115
Final Report Marymount University 26th St Project Arlington, VA Spring 2010 2010 Benjamin Mahoney Construction Management Consultant: Mr. James Faust

Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

 

   

 

 

 

   

Final ReportMarymount University 26th St Project Arlington, VA Spring 2010   

  

 

2010 

 Benjamin Mahoney             Construction Management 

Consultant: Mr. James Faust 

Page 2: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010
Page 3: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 3    

Table of Contents  

1.0 Acknowledgements ............................................................................................................................. 6 

2.0 Executive Summary ............................................................................................................................. 7 

3.0 Project Overview ................................................................................................................................. 8 

Project Summary ................................................................................................................................... 8 

Client Information ................................................................................................................................. 9 

Project Delivery System ...................................................................................................................... 10 

Organizational Chart ........................................................................................................................... 11 

Project Team ....................................................................................................................................... 12 

Project Schedule Summary ................................................................................................................. 12 

Local Conditions .................................................................................................................................. 15 

4.0 Building Systems Summary ............................................................................................................... 18 

5.0 Analysis I: Short Interval Production Schedule Development .......................................................... 23 

Problem Statement ............................................................................................................................. 23 

Proposed Solution ............................................................................................................................... 23 

Solution Method ................................................................................................................................. 23 

Resources ............................................................................................................................................ 24 

Expected Outcome .............................................................................................................................. 24 

Introduction to Short Interval Production Scheduling ........................................................................ 24 

Project Constraints .............................................................................................................................. 26 

SIP Schedule Development ................................................................................................................. 27 

Cost & Schedule Impacts .................................................................................................................... 31 

Conclusion & Recommendations ........................................................................................................ 31 

6.0 Analysis II: MEP Coordination ........................................................................................................... 33 

Problem Statement ............................................................................................................................. 33 

Proposed Solution ............................................................................................................................... 33 

Solution Method ................................................................................................................................. 34 

Page 4: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 4    

Resources ............................................................................................................................................ 34 

Expected Outcome .............................................................................................................................. 34 

MEP Coordination Techniques ............................................................................................................ 35 

General Contractor Survey ................................................................................................................. 36 

MEP Coordination Survey Results ....................................................................................................... 37 

Impacts on the Organization ............................................................................................................... 43 

Impacts on the Project Team .............................................................................................................. 44 

Conclusions & Recommendations ...................................................................................................... 44 

7.0 Analysis III: Green Roof Design ......................................................................................................... 46 

Problem Statement ............................................................................................................................. 46 

Proposed Solution ............................................................................................................................... 46 

Solution Method ................................................................................................................................. 46 

Resources ............................................................................................................................................ 46 

Expected Outcome .............................................................................................................................. 47 

Introduction to Green Roofs ............................................................................................................... 47 

Green Roof System ............................................................................................................................. 49 

Green Roof Structural Analysis ........................................................................................................... 53 

Structural Redesign ............................................................................................................................. 55 

Green Roof Mechanical Analysis ......................................................................................................... 56 

LEED Analysis ...................................................................................................................................... 59 

Cost & Schedule Impacts .................................................................................................................... 61 

Life Cycle Cost Analysis ....................................................................................................................... 64 

Conclusions & Recommendations ...................................................................................................... 66 

8.0 Master of Architectural Engineering Requirement ........................................................................... 67 

9.0 Final Conclusions ............................................................................................................................... 68 

10.0 Resources ........................................................................................................................................ 69 

Appendix A: Critical Path Method Finish Schedule ................................................................................. 70 

Appendix B: MEP Coordination Survey ................................................................................................... 72 

Page 5: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 5    

Appendix C: Sika Sarnafil Product Data .................................................................................................. 75 

Appendix D: Structural Hand Calculations .............................................................................................. 84 

Appendix E: Detailed Structural System Estimate .................................................................................. 95 

Appendix F: LEED NCv2.2 Credit Scorecard .......................................................................................... 111 

 

Page 6: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 6    

1.0 Acknowledgements  

Throughout the course of my Senior Thesis Project, I would like to personally thank all of the individuals that provided me with assistance along the way. Without their guidance and cooperation, I would not have been able to accomplish what I have over the past two semesters. 

   

Dr. David RileyDr. Chris MagentDr. Kevin Parfitt

Mr. Robert HollandMr. Jim Faust

Mr. Craig Dubler

Mr. Erik KanieckiMr. Rami NatourMr. Aaron Galvin

Dr. Ralph KidderMr. Upen Malani

Dr. James Bundschuh

Ms. Bhavna Mistry Lee

Stranix Associates

Pennsylvania State University Faculty

James G. Davis Construction Corp.

Marymount University

Page 7: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 7    

2.0 Executive Summary  

This  report  is  intended  to provide an  in‐depth analysis of  the background  information  relating  to  the Marymount University  26th  Street  Project.    Areas  of  investigation  include  client  information,  project delivery system, project milestones, key project team members, existing conditions, and major building systems.    In  addition  to  the  background  information,  three  detailed  analysis  topics  have  been investigated. 

The analysis topics that were performed during the competition of this senior thesis project include the development  of  a  Short  Interval  Production  Schedule,  MEP  coordination  techniques,  and  the implementation of a green  roof.   All of  the  research  topics have been  chosen  to  revolve around  the critical industry issue relating to increasing efficiencies.   

Analysis I:  The first analysis involves implementing Short Interval Production Scheduling into the interior finishes of the Residential Facility.   The  repetitive nature of  the activities  involved with  this phase of  the project provides a perfect opportunity to attempt to bring the efficiencies of the “manufacturing process” to the construction  industry. The results of this analysis have determined that the duration for this particular activity could be reduced by ten working days.  This shortened duration has the potential to generate a savings of $70,000 in general conditions costs.   

Analysis II:  The  second  analysis  involves  the  investigation  into  the MEP  coordination  process.    All  of  the MEP coordination  on  the  Marymount  University  Project  was  done  “traditionally”  with  two‐dimensional composite drawings.  The rise of three‐dimensional coordination has introduced another option but has yet to become widely accepted.  The acceptance of the 3D MEP coordination process will be evaluated through  a  survey  of  the  General  Contractor  and  their  subcontractors.    The  results  of  this  analysis reinforce  the  fact  that  the General Contractor  is  remaining at  the  forefront of  technological advances within the AEC Industry.  They have maintained this status through the creation of a new position within their organization that helps to ensure that the 3D MEP Coordination process is managed successfully.  

Analysis III:  The  third  analysis  involves  incorporating  a  green  roof  into  the  design of  the  facilities  at Marymount University.  This will require supplementary evaluations on both the structural and mechanical systems of the building.    In addition to satisfying both of the structural and mechanical breadth requirements, Analysis  III will serve as the M.A.E. requirement.   Through  the completion of this analysis,  it has been determined  that  the university could potentially see an annual energy savings of $2,700,  increase  the durability of their roofing membrane, and improve their LEED status from Certified to Silver. 

Page 8: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 8    

3.0 Project Overview 

Project Summary  

The 26th Street Project  is  situated on 1.45 acres and will provide Marymount University with additional dormitory units, a new academic facility, and underground parking.  The project site is  located  at  the  corner  of  26th  Street,  Yorktown  Boulevard,  and  Old  Dominion  Drive  in Arlington, VA.                   The residential building will add 62 units, situated in four and five unit suite configurations.  The academic  building will  provide  state  of  the  art  scientific  laboratory  space,  lecture  halls,  and office space for Marymount University personnel.   The academic and residential buildings will be  constructed  on  top  of  the  four  levels  of  underground  parking  and  separated by  outdoor gathering space.  

 Figure 1: Building Footprint 

 

   

Page 9: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 9    

To  complete  the  construction  of  the  $42,000,000  facility, Marymount University  contracted James  G.  Davis  Construction  Corporation  as  the  General  Contractor  in  April  of  2008.  Construction on the 267,000 square foot facility began in February of 2009 and is scheduled to commence in September of 2010.   

Client Information  

The owner of  this project  is Marymount University, a catholic university  located  in Arlington, VA.    The  university  offers  associate’s,  bachelor’s,  master’s,  and  doctoral  degrees, undergraduate  and  graduate  certification,  and  pre‐professional  programs  in  teaching,  law, medicine,  and  physical  therapy.   With  the  addition  of  the  26th  Street  Project, Marymount University hopes to attract world class students and faculty.   

The  26th  Street  Project  is  the  most  significant  construction  effort  that  the  university  has undertaken in nearly four decades.  The project addresses three main concerns that are held by the leaders of the university; expanding academic space, student housing, and parking.   

Throughout  the  construction  of  this  project,  the  university  is  very  concerned with  being  an outstanding  citizen  and  neighbor  to  the  surrounding  residential  communities.   Marymount University  feels  strongly  about  keeping  the  local  community  informed  and  responding  in  a timely manner to any issues that may arise affecting the community.  In order to keep the lines of  communication  open  at  all  times,  the  university  has  established  a  project web  site with information  regarding  the  project.    The  web  site  can  be  found  at www.marymount.edu/26thstreetproject/.   

Marymount University feels strongly that the project should be turned over on‐time and under budget.  Time is an extremely critical issue as part of this project involves the construction of a new residential facility.  If for whatever reason students cannot move in for the start of the fall 2010  semester,  the  students who  are  scheduled  to move  in will be without housing.    If  this were to occur, the students would be forced to reside in local hotels until the completion of the project.   

    

Page 10: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 10    

Project Delivery System  

To  initiate  the Marymount University  26th  Street  Project,  the  university  entered  into  an AIA B151, standard form of Agreement between themselves and the architect, Davis, Carter, Scott, LTD.  The architect was tasked with contracting the rest of the design consultants that will be a part  of  the  project  team.    Aiding  the  owner  throughout  the  duration  of  the  design  and construction, Stranix Associates, was brought on as an Owner’s Representative at a  fixed  fee.  Other  key  members  of  the  project  team  include  the  constructors  of  the  project.    In  this situation,  James  G.  Davis  Construction  Corporation  was  awarded  the  preconstruction  and construction services at a Guaranteed Maximum Price.   The contractor holds an AIA 121 CMc, Standard  Form  between  the Owner  and  the  Construction Manager where  the  Construction Manager  is  the  Constructor.    As  a  General  Contractor,  James  G.  Davis  is  responsible  for providing  the  General  Liability  Insurance,  while  the  owner  is  responsible  for  providing  the Builder’s Risk Insurance.  

Marymount University has not previously undertaken a project of this magnitude and with the assistance of an Owner’s Representative, look to make the project a success.   The inexperience of  the owner and  tight project  schedule makes  the  selection of a General Contractor with a Guaranteed Maximum Price that most appropriate delivery method and contract type for this particular situation.    In addition to  the General Contractor, the university also has contracted with Construction Manager to act as an Owner’s Representative.   The university also chose to hire an Owner’s Representative because of  their ability  to provide  independent advice  to  the owner on both design and construction related issues.   

   

 

 

 

 

 

 

Page 11: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 11    

Organizational Chart 

 Figure 2: Marymount University 26th Street Project Team Organization Chart 

   

Page 12: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 12    

Project Team  

 

Figure 3: Marymount University Project Team 

 

Project Schedule Summary  

James  G.  Davis  Construction  Corporation  is  to  be  awarded  the  General  Contracting responsibilities  for  the Marymount University  26th  Street  Project  in  April  of  2008.    This will provide  the  company  with  approximately  10  months  to  complete  their  preconstruction services.  Services that include permit acquisition, procurement of materials, and completion of the Guaranteed Maximum Price contract. 

Construction operations are scheduled to commence in February of 2009 when James G. Davis Construction is supplied with the Notice to Proceed from Marymount University.  Mobilization of Davis  field  personnel  as well  as  the  Excavation/Demolition  Contractor will  follow  directly after  receiving  the  Notice  to  Proceed.   Major  construction  activities  that  are  to  take  place during this time  include clearing of the existing parking, undergrounding of overhead utilities, installation of the excavation support system, and major excavation.  

Owner: Marymount UniversityOwner's Representative/CM: Stranix Associates

General Contractor: James G. Davis Construction Corp.Architect: Davis, Carter, Scott LTD.

Structural Engineer: Structura, Inc.MEP Engineer: GHT LimitedCivil Engineer: VIKA

Landscape Architect: Lewis Scully GionetLEED Consultant: Sustainable Design Consulting

Cast‐In Place Concrete Subcontractor: Brothers Concrete Construction, Inc.Pre‐Cast Concrete Subcontractor: Arban & Carosi

Mechanical/Plumbing Subcontractor: Tyler Mechanical Contracting, Inc. Electrical Subcontractor: Power Design, Inc. 

PROJECT TEAM

Page 13: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 13    

The major excavation/demolition activities are scheduled to kick‐off in May of 2009, placing all of the foundation‐to‐grade activities directly in line with the critical path. This work will involve forming,  reinforcing, and pouring  the  concrete mat  foundations,  spread  footings,  foundation walls,  shear walls,  columns,  and  floor  slabs.    The  remaining  concrete  superstructure will  be separated  into  two  towers  once  it  reaches  the  elevation  at  grade.    One  tower  will  be  an academic facility, while the other tower will be a residence hall.  The structures of both towers are sequenced to be constructed at the same time and are to top‐out in October, 2009.  

Both  the  academic  facility  and  the  residence hall will be enclosed with precast  architectural concrete  panels  and  aluminum  framed  windows.    This  enclosure  system  will  provide  the academic  facility  and  the  residence  hall with  a water  tight  status  in December  of  2009  and February of 2010, respectively.   

The achievement of a water tight status will permit the start of the  interior MEP rough‐in and interior  finishes  in  both  the  academic  facility  and  the  residential  units.    The  completion  of satisfactory  inspections will allow  the Marymount University 26th Street Project  to achieve  its final milestone, substantial completion, in early September of 2010.  This will allow Marymount University students and personnel to inhabit their new facilities.  

   

Page 14: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 14    

 

Page 15: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 15    

Local Conditions  

The 26th Street Project  is  located at Marymount University  in Arlington, Virginia.   The project site  is  triangular  in  shape  and  bordered  by  Old  Dominion  Drive,  26th  Street,  and  Yorktown Boulevard.   

 Figure 4: Aerial view of the Project Site (Davis, Carter, Scott, LTD.) 

              

The  campus  of  Marymount  University  is  adjacent  to  numerous  areas  that  are  zoned  for residential use.  This has the potential to create some problems when dealing with the issue of construction parking.  On‐site parking is not an option due to the congested nature of the site. On‐street parking is available; however, it is very limited.  Also, a majority of on‐street parking spaces are for use by the residents and require a parking permit between the hours of 8:00 AM and  5:00  PM.    As  a  solution  to  this  problem,  James  G.  Davis  Construction  will  provide construction parking at a local shopping mall, Ballston.  The mall is roughly two miles from the project  site,  so a  shuttle will  serve  to  transport workers  to and  from  their personal vehicles.  This will be  the means of construction parking until  the  structure  reaches a point where  the below grade parking can be utilized.   

Page 16: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 16    

Marymount University  is considered to be  located within the Washington, DC metro area and the  project’s  construction methods  fit  into  the  local  preferred methods  of  construction.    A majority  of  buildings  found within  this  area  are  constructed with  reinforced  concrete.    This method  is preferred  in  this  area over  steel  structures  as  a direct  result of  the benefits  they deliver.  These benefits include larger floor‐to‐ceiling heights, elimination of fireproofing costs, and elimination of  the  construction  involved  in  complex  connections.   The popularity of  this construction method also supplies extensive amounts of experience to the field of contractors in the area.   

The 1.45 acre site was examined by ECS Mid‐Atlantic, LLC in August of 2005.  The scope of their work  included  drilling  four  test  bores  to  explore  the  subsurface  soil  and  ground  water conditions.    The  subsurface  soil  conditions were  determined  to  be  sufficiently  dense.    This allowed the building to be supported by shallow foundations.  Foundation systems that include conventional spread footings and mat foundations.  When establishing the elevation of ground water,  it was determined  that  the water  table exists between 21’ and 25’ below  the existing grade.    

   

Page 17: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010
Page 18: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 18    

4.0 Building Systems Summary  

  

Figure 5: Building System Summary Table 

           Demolition 

The  site  of  the  Marymount  University  26th  Street  Project  was  previously  utilized  by  the university as a surface parking lot.   Before any excavation work could begin, all of the asphalt, debris, and vegetation needed to be cleared and grubbed from the 1.45 acre site.    

The overall area of excavation is approximately 63,000 square feet and the depth of excavation ranges from 45’ to 25’ deep as a result of the slope of the existing site.  Due to the depth of the excavation,  roughly  80,000  CY  of  soils  need  to  be  hauled  from  the  site  by  the  excavation contractor.  The excavated soils will be directly relocated to numerous other project sites in the Washington, D.C. metropolitan area.   

Structural Steel Frame 

There is no structural steel incorporated into the frame of the building. 

Cast­in­Place Concrete 

The  entire  superstructure,  supporting  foundation,  and  lateral  systems  consist  of  steel reinforced,  cast‐in‐place  concrete.  The  foundation  is  comprised  of  34”‐54” mat  foundations, found along the perimeter of the building, while 32”‐54” spread  footings support the  interior 

YES NO Scope of WorkX Demolition Required

X Structural Steel FrameX Cast‐in‐Place ConcreteX Precast ConcreteX Mechanical SystemX Electrical SystemX MasonryX Curtain WallX Support of Execavation

Building System Summary

Page 19: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 19    

columns.  These same columns will support the concrete slab above and any other loads found within their tributary area.   

Different  areas  of  the  structure will  be  utilized  for  different  types  of  occupancy;  academic, residential,  and  storage/garage.    Each  of  the  corresponding  slabs will  have  separate  design specifications.   The storage/garage slabs will have a monolithic thickness of 8” with 5½” drop panels  at  each  of  the  columns.    The  residential  and  academic  slabs will  incorporate  a  post‐tensioning system to help manage the tensile loads.  The residential slabs will have a monolithic thickness of 7” with 6” drop panel at the columns.  Lastly, the slabs found in the academic space will have a monolithic thickness of 9” with 8” drop panels at the columns.     

The  lateral system consists of reinforced, cast‐in‐place concrete shear walls and grade beams.   Concrete  shear walls can be  found  the perimeter of  the building and extend up  through  the four  levels of underground parking.   Additional  lateral support  is provided by walls of the four stairwells that span from the lowest garage  level up to the roof  level.   The  last component of the later system includes grade beams.  The beams provide addition support and tie individual spread footings to each other and to the perimeter mat foundation.   

All of the work  involved with placing the cast‐in‐place concrete will be performed by Brothers Concrete  Construction,  Inc.    Brothers will  utilize  the  two  tower  cranes  on  site  to  place  the concrete via crane and bucket. Brother will utilize the PERI® SKYDECK Aluminum Slab Formwork System for horizontal slabs and PERI® TRIO Panel Formwork for vertical walls and columns.   

  

 

 

 

 

 

 

 

   Figure 1. PERI®SKYDECK (www.peri.ca Figure 7: PERI SKYDECK (www.peri.ca)  Figure 6: PERI TRIO (www.peri.ca) 

Page 20: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 20    

Precast Concrete 

The entire exterior façade of the Marymount University 26th Street Project is to be comprised of precast architectural panels.  The panels will be connected to the concrete structure with steel embeds.    These  embeds will  be  placed  into  the  precast  panels  and  into  the  edges  of  the concrete  slab.    The  connections  are  designed  to withstand  gravity,  lateral,  and  earthquake loads.   The panels will be delivered to the site  from an offsite casting plant that the  installer, Arban and Carosi,  Inc., utilizes.   Once  the panels arrive on  site,  they will be  laid and  set  into place by one of the two tower cranes.     

Mechanical System 

The  Mechanical  system  is  comprised  of  an  air‐water  system  containing  both  variable  and constant volume rooftop air handling units.   Along with the primary air that  is supplied by the air handling units, the individual fan coil units are supplied with both chilled and hot water.  The hot water is to be supplied from boilers found in the G3 Level Mechanical Room and the chilled water  is  to be  supplied  from pumps  that are  located within  the G4  Level Mechanical Room.  These  fan  coils units will provide  individual  control of heating and  cooling  to  separate  zones within the building. Also located on the roof, two 500 ton cooling towers help to dissipate the heat that is generated by the system.   

Due to the different classes of occupancies of the building, the fire suppression system consists of  both  a  wet  and  a  dry  pipe  system.    The  wet  pipe  system  will  provide  immediate  fire suppression to each of the residential units while the dry pipe system services the rest of the building.   

Electrical System 

Marymount University  is  supplied with  electrical  service  by Dominion Virginia  Power, which services  regions of both Virginia  and North Carolina.   The  incoming  service  is  to be  stepped 

down by a transformer located outside of the building and brought into the building with 3∅, 4 

wire,  480/277V.    The  electrical  system  will  also  be  accompanied  with  emergency  power 

supplied  by  a  350kW,  3∅,  4  wire,  480V,  continuous  power  supply  generator.    The  diesel 

powered generator will be supplied from a 50‐gallon day tank and a 500‐gallon reserve tank.   

 

Page 21: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 21    

Masonry 

The  extent  of masonry  incorporated  into  the  project  at Marymount  University  is  concrete masonry units (CMUs).  The CMUs will serve as partition walls that provide a 2‐hour fire rated wall.   The CMUs will be non‐load bearing and tie  into the concrete structure with No. 5 steel reinforcing bars that are 48” high and spaced on 16” centers.   

The mortar  that will be used  consists of Portland  cement, hydrated  lime,  and  aggregate.   A mixing station will be located on site to mix the mortar with potable water as it is needed.   

Curtain Wall 

The curtain wall system found on this project is minimal as the façade is mainly constructed of architectural  precast  panels.    The  system  consists  of  aluminum  framed  operable  and  non‐operable Low‐E Clear Vision Glass windows.  The windows are located throughout the academic and  residential  facilities  to  allow  daylight  to  penetrate  into  the  space.    Aluminum  framed storefront doors are also found where the vestibules and entrances are located.   

 Support of Excavation 

A  sheering  and  shoring  system  will  be  utilized  as  the  method  of  excavation  support  at Marymount  University.    The main  components  of  this  system  include  soldier  piles,  lagging boards, and tiebacks.  The sheeting and shoring will not only serve to support the soils outside of the excavated area, but will also serve as one face of the formwork for the foundation walls.   

The system will use a total of 132 soldier piles that are spaced approximately 8’ on center.  The vibratory method will be the main means of  installation.   Once the piles contact bedrock and reach refusal, they will have to be impact‐driven to the proper design elevation. 

The amount of excavation will require roughly 26,000 square feet of lagging boards, installed in lifts of  roughly 10’,  and 188  tie‐backs.   Once  a  lift  is  completed,  the  tie‐backs,  found  at  the soldier beams, can be drilled,  installed, and grouted.   The grout will need to cure for five days from  the  time  of  installation.    After  the  five  days  expires,  the  tie‐backs  will  be  tested  for integrity  by  a  third‐party  testing  agency.    If  the  tie‐backs  are  found  to meet  or  exceed  the design criteria, excavation can continue below and  the process repeats  itself until  the proper elevation at sub‐grade is reached.   

Page 22: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 22    

In an effort to keep the site as dry as possible, a dewatering system with 12 dewatering wells will be utilized.   The water that  is removed  from the ground will be pumped  into a sediment tank  to  allow  the  silt  and  any  other  debris  to  settle  out  before  it  is  pumped  off  of  the construction site.    

 

   

Page 23: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 23    

5.0 Analysis I: Short Interval Production Schedule Development 

 

Problem Statement  

One of the additions to the campus of Marymount University is a Residential Facility.  The new facility will provide suite‐style housing for 239 students.  There are 62 units situated in four and five person configurations.   The  interior  finishes that are  involved with the completion of the Residential Facility are extremely repetitive from unit to unit and from floor to floor.   

This particular phase of the project  is extremely  important to both Marymount University and the entire project team.  In order to generate the highest quality of work in the optimal amount of  time,  the  interior  finishes  schedule  will  be  required  to  be  extremely  consistent  and predictable.   

Proposed Solution  

The  repetitive nature of  the work  that  is  involved with  the  interior  finishes  in  the  residential facility provides an ideal location to implement Short Interval Production Scheduling (SIPS). This particular  scheduling  technique  has  traditionally  been  used  in  areas  that  are  repetitive  in nature. 

Solution Method  

1. Gain a full understanding of the original finishes schedule. 2. Identify the project milestones and interior finishes timeframe. 3. Establish each of the individual trades that are involved in the sequence. 4. Determine the specific trades that will be driving the critical path of the schedule. 5. Define specific activity durations and basic crew sizes for the specific trades that were 

identified to be driving the schedule. 6. Establish the project specific sequence of work for a typical unit. 7. Determine the standardized work durations for all of the activities. 8. Ensure the resources are level to attain consistent work durations. 9. Develop the Short Interval Production Schedule. 

Page 24: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 24    

10. Compare the SIP schedule duration with the existing detailed CPM schedule. 11. Evaluate the cost implications of any changes in resources. 

Resources  

Critical Path Project Schedule  Marymount University Project Manager and Project Superintendant  RS Means Cost Data   Penn State Architectural Engineering Faculty Members  Contact from PACE Roundtable with previous SIPS experience  AE 473: Building Construction Management & Control 

Expected Outcome  

The development of Short Interval Production Schedule will result in an overall reduction in the project schedule.  The work associated with the finishes schedule is extremely repetitive, which in  turn  will  lead  to  a  more  efficient  workforce.    The  implementation  of  this  scheduling technique will also help to optimize activity durations, while maintaining the highest quality of work.   

The  expected  benefits  of  SIPS  include  optimizing  activity  durations,  while  maintaining  the highest quality of work.   Additionally, the schedule  is much more predictable, which makes  it easier to track and communicate the progress of the schedule.   

Introduction to Short Interval Production Scheduling  

Short Interval Production Scheduling (SIPS) is a scheduling technique that is traditionally utilized to  construct  buildings  that  involve  an  immense  amount  of  repetitive  activities.    The most common  applications  include  high  rise  office  buildings,  apartment  buildings,  and  hotels.   As previously  mentioned,  the  Residential  Facility  at  Marymount  University  is  much  like  an apartment building, consisting of four and five person  individual units.   This particular type of scheduling brings an assembly line approach to the construction industry.  This allows trades to increase  their efficiency as  they move  throughout each zone of  the building.   Each  individual trade will work on a given activity, complete the activity, and move to the next unit to repeat 

Page 25: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 25    

that same activity.   This helps to avoid “trade stacking” and creates a “parade of trades” that ensures that each space is not over loaded with laborers at any given time.  

To begin the development of a SIP Schedule, the building must be broken down into sections or zones that involve manageable quantities of work.  For the case of Marymount University, one zone  is equivalent  to one  four‐person  residential unit.   Each unit  consists of  two bedrooms, each with two occupants, two full bathrooms, a full kitchen, and a common  living space.   The total  square  footage  for a unit of  this  size  is approximately 860  square  feet.   Please  refer  to Figure  8.  for  a  schematic model  of  an  individual  unit  that  can  be  found  in  the  Residential Facility.   

 

 

Figure 8: Autodesk Revit Model of a Typical Residential Unit 

The next step in the development of a SIP Schedule involves determining which activities will be driving  the  critical  path  of  the  finish  schedule  and  the  overall  timeframe  in  which  these activities must be completed.   After all of these tasks have been accomplished, quantity take‐offs needed to be computed in order to determine the material totals that are present in each zone.    The  materials  that  were  estimated  include  gypsum  wall  board,  metal  studs,  vinyl composition  tile,  ceramic  tile,  interior  paint,  millwork,  countertops,  and  casework.    The 

Page 26: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 26    

Autodesk  Revit Model  that  is  shown  in  Figure  7.  was  developed  in  order  to  compute  the individual  quantity  take‐offs.  Following  the  computation  of  quantity  take‐offs,  the  project specific sequence of activities needed to be determined.   This  is critical, as all of the activities will have a start‐to‐finish relationship with each of their predecessors.   

The  final  step  in  the process  involved  resource  leveling.   This entailed  looking at each of  the trades and either increasing or decreasing their crew size in an attempt to create an equivalent duration  for  each  of  the  trades  involved  in  the  finish  schedule.    Resource  leveling  is  as  a common  practice  that  helps  to  avoid  “trade  stacking”.    In  the  construction  industry,  “trade stacking” is an issue that is generally accepted, but has the potential to harm production rates.  A SIP Schedule will attempt to negate this risk by only allowing a limited quantity of workers in a specific zone, at any given time.   

After all of  the  steps are  completed  for one  individual  zone,  the  results  can be extrapolated throughout  the  remaining  zones  within  the  building.    The  finished  product  provides  an alternative to the traditional Critical Path Method of scheduling and is known as a Short Interval Production Schedule.  

Project Constraints  

The  interior finishes for the Residential Facility at Marymount University must be complete by September 2010, as students are scheduled to move in for the Fall 20101 Semester.  The start of the  interior finishes  is dependent upon the “Building Dry” milestone, which  is scheduled to occur  on  February,  19,  2010.    This  allows  approximately  26  weeks  to  complete  all  of  the activities involved with finishing each of the six levels of the Residential Facility.     

Once the “Building Dry” milestone is achieved, the building should be free from any unwanted moisture and all of the interior work can be put into place without the risk of being damaged.  The only activities that can take place before this milestone is achieved include framing interior walls, MEP  rough‐ins, and  in‐wall quality  inspections.   A detailed Critical Path Method Finish Schedule can be found in Appendix A.  

   

Page 27: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 27    

SIP Schedule Development  

For the purposes of Marymount University, the SIP  Schedule  was  generated  for  the  finish activities  for  the G3  Level, which  is  one  level above  the  lowest  G4  Level,  through  the  3rd Level.  Both the occupancy and the number of units  vary  from  level  to  level.    This  ensured that the number of zones for each level would vary  from  floor  to  floor,  as  the  zone determination  is  a  function  of  occupancy.  Figure  9.  displays  how  the  occupancy  and number of  zones changes  from  level  to  level within the Residential Facility.  

As mentioned  previously,  the  entire material  estimate was  determined with  the  use  of  an Autodesk Revit 3D Model.  Only after the quantities were estimated could RSMeans be utilized to determine daily production rates and the corresponding crew sizes.  In most cases, the crew sizes needed  to be adjusted  in order  to achieve activity durations as close as possible  to  the others.   For a SIP Schedule,  this  is necessary  to ensure  that each  trade can continually move from zone to zone without interruption from the crew that was previously in that zone.  Figure 10.  displays  all  of  the  individual  quantities  that  were  estimated  and  the  corresponding durations and crew sizes.  

 

Figure 10: Material Take‐Offs 

Line Number Material Material Description Quantity Unit Crew Mult.Daily Output

Total Duration

Matrix Duration

092900 Gypsum Board (Walls) 4' x 8' x 1/2" 5581.0 SF 2 4 775.0092900 Gypsum Board (Ceil.) 4' x 8' x 5/8" 456.0 SF 2 4 765.0054000 Lightweight Metal Studs 20 ga., 3 5/8", LW 1903.0 SF 1 10 175 1.09 2096519 Vinyl Composition Tile 12" x 12" x 1/16" 715.4 SF 1 Tilf. 1 500 1.43 2093000 Ceramic Tile 1' x 1' Tiles 118.6 SF D7 1 82 1.45 2099123 Paint Primer/Finish Coat 3806.0 SF 1 Pord. 3 650 1.95 20622133 Millwork Arch. Wood Moulding 250.0 LF 1 Carp. 1 2501236230 Countertops 24" P‐Lam. 13.2 LF 1 Carp. 2 301232231 Casework Manuf. Wood Casework 22.8 LF 2 Carp. 1 40

1.95

1.79

Quantity Take‐Offs

2

2

Level Zones OccupancyG3 5 26G2 7 36G1 7 36L1 9 42L2 12 53L3 12 53

Totals 52 246

Building Zones

Figure 9: Level Zones & Occupancy 

Page 28: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 28    

Now that all of the zones and the activities have been identified, the project sequence for the entire building could be determined.   The sequence and a  legend for the SIP Schedule for the G3 Level through the 3rd Level is shown in Figure 11.  

 

 

Figure 11: Sequence and Color Key 

 

 

   

Number Color Critical Activity

1 Frame Metal Studs

2 Rough‐In MEP

3 Preform In Wall QC

4 Hang/Tape/Finish GWB

5 Prime Walls

6 Point‐Up Drywall

7 Paint Final Coat

8 Install Ceramic Tile

9 Install Plumbing Fixtures

10 Install Millwork & Countertops

11 Install VCT & Carpet

Page 29: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

YEARWEEK

DATE

DAY M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

LEVELG3 Level ◊

Zone 1Zone 2Zone 3Zone 4Zone 5

G2 LevelZone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7

G1 LevelZone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7

1st LevelZone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7Zone 8Zone 9

2nd LevelZone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7Zone 8Zone 9Zone 10Zone 11Zone 12

3rd LevelZone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7Zone 8Zone 9Zone 10Zone 11Zone 12

23

Compe

tition Date ‐ 8

/2/2010

242010

27 28

 Building Dry Milestone

3 4 5 6 7 8 9 10 11 21 22

6/28/2010

7/5/2010

6/7/2010

25 26

7/26/2010

8/2/2010

7/12/2010

7/19/2010

*Holiday ‐ Fourth of July

*Holiday ‐ Mem

orial D

ay

12 13 14 15 16

5/24/2010

5/31/2010

18 19 20

6/21/2010

6/14/2010

4/12/2010

4/19/2010

2/8/2010

2/15/2010

17

3/1/2010

3/8/2010

2/22/2010

4/5/2010

3/15/2010

3/22/2010

3/29/2010

4/26/2010

5/3/2010

5/10/2010

5/17/2010

Page 30: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010
Page 31: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 31    

Cost & Schedule Impacts  

After completing the Short Interval Production Schedule, it was determined that this sequence of activities could be completed in 24 weeks.  When comparing the SIP Schedule to the current Critical Path Schedule, it was calculated that the SIP Schedule would save 2 weeks.  This would be equivalent  to  shortening  the duration of  this  same  sequence of  activities by  ten working days.     

Conclusion & Recommendations  

By  implementing  a  Short  Interval  Production  Schedule  into  the  Residential  Facilities  Interior Finishes Schedule, the University would potentially be provided with a schedule that has a total duration which  is two weeks shorter than their current schedule.   The SIP Schedule will allow the work associated with  the  interior  finishes begin  in mid February, 2010 and commence  in early August, 2010.   The schedule acceleration  is possible due  to  the repetitive nature of  the work that is associated with the interior finish activities.  

Through previous interactions with the Marymount University Project Team, it was established that  two of  their major  concerns with  the  Interior Finishes Schedule  involve maintaining  the highest possible production rates through the entire duration of the interior finishes schedule, while never sacrificing quality.  This scheduling technique proves to be a viable option to ensure that these two concerns are addressed.  

The  Short  Interval  Production  Schedule  not  only  serves  as  a  technique  to  accelerate  the schedule, but  it also provides the Project Team with an additional two weeks of float.    It may seem as though this amount of time may be  insignificant, but  it ensures that any unforeseen delays  or  stoppages  of work will  not  affect  the  achievement  of  the  Substantial  Completion Milestone.   

The Substantial Completion Milestone  is extremely critical to both Marymount University and the  Project  Team,  as  students  are  scheduled  to  be moving  into  the  Residence Hall  in  early September 2010.    To ensure  that  the Project Team meets  this milestone,  the university has chosen  to  include  a  stringent  liquidated  damages  clause  into  the  contract with  the General Contractor.  The schedule acceleration that is provided by the SIP Schedule warrants that James G. Davis will avoid incurring the costs associated with the liquidated damages.   

Page 32: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 32    

In conclusion, the Short Interval Production Schedule has the potential to generate results that will be beneficial to Marymount University and the Project Team, alike.  The potential benefits are outlined in Figure 12. below. 

 

Figure 12: Results of a Short Interval Production Schedule 

 

 

    

 

   

Result of SIP Schedule Benefit

Decrease the overall Project Schedule by 10 working Days.

Eliminating 2 Weeks of General Condition costs  ($35,000/Week).  This will generate a total savings of $70,000.

The total duration for the Interior Finish Schedule is reduced by nearly 

8%.

A shorter activity duration will ensure that any unforeseen delays or stoppages of work will not affect the overall project 

schedule.Potential to generate early project 

completion.Ensures that any of the costs that are associated with the 

Liquidated Damages are avoided.Repetitive nature of the work 

associated with the interior finish activities optimizes durations.

Bringing an "assembly line approach" to the construction industry allows laborers to work at optimal levels of efficiency, while maintaining a high quality of work.

Schedule can be utilized as a tool that provides visual aid.

Creates a schedule that is much more predictable, easier to communicate and track the progress.

Short Interval Production Schedule Results

Page 33: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 33    

6.0 Analysis II: MEP Coordination  

Problem Statement  

As  with  most  projects,  the coordination  of  the mechanical,  electrical,  and plumbing  systems  are extremely  problematic.  This remains  true  for  the coordination  of  the  MEP systems  at  Marymount University.    All  of  the equipment  and  components required  extensive  amount  of coordination,  both  vertically and  horizontally,  to  avoid clashes  in  the  field.   The MEP coordination was  done  traditionally  by  incorporating  each  of  the  individual  trades  into  one drawing.   

To help eliminate overlooking major conflicts within the MEP coordination process, the industry has begun to adopt the practice of three dimensional MEP coordination.  This practice will help to  increase the efficiency of MEP coordination meetings,  increase the productivity  in the field, and  help  to  ensure  the  project  remains  on  schedule.    However,  the  project  team  and Marymount University chose to disregard this option.   

Proposed Solution  

Conduct interviews with the Marymount University Project Team to establish why this practice was not utilized on the project.  The participants of the study will include the Project Manager, who was a major part of the MEP coordination process, Project Executive, and Vice President.  

Figure 13:3D Model (www.mediacad.net) 

Page 34: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 34    

Additionally, other participants of  the  interview will  include  representatives  from each of  the major trades involved in the coordination process.  

Solution Method  

1. Acquire the Meeting Minutes from all of the MEP coordination meetings. 2. Obtain the MEP coordination drawings. 3. Model all of the components in a specific area of the building.  4. Identify the key subcontractors involved with MEP coordination. 5. Generate a questionnaire that will be distributed to some PSU AE faculty members to 

test the questions. 6. After the test is complete, determine which questions will be included in the final 

interview. 7. Interview the appropriate members of the project team. 8. Compile the results and establish any common themes. 9. Evaluate the cost and schedule impacts of 3D MEP coordination. 

Resources  

MEP Coordination Meeting Minutes  MEP Coordination Drawings  AE 473: Building Construction Management & Control  Autodesk Revit & Autodesk Navisworks 

Expected Outcome  

The  results of  the  survey  should present  some of  the  challenges and motives as  to why  this practice  was  not  utilized  on  the  project.    Even  though  the  participants  are  a  small representative sample of the industry, it is felt that the results will provide a realistic sample of the  industry.   The positive cost and  schedule  impacts  that are expected  to be generated will provide  the project  team with a more efficient MEP  coordination practice  to  consider  in  the future. 

   

Page 35: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 35    

MEP Coordination Techniques  

Over  the  past  few  decades,  the  construction  industry  has  been  utilizing  one  method  of coordinating  the  mechanical,  electrical,  and  plumbing  systems  within  a  building.  The “Traditional”  Method,  or  2D  Coordination,  involves  compiling  all  of  the  individual  trades’ drawings  into  one  composite  drawing,  then  reviewing  the  two‐dimensional  drawings  for clashes.   This process has  the potential  to  take an exorbitant amount of  time and  is  far  from perfect.  The clashes that are missed in the coordination process have the potential to generate change orders and negatively impact the project schedule.   

Technology  within  the  Architecture,  Engineering,  and  Construction  Industry  has  created  an alternative to this outdated form of clash detection.  The alternative process, known as 3D MEP Coordination,  involves utilizing  three‐dimensional modeling  software accompanied with clash detection software.   This process has proven to be much more efficient, especially as building architecture  continues  to  get  increasingly  sophisticated.  Figure  14.  and  Figure  15.  below displays  how  challenging  it  can  be  to  identify  clashes  when  utilizing  two‐dimensional coordination.  

 

                

   Figure 14: 2D MEP Coordination ‐              Figure 15: 3D MEP Coordination ‐             Hershey Medical Center (PSU CIC)            Hershey Medical Center (PSU CIC) 

Page 36: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 36    

The  impacts  of  utilizing  this  type  of MEP  Coordination  have  both  immediate  and  long  term benefits.  All of the impacts that are associated with 3D MEP Coordination are outline below. 

Initial Benefits: 

Efficient Coordination of a sophisticated MEP System.  Provides a 3D Model that can be easily visualized. 

Ensures that every member of the Project Team is one the same page.  Tradesmen can see an area prior to installation. 

Increased interaction between individual trades.  All of the individual detailers interactively work in one large room.  

Long‐Term Benefits: 

3D Model can be utilized for digital fabrication of equipment.  Evaluating problematic areas in 3D promotes increased productivity in the field.  Decreasing  the amount of clashes  simultaneously decreases  the  total number of RFI’s and Change Orders. 

The Owner is provided with a higher quality product.  In the end, the Owner is provided with a physical model that will serve as a 3D As‐Built of the system. 

Even with all of  these enticing benefits, 3D MEP Coordination has yet  to become a  standard practice within the Construction  Industry.   As part of my research,  I was  looking to determine the  reasons  as  to  why  this  practice  has  yet  to  become  “Industry  Standard”,  and  more specifically, why the General Contractor is not utilizing it more frequently.  

 

General Contractor Survey  

To  help  understand why  this  has  yet  to  become  an  “Industry  Standard,  a  survey  title  “MEP Coordination” was disturbed to various professionals within James G. Davis Construction.   The purpose  of  this  survey  was  to  collect  information  pertaining  to  the  utilization  of  3D MEP Coordination within the organization.  The survey can be found in its entirety within Appendix B.   

Page 37: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 37    

MEP Coordination Survey Results  

In total, ten total responses where gathered thorough the course of the survey.  The diversity of the respondents ranged from entry‐level Project Engineers to Senior Vice Presidents.  This was done  purposefully  in  an  attempt  to  establish  if  there  are  any  differing  opinions within  the organization’s corporate  ladder.   To ensure that the participants of the survey were as honest as possible, the survey was designed to be anonymous.   However, each participant was asked to  provide  their  current  position  and  total  years  of  experience  with  the  organization.  This information can be found in Figure 16.  

 

Figure 16: MEP Coordination Survey Participants 

The  first  half  of  the  survey  was  developed  to  encourage  the  participants  to  provide  their personal opinions regarding traditional, two‐dimensional, MEP coordination, while the second half of the survey  involved questions regarding 3D MEP Coordination.   Through this section of the survey, the participants were asked to provide information regarding their basic knowledge of  the  3D MEP  Coordination  process  and  various  advantages/disadvantages  of  the  3D MEP Coordination Process.   

When  dealing  with  past  Project  Teams,  the  participants  were  first  asked  to  provide  the resources that feel are most involved with the 2D MEP Coordination process.  An overwhelming majority responded that Project Managers are the most common participants involved with this particular process.   Additionally,  it was determined  that a Foreman  representing each of  the 

Num. Current PositionYears of 

Experience1 Senior Project Manager 122 Project Engineer 33 Project Manager 134 Virtual Construction Manager 25 Project Engineer 46 Project Executive 117 Senior Vice President 328 Project Engineer 119 Project Executive 1210 Senior Vice President 19

Survey Participants

Page 38: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 38    

major  contractors,  along  with  a  CAD  Technician  are  commonly  involved  in  the  MEP Coordination Process.   After analyzing  the  results,  it was determined  that  this process  is very exhaustive of resources and any delays  in this process will waste both time and money of the multiple parties involved.  A detailed response breakdown to this question can be found below in Figure 17.  

 

Figure 17: MEP Coordination ‐ Resources 

Following  the question  regarding  the  resources  involved with  the MEP Coordination Process, the participants were asked to provide their professional opinion on the turn‐around time they typically see with 2D composite drawings.   Based off of the statistics gathered  in Figure 18.,  it was determined  that a majority of  the participants  feel  that  the average  turn‐around  time  is roughly two to four weeks.  However, it should be noted that this duration is highly dependent on  the project  size  and  complexity.   Additional  knowledge  that was  gained  from  this  survey question includes ensuring that the project schedule is capable of accommodating the time for 

Page 39: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 39    

this  process  to  occur.    It  is  critical  that  the  composite MEP  Coordination Drawings  become “approved”  in a reasonable amount of time.   Additionally, any delays  incurred by this process need to be accounted for within the overall project schedule.  

 

Figure 18: MEP Coordination Turn‐Around Duration 

The final question in the first half of the survey aimed at determining if a project’s budget has money allocated for the purposes of MEP Coordination.   The outcome of this question wasn’t very  informative as  it resulted  in a fifty‐fifty split.   Those who answered “yes” to the question were then asked to provide an approximate budget value as a percentage of the overall project cost.    The  responses  to  this  question were  also  fairly  inconsistent;  however,  the  value was generally less than 1.0%.  The results of this question reinforce the fact that each Project Team within the organization has an individual way of establishing and maintaining their budget.   

As mentioned  above,  the  second half of  the  survey was  intended  to  gauge  the participant’s knowledge regarding 3D MEP Coordination practices.  The first question of this section asked if the  individuals  were  aware  if  any  trades  currently  were  using  three‐dimensional modeling software  to  generate  their  specific  components  or  equipment.    The  statistics  in  Figure  19. 

Page 40: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 40    

confirm that members within the organization are aware that multiple trades are beginning to model in 3D.   

 Figure 19: Trades Modeling in 3D 

 

The  basis  for  the  next  question  of  the  survey was  to  establish  reasons  as  to why  3D MEP coordination was not pursued on previous projects,  from a Project Management  standpoint.  To  answer  this  question,  the  participants  were  provided  with  four  possible  selections  that included  potential  cost  increase,  additional  time  requirements,  experience  of  project  team members,  and  limited  amount of  resources.    The  resources  include  items  such  as  computer software, computers, workspaces, etc.  In addition to the four selections, the participants were also given the option to provide an alternative selection that was not listed.    

The results of this survey question provide evidence that the members within the organization feel  that a  limited amount of  resources has been a major contributor  to not pursing 3D MEP Coordination  on  past  projects.    For  a  complete  breakdown  of  this  question,  please  refer  to Figure 20. 

   

Page 41: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 41    

 Figure 20: Reasons for not pursuing 3D MEP Coordination 

In an attempt to establish trends involving individual trade participation, the participants were asked to identify which trades they feel would be most likely accept or reject the change to 3D MEP Coordination.  Through the results of this question, it was determined that the Mechanical Contractor would  be most  likely  to  accept  this  change, while  the  Fire  Protection Contractor would be most likely to resist this change.  The results of this survey question can be found in Figure 21. and Figure 22.  

 Figure 21: Trades Most Likely to Accept the Change to 3D Coordination 

Page 42: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 42    

 

Figure 22: Trades Most Likely to Resist the Change to 3D Coordination 

One  of  the  final  questions  of  the  survey  asked  the  participants  to  cite  specific  examples  of advantages  and  disadvantages  of  utilizing  3D  MEP  Coordination  over  traditional,  2D Coordination. This was an open ended question with no pre‐determined answers.   However, there were common trends that continued to appear among all of the answers provided.  Some of the common themes have been outlined below. 

Advantages: 

Reduces the possibility of major cost and schedule delays in the field because all of the major clashes have been resolved.  

Allows  for  more  materials  to  be  pre‐fabricated,  which  provides  a  more  efficient installation process.  

The owner is provided with an accurate “As‐Built” Model.  Model  can  be  used  as  a  visualization  tool  that  provides  contractors  with  a  clearer understanding of space allocation.  

Disadvantages: 

More  time  is  consumed  up  front  to  create  an  accurate  model,  which  ultimately increases costs. 

Page 43: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 43    

At this time, not all trades have the capability of modeling in 3D.   3D Coordination  process  is  very  technical  and  requires  training  of  inexperience  team members.    

The final question of the survey asked the participants  if they felt that they were experienced enough to successfully lead the 3D MEP Coordination process on a future project.  The results of  this  question  yielded  impressive  results,  as  80%  of  the  participants  feel  that  they  can successfully  lead  the 3D MEP Coordination Process.   An  interesting  fact about  this  statistic  is that  only  one  out  of  the  ten  participants  has  previously  been  on  a  project  that  utilized  3D Coordination.  This reinforces the fact that the organization has been taking active measures to keep up with this form of technology.  

Impacts on the Organization  

After  speaking with  a  representative  from  James G. Davis,  it  has  been  determined  that  the organization is currently beginning to utilize 3D MEP Coordination on projects of significant size.  At  this  time,  James G. Davis  is coordinating  three projects with  the use of  three‐dimensional modeling software.   

Not only have  they begun  to utilize  these new  technologies, but  they have also  launched an educational  program  that  is  structured  to  provide  their  employees  with  the  appropriate knowledge base  to  successfully manage  this process.   Currently,  there are eleven employees within the organization that have completed this educational program.  Once completed, these former Project Engineers, Assistant Superintendants, and Layout Engineers titles have changed to Integrated Construction Engineers (ICEs).  

An  Integrated Construction Engineer  is becoming an  integral part of a Project Team, as  their main  role has become  guiding Project  Teams  throughout  the  3D MEP Coordination Process.  The position of  an  ICE has not been  transformed  into  an overhead position,  as  they  remain intact within Vice Presidential Groups and continue to be associated with specific projects.   

For the Integrated Construction Engineer position to be successful, individuals at James G. Davis feels as though it is imperative that ICEs stem from various backgrounds.  This is a result of the previous  experience  that was  gained  by  the  ICE’s  in  previous  roles within  the  organization.   Previous Project Engineers have knowledge  in areas such as managing RFI’s and other aspects 

Page 44: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 44    

of project management, while Assistant Superintendants and Layout Engineers are competent in managing contractors and verifying field installations.   

Through the development of this employee training program, it is obvious that James G. Davis is committed to being at the forefront of technological advances within the AEC Industry.   

Impacts on the Project Team  

Within the organization’s development of the position of an Integrated Construction Engineer, it can be suggested that the Marymount University Project Team would have seen significant benefits from this newly created role.     An ICE would have allowed the Project Team to utilize 3D MEP Coordination, which would have made  this process much more efficient.   Additional reasons supporting this assumption are summarized below.  

Intricate MEP System required to support Laboratory Equipment  Experienced Project Engineer managing the coordination process  Sheet Metal Contractor & Mechanical Contractor have all components modeled in 3D.  Tight Project Schedule 

The entire Marymount University Project Team  including the Project Management Personnel, the  Field  Supervision  Staff,  and  the  Contractors  would  have  benefited  from  3D  MEP Coordination.  The potential impacts on the Project Team have been outlined below.  

The Project Management Personnel would have seen a reduction in the number of RFI’s and Change Orders.  

The Field Supervision Staff would have been provided with a visual tool that could assist them in conveying information to the contractors they are managing.   

The Contractors would have be provided with a higher level of confidence that their individual systems can be installed as coordinated, thus allowing a more streamlined and efficient installation process.   

Conclusions & Recommendations   

Through  the  results of  the  survey,  it has been established  that  a  large majority of  James G. Davis  employees  have  the  appropriate  knowledge  base  to  successfully manage  the  3D MEP Coordination Process.   Employees are  fully aware  that  the MEP Coordination process  is very 

Page 45: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 45    

exhaustive  of  both  time  and  resources.    Additionally,  they  are  aware  of  the  initial  and downstream benefits that are associated with 3D MEP Coordination. 

If a given Project Team feels strongly that their project would benefit from this technology, it is strongly  recommended  that  they  should  seek  assistance  from  an  Integrated  Construction Engineer  or  the Virtual Construction Manager.    This would  help  to  ensure  that  the  3D MEP Coordination process goes as fluid as possible.  Other recommendations to Project Teams that wish to utilize 3D MEP Coordination on their projects have been outlined below. 

To avoid delays within the project schedule, start the 3D process as soon as possible  3D Modeling should be incorporated into each trade’s scope of work  A Building Information Modeling Trailer should be located on site  General  Contractor  /  Construction  Manager  should  fully  manage  the  Coordination Process 

A clearly defined order to coordination should be established by the GC/CM  If at all possible, the Designer / Engineer should be involved in the Coordination Process  A  Foreman  from  each  trade  involved  in Coordination  should be  involved  in  resolving clashes 

After analyzing the results of the survey and speaking to individuals within the organization, it is strongly  believed  that  if  the Marymount  University  26th  Street  Project  were  to  have  been awarded to James G. Davis in April, 2010, as opposed to April 2008, 3D MEP Coordination most definitely would have been utilized.  This  is due  to  the  fact  that  James G. Davis has made  a serious  commitment  to  keeping  up  with  technology  by  developing  their  new  role  of  an Integrated Construction Engineer. 

   

Page 46: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 46    

7.0 Analysis III: Green Roof Design Structural Breadth/Mechanical Breadth 

Problem Statement  

The  implementation of a green roof will help  further enforce  the university’s commitment  to sustainability.   Altering  the design of  the  current white,  thermoplastic polyolefin  (TPO),  fully adhered, roofing membrane will generate additional LEED points  in both the sustainable sites and energy categories of LEED New Construction Version 2.2.    

Proposed Solution  

Design a green roof that will help to  increase the thermal efficiency of the building envelope, improve storm water management, and increase the durability of the roof.  Additionally, these objectives will help Marymount University achieve LEED points.   

Solution Method  

1. Research various types to green roofs to determine which is the most appropriate. 2. Investigate all of the potential advantages and disadvantages of each type. 3. Select the most appropriate green roof for Marymount University. 4. Redesign the current concrete roof structure to meet the newly introduced loads of the 

green roof. 5. Evaluate the thermal efficiencies and resize the mechanical equipment accordingly. 6. Determine which LEED New Construction Version 2.2 points have been achieved. 7. Assess the cost and schedule implications of a green roof addition. 

Resources  

Structural drawings for the roof  White TPO roof product data  Whole Building Design Guide (www.wbdg.org)  AE 597D: Sustainable Building Methods  AE 404: Building Structural Systems in Steel & Concrete 

Page 47: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 47    

AE 310: Fundamental of HVAC 

 

Expected Outcome  

The addition of a green roof is expected to increase the thermal performance of the building’s envelope,  thus  reducing  the  loads  on  the  HVAC  system.      However,  this  system will  carry significant schedule  impacts and most  likely be more expensive  than  the specified white TPO roof.   These negative cost and schedule  impacts are anticipated to be offset by the extended lifecycle and increased thermal efficiencies of a green roof.  

Introduction to Green Roofs  

To begin the selection process of a green roof system  for Marymount University’s 26th Street Project, the benefits of both intensive and extensive green roofs were thoroughly investigated.  This was done to ensure that the university  is receiving the highest quality alternative to their current white TPO roofing system.  

Some  of  the  benefits  that  the  university would  be  looking  to  gain  from  this  design  change include  notable  energy  savings,  prolonged  lifespan,  as well  as  additional  square  footage  of usable area.  These three items are highly critical to the university as they are undertaking the construction of their new academic and residential  facilities.     Due to the occupancy of these two buildings, the university will expect them to be operational for nearly twenty four hours a day, seven days a week, for years to come.   

Figure  23.  displays  the  characteristics  of  the  two  different  types  of  green  roof  systems  that were analyzed. 

Page 48: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 48    

 

Figure 23: Types of Green Roofs (Sika Sarnafil) 

As  it  is  shown  in Figure 24., extensive green  roofs contain a much  thinner  soil medium,  thus introduce  minimal  superimposed  dead  loads  on  the  roof  structure,  require  minimal maintenance, and cost  less.   However, this type of roofing system eliminates the potential for creating  an  inhabitable  space  and  has  lower  levels  of  plant  diversity.   When  evaluating  an intensive green roof system,  it can be seen  in Figure 25.   that they  involve a much thicker soil medium which often  ranges  from  six  inches up  to  several  feet  thick.   Due  to  the  additional thickness of this system,  it will  introduce significant superimposed dead  loads.   However,  it  is capable of sustaining a wide variety of plant live, including shrubs and small trees.  

     

Figure 24: Extensive Green Roof (Sika Sarnafil)                         Figure 25: Intensive Green Roof (Sika Sarnafil) 

After evaluating all of  the basic characteristics,  the advantages of each  system needed  to be analyzed  to  ensure  that  the  correct  system  was  selected  for  the  purposes  of Marymount University.  Figure 26.  outlines the advantages of both extensive and intensive green roofs. 

Characteristic Extensive IntensiveDepth of Growth Medium > 6" < 6"Accessibility Mostly Inaccessible Mainly AccessibleFully Saturated Weight 12 ‐ 35 lb/sf 50 ‐ 200 lb/sfPlant Diversity Low GreatestInstalled Cost $18 ‐ 20/sf < $20/sfMaintenance Minimal Highest

Types of Green Roofs

Page 49: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 49    

 

Figure 26: Advantages by Green Roof Type (Sika Sarnafil) 

After analyzing all of  the potential advantages and disadvantages of each  type of green  roof system,  it  was  determined  that  an  extensive  green  roof  would  be  most  appropriate  for Marymount University.   

The  lightweight  system will have minimal  impact on  the existing Post‐Tensioned  roof deck. 

The system will require no  irrigation, as all of the vegetation will be  indigenous to the area. 

Any  additional  maintenance  costs  incurred  by  the  green  roof  will  be  minimal  and comparable to the existing roofing system.  

The soil cover ensures that the underlying waterproofing membrane is not degraded by exposure to ultra‐violet light. 

The growth media provides an additional  insulating value, which has  the potential  to lower the buildings energy costs. 

A thinner growth media depth is still capable of reducing stormwater run‐off by 50%. 

Green Roof System  

The  green  roof  manufacturer  that  was  selected  to  be  most  appropriate  for  this  specific application was  Sika  Sarnafil,  Inc.    Sarnafil was  chosen  over  their  competitors  due  to  their proven success on rooftops throughout Europe over the past three decades. As result of their 

Extensive IntensiveLightweight Greater diversity of plant

Suitable for large areasBest insulation and storm water 

managementLow maintenance costs and no irrigation required after fully 

establishedGreater range of design

Suitable for retrofit projects Usually accessibleLower Capital Costs Greater variety of human usesEasier to replace Greater biodiversity potential

Green Roof Advantages

Page 50: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 50    

success,  Sika  Sarnafil’s products have migrated  to  the United  States and  their waterproofing system was selected to protect Chicago’s City Hall.  

Figure 27. below visually displays all of the components of the Sarnafil green roof system.  The system includes a waterproofing membrane, a drainage layer, a root barrier, an insulation layer, a  filter  fabric,  growth media,  and  vegetation.    The  individual  components  of  this  particular system are defined below and  the product data  for each of  the components can be  found  in Appendix C. 

 

 

Figure 27: Extensive Green Roof Components (Sika Sarnafil) 

 

Page 51: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 51    

Sarnafil Waterproofing Membrane (Sarnafil G476): 

The  G476  waterproofing  membrane  is  specially  compounded  for  sub‐grade environments  of  constant  dampness,  high  alkalinity,  exposure  to  plant  roots, fungi, and bacterial organisms, as well as varying  levels of hydrostatic pressure including  pounded  water  conditions.  The  membrane  is  highly  dimensionally stable and fastened together at the seams with the use of heat welds.   

Sarnafelt NWP Separation Layer: 

Sarnafelt NWP separation layer is compatible with all Sarnafil membranes, and is typically  used  in  Sika  Sarnafil  Waterproofing  Systems.    The  Sarnafelt  NWP separation  layer  acts  as  a  barrier  between  the  Sika  Sarnafil  waterproofing membrane and extruded polystyrene insulations which are un‐faced. In addition, installation  of  the  NWP  separation  layer  significantly  increases  the  puncture resistance  of  the  waterproofing  assembly  when  installed  between  the waterproofing membrane and the protection layers. 

Sarnatherm XPS Insulation 

Sarnatherm XPS  is a rigid extruded polystyrene  insulation board. The  insulation board  is  installed  over  the  Sika  Sarnafil waterproofing membrane.    Also,  the boards are available in tapered configurations to enhance drainage. 

Sarnafil Drainage Panel (Panel 980): 

The Panel 980 is a prefabricated panel designed for enhancing the performance of the Sika Sarnafil waterproofing system.  The panels channel water away from the waterproofing relieving hydrostatic pressure build up.  The multidimensional core  provides  a  uniform  flow  path  for water  to  escape.    The  interlocking  and overlapping dimple and flange assembly capability ensure  low continuity across panels.    However,  this  component  is  not  compatible  with  electronic  leak detection systems.   

 

 

Page 52: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 52    

Growth Media: 

The growth media will be approximately four inches in depth.  The soil will need to  be  lightweight  and  are  comprised  of  both  inorganic  and  organic materials.  The inorganic material will make up roughly 75% of the soil and consist mainly of expanded  slate  and  crushed  clay, while  the organic material will make up  the remaining 25% of the soil and consist mostly of humus and topsoil.   

This  type of  soil will be able  to  support  the growth of  small  flower and native grasses, both of which will require no additional irrigation to sustain life.   

   

Page 53: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 53    

Green Roof Structural Analysis  

If Marymount University were  to  replace  their  current white  TPO  roofing  system will  a  Sika Sarnafil Extensive green roof system,  the roof structure will require  to be reanalyzed.   This  is necessary to ensure that the structure is capable of withstanding the additional loads that are introduced by a green roof. 

In order to begin this structural analysis, the loads associated with each of the components that make up  the green  roof  system were  required  to be calculated.   This was done  for both  the Academic and Residential  Facilities due  to  their differing  structural  characteristics.   The  load calculations are shown for the Residential and Academic Facilities in Figures 28. and Figure 29., respectively.  

 

 

Figure 28: Load Tabulation ‐ Residential Facility 

 

Figure 29: Load Tabulation ‐ Academic Facility 

 

Mark Density Total (lbs.) Total (psi)Growth Media 85.00 327618.33 28.333Separation Layer 0.03 38.54 0.003Drainage Pannel 60.00 115630.00 10.000XPS Insulation 1.80 6937.80 0.600Waterproofing Membrane 0.14 1618.82 0.140

40

TOTAL DEAD LOAD ‐ Residential Facility Green RoofArea (sf.) Area Comparison11563.00 0.3311563.00 1.0011563.00 0.17

TOTAL11563.00 1.0011563.00 0.33

Mark Density Total (lbs.) Total (psi)Growth Media 85.00 478720.00 28.333Separation Layer 0.03 56.32 0.003Drainage Pannel 60.00 168960.00 10.000XPS Insulation 1.80 10036.22 0.594Waterproofing Membrane 0.14 2365.44 0.140

40

TOTAL DEAD LOAD ‐ Academic Facility Green RoofArea (sf.) Area Comparison16896.00 0.3316896.00 1.00

TOTAL16896.00 1.00

16896.00 0.1716896.00 0.33

Page 54: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 54    

Currently,  the  roof  structure  for  the  entire  facility  consists  of  post‐tensioned,  cast‐in‐place, structural  slabs  that are  supported by  reinforced  concrete columns.   The design criterion  for each of the facilities is outlined below: 

Academic Facility 

Slab Thickness = 9”  Live Loads =  30 PSF  Snow Load = 20 PSF  f’c = 5000 psi 

Residential Facility 

Slab Thickness = 7”  Live Loads =  30 PSF  Snow Load = 20 PSF  f’c = 5000 psi 

 

After  all  of  the  initial  design  specifications  have  been  identified,  the  effects  of  the  newly introduced loads of a green roof needed to be analyzed.   

In order  to begin  the process of  evaluating  a  two‐way post‐tensioned  structure,  a  guide  titled, “Time Saving Design Aid”, provided by  the Portland Cement Association was utilized.   All of  the calculations follow methods presented in ACI 318‐05 and comply with IBC 2003.  This is imperative as the entire Marymount University 26th Street Project was designed according to this edition of the International Building Code. 

Now that the newly  introduced  loads  from the green roof have been established, the remaining design criterion is listed below. 

Loads: 

• Framing Dead Load     = self‐weight 

• Superimposed Dead Load  = 40 psf (Green Roof) 

• Live Load       = 30 psf ( Section 1607.0, 2003 IBC) 

• Snow Load      = 20 psf 

• 2 hour fire‐rating 

Materials: 

• Concrete: Normal weight 150 pcf      f’c = 5,000 psi 

                             f’ci= 3,000 psi 

Page 55: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 55    

• Rebar:  fy = 60,000 psi 

• PT:  Un‐bonded Tendons     ½” φ, 7‐wire strands, A = 0.153 in2       fpu = 270 ksi     Estimated pre‐stress losses = 15 ksi (ACI 18.6)     fse = 0.7*(270 ksi) – 15 ksi = 174 ksi (ACI 18.5.1)     Peff = A*fse = (0.153 in

2)*(174 ksi) = 26.6 kips/tendon 

 

Structural Redesign  

All of the appropriate calculations associated with this analysis can be found  in Appendix D.   The results of  these  calculations determined  that  the 9” post‐tensioned  roof  slab  for  the Academic Facility was capable of withstanding the new introduced loads.  However, the results also proved that  the  roof  slab  for  the Residential Facility was  inadequate and  required a  full  redesign.   This redesign  involved  increasing  the  thickness  of  the  post‐tension  roof  slab,  altering  the  steel reinforcing sizes and layout, and increasing the number of tendons within a typical bay.  Figure 30. displays a typical bay and the corresponding reinforcing bar sizing and layout. 

Figure 30: Typical Bay Size and Reinforcing Layout

Page 56: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 56    

In addition to altering the rebar sizing and layout, the thickness of the roof slab was also increased from 7” to 8”. Increasing thickness will ultimately require additional concrete in both the roof slab and all of the columns that span from the third level to the underside of the roof slab.  The columns on this level needed to be extended by an extra inch in order to ensure that the floor to ceiling height remained consistent.  The original design specifications have the elevation of the Roof Level set at 456.67’, while the elevation of the 3rd Level is set at 446.67’.  This provides a floor‐to‐floor height of exactly 10’‐0”.   

To ensure that the plenum space remains fully intact, the roof will be required to be raised by one inch.    This will  raise  the  elevation  to  446.75’, which  falls  below  limits  set  by  the  International Building Code, as well as the local code authorities.  According to section 504.2 of the International Building Code, the building is permitted to have a total height of 160’‐0”, plus an additional 20’‐0” due  to  the  fact  that  the building  is  fully sprinklered.   However, Arlington County,  the  local code authority,  has  implemented  a  set of  use  conditions  on  the  university,  of which  limits  the  total building height to 45’‐0”. Currently, the extents of the roof rise to an elevation that is 44’‐6” above the finished grade.  That being said, extending the columns and raising the roof of the Residential Facility by one  inch will ensure  that  the new building height still  remains within  the permissible limits set by the local code authorities.   

Green Roof Mechanical Analysis  

One of the major benefits of a green roof system is that it is capable of significantly improving the building’s energy efficiency.  Their ability to reduce the overall heat transfer through the building’s envelope makes this possible.   If the heat transfer can be reduced, the heating and cooling  loads induced on the building can be reduced accordingly.  In order to create a basis for comparison, the heat transfer through the existing roof was first calculated using the following equation: 

 

∆  

 

The  first  step  of  this  analysis  involves  calculating  the  thermal  transmittance  (U  Value)  for  the existing white TPO roof.  The associated calculations can be seen in Figure 31. 

Page 57: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 57    

 

Figure 31: TPO Thermal Properties 

The thermal properties for the green roof system are much more difficult to calculate due to their dynamic  properties.    The  thermal  performance will  be  consistently  fluctuating with  changes  in both  moisture  content  and  temperature.    As  a  solution  to  this  problem,  a  study  that  was performed was performed at  the National Research Center  in Toronto, Canada was utilized as a reference.    The  study was  set up  to  compare  the  thermal properties of  a  conventional  roofing system to that of a green roof system.  The findings of this two year study determined that a green roof is capable of reducing heat gain and heat loss by a total of 95% and 26%, respectively.   

 Figure 32: Yearly Heat Flux 

Thickness (L)Total R‐Value  U ‐ Value

in. °F*ft2*h/Btu Btu/°F*ft2*h

1 Outside Air Film ‐ 0.17 5.8822 TPO Membrane 0.06" 0.05 20.0003 Extruded Polystyrene Insulation 4" 20.00 0.0504 Concrete Slab 7" 0.70 1.4295 Inside Air Film ‐ 0.61 1.639

21.530 0.046

White TPO Roof Thermal Properties

Total 

MaterialLayer

Page 58: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 58    

When calculating the data that can be found in Figure 32., conservative values for both heat gain and heat  loss were utilized.   A 70% reduction  in heat gain and a 20% reduction  in heat  loss were utilized to perform the appropriate calculations.  

Through the research at the National Research Center  in Toronto, Canada,  it was concluded that green roofs provide  the best  thermal performance  in  the warmer, summer months.   This  is at a time  when  the  building  is  constantly  being  cooled  to  keep  the  building’s  occupants  at  a comfortable temperature.   

After evaluating the values  in Figure 32.,  it was determined that the greatest energy savings will occur in July.  The impacts of a green roof allow the average heat flux to drop by approximately 2 BTU/sq. ft. of roof area for the month of July. 

Existing TPO Roof System:  ∆  

0.046°

11,550   16,900  77.5 ° 70 °   

9,815   

Extensive Green Roof System: 

9,815  1 0.70  

2,945   

Total Savings: 

9,815  2,945 /12,000  

0.5725   

Yearly Energy Savings: 

         

28,450    1.9   

24  365   

473,521,800   

 

Page 59: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 59    

Yearly Cost Savings: 

       $

      

   , ,     $ .

  , 

 (*Seasonal Energy Efficiency Ratio of 14 is required for an Energy Star rating.)  

  $ ,  

 

LEED Analysis 

Marymount University has opted to incorporate sustainable features into the 26th St Project.  The project is striving to achieve a LEED® Certified rating and was designed according to LEED NCv2.2.  Some of the major the major sustainable features of this project are listed below. 

On‐site bicycle racks for residents and university employees   Preferred parking for carpools, vanpools, and Zip Cars  All plumbing fixtures will be “Low‐Flow” and consume 21% less water  Building  envelope,  lighting,  power,  and HVAC  systems  have  been  designed  according  to ASHREA 90.1‐2004 

CFC‐based refrigerants will not be utilized in the HVAC systems  All  building  occupants  will  have  access  to  on‐site  storage  receptacles  for  recyclable materials 

At least 10% of products used during construction will contain recycled material  At least 10% of the materials used during construction will be regionally located (extracted, processed & manufactured) 

All paints, adhesives, sealants, and carpets  have been specified to be low‐emitting 

If Marymount University were to incorporate an extensive green roof into the design of their new facilities,  they would  eligible  to  potentially  achieve  a  Silver  Rating.    Additional  credits  can  be earned in each of the following categories; 

Page 60: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 60    

 Figure 33: Potential Credits Generated by a Green Roof 

 

In  total,  a  green  roof  is  capable  of  generating  a  potential  of  twenty‐five  LEED  points.    In combination will all of the other sustainable features that have been incorporated into the design of the facilities at Marymount University, the total project score would be 33.  This would put the 26th Street Project at the lower limits of a LEED Silver rating, with 13 total points still possible.  A completed LEED Scorecard can be found within Appendix F.  

   

Credit Category Comment Direct Indirect

Credit 5.1Reduce Site Disturbance: Protect or Restore Open Spaces

Green roof with native or adapted vegetation will cover a minimum of 50% of the open space of the site.

X

Credit 6.1Stormwater Management: Rate and Quantity

Green roofs can reduce or eliminate the rate and quantity of storm water discharged from the site through direct absorption and storage of excess water.

X

Credit 7.2 Heat Island Effect: Roof50% of the total roof area will be covered by green roof

X

Credit 1.2Water Efficient Landscaping: No Potable Use or No Irrigation

All potable water will be eliminated for irrigation of the green roof and all associated landscape features.

X

Credit 2.0 Innovation Wastewater TechnologiesThe green roof will serve as an on‐site wastewater treatment media.

X

Credit 3.1 Water Use Reduction: 20% ReductionOne credit can be earned if potable water is reduced by 20%.

X

Credit 1.0Optimize Energy Performance: 28% New, 21% Existing

A green roof can contribute to enhanced energy performance of the building.  Credits earned are based on % of reduction of energy costs.  The total reduction of must equal 28% in order to achieve the 4 credits

X

Credit 4.1 Recycled Content

Most of the materials that make‐up the green roof contain recycled content.  Materials with recycled content must constitute 5% to 10% of the total materials used.

X

Credit 5.1 Regional Materials10% of all building materials, based on total cost, must be produced with a 500 mile radius of the project location.

X

Credit 1.1Innovation in Design: Green Roof Design

Green roofs allow the designer to be innovative in the total building design.

X

Innovation & Design Process

Energy and Atmosphere

LEED & Green Roofs

Sustainable Sites

Water Efficiency

Materials and Resources

Page 61: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 61    

Cost & Schedule Impacts  

In order to accurately determine the cost impacts of an intensive green roof system, cost data was obtained  from  the  manufacturer,  Sika  Sarnafil.    It  was  determined  that  the  total  cost  of  an extensive  green  roof  system  for  a  project  of  this  size  will  have  an  installed  cost  of  roughly $20.00/SF.    The  estimated  cost  that  is  shown  in  Figure  34.  does  not  include  additional  costs associated with maintenance or up keeping of the green roof.   However, this should be minimal and generally limited to routine seasonal maintenance.  

 

Figure 34: Extensive Green Roof $/SF 

The green  roof  redesign would cover approximately 16,900 square  feet of  the Academic Facility and  roughly  11,550  square  feet  of  the Residential  Facility.   Areas  that  are  not  affected  by  this redesign  include  stair  towers,  elevator  shafts,  and  any  other  space  that  is  being  occupied  by mechanical equipment.   

A complete cost comparison of the two separate roofing systems can be found in Figure 35.  

 Figure 35: Cost Comparison ‐ Roofing Systems 

 

In addition to the cost increase of the green roof materials, the costs of the structure also saw an increase.    This  increase  in  cost  was  a  result  of  the  additional  labor  and materials  that  were required to accommodate the new  introduced  loads of the green roof.   The  increase  in material totals is outline below. 

Component Cost/SFGreen Roof System (Membrane, Drainage Fabric, Filter Fabric, Growth Media)

$12.00

Installation Costs $8.00TOTAL $20.00

Sika Sarnafil Extensive Green Roof System

Roofing System Cost Comparison Sq. Feet $/SF Total CostExisting White TPO Roofing System 28,450 $11.00 $312,950.00Extensive Green Roof system 28,450 $20.00 $569,000.00

Roofing System Cost Comparison

Page 62: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 62    

An additional 36 cubic yards of concrete was required, this is roughly equivalent to a 0.25% increase. 

An additional 15  tons of  steel  reinforcing bar was  required,  this  is approximately a 2.0% increase. 

The formwork totals netted an increase of 190 square feet of materials.   

After  all  of  the  individual  quantities  were  established  from  the  structural  drawings,  RSMeans CostWorks software was utilized as a source  for cost data.   All of  the data  that was  taken  from RSMeans was appropriately adjusted for both location and time. 

The  estimated  cost  for  the  entire  structural  system  came  to  $8,529,185.    This  includes  the additional  structural  requirements  that  were  required  by  introducing  a  green  roof.    This  is equivalent to 20% of the total project cost.  A detailed breakdown of material quantities and cost data can be found in Figure 37.  Please refer to Appendix E for a detailed quantity take‐offs.  

Also,  the  newly  estimated  value  of  $8,529,185  is  only  $140,000  greater  than  the  originally estimated price  for  the structure.   This results  in a new building cost per square  foot of $31.94, which is equivalent in a $0.52 increase.  A complete cost comparison can be seen in Figure 36.  

 

 

Description Total Cost Cost/SF% of Project 

CostRSMeans + Quantity Take‐offs 8,389,288.31$   31.42$     20%Structure with Green Roof 8,529,185.33$   31.94$     20%

Green Roof Cost Comparison

Figure 36: Green Roof Structural Impacts

Page 63: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 63    

 

Figure 37: Total Cost for the Structural System 

 

   

Description Quantity Unit Bare Material Bare LaborBare 

EquipmentBare Total Total O &P Final O & P

Columns 67 Tons 1,550.00$       950.00$           ‐$             2,500.00$     3,250.00$  217,750.00$     Beams/Girders 32 Tons 1,550.00$       890.00$           ‐$             2,440.00$     3,150.00$  99,369.13$        Elevated Slabs 450 Tons 1,650.00$       490.00$           ‐$             2,140.00$     2,605.00$  1,172,250.00$  Spread Footings 186 Tons 1,400.00$       395.00$           ‐$             1,795.00$     2,175.00$  404,550.00$     Foundation/Shear Walls 183 Tons 1,475.00$       1,340.00$       ‐$             2,815.00$     3,265.00$  439,200.00$     Expoxy Coated Rebar 129 Tons 2,340.00$       $475.00 ‐$             2,815.00$     3,265.00$  421,185.00$     

2,754,304.13$  

Beams/Girders (5000 psi) 347 CY 110.00$           55.00$             26.50$         191.50$        249.00$     86,403.00$        Columns (5000 psi) 574 CY 110.00$           61.50$             30.00$         201.50$        262.00$     150,388.00$     Elevated Slabs (5000 psi) 7193 CY 106.00$           22.50$             10.90$         139.40$        182.00$     1,309,126.00$  Spread Footings (5000 psi) 737 CY 110.00$           55.00$             26.50$         191.50$        249.00$     183,513.00$     Mat Foundations (5000 psi) 2410 CY 110.00$           8.20$               3.99$           122.19$        159.00$     383,190.00$     Foundation/Shear Walls (4000 psi) 2196 CY 106.00$           27.50$             13.30$         146.80$        191.00$     419,436.00$     Slab on Grade (4000 psi) 776 CY 106.00$           55.00$             26.50$         187.50$        244.00$     189,344.00$     

2,721,400.00$  

Columns 39267 SFCA 0.15$               0.79$               5.65$           6.44$             9.62$          377,748.54$     Elevated Slabs 265675 SFCA 0.09$               1.55$               3.43$           4.98$             7.01$          1,862,384.34$  Foundation/Shear Walls 81144 SFCA 0.12$               0.78$               4.73$           5.51$             8.21$          666,189.27$     Beams/Girders 14461 SFCA 0.12$               0.90$               4.73$           5.63$             8.34$          120,608.34$     Mat Foundations 2944 SFCA 0.14$               0.70$               5.35$           6.05$             9.02$          26,550.71$        

3,053,481.20$  

8,529,185.33$  

FORMWORK

FORMWORK TOTAL

GRAND TOTAL

Total Cost for the Structural System (Green Roof)

REBAR

REBAR TOTALCONCRETE

CONCRETE TOTAL

Page 64: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 64    

It  can be  seen  in  the proposed  schedule below,  that altering  the  roofing  system will add  seven days to the existing roof schedule.  The total duration for this set of activities has been lengthened; however  the overall  construction  schedule  is not  affected.    In both  scenarios,  the Building Dry Milestone  remains  consistent.    This  is  extremely  important,  as  all  of  the  interior  finishes  are depending on the achievement of this milestone. 

  

Figure 38: Green Roof Schedule Impacts 

 

Life Cycle Cost Analysis  

As mentioned previously, the roofs of both facilities at Marymount University are specified to have white  TPO  roofing membranes.    Through  the  literature  provided  by  the manufacturer  of  this particular roofing membrane,  it has been determined that the warranty period  is 15 years.   The warranty  is  limited because  the  roofing membrane will be  fully‐adhered,  thus unprotected  from elements such as ultraviolet radiation and high wind speeds for extended periods of time.  

Assuming that the university was to have  incorporated a green roof  into the design of their new facilities,  they  would  have  seen  an  increase  in  the  durability  of  their  roof’s  waterproofing membrane. This  is due to the fact that the growth media  is capable of protecting the membrane from  ultraviolet  radiation,  extreme  winds,  and  temperature  fluctuations,  keeping  it  from prematurely degrading.    

Page 65: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 65    

The  life  cycle  cost  analysis  in  Figure  39. was  performed  to  compare  these  two  systems.    The analysis  includes  initial costs, replacement costs, routine maintenance costs, and energy savings.  The calculation of the energy savings was determined through a building enclosure study that can be found within the Mechanical Analysis.   

 

Figure 39: Life Cycle Cost Analysis 

From Figure 39., it can be seen that the green roof has a much higher initial cost associated with it.  This  is because  the  system  is $9.00/SF greater  than  the currently  specified  system and  requires additional  structural  requirements  that  total  $140,000.    However,  around  year  15,  when  the warranty  period  for  the  TPO  roofing membrane  expires,  the  roof will most  likely  need  to  be completely  replaced.    The  spike  at  year  15  can  be  explained  by  the  additional  costs  that  are associated with replacing the entire roofing system.  This is not the case with a green roof, as it is much more durable, lasting upwards of 50 years.   

For  the  university  to  completely  capitalize  on  their  initial  investment,  they  will  have  to  wait approximately 30 years.   This  is not out of  the question, as  they  look  to utilize  this building  for decades to come.   

Page 66: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 66    

Conclusions & Recommendations  

Through the completion of this analysis topic, it has been determined that implementing a green roof  into the design of Marymount University 26th Street Project  is viable alternative to a white, TPO  Roofing  system.    An  extensive  green  roof  system  does  carry  higher  initial  costs,  but  its durability proves to be a critical factor.     

If Marymount University were to  incorporate this change  into the design of their roofing system, they would potentially see a $2,700 reduction  in energy costs, yearly. Additionally, through a  life cycle  cost analysis  comparing  the  two  systems proved  that  the university would begin  to  see a return on their investment around year 30. 

Financial  incentives are not  the only benefits  that would be  seen  if  the university opted  for an extensive  green  roof.    A  green  roof  would  provide  a  visual  showcase  that  proves  to  faculty, students, university personnel, and community members  that  they are committed  to  improving the sustainability of their new facilities.  Currently, the Marymount University 26th Street Project is slated to achieve a rating of LEED Certified.  However, through the addition of an extensive green roof, they could easily achieve a rating of LEED Silver.   

 

   

Page 67: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 67    

8.0 Master of Architectural Engineering Requirement  

Knowledge gained  in 500‐Level Architectural Engineering classes has been displayed through the incorporation and design of a green roof in Analysis III.  The addition of a green roof has proven to increase  the  building’s  sustainability  and  significantly  improve  the  thermal  performance  of  the building’s  envelope.    The  topic  of  sustainability was  the main  theme  of  AE  597D:  Sustainable Building  Construction, while AE  542:  Building  Enclosure  Science  and Design  provided  adequate knowledge involving building envelope systems, both of which are highly involved in the design of a green roof.   

AE 597D: Sustainable Building Construction provided an understanding of sustainability concepts and  green  design  principles  as  applied  in  the  building  construction  industry.    Through  the completion of this course, the appropriate vocabulary and skills regarding sustainable methods of construction were developed.  This course also provide an in‐depth background of the LEED rating system, which allowed the building’s current LEED Rating to be reanalyzed due to the sustainable impacts that are associated with a Green Roof.   

AE 542: Building Enclosure Science and Design provided the knowledge regarding issues involving the building enclosures, science, and design.   

The building enclosure: nature, importance, loadings  Science: control of heat, moisture, air, hydrothermal analysis  Design: walls, windows, roofs joints 

This  course  is  in  the  process  of  completion;  however  the  topics  of  heat  transfer  and  roofing systems  have  been  covered  thoroughly  enough  to  select,  design,  and  analyze  the  thermal characteristics of a green roof system.  

   

Page 68: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 68    

9.0 Final Conclusions  Through the completion of the Marymount University 26th Street Project, the university feels strongly that the project should be completed on time and under budget.  Additionally, the university has made it  clear  that  they wish  to utilize  these  facilities  for decades  to  come.   These  factors alone provided opportunities  to  perform  critical  industry  research,  investigate  value  engineering  ideas,  provide constructability reviews, and look for ways to reduce the schedule.   Through  the  completion  of  the  analysis  on  Short  Interval  Production  Scheduling,  it  has  been determined that the Academic Facility at Marymount University would be a prime candidate for this scheduling  technique,  as  it  involves  a  series  of  repetitive  activities.    Throughout  the  completion  of these  activities,  the  contractors  would  be  capable  of maximizing  their  rates  of  production,  while avoiding any sacrifices in quality.  Additional factors that would have benefited the entire Project Team involve  a  schedule  reduction  of  approximately  ten working  that  generate  a  savings  of  $70,000  in general conditions costs.  This would not only provide a savings to the owner, but it would also ensure that the project is turned over on time. 

The conclusion of  the analysis  involving MEP Coordination Methods reinforces  the  fact  that 3D MEP Coordination  is  becoming  increasingly  popular  within  the  construction  industry.    The  General Contractor,  James G. Davis,  has  acknowledged  this  trend with  the  development  of  a  new  position within  their  organization.    Once  properly  educated,  Integrated  Construction  Engineers  (ICEs),  are supplied  with  the  proper  knowledge  to  successfully  manage  the  3D  MEP  Coordination  process.  Overall,  it  can be  concluded  that  the Project Team, as well as  the university, would have benefited significantly from this newly created role and the utilization of 3D MEP Coordination.  

Through  the completion of  the  research  that was performed  in  the green  roof analysis,  it has been determined that an extensive green roof will provide the university with a roofing system that is more energy efficient and much more durable. The green roof would carry higher initial costs, but through a life cycle cost analysis, the cost was proven to be offset by  its durability.   Additionally, the university would  reinforce  their public commitment  to  sustainability, as  their LEED  rating would  increase  from Certified to Silver.   

Over the completion of these three analysis topics,  it has been determined that the results have the potential  to  increase  efficiencies  in multiple  aspects  of  the  project.    In  all,  the  university  will  be provided  with  more  efficient  and  predictable  project  schedule,  a  more  efficient  method  of MEP Coordination, and a more efficient roofing system.  When combined, all three analysis topics have the ability to present the university with a high quality product that they can occupy for years to come.  

Page 69: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 69    

10.0 Resources  

(2009, August). Retrieved August 26, 2009, from Official Site of Arlington County Virginia: http://www.arlingtonva.us 

Behr, R. A. (2010). Building Enlcosure Science and Design. State College. 

Kibert, C. J. (2008). Sustaniable Construction. Hooken: John Wiley & Sons, Inc. . 

Marymount University. (2009, August). Marymount University‐26th St Project. Retrieved August 26, 2009, from http://www.marymount.edu/26thstreetproject/ 

National Institute of Building Sciences. (2010). Extensive Green Roofs. Retrieved March 1, 2010, from Whole Building Design Guide: http://www.wbdg.org/resources/greenroofs.php 

Portland Cement Association. (2010). Time Saving Design Aids. Two‐Way Post‐Tensioned Design . 

PSU Computer Integrated Construction. (2006). Penn State CIC Program. Retrieved March 22, 2010, from Computer Integrated Construction: http://www.engr.psu.edu/ae/cic/ 

RSMeans. (2010). Online Cost Estimating. Retrieved February 12, 2010, from RSMeans CostWorks: http://meanscostworks.com/ 

Sika Sarnafil. (2010). Green Roof Design Guide. 

Sika Sarnafil. (2006). Green Roof Systems. Retrieved March 1, 2010, from Sika Sarnafil: http://www.sarnafilus.com/index/roofing/systems_rs/roofing‐sarnafil/green_roof_rs.htm 

Stein, B., Reynolds, J. S., Grondzik, W. T., & Kwok, A. G. (2006). Mechanical and Electrical Equipment for Buildings. Hoboken, New Jersey: John Wiley and Sons. 

SurveyMonkey. (2010). Free Online Survey Software & Questionnaire Tool. Retrieved March 1, 2010, from SurveyMonkey: http://www.surveymonkey.com/ 

U.S. Department of Energy. (2010). Department of Energy. Retrieved March 1, 2010, from http://www.energy.gov/ 

U.S. Green Building Council. (2010). USGBC: U.S. Green Building Council. Retrieved March 1, 2010, from http://www.usgbc.org/ 

 

Page 70: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 70    

 

 

 

 

 

 

 

 

Appendix A: Critical Path Method Finish Schedule    

Page 71: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

ID Task Name Duration Start Finish

1 G3 LEVEL 66 days Thu 1/28/10 Thu 4/29/102 Frame Walls 10 days Thu 1/28/10 Wed 2/10/103 Rough-In MEP 11 days Thu 2/11/10 Thu 2/25/104 In Wall QC 8 days Fri 2/26/10 Tue 3/9/105 Building Dry Milestone 0 days Fri 2/19/10 Fri 2/19/106 Hang/Tape/Finish GWB 10 days Wed 3/10/10 Tue 3/23/107 Prime Walls 3 days Wed 3/24/10 Fri 3/26/108 Point-Up Drywall 3 days Mon 3/29/10 Wed 3/31/109 Paint Final Coat 5 days Thu 4/1/10 Wed 4/7/10

10 Install Ceramic Tile 4 days Thu 4/8/10 Tue 4/13/1011 Install Plumbing Fixtures 3 days Wed 4/14/10 Fri 4/16/1012 Install Millwork & Countertops 4 days Mon 4/19/10 Thu 4/22/1013 Install VCT & Carpet 5 days Fri 4/23/10 Thu 4/29/1014 G2 Level 66 days Thu 2/11/10 Thu 5/13/1015 Frame Walls 10 days Thu 2/11/10 Wed 2/24/1016 Rough-In MEP 11 days Thu 2/25/10 Thu 3/11/1017 In Wall QC 8 days Fri 3/12/10 Tue 3/23/1018 Hang/Tape/Finish GWB 10 days Wed 3/24/10 Tue 4/6/1019 Prime Walls 3 days Wed 4/7/10 Fri 4/9/1020 Point-Up Drywall 3 days Mon 4/12/10 Wed 4/14/1021 Paint Final Coat 5 days Thu 4/15/10 Wed 4/21/1022 Install Ceramic Tile 4 days Thu 4/22/10 Tue 4/27/1023 Install Plumbing Fixtures 3 days Wed 4/28/10 Fri 4/30/1024 Install Millwork & Countertops 4 days Mon 5/3/10 Thu 5/6/1025 Install VCT & Carpet 5 days Fri 5/7/10 Thu 5/13/1026 G1 Level 66 days Thu 2/25/10 Thu 5/27/1027 Frame Walls 10 days Thu 2/25/10 Wed 3/10/1028 Rough-In MEP 11 days Thu 3/11/10 Thu 3/25/1029 In Wall QC 8 days Fri 3/26/10 Tue 4/6/1030 Hang/Tape/Finish GWB 10 days Wed 4/7/10 Tue 4/20/1031 Prime Walls 3 days Wed 4/21/10 Fri 4/23/1032 Point-Up Drywall 3 days Mon 4/26/10 Wed 4/28/1033 Paint Final Coat 5 days Thu 4/29/10 Wed 5/5/1034 Install Ceramic Tile 4 days Thu 5/6/10 Tue 5/11/1035 Install Plumbing Fixtures 3 days Wed 5/12/10 Fri 5/14/1036 Install Millwork & Countertops 4 days Mon 5/17/10 Thu 5/20/1037 Install VCT & Carpet 5 days Fri 5/21/10 Thu 5/27/1038 Level 1 66 days Thu 3/11/10 Thu 6/10/1039 Frame Walls 10 days Thu 3/11/10 Wed 3/24/1040 Rough-In MEP 11 days Thu 3/25/10 Thu 4/8/1041 In Wall QC 8 days Fri 4/9/10 Tue 4/20/1042 Hang/Tape/Finish GWB 10 days Wed 4/21/10 Tue 5/4/1043 Prime Walls 3 days Wed 5/5/10 Fri 5/7/1044 Point-Up Drywall 3 days Mon 5/10/10 Wed 5/12/1045 Paint Final Coat 5 days Thu 5/13/10 Wed 5/19/1046 Install Ceramic Tile 4 days Thu 5/20/10 Tue 5/25/1047 Install Plumbing Fixtures 3 days Wed 5/26/10 Fri 5/28/1048 Install Millwork & Countertops 4 days Mon 5/31/10 Thu 6/3/1049 Install VCT & Carpet 5 days Fri 6/4/10 Thu 6/10/1050 Level 2 90 days Thu 3/25/10 Wed 7/28/1051 Frame Walls 14 days Thu 3/25/10 Tue 4/13/1052 Rough-In MEP 15 days Wed 4/14/10 Tue 5/4/1053 In Wall QC 11 days Wed 5/5/10 Wed 5/19/1054 Hang/Tape/Finish GWB 14 days Thu 5/20/10 Tue 6/8/1055 Prime Walls 4 days Wed 6/9/10 Mon 6/14/1056 Point-Up Drywall 4 days Tue 6/15/10 Fri 6/18/1057 Paint Final Coat 7 days Mon 6/21/10 Tue 6/29/1058 Install Ceramic Tile 6 days Wed 6/30/10 Wed 7/7/1059 Install Plumbing Fixtures 4 days Thu 7/8/10 Tue 7/13/1060 Install Millwork & Countertops 6 days Wed 7/14/10 Wed 7/21/1061 Install VCT & Carpet 5 days Thu 7/22/10 Wed 7/28/1062 Level 3 90 days Wed 4/14/10 Tue 8/17/1063 Frame Walls 14 days Wed 4/14/10 Mon 5/3/1064 Rough-In MEP 15 days Tue 5/4/10 Mon 5/24/1065 In Wall QC 11 days Tue 5/25/10 Tue 6/8/1066 Hang/Tape/Finish GWB 14 days Wed 6/9/10 Mon 6/28/1067 Prime Walls 4 days Tue 6/29/10 Fri 7/2/1068 Point-Up Drywall 4 days Mon 7/5/10 Thu 7/8/1069 Paint Final Coat 7 days Fri 7/9/10 Mon 7/19/1070 Install Ceramic Tile 6 days Tue 7/20/10 Tue 7/27/1071 Install Plumbing Fixtures 4 days Wed 7/28/10 Mon 8/2/1072 Install Millwork & Countertops 6 days Tue 8/3/10 Tue 8/10/1073 Install VCT & Carpet 5 days Wed 8/11/10 Tue 8/17/10

2/19

1/17 1/24 1/31 2/7 2/14 2/21 2/28 3/7 3/14 3/21 3/28 4/4 4/11 4/18 4/25 5/2 5/9 5/16 5/23 5/30 6/6 6/13 6/20 6/27 7/4 7/11 7/18 7/25 8/1 8/8 8/15 8/22February March April May June July August

Task Split Progress Milestone Summary Project Summary External Tasks External Milestone Deadline

Marymount UniversityDetailed Finish Schedule

Page 1

Project: Davis Finish ScheduleDate: Tue 3/16/10

Page 72: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 72    

 

 

 

 

 

 

 

 

Appendix B: MEP Coordination Survey 

  

 

 

 

 

 

 

   

Page 73: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 73    

 

Page 74: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 74    

 

 

 

 

  

Page 75: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 75    

 

 

 

 

 

 

 

 

Appendix C: Sika Sarnafil Product Data  

 

 

 

 

 

 

 

    

Page 76: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Product Data Sheet Edition: 5/2009Version no.: 0006

Drainage Panel 980

Overview: Drainage Panel 980 is a high quality prefabricated composite panel designed to provide continuous free flow of water in applications with soil overburden such as green roofs, landscaped plazas and planters. The drainage panel has a three dimensional high impact polymeric core and woven geotextile fabric that provides better filtration of small soil particles. Water passes freely into the drain core, where it is gravity fed to the drain or to discharge.

Composition: Panel 980 is composed of a high impact resistant polymeric core and wo-ven geotextile fabric. The panel is available in rolls 4 ft wide and 50 ft long (1.2 m x 15.2 m).

Features: Panel 980 is a prefabricated panel designed for enhancing the performance of the Sika Sarnafil waterproofing system. The panel channels water away from the waterproofing relieving hydrostatic pressure build up. The multidimensional core provides a uniform flow path for water to escape. The interlocking and overlapping dimple and flange assembly capability ensures flow continuity across panels. It is not compatible with electronic leak detection systems.

Packaging: Panel 980 is packaged individually in polyethylene bags weighing 45 lbs (20.4 kg) each.

Installation: Panel 980 is installed by an authorized Sika Sarnafil Waterproofing Applica-tor. The drainage panel is loosely laid over the completed waterproofing system. Panels are interlocked or snapped together to form one continu-ous layer of material. Consult with Sika Sarnafil Extensive and Intensive Green Roof Waterproofing Specifications for further information.

Availability: Panel 980 is available directly from Sika Sarnafil Authorized Applicators when used within a Sika Sarnafil Waterproofing System. Contact Sika Sar-nafil or visit our website www.sikacorp.com for further information.

Warranty: As a Sika Sarnafil-supplied accessory, Drainage Panel 980 is included in Sika Sarnafil’s Standard or System Warranty.

Page 77: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Technical: Sika Sarnafil provides technical support. Technical staff is available to advise applicators as to the proper installation method.

Technical Data (as manufactured): ASTM Core Test Method Value Compressive Strength D 1621 21,000 psf (1,005 kN/m2)Thickness D 5199 0.40 in (10.2 mm)Flow D 4716 21 gpm/ft2 W (260 lpm/m2 W)FabricFlow D 4491 95 gpm/ft2 (3,866 lpm/m2)Puncture D 4833 130 lbs (0.58 kN)Apparent Opening Size D 4751 80 US Sieve (EOS) (0.18 mm)Grab Tensile D 4632 205 lbs (0.92 kN)

Drainage Panel 980 requires no maintenance.Maintenance:

Information contained herein is offered solely for the customer’s consideration, inves-tigation and verification. Determination of suitability for use is the sole responsibility of the user.

Corporate OfficeSika SarnafilA Division of Sika Corporation100 Dan RoadCanton, MA 02021

Tel.: (781) 828-5400 1-800-451-2504Fax: (781) 828-5365Web: www.sikacorp.com Email: [email protected]

Canada OfficeSika Sarnafil A Business Unit of Sika Canada6820 Davand Drive Mississauga, ON L5T 1J5

Tel.: (905) 670-2222 1-800-268-0479Fax: (905) 670-5278Web: www.sika.ca

Disclaimer: The information, and, in particular, the recommendation relating to the application and end-use of Sika Sarnafil products, are given in good faith based on Sika Sarnafil’s current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika Sarnafil recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no war-ranty in respect of merchantability of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, may be inferred from this information. The user of the product must determine the product’s suitability for the intended application and purpose. Sika Sarnafil reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request.

Page 78: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Product Data Sheet Edition: 8/2009Version no.: 0006

Sarnafelt NWPSeparation Layer

Overview: Sarnafelt NWP separation layer is a high quality geotextile fabric of non-wo-ven polypropylene. Sarnafelt NWP separation layer is installed between the waterproofing membrane and the extruded polystyrene (XPS) insulation. It can also be used between the waterproofing membrane and protection layers. It is intended to act as separation between products and also to increase the puncture resistance of the waterproofing assembly.

Composition: The Sarnafelt NWP separation layer is a 9 oz/yd2 (305 g/m2) geotextile fabric composed of 100% recycled polypropylene fibers tightly knit together. The tight needle punch produces a fabric which is highly resistant to punc-ture. The polypropylene is naturally resistant to most chemicals, and is particularly resistant to high alkaline exposure. It is available in a roll 90 in (2.3 m) wide and 135 ft (41.1 m) long.

Features: Sarnafelt NWP separation layer is compatible with all Sarnafil membranes, and is typically used in Sika Sarnafil Waterproofing Systems. Consult with these specifications. The Sarnafelt NWP separation layer acts as a barrier between the Sika Sarnafil waterproofing membrane and extruded polysty-rene insulations which are unfaced. In addition, installation of the NWP separation layer significantly increases the puncture resistance of the wa-terproofing assembly when installed between the waterproofing membrane and the protection layers.

Packaging: The NWP separation layer rolls are wrapped in a protective film and weigh 75 lbs (34 kg).

Installation: Sarnafelt NWP separation layer is installed by an authorized Sika Sarnafil Waterproofing Applicator. The NWP separation layer is typically loose-laid and lapped 4 in (102 mm) over the previous roll.

Availability: Sarnafelt NWP separation layer is available directly from Sika Sarnafil Authorized Applicators when used within a Sika Sarnafil Waterproofing System. Contact Sika Sarnafil or visit our website www.sikacorp.com for further information.

Warranty: As a Sika Sarnafil-supplied accessory, Sarnafelt NWP is included in Sika Sarnafil’s Standard or System Warranty..

Page 79: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Technical: Sika Sarnafil provides technical support. Technical staff is available to advise applicators as to the proper installation method.

Maintenance: Sarnafelt NWP requires no maintenance.

Technical Data (as manufactured): ASTM Typical PhysicalParameters Test Method PropertiesWeight D 3776 9 oz/yd2 (305 g/m2)Fiber Type 100% recycled polypropylene nonwoven, needle punchedThickness D 1777 0.160 in (4.1 mm)Burst Strength D 3786 315 lbs (1400 N)Tensile Strength D 5034 70 M.D./140 C.M.D.

Recycled Content Up to 90% Post-Consumer/Up to 20% Post-Industrial

Corporate OfficeSika SarnafilA Division of Sika Corporation100 Dan RoadCanton, MA 02021

Tel.: (781) 828-5400 1-800-451-2504Fax: (781) 828-5365Web: www.sikacorp.com Email: [email protected]

Canada OfficeSika Sarnafil A Business Unit of Sika Canada6820 Davand Drive Mississauga, ON L5T 1J5

Tel.: (905) 670-2222 1-800-268-0479Fax: (905) 670-5278Web: www.sika.ca

Disclaimer: The information, and, in particular, the recommendation relating to the application and end-use of Sika Sarnafil products, are given in good faith based on Sika Sarnafil’s current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika Sarnafil recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no war-ranty in respect of merchantability of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, may be inferred from this information. The user of the product must determine the product’s suitability for the intended application and purpose. Sika Sarnafil reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request.

Page 80: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Product Data Sheet Edition: 5/2009Version no.: 0006

Sarnafil® G476 Waterproofing Membrane

Overview: Sarnafil G476 waterproofing membrane is a heat-weldable thermoplastic waterproofing and flashing membrane formulated with an integral fiberglass mat carrier sheet for dimensional stability.

G476 is used in horizontal applications receiving overburden such as plaza decks, green roofs, planters, balconies, terraces and split slab applica-tions. G476 membrane and flashings must be covered and can not be left permanently exposed.

G476 waterproofing membrane is produced in a variety of lengths and a width of 6.56 ft (2 m).

Composition: G476 is a high quality product containing PVC resin, pigments, stabilizers, biocide and fiberglass carrier sheet. The standard color is orange and the underside is dark gray.

Features: G476 waterproofing membrane is specially compounded for sub-grade environments of constant dampness, high alkalinity, exposure to plant roots, fungi, and bacterial organisms, as well as varying levels of hydrostaticpressure including ponded water conditions. G476 is highly dimensionally stable.

The seams are heat welded providing the most secure seaming method available and will not deteriorate even in the presence of moisture, roots or under stress. G476 is available in 60 mil (1.5 mm), 80 mil (2.0 mm) and 96 mil (2.4 mm) thicknesses.

Packaging: G476 rolls are 6.56 ft (2 m) wide wrapped in a protective film and strapped to a wood pallet. Individual rolls weigh between 134-168 lbs (61-71 kg) depending on thickness and roll length.

Installation: G476 is installed by an authorized Sika Sarnafil Waterproofing Applicator. The membrane is used as the primary waterproofing sheet and concealed flashing membrane with Sika Sarnafil Waterproofing Systems and Green Roofs. Consult with these specifications and your local Sika Sarnafil repre-sentative.

Availability: Sarnafil G476 is available from an authorized Sika Sarnafil Waterproofing Applicator. Contact Sika Sarnafil or visit our website www.sikacorp.com for further information.

Page 81: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Technical: Sika Sarnafil provides technical support. Technical staff is available to advise applicators as to the proper installation method.

Technical Data (as manufactured): ASTM TypicalParameters Test Method Physical Properties Reinforcing Material -- FiberglassOverall Thickness(1), min. D638 (see note 1)Tensile Strength, min., psi (MPa) D638 1600 (11.1)Elongation at Break, min. D638 240% M.D. 240% C.M.D.Seam Strength(2), min., D638 90 (% of tensile strength)Retention of Properties D3045 -- After Heat Aging Tensile Strength, min., D638 95 (% of original) Elongation, min., D638 95 (% of original)Tearing Resistance, min., lbf (N) D1004 21.3 (94.7)Low Temperature Bend, D2136 Pass -40°F (-40°C)Linear Dimensional Change D1204 0.002%Weight Change After D570 2.0% Immersion in WaterStatic Puncture Resistance, D5602 Pass 56 lbf (250 N)Dynamic Puncture Resistance, D5635 Pass 117.7 ft-pdl (5 J)

(1)Typical Physical Properties data is applicable for 0.048 in. (1.2 mm) membrane thickness and greater. (2)Failure occurs through membrane rupture not seam failure.

Corporate OfficeSika SarnafilA Division of Sika Corporation100 Dan RoadCanton, MA 02021

Tel.: (781) 828-5400 1-800-451-2504Fax: (781) 828-5365Web: www.sikacorp.com Email: [email protected]

Canada OfficeSika Sarnafil A Business Unit of Sika Canada6820 Davand Drive Mississauga, ON L5T 1J5

Tel.: (905) 670-2222 1-800-268-0479Fax: (905) 670-5278Web: www.sika.ca

Disclaimer: The information, and, in particular, the recommendation relating to the application and end-use of Sika Sarnafil products, are given in good faith based on Sika Sarnafil’s current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika Sarnafil recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no war-ranty in respect of merchantability of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, may be inferred from this information. The user of the product must determine the product’s suitability for the intended application and purpose. Sika Sarnafil reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request.

Sarnafil G476 requires no maintenance. Although the membrane is typi-cally not easily accessible, regular standard maintenance of plaza decks and green roofs should include regular inspection of drains and termination sealants at least twice per year and after each storm.

Maintenance:

Upon successful completion of the waterproofing system application, a SikaSarnafil warranty may be available. Consult with your Sika SarnafilRegional Office for further information.

Warranty:

Page 82: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Product Data Sheet Edition: 5/2009Version no.: 0004

Sarnatherm XPS Insulation

Overview: Sarnatherm XPS is a rigid extruded polystyrene insulation board.Sarnatherm XPS is installed either under or over the Sika Sarnafil water-proofing membrane depending on the waterproofing system design.Always place a separation layer such as Sarnafelt NWP between the Sar-natherm XPS and the warterproofing membrane.

Composition: The core of Sarnatherm XPS is extruded polystyrene closed-cell foam. The core has continuous skin surfaces on the face and back surfaces. Sarnatherm XPS is available in various sizes depending upon the thermal resistance requirements and application.

Features: Sarnatherm XPS is also available in tapered configurations to enhance drainage.

Packaging: Sarnatherm XPS is provided in labeled bundles that are wrapped in a pro-tective polyethylene film. The amount of Sarnatherm per bundle varies with board thickness.

Installation: Sarnatherm XPS is typically loose-laid on the substrate or over the water-proofing membrane. Overburden is utilized to hold the insulation in place. During installation in hot, sunny weather, protect the insulation with a white covering to prevent excessive heat build-up and potential warping of the insulation boards.

Availability: Sarnatherm XPS is available directly from Sika Sarnafil Authorized Applica-tors when used within a Sika Sarnafil Roofing or Waterproofing System. Contact Sika Sarnafil or visit our website www.sikacorp.com for further

Warranty: As a Sika Sarnafil-supplied accessory, Sarnatherm XPS is included in Sika Sarnafil’s Standard or System Warranty.

Maintenance: Sarnatherm XPS requires no maintenance. Areas of frequent traffic may require protection from damage.

Page 83: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Technical: Sika Sarnafil provides technical support. Technical staff is available toadvise applicators as to the proper installation method.

Technical Data (as manufactured): Thermal Values Nominal Thickness R-Value C-Value 1.0 inch (25 mm) 5.0 0.200 1.5 inch (38 mm) 7.5 0.133 2.0 inch (51 mm) 10.0 0.100 2.5 inch (64 mm) 12.5 0.080 3.0 inch (76 mm) 15.0 0.067 4.0 inch (102 mm) 20.0 0.050 (not all available thicknesses are listed)

(1) Properties shown are representative values for 1in (25 mm) thick material based upon most recent product quality audit data. (2) Value at yield or 5% whichever occurs first. (3) Water vapor permeance varies with product type and thickness. Values are based on the desiccant method and they apply to insulation 1 in (25 mm) or greater in thickness (4) This numerical flame spread rating is not intended to reflect hazards presented by this or any other material under actual fire conditions.

ASTM Property(1) Test Method 400 600 1000 Thermal Resistance, per in (25 mm), @ 75°F (24°C) mean temp., ft².h.°F/Btu C 518, C177 5.0 (.88) 5.0 (.88) 5.0 (.88) (m².°C/W), R-value (RSI), min. Compressive Strength, psi (kPa), min. (2) D 1621 40 (275) 60 (415) 100 (690) Flexural Strength, psi (kPa), min. C 203 60 (480) 75 (585) 100 (585) Water Absorption, % by volume, max. C 272 0.1 0.1 0.1 Water Vapor Permeance,perms (ng/Pa.s.m²) (3) E 96 0.8 (35) 0.8 (35) 0.8 (35) Maximum Use Temperature, °F (°C) -- 165 (74) 165 (74) 165 (74) Coefficient of Linear Thermal Expansion, D 696 3.5 x 10-5 3.5 x 10-5 3.5 x 10-5

in/in.°F (mm/m.°C) (6.3 x 10-2) (6.3 x 10-2) (6.3 x 10-2) Flame Spread(4) E 84 5 5 5 Smoke Developed E 84 165 165 165 Complies with ASTM C 578, Type -- VI VII V Complies with CAN/ULC S701, Type -- 4 4 4

Corporate OfficeSika SarnafilA Division of Sika Corporation100 Dan RoadCanton, MA 02021

Tel.: (781) 828-5400 1-800-451-2504Fax: (781) 828-5365Web: www.sikacorp.com Email: [email protected]

Canada OfficeSika Sarnafil A Business Unit of Sika Canada6820 Davand Drive Mississauga, ON L5T 1J5

Tel.: (905) 670-2222 1-800-268-0479Fax: (905) 670-5278Web: www.sika.ca

Disclaimer: The information, and, in particular, the recommendation relating to the application and end-use of Sika Sarnafil products, are given in good faith based on Sika Sarnafil’s current knowledge and experience of the products when properly stored, handled and applied under normal conditions in accordance with Sika Sarnafil recommendations. In practice, the differences in materials, substrates and actual site conditions are such that no war-ranty in respect of merchantability of fitness for a particular purpose, nor any liability arising out of any legal relationship whatsoever, may be inferred from this information. The user of the product must determine the product’s suitability for the intended application and purpose. Sika Sarnafil reserves the right to change the properties of its products. The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will be supplied on request.

Page 84: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 84    

 

 

 

 

 

 

 

 

Appendix D: Structural Hand Calculations    

Page 85: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 85    

Page 86: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 86    

Page 87: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 87    

Page 88: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 88    

Page 89: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 89    

Page 90: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 90    

 

Page 91: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 91    

Page 92: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 92    

Page 93: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 93    

Page 94: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 94    

Page 95: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 95    

 

 

 

 

 

 

 

 

 

Appendix E: Detailed Structural System Estimate    

Page 96: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 96    

  

Mark Length (ft.) Width (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CYF80 8.00 8.00 2.67 170.67 2.00 341.33 12.64F85 8.50 8.50 2.67 192.67 4.00 770.67 28.54F90 9.00 9.00 2.83 229.50 9.00 2065.50 76.50F95 9.50 9.50 3.00 270.75 3.00 812.25 30.08F100 10.00 10.00 3.17 316.67 8.00 2533.33 93.83F105 10.50 10.50 3.33 367.50 9.00 3307.50 122.50F110 11.00 11.00 3.50 423.50 2.00 847.00 31.37F115 11.50 11.50 3.50 462.88 1.00 462.88 17.14

412.61

Mark Length (ft.) Width (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CYCF01 27.00 12.00 3.67 1188.00 4.00 4752.00 176.00CF03 16.00 13.00 4.00 832.00 1.00 832.00 30.81CF04 14.50 11.00 3.50 558.25 2.00 1116.50 41.35CF05 12.50 8.00 2.17 216.67 1.00 216.67 8.02CF06 18.00 9.00 2.83 459.00 4.00 1836.00 68.00

324.19

Mark Length (ft.) Width (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CY‐ 132.00 4.00 1.50 792.00 1.00 792.00 29.33‐ 31.00 2.00 1.00 62.00 1.00 62.00 2.30‐ 129.00 3.00 1.50 580.50 1.00 580.50 21.50‐ 162.00 1.50 1.50 364.50 1.00 364.50 13.50

66.63

Mark Depth (ft.) Volume (cu. Ft.) Quantity Total Total CY24" 2.00 516.00 1.00 516.00 19.1134" 2.83 1691.87 1.00 1691.87 62.6642" 3.50 1184.26 1.00 1184.26 43.8654" 4.50 61655.63 1.00 61655.63 2283.54

2409.18

TOTAL

TOTAL

TOTAL

TOTAL

258

Square Foundations (Concrete)

Combined Foundations (Concrete)

Grade Beams (Concrete)

Mat Foundations (Concrete)Area (sf)

597.13338.3613701.25

Page 97: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 97    

Mark Height (ft.) Lenght (ft.) Width (ft.) Volume (cu. Ft.) Quantity Total Total CY101 9.00 2.00 1.33 23.94 6.00 143.64 5.32102 9.00 2.00 1.33 23.94 6.00 143.64 5.32103 9.00 2.00 1.33 23.94 6.00 143.64 5.32104 9.00 2.00 1.33 23.94 6.00 143.64 5.32105 9.00 2.00 1.33 23.94 6.00 143.64 5.32106 9.00 2.00 1.33 23.94 6.00 143.64 5.32107 9.00 2.00 1.33 23.94 6.00 143.64 5.32108 9.00 2.00 1.33 23.94 6.00 143.64 5.32109 9.00 2.00 1.33 23.94 6.00 143.64 5.32110 9.00 2.33 1.17 24.50 3.00 73.50 2.72111 9.00 2.00 1.33 23.94 6.00 143.64 5.32112 9.00 2.00 1.33 23.94 6.00 143.64 5.32113 9.00 2.00 1.33 23.94 6.00 143.64 5.32114 9.00 2.00 1.33 23.94 6.00 143.64 5.32115 9.00 2.00 1.33 23.94 6.00 143.64 5.32117 9.00 2.00 1.33 23.94 6.00 143.64 5.32118 9.00 2.00 1.33 23.94 6.00 143.64 5.32119 9.00 2.00 1.33 23.94 6.00 143.64 5.32120 9.00 2.00 1.33 23.94 6.00 143.64 5.32121 9.00 2.00 1.33 23.94 6.00 143.64 5.32122 9.00 2.00 1.33 23.94 6.00 143.64 5.32123 9.00 2.00 1.00 18.00 3.00 54.00 2.00124 9.00 2.00 1.33 23.94 6.00 143.64 5.32125 9.00 2.00 1.33 23.94 6.00 143.64 5.32126 9.00 2.33 1.17 24.50 6.00 147.00 5.44127 9.00 2.33 1.17 24.50 6.00 147.00 5.44128 9.00 2.33 1.17 24.50 6.00 147.00 5.44129 9.00 2.33 1.17 24.50 6.00 147.00 5.44130 9.00 2.00 1.33 23.94 6.00 143.64 5.32131 9.00 2.33 1.17 24.53 6.00 147.21 5.45132 9.00 2.33 1.17 24.53 6.00 147.21 5.45133 9.00 2.33 1.17 24.53 6.00 147.21 5.45134 9.00 2.00 1.33 23.94 6.00 143.64 5.32135 9.00 2.00 1.33 23.94 6.00 143.64 5.32136 9.00 2.00 1.33 23.94 6.00 143.64 5.32137 9.00 2.00 1.33 23.94 6.00 143.64 5.32138 9.00 2.33 1.17 24.53 6.00 147.21 5.45139 9.00 2.33 1.17 24.53 6.00 147.21 5.45140 9.00 2.33 1.17 24.53 6.00 147.21 5.45141 9.00 2.33 1.17 24.53 6.00 147.21 5.45142 9.00 2.33 1.17 24.53 6.00 147.21 5.45143 9.00 2.33 1.17 24.53 6.00 147.21 5.45144 9.00 2.33 1.17 24.53 6.00 147.21 5.45145 9.00 2.33 1.17 24.53 6.00 147.21 5.45146 9.00 2.33 1.17 24.53 6.00 147.21 5.45147 9.00 2.33 1.17 24.53 6.00 147.21 5.45148 9.00 2.33 1.17 24.53 6.00 147.21 5.45149 9.00 2.33 1.17 24.53 6.00 147.21 5.45150 9.00 2.00 1.33 23.94 6.00 143.64 5.32

257.24

Residential Columns (Concrete)

TOTAL

 

 

        

 

 

    

Page 98: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 98    

Mark Height (ft.) Lenght (ft.) Width (ft.) Volume (cu. Ft.) Quantity Total Total CY101 9.083 2.00 1.33 24.16 1.00 24.16 0.89102 9.083 2.00 1.33 24.16 1.00 24.16 0.89103 9.083 2.00 1.33 24.16 1.00 24.16 0.89104 9.083 2.00 1.33 24.16 1.00 24.16 0.89105 9.083 2.00 1.33 24.16 1.00 24.16 0.89106 9.083 2.00 1.33 24.16 1.00 24.16 0.89107 9.083 2.00 1.33 24.16 1.00 24.16 0.89108 9.083 2.00 1.33 24.16 1.00 24.16 0.89109 9.083 2.00 1.33 24.16 1.00 24.16 0.89110 9.083 2.33 1.17 24.73 1.00 24.73 0.92111 9.083 2.00 1.33 24.16 1.00 24.16 0.89112 9.083 2.00 1.33 24.16 1.00 24.16 0.89113 9.083 2.00 1.33 24.16 1.00 24.16 0.89114 9.083 2.00 1.33 24.16 1.00 24.16 0.89115 9.083 2.00 1.33 24.16 1.00 24.16 0.89117 9.083 2.00 1.33 24.16 1.00 24.16 0.89118 9.083 2.00 1.33 24.16 1.00 24.16 0.89119 9.083 2.00 1.33 24.16 1.00 24.16 0.89120 9.083 2.00 1.33 24.16 1.00 24.16 0.89121 9.083 2.00 1.33 24.16 1.00 24.16 0.89122 9.083 2.00 1.33 24.16 1.00 24.16 0.89123 9.083 2.00 1.00 18.17 1.00 18.17 0.67124 9.083 2.00 1.33 24.16 1.00 24.16 0.89125 9.083 2.00 1.33 24.16 1.00 24.16 0.89126 9.083 2.33 1.17 24.73 1.00 24.73 0.92127 9.083 2.33 1.17 24.73 1.00 24.73 0.92128 9.083 2.33 1.17 24.73 1.00 24.73 0.92129 9.083 2.33 1.17 24.73 1.00 24.73 0.92130 9.083 2.00 1.33 24.16 1.00 24.16 0.89131 9.083 2.33 1.17 24.76 1.00 24.76 0.92132 9.083 2.33 1.17 24.76 1.00 24.76 0.92133 9.083 2.33 1.17 24.76 1.00 24.76 0.92134 9.083 2.00 1.33 24.16 1.00 24.16 0.89135 9.083 2.00 1.33 24.16 1.00 24.16 0.89136 9.083 2.00 1.33 24.16 1.00 24.16 0.89137 9.083 2.00 1.33 24.16 1.00 24.16 0.89138 9.083 2.33 1.17 24.76 1.00 24.76 0.92139 9.083 2.33 1.17 24.76 1.00 24.76 0.92140 9.083 2.33 1.17 24.76 1.00 24.76 0.92141 9.083 2.33 1.17 24.76 1.00 24.76 0.92142 9.083 2.33 1.17 24.76 1.00 24.76 0.92143 9.083 2.33 1.17 24.76 1.00 24.76 0.92144 9.083 2.33 1.17 24.76 1.00 24.76 0.92145 9.083 2.33 1.17 24.76 1.00 24.76 0.92146 9.083 2.33 1.17 24.76 1.00 24.76 0.92147 9.083 2.33 1.17 24.76 1.00 24.76 0.92148 9.083 2.33 1.17 24.76 1.00 24.76 0.92149 9.083 2.33 1.17 24.76 1.00 24.76 0.92150 9.083 2.00 1.33 24.16 1.00 24.16 0.89

44.06

Residential Columns (Concrete)

TOTAL

    

Page 99: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 99    

Mark Height (ft.) Lenght (ft.) Width (ft.) Volume (cu. Ft.) Quantity Total Total CY201 9.00 2.00 1.33 23.94 4.00 95.76 3.55202 9.00 2.00 1.33 23.94 4.00 95.76 3.55203 9.00 2.00 1.33 23.94 7.00 167.58 6.21204 9.00 2.00 1.33 23.94 7.00 167.58 6.21205 9.00 2.00 1.33 23.94 7.00 167.58 6.21206 9.00 2.00 1.33 23.94 4.00 95.76 3.55207 9.00 2.00 1.33 23.94 4.00 95.76 3.55208 9.00 2.00 1.33 23.94 7.00 167.58 6.21209 9.00 2.00 1.33 23.94 7.00 167.58 6.21210 9.00 2.00 1.33 23.94 7.00 167.58 6.21211 9.00 2.00 1.33 23.94 7.00 167.58 6.21212 9.00 2.00 1.33 23.94 7.00 167.58 6.21213 9.00 2.00 1.33 23.94 7.00 167.58 6.21214 9.00 2.00 1.33 23.94 7.00 167.58 6.21215 9.00 2.00 1.33 23.94 7.00 167.58 6.21216 9.00 2.00 1.33 23.94 7.00 167.58 6.21217 9.00 2.00 1.33 23.94 7.00 167.58 6.21218 9.00 2.00 1.33 23.94 7.00 167.58 6.21219 9.00 2.00 1.33 23.94 3.00 71.82 2.66219 9.00 28.26 4.00 113.04 4.19220 9.00 2.00 1.33 23.94 7.00 167.58 6.21221 9.00 2.00 1.33 23.94 7.00 167.58 6.21222 9.00 2.00 1.33 23.94 7.00 167.58 6.21223 9.00 2.00 1.33 23.94 4.00 95.76 3.55224 9.00 2.00 1.33 23.94 7.00 167.58 6.21225 9.00 2.00 1.33 23.94 7.00 167.58 6.21226 9.00 2.00 1.33 23.94 7.00 167.58 6.21227 9.00 2.00 1.33 23.94 7.00 167.58 6.21228 9.00 2.33 1.17 24.53 7.00 171.74 6.36229 9.00 2.00 1.33 23.94 7.00 167.58 6.21230 9.00 2.00 1.33 23.94 7.00 167.58 6.21231 9.00 2.00 1.33 23.94 7.00 167.58 6.21232 9.00 2.00 1.33 23.94 4.00 95.76 3.55233 9.00 2.00 1.33 23.94 7.00 167.58 6.21234 9.00 2.00 1.33 23.94 4.00 95.76 3.55235 9.00 2.33 1.17 24.53 7.00 171.74 6.36236 9.00 2.33 1.17 24.53 7.00 171.74 6.36237 9.00 2.33 1.17 24.53 6.00 147.21 5.45238 9.00 2.33 1.17 24.53 6.00 147.21 5.45239 9.00 2.33 1.17 24.53 6.00 147.21 5.45240 9.00 2.33 1.17 24.53 7.00 171.74 6.36241 9.00 2.33 1.17 24.53 7.00 171.74 6.36242 9.00 2.00 1.33 23.94 4.00 95.76 3.55243 9.00 1.50 1.50 20.25 4.00 81.00 3.00244 9.00 1.50 1.50 20.25 4.00 81.00 3.00245 9.00 1.50 1.50 20.25 4.00 81.00 3.00246 9.00 1.50 1.50 20.25 4.00 81.00 3.00247 9.00 2.00 1.33 23.94 3.00 71.82 2.66248 9.00 2.00 1.33 23.94 4.00 95.76 3.55249 9.00 2.00 1.33 23.94 4.00 95.76 3.55250 9.00 2.00 1.00 18.00 3.00 54.00 2.00251 9.00 2.00 1.00 18.00 3.00 54.00 2.00252 9.00 2.00 1.00 18.00 3.00 54.00 2.00253 9.00 2.00 1.00 18.00 3.00 54.00 2.00254 9.00 2.00 1.33 23.94 4.00 95.76 3.55

271.85TOTAL

Academic Columns (Concrete)

2.00

   

Page 100: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 100    

 

Mark Lenght (ft.) Width (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CYB101 19.00 0.83 1.33 21.06 6.00 126.35 4.68B102 18.00 0.83 1.67 25.05 4.00 100.20 3.71B103 20.00 1.67 1.17 38.89 1.00 38.89 1.44B104 14.00 1.67 1.17 27.22 1.00 27.22 1.01B105 22.00 1.67 1.17 42.78 1.00 42.78 1.58B106 22.00 1.67 1.17 42.78 1.00 42.78 1.58B107 20.00 1.67 1.17 38.89 1.00 38.89 1.44B108 20.00 1.67 1.17 38.89 1.00 38.89 1.44B109 22.00 2.00 2.17 95.33 1.00 95.33 3.53B110 20.00 2.00 1.50 60.00 1.00 60.00 2.22B111 20.00 2.00 1.50 60.00 1.00 60.00 2.22B112 28.00 1.00 1.00 28.00 20.00 560.00 20.74B113 23.00 1.00 5.58 128.42 1.00 128.42 4.76

50.36

Mark Lenght (ft.) Width (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CYB201 19.50 0.83 1.33 21.67 8.00 173.33 6.42B202 25.00 1.67 1.21 50.35 1.00 50.35 1.86B203 18.00 1.67 1.21 36.25 1.00 36.25 1.34B204 24.00 1.67 1.21 48.33 1.00 48.33 1.79B205 22.00 1.67 1.21 44.31 1.00 44.31 1.64B206 14.00 1.67 1.21 28.19 1.00 28.19 1.04B207 41.00 4.00 1.13 184.50 3.00 553.50 20.50B216 18.00 4.00 2.17 156.00 1.00 156.00 5.78B220 13.00 0.83 1.33 14.44 12.00 173.33 6.42B221 12.00 0.83 1.50 15.00 12.00 180.00 6.67B222 24.00 1.00 1.50 36.00 3.00 108.00 4.00B223 26.00 1.00 1.50 39.00 14.00 546.00 20.22B224 14.00 0.83 1.50 17.50 6.00 105.00 3.89B225 16.00 1.00 2.00 32.00 2.00 64.00 2.37B226 27.00 2.00 1.00 54.00 6.00 324.00 12.00B227 85.00 2.00 1.00 170.00 3.00 510.00 18.89B228 13.00 0.83 1.00 10.83 4.00 43.33 1.60B229 20.00 0.83 1.33 22.22 2.00 44.44 1.65B230 16.00 1.33 1.33 28.44 3.00 85.33 3.16B231 19.50 1.00 2.92 56.88 3.00 170.63 6.32B233 14.00 1.00 1.50 21.00 3.00 63.00 2.33

129.90

TOTAL

TOTAL

Residential Beams (Concrete)

Academic Beams (Concrete)

Page 101: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 101    

 

 

   

Mark Depth (ft.) Volume (cu. Ft.) QuantityMud Mat 0.17 7480.49 1.00G4 Park 0.33 13465.67 1.00G3 Park 0.67 22748.03 1.00G3 Res. 0.67 7772.00 1.00G2 Park 0.67 23111.60 1.00G2 Res. 0.58 6505.33 1.00G1 Park 0.67 23073.12 1.00G1 Res.  0.58 6585.83 1.00Acad. 1 0.75 12377.25 1.00Res. 1 0.58 6844.74 1.00Plaza 1 1.00 12200.00 1.00Acad. 2 0.75 13429.62 1.00Res. 2 0.58 6845.42 1.00Acad. 3 0.75 13428.19 1.00Res. 3 0.58 6845.42 1.00

Roof Res. 0.67 7708.67 1.00Roof Acad. 0.67 11264.00 1.00

40397.00 498.7334122.04 842.5211658.00 287.85

Structural Slabs (Concrete)Area (sf) Total CY44882.95 277.06

243.9216503.00 458.4211733.84 253.51

34667.40 855.9911152.00 240.9434609.68 854.56

16896.00 417.19TOTAL 7469.83

17904.25 497.3411735.00 253.5311563.00 285.51

12200.00 451.8517906.16 497.3911735.00 253.53

11290.00

Mark Height (ft.) Width (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CYSW1 76.00 27.50 1.00 2090.00 1.00 2090.00 77.41SW2 76.00 18.00 1.00 1242.00 1.00 1242.00 46.00SW3 76.00 18.00 1.00 1168.50 1.00 1168.50 43.28SW4 76.00 9.50 1.00 722.00 1.00 722.00 26.74SW5 77.00 19.50 1.00 1501.50 1.00 1501.50 55.61SW6 77.00 9.25 1.00 712.25 1.00 712.25 26.38SW7 77.00 9.25 1.00 712.25 1.00 712.25 26.38SW8 85.00 9.00 1.00 765.00 1.00 765.00 28.33SW9 85.00 19.50 1.00 1657.50 1.00 1657.50 61.39SW11 65.00 27.50 0.67 1081.67 1.00 1081.67 40.06SW12 85.00 9.00 1.00 765.00 1.00 765.00 28.33SW13 40.00 18.00 1.00 720.00 14.00 10080.00 373.33

833.25TOTAL

Shear Walls (Concrete)

Page 102: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 102    

 

   

Mark Lenght (ft.) Width (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CYB210 42.00 5.00 2.50 525.00 1.00 525.00 19.44B211 29.00 3.00 2.00 174.00 1.00 174.00 6.44B212 29.00 3.00 2.00 174.00 1.00 174.00 6.44B213 22.00 3.00 2.00 132.00 1.00 132.00 4.89B214 40.00 5.00 2.67 533.33 1.00 533.33 19.75B215 30.00 4.00 2.17 260.00 2.00 520.00 19.26B217 36.00 4.00 2.17 312.00 1.00 312.00 11.56B218 36.00 4.00 2.17 312.00 1.00 312.00 11.56

99.35

Mark LF (ft.) Height (ft.) Depth (ft.) Volume (cu. Ft.) Quantity Total Total CY0'‐8" 58.00 18.00 0.67 696.00 1.00 696.00 25.780'‐10" 130.50 24.00 0.83 2610.00 1.00 2610.00 96.671'‐0" 635.92 9.00 1.00 5723.25 4.00 22893.00 847.891'‐4" 289.33 9.00 1.33 3472.00 4.00 13888.00 514.37

1362.26

TOTAL

Foundation Walls (Concrete)

PT Transfer Beams (Concrete)

TOTAL

Page 103: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 103    

 

 

 

   

Mark Qty. L (ft.) W (ft.) EW Bar EW qty. EW (lbs/lf) NS Bar NS qty. NS (lbs/lf) Wt. (lbs.) Total (tons)F80 2.00 8.00 8.00 #8 8.00 2.67 #8 8.00 2.67 341.76 0.34F85 4.00 8.50 8.50 #8 9.00 2.67 #8 9.00 2.67 408.51 0.82F90 9.00 9.00 9.00 #9 8.00 3.40 #9 8.00 3.40 489.60 2.20F95 3.00 9.50 9.50 #9 11.00 3.40 #9 11.00 3.40 710.60 1.07F100 8.00 10.00 10.00 #9 11.00 3.40 #9 11.00 3.40 748.00 2.99F105 9.00 10.50 10.50 #9 11.00 3.40 #9 11.00 3.40 785.40 3.53F110 2.00 11.00 11.00 #10 9.00 4.30 #10 9.00 4.30 851.99 0.85F115 1.00 11.50 11.50 #10 10.00 4.30 #10 10.00 4.30 989.69 0.49

12.30

Squae Foundations (Rebar)

TOTAL

Mark Qty. L (ft.) W (ft.) Bot. S. Bot. S. qty. Bot. S. (lbs./lf) Bot. L. Bot. L. qty. Bot. L. (lbs./lf) Top L. Top L. qty. Top L. (lbs./lf) Total (tons)CF01 4.00 26.50 11.50 #10 34.00 4.30 #10 16.00 4.30 #10 16.00 4.30 10.66CF03 1.00 15.50 12.50 #10 16.00 4.30 #10 14.00 4.30 #10 14.00 4.30 1.36CF04 2.00 14.00 10.50 #9 16.00 3.40 #9 12.00 3.40 #9 12.00 3.40 1.71CF05 1.00 12.00 6.00 #8 14.00 2.67 #8 8.00 2.67 #8 8.00 2.67 0.37CF06 4.00 17.50 8.50 #9 18.00 3.40 #9 8.00 3.40 #9 8.00 3.40 2.94

17.05TOTAL

Combined Foundations (Rebar)

Mark L (ft.) W (ft.) T & B T &B Qty. T & B (lbs/lf) Stir. Stir. (lf) Stir. (lbs/lf) Wt. (lbs) Total (tons)‐ 132.00 4.00 #5 5.00 1.04 #6 3.50 1.50 1382.30 0.69‐ 31.00 2.00 #5 3.00 1.04 97.00 0.05‐ 129.00 3.00 #9 5.00 3.40 #3 7.00 0.38 2532.53 1.27‐ 162.00 1.50 #8 6.00 2.67 #3 5.00 0.37 2892.51 1.45

3.45

Mark L (ft.) W (ft.) L Bar L Qty L (lbs/lf) W Bar W Qty. W (lbs/lf) Qty. (T&B) Total (tons)24" 21.50 12.00 #10 12.00 4.30 #10 21.00 4.30 2.00 2.19

Mark T & B (EW) T & B (EW) Qty T & B (EW) (lbs/lf) Wt. (lbs.) Mult. Total (tons.)34" #10 40.00 4.30 1,721.20 5.97 5.1442" #10 40.00 4.30 1,721.20 3.38 2.9154" #11 40.00 5.31 2,125.20 137.01 145.59

155.83

TOTAL

TOTAL

Grade Beams (Rebar)

Mat Foundations (Rebar)

Mat Foundations (Rebar)

597.13338.36

13,701.25

Area Comparison100.00100.00100.00

Area (sf.)

Page 104: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 104    

 

 

 

Mark T & B (EW) T & B (EW) Qty T & B (EW) (lbs/lf) Wt. (lbs.) Mult. Total (tons.)SW1 #6 40.00 1.50 600.80 20.90 6.28SW2 #6 40.00 1.50 600.80 12.42 3.73SW3 #6 40.00 1.50 600.80 11.69 3.51SW4 #6 40.00 1.50 600.80 7.22 2.17SW5 #6 40.00 1.50 600.80 15.02 4.51SW6 #6 40.00 1.50 600.80 7.12 2.14SW7 #6 40.00 1.50 600.80 7.12 2.14SW8 #4/#5 40.00 0.86 342.20 7.65 1.31SW9 #4/#5 40.00 0.86 342.20 16.58 2.84SW11 #4/#5 40.00 0.86 342.20 17.88 3.06SW12 #4/#5 40.00 0.86 342.20 7.65 1.31SW13 #5/#6 40.00 1.27 509.00 100.80 25.65

58.64

Area (sf.) Area Comparison2090.00

1501.50712.25712.25765.00

722.00

Shear Walls (Rebar)

100.00100.00100.00100.00100.00

100.00100.00100.00100.00

TOTAL

765.0010080.00

1657.501787.50

1242.001168.50

100.00100.00100.00

Mark L (ft.) Qty. Bar Wt. (lbs./lf) Bars Stir. Stir. (lf) Stir. (lbs/lf)Wt. (lbs.) Total (tons)4 Bars 9.00 140.00 #9 3.40 4.00 #3 5.50 0.38 19741.68 9.876 Bars 9.00 170.00 #9 3.40 6.00 #3 5.50 0.38 34376.04 17.198 Bars 9.00 17.00 #10 4.30 8.00 #3 5.50 0.38 5583.28 2.7910 Bars 9.00 3.00 #10 4.30 10.00 #3 5.50 0.38 1217.65 0.6112 Bars 9.00 7.00 #11 5.31 12.00 #4 5.50 0.67 4248.09 2.12

32.58

Mark L (ft.) Qty. Bar Wt. (lbs./lf) Bars Stir. Stir. (lf) Stir. (lbs/lf)Wt. (lbs.) Total (tons)4 Bars 9.00 140.00 #9 3.40 4.00 #3 5.50 0.38 19741.68 9.876 Bars 9.00 108.00 #9 3.40 6.00 #3 5.50 0.38 21838.90 10.928 Bars 9.00 32.00 #10 4.30 8.00 #3 5.50 0.38 10509.70 5.2510 Bars 9.00 12.00 #10 4.30 10.00 #3 5.50 0.38 4870.58 2.4412 Bars 9.00 18.00 #11 5.31 12.00 #4 5.50 0.67 10923.66 5.46

33.94

Residential Columns (Rebar)

TOTAL

Academic Columns (Rebar)

TOTAL

Mark L (ft.) Qty. T Bar Top (lbs./lf) Bars Bot. Bar Bot (lbs./lf) Bars Stirrup (lbs) Total (tons)B101 19.00 6.00 #7 2.04 2.00 #8 2.67 2.00 3.38 0.73B102 18.00 4.00 #8 2.67 2.00 #9 3.40 2.00 3.38 0.56B103 20.00 1.00 #8 2.67 2.00 #9 3.40 4.00 3.38 0.22B104 14.00 1.00 #8 2.67 2.00 #9 3.40 4.00 3.38 0.16B105 22.00 1.00 #8 2.67 4.00 #10 4.30 4.00 3.38 0.34B106 22.00 1.00 #9 3.40 4.00 #10 4.30 4.00 3.38 0.38B107 20.00 1.00 #8 2.67 2.00 #10 4.30 5.00 3.38 0.30B108 20.00 1.00 #8 2.67 2.00 #10 4.30 5.00 3.38 0.30B109 22.00 1.00 #9 3.40 4.00 #10 4.30 6.00 3.38 0.47B110 20.00 1.00 #9 3.40 4.00 #10 4.30 6.00 3.38 0.43B111 20.00 1.00 #9 3.40 4.00 #10 4.30 6.00 3.38 0.43B112 28.00 20.00 #7 2.04 2.00 #7 2.04 2.00 3.38 3.24B113 23.00 1.00 #9 3.40 2.00 #10 4.30 2.00 3.38 0.22

7.77TOTAL

Residential Beams (Rebar)

Page 105: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 105    

 

   

Mark L (ft.) Qty. T Bar Top (lbs./lf) Bars Bot. Bar Bot (lbs./lf) Bars Stirrup (lbs/lf) Total (tons)B201 19.50 8.00 #7 2.44 2.00 #8 2.67 2.00 3.38 1.06B202 25.00 1.00 #8 2.67 2.00 #9 3.40 4.00 3.38 0.28B203 18.00 1.00 #8 2.67 2.00 #9 3.40 4.00 3.38 0.20B204 24.00 1.00 #8 2.67 2.00 #9 3.40 4.00 3.38 0.27B205 22.00 1.00 #8 2.67 2.00 #9 3.40 4.00 3.38 0.25B206 14.00 1.00 #8 2.67 2.00 #9 3.40 2.00 3.38 0.11B207 41.00 3.00 #7 2.44 4.00 #7 2.44 4.00 3.38 1.41B216 18.00 1.00 #9 3.40 6.00 #11 5.31 10.00 3.38 0.69B220 13.00 12.00 #8 2.67 2.00 #8 2.67 2.00 3.38 1.10B221 12.00 12.00 #8 2.67 2.00 #8 2.67 2.00 3.38 1.01B222 24.00 3.00 #8 2.67 2.00 #8 2.67 2.00 3.38 0.51B223 26.00 14.00 #8 2.67 2.00 #8 2.67 2.00 3.38 2.56B224 14.00 6.00 #8 2.67 2.00 #8 2.67 2.00 3.38 0.59B225 16.00 2.00 #8 2.67 2.00 #8 2.67 2.00 3.38 0.23B226 27.00 6.00 #8 2.67 2.00 #8 2.67 2.00 3.38 1.14B227 85.00 3.00 #8 2.67 2.00 #8 2.67 2.00 3.38 1.79B228 13.00 4.00 #8 2.67 2.00 #8 2.67 2.00 3.38 0.37B229 20.00 2.00 #7 2.44 2.00 #8 2.67 2.00 3.38 0.27B230 16.00 3.00 #8 2.67 2.00 #9 3.40 2.00 3.38 0.37B231 19.50 3.00 #9 3.40 3.00 #10 4.30 3.00 3.38 0.77B233 14.00 3.00 #8 2.67 2.00 #8 2.67 2.00 3.38 0.30

15.27

Mark L (ft.) Qty. T Bar Top (lbs./lf) Bars Bot. Bar Bot (lbs./lf) Bars Stirrup (lbs/lf) Total (tons)B210 42.00 1.00 #8 2.67 8.00 #8 2.67 8.00 3.56 0.97B211 29.00 1.00 #8 2.67 4.00 #8 2.67 4.00 3.56 0.36B212 29.00 1.00 #8 2.67 4.00 #8 2.67 4.00 3.56 0.36B213 22.00 1.00 #8 2.67 4.00 #8 2.67 4.00 3.56 0.27B214 40.00 1.00 #8 2.67 8.00 #8 2.67 8.00 3.56 0.93B215 30.00 2.00 #8 2.67 6.00 #8 2.67 6.00 3.56 1.07B217 36.00 1.00 #8 2.67 4.00 #8 2.67 6.00 3.56 0.54B218 36.00 1.00 #8 2.67 4.00 #8 2.67 6.00 3.56 0.54

5.05

Mark T & B (EW) T & B (EW) Qty T & B (EW) (lbs/lf) Wt. (lbs.) Mult. Total (tons.)0'‐8" #4/#5 30.00 0.79 237.53 10.44 1.240'‐10" #4/#6 20.00 1.09 217.00 31.32 3.401'‐0" #4/#7/#8/#8 40.00 2.02 807.20 228.93 92.401'‐4" #5/#6 40.00 1.27 509.00 104.16 26.51

123.54TOTAL

22893.0010416.00

100.00100.00100.00100.00

Foundation Walls (Rebar)Area (sf.) Area Comparison1044.003132.00

Academic Beams (Rebar)

TOTAL

PT Transfer Beams (Rebar)

TOTAL

Page 106: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 106    

 

 

Mark T & B (EW) T & B (EW) Qty T & B (EW) (lbs/lf) Wt. (lbs.) Mult. Total (tons.)G4 Park ‐ ‐ ‐ ‐ ‐ ‐G3 Park* #5 24.00 1.04 250.32 341.22 42.71G3 Res. #5 24.00 1.04 250.32 116.58 14.59G2 Park* #5 24.00 1.04 250.32 346.67 43.39G2 Res. #4/#5 34.00 0.79 269.20 111.52 15.01G1 Park* #5 24.00 1.04 250.32 346.10 43.32G1 Res.  #4/#5 34.00 0.79 269.20 112.90 15.20Acad. 1 #5 48.00 1.04 500.64 165.03 41.31Res. 1 #4/#5 34.00 0.79 269.20 117.34 15.79Plaza 1 #6 48.00 1.50 720.96 122.00 43.98Acad. 2 #5 48.00 1.04 500.64 179.06 44.82Res. 2 #4/#5 34.00 0.79 269.20 117.35 15.80Acad. 3 #5 48.00 1.04 500.64 179.04 44.82Res. 3 #4/#5 34.00 0.79 269.20 117.35 15.80

Roof Res. #5 36.00 1.04 375.48 115.63 21.71Roof Acad. #5 36.00 1.04 375.48 168.96 31.72

449.95

11152.00 100.0034609.68 100.0011290.00 100.0016503.00 100.00

Structural Slabs (Rebar)Area (sf.) Area Comparison40397.00 100.0034122.04 100.0011658.00 100.00

11735.00 100.0011563.00 100.0016896.00 100.00

*epoxy coated Rebar TOTAL

11733.84 100.0012200.00 100.0017906.16 100.0011735.00 100.0017904.25 100.00

34667.40 100.00

Mark LF Depth (ft.) Area (sf)24" 67.00 2.00 134.0034" 97.25 2.83 275.5442" 73.00 3.50 255.5154" 506.33 4.50 2278.49

2943.54

Mark LF Height (ft.) Area (sf)SW1 24.00 76.00 1824.00SW2 24.00 76.00 1824.00SW3 24.00 76.00 1824.00SW4 21.33 76.00 1621.31SW5 24.25 77.00 1867.25SW6 24.25 77.00 1867.25SW7 24.25 77.00 1867.25SW8 24.25 85.00 2061.25SW9 24.25 85.00 2061.25SW11 24.25 85.00 2061.25SW12 17.83 85.00 1515.83SW13 476.00 40.00 19040.00

39434.64

Mat Foundations (Formwork)

TOTAL

Shear Walls (Formwork)

TOTAL

Page 107: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 107    

 

Mark Surface Area Depth (ft.) Quantity Area (sf)B101 68.59 1.33 6.00 411.54B102 77.90 1.67 4.00 311.61B103 83.89 1.17 1.00 83.89B104 59.89 1.17 1.00 59.89B105 91.89 1.17 1.00 91.89B106 91.89 1.17 1.00 91.89B107 83.89 1.17 1.00 83.89B108 83.89 1.17 1.00 83.89B109 148.00 2.17 1.00 148.00B110 106.00 1.50 1.00 106.00B111 106.00 1.50 1.00 106.00B112 86.00 1.00 20.00 1720.00B113 291.00 5.58 1.00 291.00

3589.49

Mark Surface Area Depth (ft.) Quantity Area (sf)B201 70.47 1.33 8.00 563.78B202 106.11 1.21 1.00 106.11B203 77.53 1.21 1.00 77.53B204 102.03 1.21 1.00 102.03B205 93.86 1.21 1.00 93.86B206 61.19 1.21 1.00 61.19B207 265.25 1.13 3.00 795.75B216 167.33 2.17 1.00 167.33B220 47.72 1.33 12.00 572.67B221 48.50 1.50 12.00 582.00B222 99.00 1.50 3.00 297.00B223 107.00 1.50 14.00 1498.00B224 56.17 1.50 6.00 337.00B225 84.00 2.00 2.00 168.00B226 112.00 1.00 6.00 672.00B227 344.00 1.00 3.00 1032.00B228 38.50 1.00 4.00 154.00B229 72.22 1.33 2.00 144.44B230 67.56 1.33 3.00 202.67B231 139.08 2.92 3.00 417.25B233 59.00 1.50 3.00 177.00

8221.61

Residential Beams(Formwork)

TOTAL

Academic Beams(Formwork)

TOTAL

Page 108: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 108    

Mark LF Height (ft.) Quantity Area (sf)101 6.66 9.083 7.00 423.45102 6.66 9.083 7.00 423.45103 6.66 9.083 7.00 423.45104 6.66 9.083 7.00 423.45105 6.66 9.083 7.00 423.45106 6.66 9.083 7.00 423.45107 6.66 9.083 7.00 423.45108 6.66 9.083 7.00 423.45109 6.66 9.083 7.00 423.45110 7.00 9.083 4.00 254.32111 6.66 9.083 7.00 423.45112 6.66 9.083 7.00 423.45113 6.66 9.083 7.00 423.45114 6.66 9.083 7.00 423.45115 6.66 9.083 7.00 423.45117 6.66 9.083 7.00 423.45118 6.66 9.083 7.00 423.45119 6.66 9.083 7.00 423.45120 6.66 9.083 7.00 423.45121 6.66 9.083 7.00 423.45122 6.66 9.083 7.00 423.45123 6.00 9.083 4.00 217.99124 6.66 9.083 7.00 423.45125 6.66 9.083 7.00 423.45126 7.00 9.083 7.00 445.07127 7.00 9.083 7.00 445.07128 7.00 9.083 7.00 445.07129 7.00 9.083 7.00 445.07130 6.66 9.083 7.00 423.45131 7.00 9.083 7.00 445.07132 7.00 9.083 7.00 445.07133 7.00 9.083 7.00 445.07134 6.66 9.083 7.00 423.45135 6.66 9.083 7.00 423.45136 6.66 9.083 7.00 423.45137 6.66 9.083 7.00 423.45138 7.00 9.083 7.00 445.07139 7.00 9.083 7.00 445.07140 7.00 9.083 7.00 445.07141 7.00 9.083 7.00 445.07142 7.00 9.083 7.00 445.07143 7.00 9.083 7.00 445.07144 7.00 9.083 7.00 445.07145 7.00 9.083 7.00 445.07146 7.00 9.083 7.00 445.07147 7.00 9.083 7.00 445.07148 7.00 9.083 7.00 445.07149 7.00 9.083 7.00 445.07150 6.66 9.083 7.00 423.45

20785.17

Residential Columns (Formwork)

TOTAL

   

Page 109: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 109    

Mark LF Height (ft.) Quantity Area (sf)201 6.66 9.00 4.00 239.76202 6.66 9.00 4.00 239.76203 6.66 9.00 7.00 419.58204 6.66 9.00 7.00 419.58205 6.66 9.00 7.00 419.58206 6.66 9.00 4.00 239.76207 6.66 9.00 4.00 239.76208 6.66 9.00 7.00 419.58209 6.66 9.00 7.00 419.58210 6.66 9.00 7.00 419.58211 6.66 9.00 7.00 419.58212 6.66 9.00 7.00 419.58213 6.66 9.00 7.00 419.58214 6.66 9.00 7.00 419.58215 6.66 9.00 7.00 419.58216 6.66 9.00 7.00 419.58217 6.66 9.00 7.00 419.58218 6.66 9.00 7.00 419.58219 6.66 9.00 3.00 179.82219 4.00 9.00 4.00 144.00220 6.66 9.00 7.00 419.58221 6.66 9.00 7.00 419.58222 6.66 9.00 7.00 419.58223 6.66 9.00 4.00 239.76224 6.66 9.00 7.00 419.58225 6.66 9.00 7.00 419.58226 6.66 9.00 7.00 419.58227 6.66 9.00 7.00 419.58228 7.00 9.00 7.00 441.00229 6.66 9.00 7.00 419.58230 6.66 9.00 7.00 419.58231 6.66 9.00 7.00 419.58232 6.66 9.00 4.00 239.76233 6.66 9.00 7.00 419.58234 6.66 9.00 4.00 239.76235 7.00 9.00 7.00 441.00236 7.00 9.00 7.00 441.00237 7.00 9.00 6.00 378.00238 7.00 9.00 6.00 378.00239 7.00 9.00 6.00 378.00240 7.00 9.00 7.00 441.00241 7.00 9.00 7.00 441.00242 6.66 9.00 4.00 239.76243 6.00 9.00 4.00 216.00244 6.00 9.00 4.00 216.00245 6.00 9.00 4.00 216.00246 6.00 9.00 4.00 216.00247 6.66 9.00 3.00 179.82248 6.66 9.00 4.00 239.76249 6.66 9.00 4.00 239.76250 6.00 9.00 3.00 162.00251 6.00 9.00 3.00 162.00252 6.00 9.00 3.00 162.00253 6.00 9.00 3.00 162.00254 6.66 9.00 4.00 239.76

18481.50TOTAL

Academic Columns (Formwork)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Page 110: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 110    

 

 

   

Mark LF Height (ft.) Area (sf)0'‐8" 116.00 18.00 2088.000'‐10" 263.00 24.00 6312.001'‐0" 635.92 36.00 22893.001'‐4" 289.33 36.00 10416.00

41709.00

Foundation Walls(Formwork)

TOTAL

Mark Surface Area Depth (ft.) Quantity Area (sf)B210 445.00 2.50 1.00 445.00B211 215.00 2.00 1.00 215.00B212 215.00 2.00 1.00 215.00B213 166.00 2.00 1.00 166.00B214 440.00 2.67 1.00 440.00B215 267.33 2.17 2.00 534.67B217 317.33 2.17 1.00 317.33B218 317.33 2.17 1.00 317.33

2650.33TOTAL

PT Transfer Beams (Formwork)

Page 111: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

Benjamin Mahoney     Marymount University 26th St Project Construction Management  Arlington, VA Consultant: Mr. Faust                                                                                                          Final Report: 4/7/2010      

Page | 111    

 

 

 

 

 

 

 

 

Appendix F: LEED NCv2.2 Credit Scorecard    

Page 112: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

LEED for New Construction v 2.2 Registered Project Checklist

Last Modified: May 2008 1 of 4

Project Name:

Project Address:

Project Totals (Pre-Certification Estimates) 69 PointsYes ? No

Certified: 26-32 points Silver: 33-38 points Gold: 39-51 points Platinum: 52-69 points

Sustainable Sites 14 PointsYes ? No

Yes Prereq 1

Credit 1

Credit 2

Credit 3

Credit 4.1

Credit 4.2

Credit 4.3

Credit 4.4

Credit 5.1

Credit 5.2

Credit 6.1

Credit 6.2

Credit 7.1

Credit 7.2

Credit 8

Alternative Transportation, Low-Emitting & Fuel Efficient Vehicles 1

1

1

1

1

1

Required

1

1

1

1

1

1

1

1

Construction Activity Pollution Prevention

Site Selection

Development Density & Community Connectivity

Brownfield Redevelopment

Alternative Transportation, Public Transportation

Alternative Transportation, Bicycle Storage & Changing Rooms

Alternative Transportation, Parking Capacity

Site Development, Protect or Restore Habitat

Site Development, Maximize Open Space

Stormwater Design, Quantity Control

Stormwater Design, Quality Control

Heat Island Effect, Non-Roof

Heat Island Effect, Roof

Light Pollution Reduction

Water Efficiency 5 PointsYes ? No

Credit 1.1

Credit 1.2

Credit 2

Credit 3.1

Credit 3.2 1

1

1

1

1Water Efficient Landscaping, Reduce by 50%

Water Efficient Landscaping, No Potable Use or No Irrigation

Innovative Wastewater Technologies

Water Use Reduction, 20% Reduction

Water Use Reduction, 30% Reduction

Marymount University 26th Street Project

4763 Old Dominion Drive, Arlington, VA 22201

33 13 23

SILVER

10 1 3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3 2

1

1

1

1

1

Page 113: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

LEED for New Construction v 2.2 Registered Project Checklist

Last Modified: May 2008 2 of 4

Energy & Atmosphere 17 PointsYes ? No

Yes Prereq 1

Credit 1

Credit 2

Credit 3

Credit 4

Credit 5

Credit 6 Green Power 1

1

1

1

1 to 3

1 to 10

RequiredFundamental Commissioning of the Building Energy Systems

Optimize Energy Performance

On-Site Renewable Energy

Enhanced Commissioning

Enhanced Refrigerant Management

Measurement & Verification

Yes Prereq 1 RequiredMinimum Energy Performance

Yes Prereq 1 RequiredFundamental Refrigerant Management

*Note for EAc1: All LEED for New Construction projects registered after June 26, 2007 are required to achieve at least two (2) points.

10.5% New Buildings / 3.5% Existing Building Renovations

14% New Buildings / 7% Existing Building Renovations

17.5% New Buildings / 10.5% Existing Building Renovations

21% New Buildings / 14% Existing Building Renovations

24.5% New Buildings / 17.5% Existing Building Renovations

28% New Buildings / 21% Existing Building Renovations

31.5% New Buildings / 24.5% Existing Building Renovations

35% New Buildings / 28% Existing Building Renovations

38.5% New Buildings / 31.5% Existing Building Renovations

42% New Buildings / 35% Existing Building Renovations

1

2

3

4

5

6

7

8

9

10

2.5% Renewable Energy

7.5% Renewable Energy

12.5% Renewable Energy 3

2

1Credit 2.1

Credit 2.2

Credit 2.3

Credit 1.1

Credit 1.2

Credit 1.3

Credit 1.4

Credit 1.5

Credit 1.6

Credit 1.7

Credit 1.8

Credit 1.9

Credit 1.10

3 5 9

2

3

1

1

1

1

4 4

-->

Page 114: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

LEED for New Construction v 2.2 Registered Project Checklist

Last Modified: May 2008 3 of 4

Materials & Resources 13 PointsYes ? No

Yes Prereq 1

Credit 1.1

Credit 1.2

Credit 1.3

Credit 2.1

Credit 2.2

Credit 3.1

Credit 3.2

Credit 4.1

Credit 4.2

Credit 5.1

Credit 5.2

Credit 6

Credit 7

Materials Reuse, 5% 1

1

1

1

1

1

Required

1

1

1

1

1

1

1

Storage & Collection of Recyclables

Building Reuse, Maintain 75% of Existing Walls, Floors & Roof

Building Reuse, Maintain 95% of Existing Walls, Floors & Roof

Building Reuse, Maintain 50% of Interior Non-Structural Elements

Construction Waste Management, Divert 50% from Disposal

Construction Waste Management, Divert 75% from Disposal

Materials Reuse, 10%

Recycled Content, 10% (post-consumer + 1/2 pre-consumer)

Recycled Content, 20% (post-consumer + 1/2 pre-consumer)

Regional Materials, 10% Extracted, Processed & Manufactured

Regional Materials, 20% Extracted, Processed & Manufactured

Rapidly Renewable Materials

Certified Wood

Indoor Environmental Quality 15 PointsYes ? No

Yes Prereq 1

Credit 1

Credit 2

Credit 3.1

Credit 3.2

Credit 4.1

Credit 4.2

Credit 4.3

Credit 4.4

Credit 5

Credit 6.1

Credit 6.2

Credit 7.1

Credit 7.2

Credit 8.1

Low-Emitting Materials, Paints & Coatings 1

1

1

1

1

1

Required

1

1

1

1

1

1

1

1

Minimum IAQ Performance

Outdoor Air Delivery Monitoring

Increased Ventilation

Construction IAQ Management Plan, During Construction

Construction IAQ Management Plan, Before Occupancy

Low-Emitting Materials, Adhesives & Sealants

Low-Emitting Materials, Carpet Systems

Low-Emitting Materials, Composite Wood & Agrifiber Products

Indoor Chemical & Pollutant Source Control

Controllability of Systems, Lighting

Controllability of Systems, Thermal Comfort

Thermal Comfort, Design

Thermal Comfort, Verification

Daylight & Views, Daylight 75% of Spaces

Yes Prereq 2 RequiredEnvironmental Tobacco Smoke (ETS) Control

Credit 8.2 1Daylight & Views, Views for 90% of Spaces

3 3 7

1

1

1

1

1

1

1

1

1

1

1

1

1

9 2 4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Page 115: Final Report - Pennsylvania State University...Benjamin Mahoney Marymount University 26th St Project Construction Management Arlington, VA Consultant: Mr. Faust Final Report: 4/7/2010

LEED for New Construction v 2.2 Registered Project Checklist

Last Modified: May 2008 4 of 4

Innovation & Design Process 5 PointsYes ? No

Credit 1.1

Credit 1.2

Credit 1.3

Credit 1.4

Credit 2 1

1

1

1

1

LEED® Accredited Professional

Innovation in Design:

Innovation in Design:

Innovation in Design:

Innovation in Design:

5

1

1

1

1

1

Provide Specific Title

Provide Specific Title

Provide Specific Title

Provide Specific Title