33
Progress Through Quality Education P. R. Naren School of Chemical & Biotechnology SASTRA University Thanjavur 613401 E-mail: [email protected] at Faculty Development Program on Computational Fluid Dynamics School of Mechanical Engineering SASTRA University Thanjavur 613401 03 June 2015 Finite Volume Method

Finite Volume Method - sastra-fdp-cfd.wikispaces.com balance CpT k −∆HR UA ∆T Species balance i xi D ri ∇P 3-Jun-15 Finite volume method 6. Mass Balance • Mass ... • Hoffmann

Embed Size (px)

Citation preview

Progress Through Quality Education

P. R. NarenSchool of Chemical & Biotechnology

SASTRA University

Thanjavur 613401

E-mail: [email protected]

at

Faculty Development Program on Computational Fluid DynamicsSchool of Mechanical Engineering

SASTRA University

Thanjavur 613401

03 June 2015

Finite Volume Method

Outline

• Conservation equations and control volume

– Eulerian and Lagrangian framework

– Integral form of conservation equation

• FVM approach

– Steady state diffusion equation in 1D

– Convective term

• Issues with collocated grid

3-Jun-15 Finite volume method 2

Governing Equations

• Conservation of mass

• Conservation of momentum

• Conservation of energy

• Concept of CV

*

mlim

δ∀ → ∀

δρ =δ∀

Transport Equations

3-Jun-15 Finite volume method 3

Framework

• Eulerian – Fixed reference

• Infinitesimally small control volume – Differential form– No discontinuity

• Lagrangian– Moving reference

• Finite control volume– Integral form– Gross behaviour

Samimy et al., 2003

3-Jun-15 Finite volume method 4

Advection

i

V

N

T

P

ρ

i

V

N

T

P

ρ

i

u

N

T

P

ρ

i i

u u

N N

T T

P

+ δρ + δρ

+ δ+ δ

xδP

i

m u A

P mu

Q mC T

N

= ρ=

=

ɺ

ɺ ɺ

ɺ ɺ P

i

1

u

C T

x

P

ii i

m

Pu

QC T

NC x

= ρδ∀

= ρδ∀

= ρδ∀

= = ρδ∀

ɺ

ɺ

ɺ

Unit Mass Unit VolumeBalance

3-Jun-15 Finite volume method 5

Generic Transport Equation

• Transport equation for a quantity φ

Accumulation + Net outflow = Net Diffusion + Net source

( ) ( )div( V ) div grad St φ

∂ ρφ+ ρ φ = Γ φ +

��

Equation Specific quantity φ ( per unit mass)

Γ Sφ

Mass balance 1 0 0

Momentumbalance

u µ ρg

Energy balance CpT k −∆HR UA∆T

Species balance i xi D ri

P∇

3-Jun-15 Finite volume method 6

Mass Balance

• Mass

d i v ( ) 0t

∂ ρ + ρ =∂

U

( ) ( ) ( )u v w0

t x y z

∂ ρ ∂ ρ ∂ ρ∂ ρ + + + =∂ ∂ ∂ ∂

3-Jun-15 Finite volume method 7

Momentum Balance

• Navier Stokes

M

Ddiv div S

Dtρ = + +U

p τ

( ) ( ) Mx

u pdiv( u ) div grad u S

t x

∂ ρ ∂+ ρ = − + µ +∂ ∂

U

Navier

Stokes

3-Jun-15 Finite volume method 8

Integral Form

( ) xSdx

d

dx

du

dx

dφ+

φΓ=ρφ

( ) ( ) ( ) φ+φΓ=ρφ+∂ρφ∂

Sgraddivudivt

( ) ( ) φ+φΓ=ρφ Sgraddivudiv

( ) x

d d du d d S d

d x d x d x φ∆ ∀ ∆ ∀ ∆ ∀

φ ρ φ ∀ = Γ ∀ + ∀

∫ ∫ ∫

Gauβ

( ) x

x x x

d d du S. d x S. d x S S.d x

d x d x d x φ∆ ∆ ∆

φ ρ φ = Γ +

∫ ∫ ∫

3-Jun-15 Finite volume method 9

Geometry

3-Jun-15 Finite volume method 10

3-Jun-15 Finite volume method 11

Numerical Techniques

• Finite Difference

• Finite Element

• Finite Volume

Taylor

3-Jun-15 Finite volume method 12

Finite Volume

( ) ( ) ( )

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

y

u

yx

u

xx

p

y

vu

x

uu

t

u

( ) ( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uudt

t

u

VVVVVt∫∫∫∫∫∫

∆∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

3-Jun-15 Finite volume method 13

Some Mathematics !!

• Taylor Series

( ) ( ) ( ) ( ) ...xf!2

hxhfxfhxf ''

2' +++=+

( ) ( ) ( ) ( ) ...xf!2

hxhfxfhxf ''

2' −+−=−

( ) ( ) ( ) ( ) ...xf!2

h2xf2hxfhxf ''

2

++=−++( ) ( ) ( ) ( )...xf!3

h2xhf2hxfhxf "'

3' +=−−+

( ) ( ) ( ) ( )...xf!3

h

h

1

h2

hxfhxfxf "'

3' −−−+= ( ) ( ) ( ) ( )

...h

hxfxf2hxfxf

2'' −−+−+=

3-Jun-15 Finite volume method 14

( ) xSdx

d

dx

du

dx

dφ+

φΓ=ρφ

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

Finite Volume Formulation

( ) ( ) ( ) φ+φΓ=ρφ+∂ρφ∂

Sgraddivudivt

( ) ( ) φ+φΓ=ρφ Sgraddivudiv

3-Jun-15 15

P EW ew

s

n

S

N

Finite Volume Formulation . . .

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

( ) ( ) ( )we

V

uudVudx

d ρφ−ρφ≈ρφ∫∆

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]2

uu

2

uu

2

uu

WE

PWPE

ρφ−ρφ=

ρφ+ρφ−ρφ+ρφ=

3-Jun-15 16

P EW ew

s

n

S

N

Finite Volume Formulation . . .

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

weV dx

d

dx

ddV

dx

d

dx

d

φΓ−

φΓ≈

φΓ∫∆

( ) ( )[ ] ( ) ( )[ ]PW

WP

EP

PE

xx ∆φΓ−φΓ−

∆φΓ−φΓ=

3-Jun-15 17

Finite Volume Formulation

P EW ew

s

n

S

N

φ+φ+φ=φ saaa EEWWPP

φ+φ+φ+φ+φ=φ saaaaa SSNNEEWWPP

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

3-Jun-15 Finite volume method 18

( ) ( )we

V

ppdVx

p −≈∂∂−∫

[ ] [ ]

[ ]2

pp

2

pp

2

pp

WE

WPPE

−=

+−+=P EW ew

s

n

S

N

Difficulty in pressure term discretization

Checker board Solution?

3-Jun-15 Finite volume method 19

Suhas V Patankar

Professor Emeritus Univ. of Minnesota

Summary

• Finite volume approach applied to Integral form of Conservation equation

• Discretization of diffusion and advective terms

3-Jun-15 Finite volume method 20

Resources

• Chung T. J. (2002) Computational Fluid Dynamics. Cambridge University Press

• Date A. W. (2005). Introduction to Computational Fluid Dynamics. Cambridge University Press

• Fox, R. O. (2003) Computational Models for Turbulent Reacting Flows. Cambridge University

Press

• Hoffmann K. A. and Chiang S. T. (2000). Computational Fluid Dynamics Vol1, 2 and 3.

Engineering Education System, Kansas, USA.

• John F. W., Anderson, J.D. (1996) Computational Fluid Dynamics: An Introduction Springer

• Patankar, S. (1980) Numerical Heat Transfer and Fluid Flow. Taylor and Francis

• Ranade, V.V. (2002). Computational Flow Modeling for Chemical Reactor Engineering,

Academic Press, New York.

• Versteeg, H.K. and Malalasekera, W. (1995) An Introduction to computational Fluid Dynamics

- The Finite Volume Method. Longman Scientific and Technical

3-Jun-15 Finite volume method 21

Web Resources

• http://www.cfd-online.com

• http://en.wikipedia.org/wiki/Computational_fluid_dynamics

• http://www.cfdreview.com/

• https://confluence.cornell.edu/display/SIMULATION/FLUENT

+Learning+Modules

• http://weblab.open.ac.uk/firstflight/forces/#

• NPTEL

– Balchandra Puranik and Atul Sharma

– Srinivaas Jayanthi

3-Jun-15 Finite volume method 22

Gratitude

• Dr. Vivek V. Ranade – My Mentor Guide and Teacher

– iFMg - Research group at NCL, Pune

• Audience

– For patient hearing and for their thirst in knowledge

3-Jun-15 Finite volume method 23

THANK YOU

A person who never made a mistake never tried anything new

- Albert Einstein - 1879 -1955

3-Jun-15 Finite volume method 24

Concept of staggered grid

3-Jun-15 Finite volume method 25

( ) ( ) ( )

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

y

u

yx

u

xx

p

y

vu

x

uu

t

u

( ) ( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uudt

t

u

VVVVVt∫∫∫∫∫∫

∆∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

3-Jun-15 Finite volume method 26

U Control volume

3-Jun-15 Finite volume method 27

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

( ) ( ) ( )we

V

uuuudvx

uu ρ−ρ≈∂ρ∂

∫∆

( ) ( )

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]2

uuuu

2

uuuu

2

uuuu

uuuu

J,1iJ,1i

J,1iJ,iJ,iJ,1i

J,1IJ,I

−+

−+

ρ−ρ=

ρ−ρ−

ρ−ρ=

ρ−ρ=

X Momentum Equation

3-Jun-15 Finite volume method 28

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

( ) ( ) ( )sn

V

vuvudVy

vu ρ−ρ≈∂ρ∂

∫∆

( ) ( )

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]2

vuvu

2

vuvu

2

vuvu

vuvu

1J,i1J,i

J,i1J,i1J,iJ,i

j,i1j,i

−+

−+

+

ρ−ρ=

ρ−ρ−

ρ−ρ=

ρ−ρ=

X Momentum Equation . . .

3-Jun-15 Finite volume method 29

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

( ) ( ) J,1IJ,I

V

ppdVx

p−

−≈∂∂−∫

X Momentum Equation . . .

3-Jun-15 Finite volume method 30

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

weV x

u

x

udV

x

u

x

∂∂µ−

∂∂µ≈

∂∂µ

∂∂

∫∆

( )[ ] ( )[ ]

( )[ ]δ

+−µ=

δ−µ

−δ−µ

=

∂∂µ−

∂∂µ=

−+

−+

2

uu2u

2

uu

2

uu

x

u

x

u

J,1iJ,iJ,1i

J,1iJ,iJ,iJ,1i

J,1IJ,I

X Momentum Equation . . .

3-Jun-15 Finite volume method 31

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

snV y

u

y

udV

y

u

y

∂∂µ−

∂∂µ≈

∂∂µ

∂∂

∫∆

( )[ ] ( )[ ]

( )[ ]δ

+−µ=

δ−µ

−δ−µ

=

∂∂µ−

∂∂µ=

−+

−+

+

2

uu2u

2

uu

2

uu

y

u

y

u

1J,iJ,i1J,i

1J,iJ,iJ,i1J,i

j,i1j,i

X Momentum Equation . . .

3-Jun-15 Finite volume method 32

( )J,1IJ,IJ,iJ,i ppauua −−+= ∑

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

Final form

3-Jun-15 Finite volume method 33