13
Finite Element Method (3): 2D FEM Lecture 12-13 Dr. Amr Bayoumi Fall 2014 Advanced Engineering Mathematics (EC760) Arab Academy for Science and Technology - Cairo

Finite Element Method (3): 2D FEM

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Finite Element Method (3): 2D FEM

Finite Element Method (3): 2D FEM

Lecture 12-13 Dr. Amr Bayoumi

Fall 2014 Advanced Engineering Mathematics (EC760)

Arab Academy for Science and Technology - Cairo

Page 2: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

2

Outline

β€’ 2D using Triangular Elements

β€’ 2D using Rectangular Elements

Page 3: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

3

References

β€’ S. Chapra and R. Canale, β€œNumerical Method’s for Engineers”, McGraw-Hill, 5th Ed., 2006

β€’ S. Moaveni, β€œFinite Element Analysis, Theory and Application with Ansys”, Pearson Prentice Hall, 3rd Ed., 2008

β€’ E. Thompson, β€œIntroduction to the Finite Element Method: Theory, Programming, and Applications”, Wiley, 2005

Page 4: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

4

Triangular Mesh

𝑒 π‘₯, 𝑦 = π‘Ž0 + π‘Ž1,1π‘₯ + π‘Ž1,2𝑦

1 π‘₯1 𝑦11 π‘₯2 𝑦21 π‘₯3 𝑦3

π‘Ž0π‘Ž1,1π‘Ž1,2=𝑒1𝑒2𝑒3

Find a0, a11, a12 (Cramer’s Rule, LU, GE,…)

𝑒 = 𝑁1𝑒1 +𝑁2𝑒2 +𝑁3𝑒3 Ae=Area of triangular element=(1/2) Det(A)

β€’ 𝑁1 =1

2𝐴𝑒[π‘₯2𝑦3βˆ’ π‘₯3𝑦2) + (𝑦2βˆ’ 𝑦3)π‘₯ + (π‘₯3 βˆ’ π‘₯2)𝑦]

β€’ 𝑁2 =1

2𝐴𝑒[(π‘₯3𝑦1βˆ’ π‘₯1𝑦3) + (𝑦3βˆ’ 𝑦1)π‘₯ + (π‘₯1 βˆ’ π‘₯3)𝑦]

β€’ 𝑁3 =1

2𝐴𝑒[(π‘₯1𝑦2βˆ’ π‘₯2𝑦1) + (𝑦1βˆ’ 𝑦2)π‘₯ + (π‘₯2 βˆ’ π‘₯1)𝑦]

x

y

1

2

3 u1

u2

u3

Page 5: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

5

Rectangular Mesh (Local Coordinates)

𝑒 π‘₯, 𝑦 = π‘Ž0 + π‘Ž1π‘₯ + π‘Ž2𝑦 + π‘Ž3π‘₯𝑦

1 π‘₯1 𝑦1 π‘₯1𝑦11 π‘₯2 𝑦2 π‘₯2𝑦211

π‘₯3π‘₯4

𝑦3π‘₯4

π‘₯3𝑦3π‘₯4𝑦4

π‘Ž0π‘Ž1π‘Ž2π‘Ž3

=

𝑒1𝑒2𝑒3𝑒4

𝑒 = 𝑁1𝑒1 +𝑁2𝑒2 +𝑁3𝑒3 + 𝑁4𝑒4

𝑁1 = 1 βˆ’π‘₯

𝑙 1 βˆ’

𝑦

𝑀,

𝑁2 =π‘₯

𝑙 1 βˆ’

𝑦

𝑀,

𝑁3 =𝑦

𝑀1 βˆ’π‘₯

𝑙 , 𝑁4 =

π‘₯𝑦

𝑙𝑀

X

Y 4 3

1 2

u1 u2

u4 u3

π‘₯

𝑦

𝑙

𝑀

Page 6: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

6

Example: 2D Potential Equation with Drichlet Boundary Conditions

I,

Y

X

100V

75V 50V

0V

4,4

0,0 10cm

10cm

Page 7: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

7

Example: 2D Potential Equation with Drichlet Boundary Conditions

Element Equations:

πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘₯2 + πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘¦2 = βˆ’π‘“ π‘₯

𝑓 π‘₯ = 0

πœ•π‘‰

πœ•π‘₯= βˆ’πΈπ‘₯

πœ•π‘‰

πœ•π‘¦= βˆ’πΈπ‘¦

X

Y 4 3

1 2

V1 V2

V4 V3

π‘₯

𝑦

𝑙

𝑀

Page 8: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

8

Derivatives in 2D: πœ•π‘½

πœ•π‘₯

𝑉 = 𝑁1𝑣1 +𝑁2𝑣2 +𝑁3𝑣3 +𝑁4𝑣4 = 𝑁𝑇 𝑉

πœ•π‘‰

πœ•π‘₯=πœ• 𝑁 𝑇

πœ•π‘₯𝑉 =

πœ•

πœ•π‘₯𝑁1 𝑁2 𝑁3 𝑁4 𝑉

πœ•π‘1πœ•π‘₯=πœ•

πœ•π‘₯1 βˆ’π‘₯

𝑙1 βˆ’π‘¦

𝑀= 1 βˆ’

𝑦

𝑀 βˆ’1

𝑙 =𝑦 βˆ’ 𝑀

𝑀𝑙

πœ•π‘2πœ•π‘₯=πœ•

πœ•π‘₯

π‘₯

𝑙 1 βˆ’π‘¦

𝑀= 1 βˆ’

𝑦

𝑀 1

𝑙 =𝑀 βˆ’ 𝑦

𝑀𝑙

πœ•π‘3πœ•π‘₯=πœ•

πœ•π‘₯

𝑦

𝑀1 βˆ’π‘₯

𝑙 =βˆ’π‘¦

𝑀𝑙,πœ•π‘4πœ•π‘₯=πœ•

πœ•π‘₯

π‘₯𝑦

𝑙𝑀=𝑦

𝑀𝑙

πœ•π‘‰

πœ•π‘₯=1

𝑀𝑙(𝑦 βˆ’ 𝑀) (𝑀 βˆ’ 𝑦) (βˆ’π‘¦) (𝑦) 𝑉

Page 9: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

9

Derivatives in 2D: πœ•π‘½

πœ•π’š

πœ•π‘1πœ•π‘¦=πœ•

πœ•π‘¦1 βˆ’π‘₯

𝑙1 βˆ’π‘¦

𝑀= 1 βˆ’

π‘₯

𝑙 βˆ’1

𝑀 =π‘₯ βˆ’ 𝑙

𝑀𝑙

πœ•π‘2πœ•π‘¦=πœ•

πœ•π‘¦

π‘₯

𝑙 1 βˆ’π‘¦

𝑀=βˆ’π‘₯

𝑀𝑙

πœ•π‘3πœ•π‘¦=πœ•

πœ•π‘¦

𝑦

𝑀1 βˆ’π‘₯

𝑙 =𝑙 βˆ’ π‘₯

𝑀𝑙,πœ•π‘4πœ•π‘₯=πœ•

πœ•π‘₯

π‘₯𝑦

𝑙𝑀=π‘₯

𝑀𝑙

πœ•π‘‰

πœ•π‘¦=1

𝑀𝑙(π‘₯ βˆ’ 𝑙) (𝑙 βˆ’ π‘₯) (βˆ’π‘₯) (π‘₯) 𝑉

Page 10: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

10

Residual Equations in 2D Rectangular F.E. Using Galerkin’s Method

𝑉 = 𝑁1𝑣1 +𝑁2𝑣2 +𝑁3𝑣3 +𝑁4𝑣4 = 𝑁𝑇 𝑉

πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘₯2 + πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘¦2 = 0

𝑅 = 𝑅𝑖4

𝑖=1= 𝑁𝑖

πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘₯2 + πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘¦2𝑑𝐴

𝐴

4

𝑖=1

= 𝑁 π‘‡πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘₯2 + πœ•2𝑉(π‘₯, 𝑦)

πœ•π‘¦2𝑑π‘₯𝑑𝑦

𝐴

= 0

Where: 𝑁 𝑇 = 𝑁1 𝑁2 𝑁3 𝑁4

Page 11: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

11

Green’s Theory in 2D Finite Elements Using Galerkin’s Method (2)

Use: πœ•

πœ•π‘₯𝑁 π‘‡πœ•π‘‰

πœ•π‘₯= [𝑁]𝑇

πœ•2𝑉

πœ•π‘₯2+πœ• 𝑁 𝑇

πœ•π‘₯

πœ•π‘‰

πœ•π‘₯

β†’ [𝑁]π‘‡πœ•2𝑉

πœ•π‘₯2=πœ•

πœ•π‘₯𝑁 π‘‡πœ•π‘‰

πœ•π‘₯βˆ’πœ• 𝑁 𝑇

πœ•π‘₯

πœ•π‘‰

πœ•π‘₯

Similarly:

[𝑁]π‘‡πœ•2𝑉

πœ•π‘¦2=πœ•

πœ•π‘¦π‘ π‘‡πœ•π‘‰

πœ•π‘¦βˆ’πœ• 𝑁 𝑇

πœ•π‘¦

πœ•π‘‰

πœ•π‘¦

By substituting: 𝑅 = 𝐼1 + 𝐼2

Page 12: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

12

2D Rectangular Finite Elements Using Galerkin’s Method (2)

The integral 𝐼1 can be easily evaluated using derivatives of 𝑁 𝑇

𝐼1 = βˆ’πœ• 𝑁 𝑇

πœ•π‘₯

πœ•π‘‰

πœ•π‘₯ βˆ’ πœ• 𝑁 𝑇

πœ•π‘¦

πœ•π‘‰

πœ•π‘¦π‘‘π‘₯𝑑𝑦

𝑏

π‘Ž

𝑑

𝑐

πœ• 𝑁 𝑇

πœ•π‘₯=1

𝑀𝑙(𝑦 βˆ’ 𝑀) (𝑀 βˆ’ 𝑦) (βˆ’π‘¦) (𝑦) 𝑉

πœ• 𝑁 𝑇

πœ•π‘¦=1

𝑀𝑙(π‘₯ βˆ’ 𝑙) (𝑙 βˆ’ π‘₯) (βˆ’π‘₯) (π‘₯)

πœ•π‘‰

πœ•π‘₯=πœ• 𝑁 𝑇

πœ•π‘₯𝑉 ,

πœ•π‘‰

πœ•π‘¦=πœ• 𝑁 𝑇

πœ•π‘¦π‘‰

Page 13: Finite Element Method (3): 2D FEM

Dr. Amr Bayoumi- Spring 2015 Lec. 13 EC760 Advanced Engineering Mathematics

13

2D Rectangular Finite Elements Using Galerkin’s Method (3)

The integral 𝐼2 can be evaluated using Green’s Theory (Next Lecture):

𝐼2 = πœ•

πœ•π‘₯𝑁 π‘‡πœ•π‘‰

πœ•π‘₯+πœ•

πœ•π‘¦π‘ π‘‡πœ•π‘‰

πœ•π‘¦π‘‘π‘₯𝑑𝑦

𝐴