactivatedbythe heatofthefirewhenthe

    temperaturerisesatarate exceedingapredetermined

    amount. Canbesettooperaterapidlyand

    usuallyrecyclesrapidly. Hasawiderangeofambient

    temperatureeffectiveness Slowincreasesinambient

    temperaturesaretolerated withoutraisinganalarm.

    Adropinambienttemperature causesanautomaticrecycle.

  • ThermalorHeatDetectorsThehigherreliabilityfactorofheatdetectorsleadstofewerfalsealarmsthan

    withothertypesoffiredetection.However,astheyareslower

    toactivatethan

    otherdetectiondevicesanddonotsendsmokeandvisibleflame,

    theyshould

    beinstalledonlywherespeedofactivationisnotconsideredcritical,or

    installedasabackupforotherfiredetectionsystems.Heatdetectorscanbeusedasspotdetectors,orstrungasalinedeviceto

    protectanextendedpath,andtheyaresuitableforoutdoorapplications.Commonissuesafterinstallation:

    Thedevicetendstobepaintedover.

    Thedeviceissusceptibletodamage.

    Longinstallationmaycausethefusibleelementtosufferchangesin

    activationtemperature.

  • GasDetectors

    Gasdetectorsrecognizethe conditions

    necessaryfora

    fireorexplosiontooccur, ratherthantheactual

    fire.Thedevice accomplishesthisby

    trackingtheamountof flammablevaporsor

    gasesinanarea.

  • FlameDetectors PrinciplesofOperationInfrared(IR)andUltraviolet(UV)spectroscopyandvisualflame

    imagingaretheopticalmethodsmostflamedetectorsuseto identifyflames.Flamedetectors,designedtosensetheabsorption

    oflightatspecificwavelengths,candiscriminatebetweenflames andfalsealarms.

    Example:Typically,theflamesatarefineryarefueledby

    hydrocarbonsthatproduceheat,carbondioxide,andother combustionproductsinthepresenceofoxygenandanignition

    source.Thiscreatesemissionsofvisible,IR,andUVradiation detectablebyflamedetectors.

  • FlameSensingTechnologies

    Thefourprimaryopticalflamesensing

    technologiesbeingusedbyflame detectorstodayare:

    Ultraviolet(UV)

    Infrared/Ultraviolet(IR/UV)

    Multispectruminfrared

    Visualflameimaging

  • FlameSensingTechnologies

    Allflamesensingtechnologiesare basedonlineofsightdetection ofradiationemittedbyflamesin theUV,visible,andIRspectral

    bands.Flamedetectorsofferarangeof

    technologiestofitthe requirementsofmonitoring

    applications.Theseincludefield ofview(FOV),responsetime,

    detectionrange,andparticular immunitytocertainfalsealarm sources.

  • Acontinuousspectral descriptioncurvedisplay

    fromheatedsolidsand liquids.

    Narrowdistribution moleculetype

    characteristicsdisplayed byflamesandelectrical

    discharges.

    FlameDisplays

  • FlameRadiationSpectrum

    235HzCharacteristicFlickering

  • Thevisibleredyellowseeninafireis

    causedbycarbon.

    TheinvisibleIRpartofthefireis

    experiencedasheat.

    NonHydrocarbonse.g.Hydrogen,burns

    lightbluetransparent(nocarbonin theflame).

    Also,itdoesnothavetheCO2

    peakat

    4.4

    andcanthereforebedetected

    inadifferentway.

    TheCO2

    peakinthefirerepresentsless

    then2%ofthetotalfireenergy.

    FlameRadiationSpectrum

  • BlackbodyRadiationInfraredsensorsarealsoaffectedbyinfraredradiation

    notoriginatingfromafire.Thefiremaybemasked

    bythisblackbodyradiation.

    DualorMultiInfrareddetectorssuppresstheeffectof

    blackbodyradiationbysensingenergyjustbeside

    theCO2

    radiationpeake.g.on4.1m.Theprinciple

    isbasedonthefactthatarealHydrocarbonfire

    causesadifferencebetweenthesensors.

    Theremustbealargerdifferenceinsensoroutputthan

    thebackgroundradiationpresent.Thatis,the

    detectorcanbedesensitizedwhenblackbody

    radiationispresent.

    Everyobjectthathasatemperaturehigherthan0o

    Kelvin(or2730C)radiatesenergyand,atroom

    temperature,theenergyisalreadydetectableby

    themostsensitiveInfraredsensors.Sometimes,a

    movinghandclosetothesensorisenoughto

    generateanalarm.At700K,ahotobjectalready

    startstosendoutvisibleenergy(glowing).

  • HowOpticalFlameDetectionWorks Selectsoneormorespectralbands

    Analyzesflickeringfrequency(235Hz)

    Determinesradiationintensitythresholds

    EmploysDetectionAlgorithm(includingmathematicaltechniques

    suchasratios,ANDgatecomparisons,correlationsand

    autocorrelations).

  • OpticalFlameDetection

    Advantages: Detectiondistance Sensitivity Speedofresponse Reliability

  • ComparisonofFireDetectorsTypeof

    Detection

    DetectorType Speed Cost

    Human

    Human Moderate Expensive

    Telephone Moderate Moderate

    PortableRadios Moderate ModeratetoExpensive

    MPS/MAC Moderate Moderate

    SmokeIonization Fast Moderate

    PhotoElectric Fast Moderate

    VESDA VeryFast High

    Heat

    FusibleLink LowtoModerate Moderate

    PlasticTube LowtoModerate Low

    FusibleTube LowtoModerate Moderate

    Quartzoid

    Bulb LowtoModerate Moderate

    OpticalFiber LowtoModerate Moderate

    BimetallicWire LowtoModerate LowtoModerate

    HeatAct/ROR LowtoModerate Moderate

    Optical

    UV VeryFast HighIRIR VeryFast High

    IR/UV VeryFast High

    MultiBand VeryFast High

    VideoCamera Fast Expensive

  • ClassesofFlameDetectors

  • UVFlameDetection

    Advantages: Unaffectedbysolar

    radiation Unaffectedbyhotobjects

    Disadvantages: Subjecttofalsealarms

    fromUVsources(arc welding,electricalsparks,

    halogenlamps) Blindedbythicksmoke

    vapors,greaseandoil depositsonthedetectors

    windowReferenceFire

    100ft(30m)

  • UVFlameDetection

    UVflamedetectorradiationresponseinthespectral rangeisapproximately180260nanometers.

    Wavelengthresponsetolowenergylevelsoutsidethe rangeofsunlightandnormalhumanvisibilityis

    between0.185and0.245microns.Becausetheyreacttohalogenlamps,electrical

    dischargessuchaslightning,andarcwelding,UVflame detectorsaregenerallyusedindoors,wheretheir

    sensitivityandquickresponsetimeincomparatively shortranges(050feet)makethemagoodchoice.

    Failurescanbecausedbythicksootysmoke.

  • Advantages: Allpurposegeneraldetectorthatrespondsat

    differentratestomostburningmaterials.

    Extremelyfast lessthanafewmilisecondsfor

    specialapplications(e.g.,explosivehandling).

    Depositsoficeonthelensdonotgreatlyaffectit.

    Notgenerallyaffectedbyhotblackbodysources.

    Blindtomostformsofartificiallight,including

    solarradiation.

    Generallyindifferenttophysicalcharacteristicsof

    flames meetssignalinputfunctionswithout

    requiringa"flicker."

    Specialmodulesavailableforuseinhigh

    temperatureapplicationsupto125C(257F).

    Canspecifyanautomaticselftestingfacility.

    Fordistancesofmorethan32.8feet(10meters)

    fromthedetector,ahandheldsourcecanbeused

    fortesting.

    Canfieldadjustmostmodelsforeithertimedelay

    functionorflamesensitivity.

    Limitations: Smokereducesthesignallevelseenduringa

    fire. Reactstoelectricalarcsfromwelding.

    Mayproducefalsealarmfromlightningwith

    longdurationstrikesorotherformsof

    radiation(suchasNDToperations).

    Maybeaffectedbydepositsofgreaseandoil

    onthelens. Signalattenuationmayresultfromsome

    vapors(typicallyvaporswithunsaturated

    bonds).

    UVFlameDetection

  • IR/UVFlameDetectors

    TheprincipleofIR/UVopticalflame detectorsissimplevoting.This

    typeincorporatesasolarblind UVsensorandanIRsensor

    selectedfromthefollowing: 4.3mIRsensor(detectsCO2

    radiation)

    ReferenceFire

    100ft(30m)

  • Detectionofthesimultaneousexistenceofcharacteristic

    infraredandultravioletradiation

  • IR/UVFlameDetectors

    Advantages: Falsealarmrateisvery

    low. Detectorisnotaffected

    bysolarradiation.Disadvantages:

    Thedetectorcanbe blindedbyvapors,thick

    smoke,andoiland greasedepositonits

    window.

  • IR/UVFlameDetectors

    IntegrationofanIRsensorwiththeUVopticalsensor producesadualbanddetectorsensitivetotheIRand

    UVradiationemittedbyaflame,makingitsuitablefor bothindoorandoutdooruse.Thedetectorresponds

    withmoderatespeedandoffersincreasedfalsealarm immunityovertheUVdetector.However,heavy

    smokemayreducetheunit'sdetectionrange.ThetwotypesofdetectorsclassifiedasIR/UVboth

    respondtofrequenciesintheUVwavelengthandIRin theCO2

    wavelength.Togenerateanalarm,bothtypes requirethesimultaneouspresenceofIRandUV

    signals,andtheymustmeettheratiorequirement betweenlevelsofIRandUVsignals.

  • Advantages: Respondreadilytowiderangeof

    hydrocarbonfires. Notsusceptibletomostformsofartificial

    lightortosolarradiation. Ignorearcweldingandelectricarcs;minor

    issueswithotherformsofradiation. Notaffectedbyblackbodysources.

    Canfieldadjustsimplevotingdetectorfor

    flamesensitivity. Respondtofireinthepresenceofahigh

    backgroundIRsource.

    Limitations:

    Smokeandsomechemicalvaporsreduce

    thesignallevelduringafire. IceparticlesonthelenscanblocktheIR

    channel;oilandgreaseonthelenscan

    blocktheUVchannel.

    InitiationofanIRsignalinputdependson

    aflickeringflame.

    IR/UVFlameDetectors

  • MultiSpectrumIRFlameDetectors

    Advantages: Greatestimmunityto

    falsealarms Greatestsensitivity Longestdetectionrange

    ReferenceFire

    210ft (64m)

  • MultiSpectrumIRFlameDetectors

    MultispectrumIRflamedetectorsperformwellinlocationswherecombustionsourcesproduce

    smokyfires.Multipleinfraredspectralregionsenhancedistinctionbetweenflamesources

    andnonflamebackgroundradiation.Thesedetectorsaresuitableforbothindoorsand

    outdoors,operatingatamoderatespeedwitharangeofupto210feetfromtheflame

    source.Theyproviderelativelyhighimmunitytohotobjects,e.g.,sunlight,infraredradiation

    fromarcwelding,andlightning.Bymeansofphotocellstomonitorseveralwavelengthsofpredominantfireradiation

    frequencies,microprocessingisusedtocomparethemeasurementstonormalambient

    frequencies,alarmingwhenthefrequenciesreachabovecertainlevels.

    Advantages:

    Highlysensitive. Verystable. Themicroprocessorcanbeprogrammedtorecognizecertainfiretypes.

  • DetectionoftheflamescharacteristicCO2

    emissionline

    bytheuseofthreewavelengthbands

    MultispectrumIRFlameDetectors

  • VisualFlameImagingFlameDetectors

    Visualflamedetectorsestablishthepresenceofafire

    throughflamedetectionalgorithmsandstandard

    chargedcoupledevice(CCD)imagesensors.To

    differentiatebetweenflameandnonflame

    sources,thelivevideoimagefromtheCCDarrayis

    processedbytheimagingalgorithmstoanalyzethe

    shapeandprogressofapparentfires.

    Fordetectionoffires,thedevicesdonotdependon

    emissionsfromwater,carbondioxide,orother

    productsofcombustion.Therefore,whereaflame

    detectorisrequiredtodifferentiatebetweenafire

    resultingfromanaccidentalreleaseofcombustion

    materialandaprocessfire,thisdetectorisnot

    commonlychosen.

    Limitations:

    Cannotdetectflamesthatareunseenbythenaked

    eye,e.g.,hydrogenflames.

    Theunit'sabilitytodetectfirecanbeimpairedby

    heavysmoke.

  • PerformanceCharacteristics ofFlameDetectors

  • PerformanceCharacteristics ofFlameDetectors

    Whenconfiguringaflamedetectionsystemforaplantand evaluatingthevariousflamedetectiontechnology

    alternativesavailabletoday,itisusefultoconsiderthe followingflamedetectorperformancecriteria:

    FalseAlarmImmunity DetectionRange ResponseTime FieldofView SelfDiagnostics

  • PerformanceCharacteristics ofFlameDetectors

    FalseAlarmImmunityTheabilitytodiscriminatebetweenactualflamesandfalsealarmsourcesisone

    ofthemostimportantconsiderationsinselectingaflamedetector.False alarmscanbecostlyandinterferewithproductivity.Itisthereforeessential

    thatflamedetectorsdiscriminatebetweenactualflamesandradiationfrom sunlight,lightning,arcwelding,hotobjects,andothernonflamesources.

    DetectionRangeandResponseTimeAflamedetectorsmostbasicperformancecriteriaaredetectionrangeand

    responsetime.Dependingonaspecificplantapplicationenvironment,eachof thealternativeflamedetectiontechnologiesrecognizesaflamewithina

    certaindistanceandadistributionofresponsetimes.Typically

    thegreaterthe

    distanceandtheshorterthetimethatagivenflamesensingtechnology requirestodetectaflame,themoreeffectiveitisatsupplyingearlywarning

    againstfiresanddetonations.

  • PerformanceCharacteristics ofFlameDetectors

    FieldofView

    Thegreaterthefieldofview,thebroadertherangeofthedetector,whichmayalso

    reducethenumberofflamedetectorsforcertainapplications.Fieldsofviewof about90

    to120

    arecommonformostoftodaysmodels.

    SelfDiagnostics

    Tomaintainthereliabilityoftheflamedetectors,theopticaldevicesareautomatically

    selftestedforradiationtransmission.Programmedtoactivateabout

    onceevery

    minute,thisselfcheckensuresthatthedetectorisfunctioning,theopticalpath

    is

    clear,andtheelectroniccircuitryisoperational.Iftheselfcheckfindsafault,it alertsviathe020mAoutputorbyadigitalcommunicationsprotocolsuchas

    Modbus.

  • FireSizeandMaximum DetectionDistances

    Dependingonthetypeoffuel,thesizeofthefireisdefineddifferently instandardtests.

    LiquidFuel Bysteelpanfiresize,e.g.,0.09m2

    (1ft2)gasolinepanfire

    GaseousFuel Byflameheight,orificesize,pressure,e.g.,0.5m(20")CH4

    plume fire(3/8"ODorifice@3psi)

    SolidFuel Byweight,sizeandpreignitionconfiguration,e.g.,woodcribfire

    arrangedin20x20cmsquarestack

  • FireSizeandMaximum DetectionDistances

    Theresponsetimeandmaximumdetectiondistanceofthe detectorarerelatedtothesizeofthefire.

    Theperformanceofthedetectorisusuallystatedwith respecttoastandardfire,e.g.,1ft2

    gasolinepanfire.

    Thedetectorcanbefurtherdefinedbythedistanceat whichitwilldetectthestandardfiresizeandbythe

    specifiedresponsetime.

  • ESPSafetyFlameDetector Characteristics

  • IPESIR3Flameresponse,falsestimuli,fieldof

    view,hazardouslocationratingsand environmentalratings:

    Operatingtemperaturerating:40oCto

    +85oC(40oFto+185oF)

    ExplosionElectricalequipmentverified

    perFM3615

    AutomaticFireAlarmSignaling

    PerformanceverifiedperFM3260(2000)

    RadiantEnergySensingFireDetectorsfor

    AutomaticFireAlarmSignalingverified

    perANSI/NFPA72(2002)

    ExplosionProofforClassI,Div1,Groups

    B,C,andD,T4Ta=40oCto+85oC(40oF

    to+185oF),IP66HazardousLocationsper

    FM3615

    ExplosionProofEnclosuresforUsein

    ClassIHazardousLocationsverifiedper

    CSAC22.2No.301986(Reaffirmed2003)

  • IPESIR3ResponseCharacteristics(ConfirmedbytestingbyFMApprovals)

    Veryhighsensitivity

    Fuel PanSize Distance,feet(m) Averageresponsetime(seconds)

    nHeptane 1x1foot 211(64.3) 9JP4 1x1foot 201(60) 12JP4 2x2foot 206(62.8) 8

    Gasoline 1x1foot 200(60) 14Gasoline 2x2foot 196(60) 4Kerosene 1x1foot 164(50) 11Kerosene 2x2foot 196(60) 6Diesel 1x1foot 151(46) 15Diesel 2x2foot 151(46) 10

    Methanol 1x1foot 151(46) 9Ethanol 1x1foot 151(46) 11

    MethanePlumeDiameter

    3/8in,height3

    foot

    151(46) 10

    MethaneMethanesand

    burner1x2foot

    151(46) 10

  • IPESIR3ResponseCharacteristics(ConfirmedbytestingbyFMApprovals)

    Highsensitivity

    Fuel PanSize Distance,feet(m) Averageresponsetime(seconds)

    nHeptane 1x1foot 143(43.5) 5

    IsopropylAlcohol 1x1foot 99(30) 6

    JP4 2x2foot 115(35) 12

    MediumSensitivity

    Fuel PanSize Distance,feet(m) Averageresponsetime(seconds)

    nHeptane 1x1foot 108(32.9) 5

    IsopropylAlcohol 1x1foot 87(26.5) 5

    JP4 1x1foot 60(18.2) 6

    JP4 2x2foot 95(29) 7

  • IPESIR3ResponseCharacteristicsinthePresenceofFalseAlarmSources

    Veryhighsensitivity

    Falsealarmsource DistanceFeet(m) FireSource Distance,feet(m)Averageresponsetime(seconds)unmodulated modulated

    1.5kWheater 16(5)nHeptane

    (1x1foot)

    82(25) 2.0 2.0

    100Wincandescent

    light

    16(5)nHeptane

    (1x1foot)

    82(25) 2.1 2.2

    500Whalogenlight 16(5)nHeptane

    (1x1foot)

    82(25) 2.3 2.3

    Arcwelding(100A,

    #7118,3/16')

    16(5)nHeptane

    (1x1foot)

    82(25) 2.0 2.1

    Two20Wfluorescent

    lights

    16(5)nHeptane

    (1x1foot)

    82(25) 2.0 2.1

    Sunlightexposure

    (direct,reflect)

    nHeptane

    (1x1foot)

    82(25) 2.0 2.2

    Mediumsensitivity

    Falsealarmsource DistanceFeet(m) FireSource Distance,feet(m)Averageresponsetime(seconds)unmodulated modulated

    1.5kWheater 10(3)nHeptane

    (1x1foot)

    108(32.9) 10.4 5.2

    100Wincandescent

    light

    10(3)nHeptane

    (1x1foot)

    108(32.9) 3.1 3.4

    500Whalogenlight 10(3)nHeptane

    (1x1foot)

    108(32.9) 3.7 5.2

    Arcwelding(100A,

    #7118,3/16')

    10(3)nHeptane

    (1x1foot)

    108(32.9) 6.2 5.5

    Two20Wfluorescent

    lights

    10(3)nHeptane

    (1x1foot)

    108(32.9) 6.0 5.9

    Sunlightexposure

    (direct,reflect)

    nHeptane

    (1x1foot)

    82(25) 2.0 2.2

  • IPESIR3FalseAlarmImmunityVeryhighsensitivity

    Falsealarmsource DistanceFeet(m)Modulated

    responseUnmodulated

    response

    1.5kWheater 3(0.9) Noalarm NoalarmArcwelding(100A,#7118,

    3/16') 9(2.7) Noalarm Noalarm

    100Wincandescentlight 1(0.3) Noalarm Noalarm500Whalogenlight 3(0.9) Noalarm Noalarm

    Two20Wfluorescentlights 0(0) Noalarm NoalarmSunlightexposure(direct,

    reflect) Noalarm Noalarm

    Highsensitivity

    Falsealarmsource DistanceFeet(m)Modulated

    responseUnmodulated

    response

    1.5kWheater 3.2(1) Noalarm NoalarmArcwelding(100A,#7118,

    3/16') 10(3) Noalarm Noalarm

    100Wincandescentlight 3.2(1) Noalarm Noalarm500Whalogenlight 6.5(2) Noalarm Noalarm

    Two20Wfluorescentlights 0.25(0.008) Noalarm NoalarmSunlightexposure(direct,

    reflect) Noalarm Noalarm

    Mediumsensitivity

    Falsealarmsource DistanceFeet(m)Modulated

    responseUnmodulated

    response

    1.5kWheater 7.3(2.2) Noalarm NoalarmArcwelding(100A,#7118,

    3/16') 10(3) Noalarm Noalarm

    100Wincandescentlight 3.2(1) Noalarm Noalarm500Whalogenlight 6.5(2) Noalarm Noalarm

    Two20Wfluorescentlights 0.25(0.008) Noalarm NoalarmSunlightexposure(direct,

    reflect) Noalarm Noalarm

  • IPESIR3FieldofView

    Veryhighsensitivity

    Fuel SizeDistance

    feet(m)

    Horizontal

    (degrees)

    Avg.horiz.

    responsetime

    (seconds)

    Vertical

    (degrees)

    Avg.vert.

    responsetime

    (seconds)

    nHeptane 1x1foot 105(32)45 4.4 45 5.945 6.4 45 8.5

    JP4 1x1foot 98(30)45 4.2 45 4.345 13.5 45 7.5

    Gasoline 1x1foot 98(30)45 5.7 45 4.945 10.4 45 5.5

    Kerosene 1x1foot 98(30)45 6.3 45 7.045 18.9 45 14.0

    Diesel 1x1foot 75(23)45 6.5 45 5.245 18.6 45 8.9

    Methanol 1x1foot 75(23)45 2.7 45 3.045 4.2 45 3.1

    Ethanol 1x1foot 75(23)45 3.0 45 2.445 3.7 45 2.6

    Methane

    Plume

    Diameter

    3/8in,

    height3foot

    75(23)

    45 2.5 45 2.6

    452.8

    452.8

  • IPESIR3FieldofView

    Highsensitivity

    Fuel SizeDistance

    feet(m)

    Horizontal

    (degrees)

    Avg.horiz.

    responsetime

    (seconds)

    Vertical

    (degrees)

    Avg.vert.

    responsetime

    (seconds)

    nHeptane 1x1foot 71.5(22)45 6.8 45 6.445 13.6 45 8.5

    Isopropyl

    Alcohol

    1x1foot 50(15)45 5.7 45 4.2

    45 8.2 45 4.2

    Mediumsensitivity

    Fuel SizeDistance

    feet(m)

    Horizontal

    (degrees)

    Avg.horiz.

    responsetime

    (seconds)

    Vertical

    (degrees)

    Avg.vert.

    responsetime

    (seconds)

    nHeptane 1x1foot 60(18)45 4.8 45 17.445 4.5 45 3.8

    Isopropyl

    Alcohol

    1x1foot 44(14)45 19.5 45 7.345 7.3 45 6.9

    JP4 1x1foot 30(9)45 20.9 45 20.8

    45 11.9 45 12.8

  • IPESIR3

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetfornHeptaneat

    inMetersfornHeptaneat

    VeryHigh

    Sensitivity(1x1foot)

    VeryHigh

    Sensitivity(1x1foot)

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforJP4at

    inMetersforJP4at

    VeryHigh

    Sensitivity(1x1foot)

    VeryHigh

    Sensitivity(1x1foot)

  • IPESIR3

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforgasolineat

    inMetersforgasolineat

    VeryHigh

    Sensitivity(1x1foot)

    VeryHigh

    Sensitivity(1x1foot)

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforkeroseneat

    inMetersforkeroseneat

    VeryHigh

    Sensitivity(1x1foot)

    VeryHigh

    Sensitivity(1x1foot)

  • IPESIR3

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetfordieselat

    inMetersfordieselat

    VeryHigh

    Sensitivity(1x1foot)

    VeryHigh

    Sensitivity(1x1foot)

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetformethanolat

    inMetersformethanolat

    VeryHigh

    Sensitivity(1x1foot)

    VeryHigh

    Sensitivity(1x1foot)

  • IPESIR3

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforethanolat

    inMetersforethanolat

    VeryHigh

    Sensitivity(1x1foot)

    VeryHigh

    Sensitivity(1x1foot)

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforMethaneplumeat

    inMetersforMethaneplumeat

    VeryHigh

    Sensitivity(3/8inch,3feet)

    VeryHigh

    Sensitivity(3/8inch,3feet)

  • IPESIR3

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetfornHeptaneat

    inMetersfornHeptaneat

    High

    Sensitivity(1x1foot)

    High

    Sensitivity(1x1foot)

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforIsopropylat

    inMetersfornHeptaneat

    High

    Sensitivity(1x1foot)

    High

    Sensitivity(1x1foot)

  • IPESIR3

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetfornHeptaneat

    inMetersfornHeptaneat

    Medium

    Sensitivity(1x1foot)

    Medium

    Sensitivity(1x1foot)

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforJP4at

    inMetersforJP4at

    Medium

    Sensitivity(1x1foot)

    Medium

    Sensitivity(1x1foot)

  • IPESIR3

    FieldofViewatIndicatedDistance

    FieldofViewatIndicatedDistance

    inFeetforIsopropylat

    inMetersforIsopropylat

    Medium

    Sensitivity(1x1foot)

    Medium

    Sensitivity(1x1foot)

  • FieldofView

  • FieldofView

    ESPSafetysdetectors havea90o

    fieldofview.

    Whenplaced downwardsatanangle

    of~45,thedetectoris abletoseeboth

    straightaheadand straightdown.This placementtrapsthe leastamountofdirt.

  • FieldofView

    TypicalfieldofviewfortheIR3 detector

    Blindspotsinthedesigncan resultfromreducedsensitivity

    attheedgesofthefieldof view.

    Thedetectorwouldneeda largerfieldofviewinorderto

    respondtoafire.

    Inactualoperation,thefield ofviewshouldbeupto4

    timeslargerthanonthe centralaxis.

  • HorizontalFieldofView 90o

  • VerticalFieldofView 90o

  • FieldofView

    Keepinmindthattheconeisthreedimensional

  • FieldofView

    Thefieldofviewforflamedetectors rangesfrom70120.

    Theassertionthatalargerareacan becoveredbyawiderfieldof

    viewisatbestmisleading,andin manycasesisincorrect.

    TheIR3detector,witha90

    fieldof view,candetecta1footsquare fireat65meters.Tocoverthe

    sameareawouldrequireupto7 15mdetectorswith120

    fieldof

    view.

    15m

    60m

  • FieldofView

    Thedifferencebetween 15mand65m:

    One

    60meter

    IR3 detector

    VERSUS

    Seven

    15meter

    IR/UV detectors

  • IR3 FieldofViewPlacingtheflamedetectorin

    thecornerofastructure allowsmaximumcoverage

    alongbothwallsandinto theareatobeprotected.

    However,inthesecond illustration,2030

    ofthis

    120

    detectorisoutsidethe wallsofthebuildingand

    notavailabletoprovide coverage,thusneutralizing

    theareaofadditional protection.

  • InverseSquareLaw

    Thesizeofthefiredeterminesthe detectorssensitivityand

    detectionrange.

    Ifthedetectorislocatedfarther from(orcloserto)thesourceof

    thefire,thedetectablefiresize willvaryaccordingtotheInverse

    SquareLaw.

    Ifthedetectiondistanceisdoubled, only25%oftheradiantenergy

    willreachthedetector,i.e.,the sizeofthefirewouldneedtobe 4timeslargerforthesame

    responsetime.

  • InverseSquareLaw

    Example:AnIR/UVdetector candetecta0.1m2

    gasoline

    fire@15m.

    Toprovidethesameresponse timeatdifferentdistances:

    30m

    Minimumfiresize wouldneedtobe0.4m2.

    5m

    Minimumfiresize wouldneedtobeonly

    ~0.01m2.

  • EnvironmentalConditions

    ESPSafetysIPESdetectorsaredesignedforharsh environmentswithextremetemperatureranges,from

    40Fto+185F(40Cto+85C).

    AlldetectorsmeetIP66/67(NEMA2506P)forweather resistance.

    ESPSafety'sdetectorsarerigorouslytestedforshock, vibration,temperatureandhumidity.

    Despitethisenvironmentalrange,itisimportanttoselecta detectorthatissuitedtotheenvironmentalconditions.

  • PotentialFalseAlarm Sources

  • PotentialFalseAlarm

    Sources

    TheSun HighIntensity UniqueRadiationPeaks

    Mostofthetremendous energygeneratedbythe

    sunisabsorbedbythe atmosphere.However, sunlightcanstillbea

    potentialfalsealarm source.

    Infraredflamedetectorsusing 4.4

    wavelengthsare

    renderedsolarblind,since sunlightisfilteredaround

    4.4

    andcoldCO2intheair absorbs4.4

    energy.

  • PotentialFalseAlarm

    Sources

    HeatSources(e.g.,radiators, electricalheaters)

    NoUV,weakvisible,mediumIR radiation

    Stableradiation

    Arc(e.g.,lightning,welding) HighintensityUVradiation WeakIRradiation Unstableradiation(similarto

    flickeringfire)

  • PotentialFalseAlarm

    Sources

    Environment(e.g.,warmobjectssuchaspeople

    orobjectsinthesurroundingarea)

    Stableradiation IRradiationofmediumintensity,e.g.a

    standardfireat30m.

    NegligibleUVradiation,assumingthelackof

    highvoltagetransformersnearby

    LightSources(e.g.,Mercury,tungsten,halogen) Stableradiation(exceptwhenthepoweris

    beingturnedonandoff)

    Highintensityvisiblelight,weakIR,e.g.,

    standardfire1 10%

    UVradiationofamediumintensity(for

    unshieldedhalogentams),e.g.,astandard

    fireapproximately10%

  • PotentialFalseAlarm

    Sources

    FriendlyFire(e.g.,Acetylene welding,matches,fluxburningin

    arcwelding) Unstableradiation IRemissionspectrumresembling

    fire LowintensityIRradiation UVradiation(usuallyofhigher

    intensitythanfire)

  • FlameSpectralAnalysis

    ThreemajorspectralareasforFlameDetection

  • Determinewhether interferents

    arepresent

    Knowingwhetherinterferents

    arepresentorcouldpossiblyemergefromafireisvital.

    Examplesofinhibitorsthatcanblindthedetectorare:UVDetectors

    Hydrocarbonvapors(e.g.Toluene,Xylene)

    Oil/greaseonthelens

    Chloridevapors

    IRDetectors

    Anyofthefollowingonthelens:

    Water

    Fog

    Ice

    Salt

    MultiIRDetectors

    Blackbodyradiationfromhotmachinery

  • RadiationAbsorbingMaterials

    Flamedetectorsensitivityisaffectedbyavarietyof materials:

    Material

    Effect

    Grease,dust,dirt

    IR&UVabsorber

    Water,ice,steam

    IR&UVabsorber

    Oil

    UVabsorber

    Standardwindowglass

    UVabsorber

    Plasticfilms

    UVabsorber

  • NuisanceAlarmSources

    Source

    Affects Welding(arc&gas)

    IR&UV

    Coronaandarcing

    UV Electricmotorarmatures

    UV

    Combustionenginebackfire

    IR&UV Blackbodyradiation

    IR

    Xray,nuclearradiation

    UV Hotturbines,reactors,boilers

    IR

    Flarestacks

    IR&UV

  • HowtoChooseFlameDetector TypesandLocations

  • IdentifytheChallenges

    Thefollowingshouldbecarefullyconsideredtohelp determinethetypeofdetectorneeded:

    Whatmaterials/fuelsarepotentialsourcesoffire/risk?

    Whatisthesizeofthefiretobedetected?

    Whatdetection/distancerangeisrequired?

    Whatresponsespeedisrequired?

    Whatsourcesoffalsealarmradiationarepresent?

    Whatenvironmentalconditionsarepresent?

  • FuelTypes

    Indeterminingthetypeofflamedetectortouse,thefollowingshould beconsidered:

    Whichfuels/materialsarepresentthatcouldrepresentapotential firehazard?

    Arethefuelshydrocarbonbasedornonorganic? Arethefuelsliquid,gaseous,orsolid?

    Furtherconsiderations:

    Anypotentialsourcesoffalsealarmsthatcouldaffectthedetector. Anyenvironmentalfactorspresentthatcouldaffectthedetector,

    e.g.,weatherextremes,grease.

  • Makesurethedetector canseethefire

    Thewaythedetectorisinstalledstronglyinfluencestherangeof flamedetection.Thefollowingshouldbeconsidered:

    Determinewhatthedetectorcan"see."

    Isthedetectormountedsothattheobjects/areathatneed protectionarecovered?

    Arethereanypotentialfalsealarmsourcesinthefieldofview (e.g.,flares,engine,orturbineexhaust)?

  • Makesurethe angleiscorrect!

  • PreventBlindSpots

    Onewaytopreventblindspotswhileprovidingbackup coverfortheflamedetectoristolocateanother

    detectorintheoppositecorner

  • IdentifyAnyPossible FalseAlarmSources

    Inorderforthedetectortooperatereliablyandcontinuetomerittheuser'sconfidence,it's

    importanttodetermineifanyfalsealarmsourcesarepresent.Thefollowingareexamplesof

    falsealarmssources:

    UVDetectors

    Arcweldingradiation

    Halogenorhighpressuremercurylamps(withoutprotectiveglass)

    Coronaandstaticarcs

    IRDetectors

    Choppedblackbodyradiation

    Directchoppedsunlight(insomecases)

    MultiIRDetectors

    Lesssusceptibletochoppedsunlightorblackbodyradiation

    Canbecomeinsensitive

  • MotivatorstoInstallFire/Flame Detectors

  • DetectorType Applications Advantages Disadvantages

    TripleIR(IR3)

    Moderatespeed

    AffectedbyIRsourcesonlyat

    shortrangeincertainrarefire

    scenarios

    Hydrocarbonfires Highestsensitivity

    Indoors/outdoors Highimmunitytofalsealarms

    Longerdetectionrange

    Unaffectedbysolarradiation

    MultiIRHydrocarbonand

    Hydrogenfires AswithIR3,butwithhydrocarbon

    andhydrogenfiredetection

    AsIR3Indoors/outdoors

    CCTV(IR3+Video)

    AswithIR3butwithcolorvideo

    AsIR3Hydrocarbonfires Moreinformation&recordofthe

    protectedareabefore,duringand

    afterfirescenario

    Indoors/outdoors

    SingleI(IR)

    ModeratespeedSubjecttofalsealarms(inthe

    presenceofflickeringIR

    sources)

    Hydrocarbonfires Moderatesensitivity

    Indoors Unaffectedbysolarradiation

    Lowcost

    SingleUltraviolet(UV)

    Hydrocarbon,Hydrogen,Silane,

    Ammonia,otherhydrogenbased

    fuelfiresandmetalfires

    FalsealarmsfromUVsources

    (arcwelding,electricalsparks,

    halogenlamps)

    Highspeed

    Moderatesensitivity

    Unaffectedbysolarradiation

    UnaffectedbyhotobjectsBlindedbythicksmoke,

    greaseandoildepositsonthe

    detectorwindow

    Lowcost

    Indoors

  • WhyInstallFire/ FlameDetectors?

    Legalrequirements FireDepartmentrequirements Fearofactualloss Catastrophicloss Businessinterruption/lossofrevenue Insurancepremiumbenefit Recognitionofrisk Preventivemeasure

  • ApplicationofFixedFireDetectionDevicesLocationorFacility Hazard

    FixedDetector

    TypeOptions

    Reference

    OfficeOrdinaryCombustibles MPS

    NFPA101,Section263.4.1.ElectricalFire

    HeatSmoke

    AccommodationOrdinaryCombustibles MPS NFPA101,Section183.4.1

    &Section203.4.1.ElectricalFire Smoke

    Kitchensand

    Cafeterias

    Cooking MPS NFPA101,Section83.4.1ElectricalFire Heat NFPA96,Section73.1.4

    ControlRooms ElectricalFireMPS

    NFPA75,Section6.2Smoke

    SwitchgearRooms ElectricalFireMPS

    NFPA850,SectionSmoke

    TurbinePackageElectricalFire Heat

    NFPA30,Section55.5.1.HydrocarbonFire Optical

    ProcessUnits HydrocarbonFireMPS

    NFPA30,Section55.5.1.HeatOptical

    PumpStations HydrocarbonFireMPS

    NFPA30,Section55.5.1.HeatOptical

    LoadingFacilities HydrocarbonFireMPS

    NFPA30,Section55.5.1.HeatOptical

    TankorVessel

    Storage

    HydrocarbonFireMPS

    NFPA30,Section55.5.1.HeatOptical

    OffshoreDrillingor

    ProductionFacility

    HydrocarbonFire

    MPSAPIRP14G

    SmokeHeat

    NFPA30,Section55.5.1.Optical

    Laboratories HydrocarbonFireMPS

    NFPA45,Section41.1&4.5Heat

  • WhatDoes theCustomerExpect?

    Thecustomerwantsadetectorthat:

    Detectsfires Detectsonlyfires,notfalsealarms Respondsanytimethereisafireanywhere Hasarapidresponsetime Announcesfaultconditions

  • CompetitiveSummaryMatrix

  • CompetitiveSummaryMatrix

    ESP Dettronics GeneralMonitors Spectrex

    IPESIR3 X3301 FL4000 20/20ST40/40I

    IPESIR/UV X5200 FL3100 40/40LLB40/40L4L4B20/20LLB

  • TheEnd

    JSCElectronstandartpribor28,Zatsepa

    street,Moscow,Russia,115054Tel.(495)6332244Fax.(495)6332244

    Email:[email protected]

    JSC ELECTRONSTANDART-PRIBORFire Detection IntroductionFire Detection IntroductionTable of ContentsFire Detection - Table of ContentsFire Detection - Table of ContentsWhat is fire detection?What is fire detection? 7Classes of Fire Detectors Offered in the MarketSmoke Detectors Thermal or Heat DetectorsTypes of Heat DetectorsThermal or Heat DetectorsGas DetectorsFlame Detectors Principles of OperationFlame-Sensing TechnologiesFlame-Sensing Technologies 17Flame Radiation SpectrumFlame Radiation SpectrumBlackbody RadiationHow Optical Flame Detection WorksOptical Flame DetectionComparison of Fire DetectorsClasses of Flame DetectorsUV Flame DetectionUV Flame Detection 27IR/UV Flame Detectors 29IR/UV Flame DetectorsIR/UV Flame Detectors 32Multi-Spectrum IR Flame DetectorsMulti-Spectrum IR Flame Detectors 35Visual Flame Imaging Flame DetectorsPerformance Characteristics of Flame Detectors Performance Characteristics of Flame DetectorsPerformance Characteristics of Flame DetectorsPerformance Characteristics of Flame DetectorsFire Size and Maximum Detection DistancesFire Size and Maximum Detection DistancesESP Safety Flame Detector CharacteristicsIPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3IPES IR3Field of ViewField of ViewField of ViewHorizontal Field of View 90oVertical Field of View 90oField of ViewField of ViewField of ViewIR3 Field of ViewInverse Square LawInverse Square LawEnvironmental ConditionsPotential False Alarm SourcesPotential False Alarm SourcesPotential False Alarm SourcesPotential False Alarm SourcesPotential False Alarm SourcesFlame Spectral AnalysisDetermine whether interferents are presentRadiation-Absorbing MaterialsNuisance Alarm SourcesHow to Choose Flame Detector Types and LocationsIdentify the ChallengesFuel TypesMake sure the detectorcan see the fire 83Prevent Blind SpotsIdentify Any PossibleFalse Alarm SourcesMotivators to Install Fire/Flame Detectors 87Why Install Fire /Flame Detectors?Application of Fixed Fire Detection DevicesWhat Does the Customer Expect?Competitive Summary MatrixCompetitive Summary MatrixThe End