Final Pot Ptfe Design Sheet_02.01.13

Embed Size (px)

Citation preview

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    1/47

    Bearing DesignY

    General Bearing Composition:

    X

    Long

    Tran

    Fixed

    Pin B

    1.ROB INPUT

    24000 mm

    14800 m

    6.13E+10 mm4

    7.66E+10 mm4

    2.00E+05 N/mm2

    Grade of concrete M 40

    Area of steel, As 64120 mm2

    Area of concrete, Ac 680000 mm2

    6

    12

    2.Configuration Check of bearings

    A1 A2

    Girders

    B1 B2

    C1(Fixed) C2

    D1 D2

    E1 E2

    F1 F2

    = Yes

    = OK

    3.Calculation of longitudinal movement= 24000 mm

    = 60 degrees Ref: Clause 922.2 of IRC:83 (Part III)-2002

    = 7.50 Mpa

    = 64120 mm2

    = 680000 mm2

    = 2.00E-05 per degree cl 218.4 of IRC-6 & cl304.9.1 of IRC-21

    = 1.17E-05 per degree cl 218.4 of IRC-6 & cl304.9.1 of IRC-21

    = 0.71

    = 21.80 mm

    4. Calculation of lateral movement

    = 5.449 mm Almost 25% of the longitudinal movement

    Lo (Effective Span of ROB)

    t (Tmp Variation)

    m (Modulus ratio)

    As (area of steel)

    Ac (area of concrete)

    s (Tmp coeffecient of Steel)

    c (Tmp coeffecent of concrete)

    k = (mAs/Ac) * (1+ct)/(1st)

    L = *(c k.s) / (k 1)+ Lot

    Transverse movement in lateral dirn

    Nomenclature:

    No of Girders

    No of Bearing Positions

    Trans. sliding Free Bearing

    E

    Free Bearing

    Span

    Deck Width

    I_ for permanent action

    I_ for variable action

    Fixed Bearing Long. sliding

    Fixed Bearing Long. sliding

    Free Bearing

    Trans. sliding Free Bearing

    Trans. sliding

    Trans. sliding

    Check for Configurtion of Bearings

    Pin to be Provided

    Longitudinal Girders

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    2/47

    5. Bearing Design Inputs:INPUT CHECK INPUT CHECK INPUT CHECK INPUT CHECK IN

    mm 224 OK 224 OK 224 OK 224 OK 2

    mm 20 OK 20 OK 20 OK 20 OK 2

    mm 40 OK 40 OK 40 OK 40 OK 5

    mm 384 384 384 384 4

    mm 224 224 224 224 3mm 45 45 45 45 9

    mm 394 OK 394 OK 394 OK 394 OK 6

    mm 40 OK 40 OK 40 OK 40 OK 8

    mm 40 40 40 40 9

    mm 35 35 35 35 3

    mm 222 222 222 222 3

    mm 362 362 362 362 4

    mm 8 8 8 8 4

    mm 43 43 43 43 7

    mm 28 28 28 28 3

    mm 8 8 8 8 1

    mm 12 12 12 12 1Nos 2 2 2 2

    mm 4 4 4 4

    mm 10 10 10 10 1

    Nos 8 8 8 8 1

    mm 20 20 20 20 2

    mm NA 224 224 224 N

    mm NA 4.5 OK 5 OK 5 OK N

    mm NA 28 28 28 N

    mm NA 50 50 50 N

    mm NA 312 312 312 N

    mm NA 350 350 350 N

    mm NA 350 350 350 N

    mm NA 36 36 36 N

    = 35 Mpa Cl 926.2.3.2 of IRC-83(III)

    = 40 Mpa Cl 926.2.4.3 of IRC-83(III)

    = 340 Mpa Grade-340-570W as per IS-1030

    = 190 Mpa

    = 286 Mpa

    = 250 Mpa

    6. Design Outputs: FIXED FREE LONG_SLD TRNS_SLD PINOK OK OK OK NA

    OK OK OK OK NA

    OK OK OK OK OK

    OK OK OK OK OK

    OK OK OK OK OK

    OK OK OK OK OK

    OK OK OK OK OK

    OK OK OK OK OK

    OK OK OK OK OK

    OK OK OK OK OK

    NA OK OK OK NA

    NA OK OK OK NA

    Design Result: OK OK OK OK OK

    Sliding Capacity of stainless steel

    Check on Piston rotaion gap:

    Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III)

    Check for Thickness of Pot in Bending-Bottom

    Check for Thickness of Piston in Bending-Top

    Stress into Lugs because of Horizontal Force

    Check of Weld connection of stainless steel surface:

    Neoprene Pad stress: Ref: Clause 926.2.3 of IRC:83(III)-2002

    Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III)

    Concrete stresses at pot base(Ref: clause 926.1.5 IRC:83 (Part III)

    Conc. stresses at piston base:(clause 926.1.5 IRC:83 (Part III)

    Stresses at Pot Wall cl 926.3.1.1.7 of IRC-83(III)

    Pot internal Dia

    Piston effective contact area diameter

    (consider 1:2 dispersion from spiggot)

    No of Lugs

    Diameter of Piston

    Neoprene Pad Thickness

    Pot Base Thickness

    Pot base effective dia (consider 1:2

    dispersion from elastomer base)

    Pot Projection beyond walls

    Pot wall Depth >28mm

    Pot wall thickness

    Piston thickness above spigot

    Pot External Dia

    FIXED FREE

    fy for the mild steel

    PTFE size (dia)

    Spigott Projection > 30mm

    Bolt Dia

    No of Bolts per component

    Bolt flange thickness

    No of sealing rings

    Total thickness of ring

    Shear strength of Bolt Gr 8.8

    Axial Tensile strength, Bolts, Grp 8.8

    Thickness of Lugs

    Neoprene pad stress

    OK

    PTFE stress (working)

    Steel stress (working) for design

    Slide Stainless steel Plate (Thickness)

    Slide Stainless steel Plate (Width)

    PTFE size (thickness)

    Height of Guide Bar

    Width of Guide Bar

    Length of piston flat

    Neoprene Pad Size dia

    Slide Stainless steel Plate (Length)

    Clearance between top edge of pot wall and

    bottom edge of piston

    LONG_SLD TRNS_SLD

    Vertical face of piston wall for contact with

    pot internal wall

    OK OK OK OK

    OK OK OK

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    3/47

    Loading on Bearings:

    per girder (i) Transverse Laoding (x-dirn) (ii) Longitudinal Loading

    SF(KN) Force (KN)

    = 352.12 Centrifugal Force 420.64 Breaking Force

    = 320.09 251.85 Wind Force= 425.14 Seismic load 1982.75 Seismic Load

    = 38.39 Hx_Non seismic 420.64 Hy_Nonsiesmic

    Primary Loading (Total ) = 1135.74 Hx_Seismic/wind 918.61 Hy_siesmic/wind

    = 67.661565.51

    = 64.82

    = 26.97

    = 14.69

    Summary

    420.64

    918.61

    1135.74

    1058.97

    1222.84 Vvh

    971.87

    1220.86

    973.85

    A. Vertical Loading(Ref: Design sheet "Final

    Stresses" for item 1,2,3,4 & "Other Loads"

    for item 5(a,b),6

    B. Horizontal Loading (Ref:Design

    sheet "X-Frame Des"), on

    complete deck

    Ref: Design sheet: (Re

    Sheet " Shear_Connec

    on full deck

    Dead Load reaction

    H_Non seismic (KN)

    Non seismic Case(DL+SIDL+LL) + CFv

    (DL+SIDL+LL) -CFv

    Seismic/ wind Case

    (DL+SIDL+LL)+ CFv + (Vv+ 0.3*Vvh

    )

    Seismic

    Load,

    Vertical

    Load due to vertical

    Force

    Load on Each

    Pin/Metallic Guide

    Load due to horizontal

    Force

    Superimposed Load reaction Wind loadLive Load

    Centrifigal Load

    H_Seismic (KN)

    2. Vertical Loading_ on a Bearing (KN)

    Wind

    Load,

    Vertical

    Load due to vertical

    ForceLoad due to horizontal

    Force

    1. Horizontal loading_Total (KN)

    = Vertical Load due to effect of Hor

    Horizontal/Seismic horizontal)

    (DL+SIDL+LL) -CFv - (Vv + 0.3*Vvh)

    (DL+SIDL+LL)+ CFv + (0.3*Vv+ Vvh)

    (DL+SIDL+LL) - CFv - (0.3*Vv + Vvh

    )

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    4/47

    Case1: Non Seismic Case ( (DL+SIDL+LL) + CFv )

    V HX HY H/V Design Load V HX

    A1 1135.74 0.00 39.23 3% 113.57425 A2 1135.74 0.00

    B1 1135.74 0.00 39.23 3% 113.57425 B2 1135.74 0.00

    C1(Fixed) 1135.74 105.16 39.23 10% 113.57425 C2 1135.74 105.1

    D1 1135.74 105.16 39.23 10% 113.57425 D2 1135.74 105.1

    E1 1135.74 0.00 39.23 3% 113.57425 E2 1135.74 0.00

    F1 1135.74 0.00 39.23 3% 113.57425 F2 1135.74 0.00

    V 1135.74 V 1135.74 V 1135.74 V 1135.74

    Hx 106.41 Hx 0.00 Hx 113.57 Hx 0.00

    Hy 39.69 Hy 0.00 Hy 0.00 Hy 113.57

    Case2: Non Seismic Case ( (DL+SIDL+LL) -CFv )

    6

    12

    V HX HY H/V Design Load V HX

    A1 1058.97 0.00 39.23 4% 105.89695 A2 1058.97 0.00

    B1 1058.97 0.00 39.23 4% 105.89695 B2 1058.97 0.00C1(Fixed) 1058.97 105.16 39.23 11% OK C2 1058.97 105.1

    D1 1058.97 105.16 39.23 11% OK D2 1058.97 105.1

    E1 1058.97 0.00 39.23 4% 105.89695 E2 1058.97 0.00

    F1 1058.97 0.00 39.23 4% 105.89695 F2 1058.97 0.00

    V 1058.97 V 1058.97 V 1058.97 V 1058.97

    Hx 105.16 Hx 0.00 Hx 105.90 Hx 0.00

    Hy 39.23 Hy 0.00 Hy 0.00 Hy 105.90

    Case3: Seismic Case- (( (DL+SIDL+LL)+ CFv + (Vv+ 0.3*Vvh ) ) + 0.3*Hx + 0.3*Hy)

    6

    12

    V HX HY H/V Design Load V HX

    A1 1222.84 0.00 41.51 3% 122.28449 A2 1222.84 0.00

    B1 1222.84 0.00 41.51 3% 122.28449 B2 1222.84 0.00

    C1(Fixed) 1222.84 68.90 41.51 7% 122.28449 C2 1222.84 68.90

    D1 1222.84 68.90 41.51 7% 122.28449 D2 1222.84 68.90

    E1 1222.84 0.00 41.51 3% 122.28449 E2 1222.84 0.00

    F1 1222.84 0.00 41.51 3% 122.28449 F2 1222.84 0.00

    V 1222.84 V 1222.84 V 1222.84 V 1222.84

    Hx 104.74 Hx 0.00 Hx 122.28 Hx 0.00

    Hy 63.11 Hy 0.00 Hy 0.00 Hy 122.28

    Case4: Seismic Case- (( (DL+SIDL+LL) -CFv - (Vv + 0.3*Vvh) ) + 0.3*Hx + 0.3*Hy)

    6

    12

    V HX

    HY

    H/V Design Load V HX

    A1 971.87 0.00 41.51 4% 97.186705 A2 971.87 0.00

    B1 971.87 0.00 41.51 4% 97.186705 B2 971.87 0.00

    C1(Fixed) 971.87 68.90 41.51 8% 97.186705 C2 971.87 68.90

    D1 971.87 68.90 41.51 8% 97.186705 D2 971.87 68.90

    E1 971.87 0.00 41.51 4% 97.186705 E2 971.87 0.00

    F1 971.87 0.00 41.51 4% 97.186705 F2 971.87 0.00

    V 971.87 V 971.87 V 971.87 V 971.87

    Hx 83.25 Hx 0.00 Hx 97.19 Hx 0.00

    Hy 50.15 Hy 0.00 Hy 0.00 Hy 97.19

    Free Bearing

    Free Bearing Long. sliding Trans. sliding

    Long. sliding Trans. sliding

    Trans. sliding Free Bearing

    Fixed Bearing Long. sliding

    Fixed Bearing Long. sliding

    Design of Bearing Fixed Bearing

    Ist End of Girder II nd End of Girder

    Trans. sliding Free Bearing

    Design Load

    No of Girders

    No of Bearing Positions

    Ist End of Girder II nd End of Girder

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Design of Bearing Fixed Bearing

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Design of Bearing Fixed Bearing

    Trans. sliding Free BearingFixed Bearing Long. sliding

    Fixed Bearing Long. sliding

    Free Bearing Long. sliding Trans. sliding

    Trans. sliding Free Bearing

    Fixed Bearing Long. sliding

    Fixed Bearing Long. sliding

    Design Load

    No of Girders

    No of Bearing Positions

    Ist End of Girder II nd End of Girder

    Trans. sliding Free Bearing

    Design Load

    No of Girders

    No of Bearing Positions

    Ist End of Girder II nd End of Girder

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Design of Bearing Fixed Bearing Free Bearing Long. sliding Trans. sliding

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Design of Bearing Fixed Bearing

    Trans. sliding Free Bearing

    Fixed Bearing Long. sliding

    Fixed Bearing Long. sliding

    Free Bearing Long. sliding Trans. sliding

    Design Load

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    5/47

    Case5: Seismic Case- (( (DL+SIDL+LL)+ CFv + (0.3*Vv+ Vvh) ) + Hx + 0.3*Hy)

    6

    12

    V HX HY H/V Design Load V HX

    A1 1220.86 0.00 41.51 3% 122.08583 A2 1220.86 0.00

    B1 1220.86 0.00 41.51 3% 122.08583 B2 1220.86 0.00

    C1(Fixed) 1220.86 229.65 41.51 19% OK C2 1220.86 229.65

    D1 1220.86 229.65 41.51 19% OK D2 1220.86 229.65

    E1 1220.86 0.00 41.51 3% 122.08583 E2 1220.86 0.00

    F1 1220.86 0.00 41.51 3% 122.08583 F2 1220.86 0.00

    V 1220.86 V 1220.86 V 1220.86 V 1220.86

    Hx 229.65 Hx 0.00 Hx 229.65 Hx 0.00

    Hy 41.51 Hy 0.00 Hy 0.00 Hy 122.09

    Case6: Seismic Case- (( (DL+SIDL+LL) - CFv - (0.3*Vv + Vvh )) + Hx + 0.3*Hy)

    6

    12

    V HX HY H/V Design Load V HX

    A1 973.85 0.00 41.51 4% 97.385361 A2 973.85 0.00

    B1 973.85 0.00 41.51 4% 97.385361 B2 973.85 0.00C1(Fixed) 973.85 229.65 41.51 24% OK C2 973.85 229.65

    D1 973.85 229.65 41.51 24% OK D2 973.85 229.65

    E1 973.85 0.00 41.51 4% 97.385361 E2 973.85 0.00

    F1 973.85 0.00 41.51 4% 97.385361 F2 973.85 0.00

    V 973.85 V 973.85 V 973.85 V 973.85

    Hx 229.65 Hx 0.00 Hx 229.65 Hx 0.00

    Hy 41.51 Hy 0.00 Hy 0.00 Hy 97.39

    Summary of Design Loads on Various Type of Bearings

    V (KN)

    Hx (KN)

    Hy (KN)

    Trans. sliding Free Bearing

    Fixed Bearing Long. sliding

    Fixed Bearing Long. sliding

    No of Girders

    No of Bearing Positions

    Ist End of Girder II nd End of Girder

    Trans. sliding Free Bearing

    Design Load

    No of Girders

    No of Bearing Positions

    Ist End of Girder II nd End of Girder

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Design of Bearing Fixed Bearing Free Bearing Long. sliding Trans. sliding

    Trans. sliding Free Bearing

    Trans. sliding Free Bearing

    Design of Bearing Fixed Bearing

    Trans. sliding Free BearingFixed Bearing Long. sliding

    Fixed Bearing Long. sliding

    Free Bearing Long. sliding Trans. sliding

    Case6: Seismic Case

    (( (DL+SIDL+LL) - CFv(0.3*Vv + Vvh )) + H

    + 0.3*Hy)

    1135.74 1058.97 1222.84 971.87 1220.86 973.85

    Design Load

    Case1: Non Seismic

    Case ( (DL+SIDL+LL) +

    CFv )

    Case2: Non Seismic Case( (DL+SIDL+LL) -CFv )

    Case3: Seismic Case- ((

    (DL+SIDL+LL)+ CFv +(Vv+ 0.3*Vvh ) ) +

    0.3*Hx + 0.3*Hy)

    Case4: Seismic Case- ((

    (DL+SIDL+LL) -CFv - (Vv+ 0.3*Vvh) ) + 0.3*Hx

    + 0.3*Hy)

    Case5: Seismic Case-

    (( (DL+SIDL+LL)+ CFv +(0.3*Vv+ Vvh) ) + Hx +

    0.3*Hy)

    Forces on Fixed Bearing

    39.69 39.23 63.11 50.15 41.51 41.51

    106.41 105.16 104.74 83.25 229.65 229.65

    Forces on Free Bearing

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    6/47

    V (KN)

    Hx (KN)

    Hy (KN)

    V (KN)

    Hx (KN)

    Hy (KN)

    V (KN)

    Hx (KN)

    Hy (KN)

    Summary:

    Fixed

    Bearing

    Max Value

    non

    seismic

    Min Value

    non

    seismic

    Max Value

    seismic

    Min Value

    seismic

    long_Slidin

    g Bearing

    Max Value

    non

    seismic

    Min Value

    non

    seismic

    Max Value

    seismic

    Min Value

    seismic

    V (KN) 1135.7 1059.0 1222.8 971.9 V (KN) 1135.7 1059.0 1222.8 971.9

    Hx (KN) 106.4 105.2 229.7 83.2 Hx (KN) 113.6 105.9 229.7 97.2Hy (KN) 39.7 39.2 63.1 41.5 Hy (KN) 90.9 84.7 73.4 77.7

    H_rsltnt 113.6 112.2 238.2 93.0 H_rsltnt 145.4 135.6 241.1 124.5

    Free

    Bearing

    Max Value

    non

    seismic

    Min Value

    non

    seismic

    Max Value

    seismic

    Min Value

    seismic

    trns_slidin

    g Bearing

    Max Value

    non

    seismic

    Min Value

    non

    seismic

    Max Value

    seismic

    Min Value

    seismic

    V (KN) 1135.7 1059.0 1222.8 971.9 V (KN) 1135.7 1059.0 1222.8 971.9

    Hx (KN) 90.9 84.7 73.4 73.4 Hx (KN) 90.9 84.7 73.4 77.7

    Hy (KN) 90.9 84.7 73.4 73.4 Hy (KN) 113.6 105.9 122.3 97.2

    H_rsltnt 128.5 119.8 103.8 103.8 H_rsltnt 145.4 135.6 142.6 124.5

    Case1: Non Seismic

    Case ( (DL+SIDL+LL) +

    CFv )

    Case2: Non Seismic Case

    ( (DL+SIDL+LL) -CFv )

    Case3: Seismic Case- ((

    (DL+SIDL+LL)+ CFv +

    (Vv+ 0.3*Vvh ) ) +

    0.3*Hx + 0.3*Hy)

    Case4: Seismic Case- ((

    (DL+SIDL+LL) -CFv - (Vv

    + 0.3*Vvh) ) + 0.3*Hx

    + 0.3*Hy)

    Case5: Seismic Case-

    (( (DL+SIDL+LL)+ CFv +

    (0.3*Vv+ Vvh) ) + Hx +

    0.3*Hy)

    Case6: Seismic Case

    (( (DL+SIDL+LL) - CFv

    (0.3*Vv + Vvh )) + H

    + 0.3*Hy)

    1135.74 1058.97 1222.84 971.87 1220.86 973.85

    0.00 0.00 0.00 0.00 0.00 0.00

    0.00 0.00 0.00 0.00 0.00 0.00

    Forces on Long Sliding Bearing

    Case1: Non Seismic

    Case ( (DL+SIDL+LL) +

    CFv )

    Case2: Non Seismic Case

    ( (DL+SIDL+LL) -CFv )

    Case3: Seismic Case- ((

    (DL+SIDL+LL)+ CFv +

    (Vv+ 0.3*Vvh ) ) +

    0.3*Hx + 0.3*Hy)

    Case4: Seismic Case- ((

    (DL+SIDL+LL) -CFv - (Vv

    + 0.3*Vvh) ) + 0.3*Hx

    + 0.3*Hy)

    Case5: Seismic Case-

    (( (DL+SIDL+LL)+ CFv +

    (0.3*Vv+ Vvh) ) + Hx +

    0.3*Hy)

    Case6: Seismic Case

    (( (DL+SIDL+LL) - CFv

    (0.3*Vv + Vvh )) + H

    + 0.3*Hy)

    1135.74 1058.97 1222.84 971.87 1220.86 973.85

    113.57 105.90 122.28 97.19 229.65 229.65

    0.00 0.00 0.00 0.00 0.00 0.00

    Forces on Transverse Sliding Bearing

    Case1: Non SeismicCase ( (DL+SIDL+LL) +

    CFv )

    Case2: Non Seismic Case

    ( (DL+SIDL+LL) -CFv )

    Case3: Seismic Case- ((

    (DL+SIDL+LL)+ CFv +

    (Vv+ 0.3*Vvh ) ) +

    0.3*Hx + 0.3*Hy)

    Case4: Seismic Case- ((

    (DL+SIDL+LL) -CFv - (Vv

    + 0.3*Vvh) ) + 0.3*Hx

    + 0.3*Hy)

    Case5: Seismic Case-

    (( (DL+SIDL+LL)+ CFv +

    (0.3*Vv+ Vvh) ) + Hx +

    0.3*Hy)

    Case6: Seismic Case

    (( (DL+SIDL+LL) - CFv

    (0.3*Vv + Vvh )) + H

    + 0.3*Hy)

    1135.74 1058.97 1222.84 971.87 1220.86 973.85

    0.00 0.00 0.00 0.00 0.00 0.00

    113.57 105.90 122.28 97.19 122.09 97.39

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    7/47

    DESIGN OF FIXED BEARING :

    40 40

    40

    40

    a. Design Inputs:

    = 224 mm

    = 20 mm OK Ref : Cl 926.2.3.6 of IRC83(III)

    = 40 mm

    = 384 mmCl 926.3.1.1.6.1 of IRC83(III)

    = 224 mm

    = 40 mm= 40 mm

    = 35 mm

    =362

    mm

    = 43 mm

    = 28 mm

    = 8 mm

    = 12 mm

    = 2 Nos 10 43

    = 4 mm

    = 10 mm8 mm

    40 20

    = 8 mm

    = 250

    = 35 Mpa Cl 926.2.3.2 of IRC-83(III)

    = 40 Mpa Cl 926.2.4.3 of IRC-83(III)

    = 340 Mpa Grade-340-570W as per IS-1030

    Design of Fixed Bearing

    = 0.0 mm

    = 0.0 mm

    = 0.00566 Radians

    = 0.00342 Radians Cl 926.1.6 of IRC-83(III)

    = 0.00224 Radians Cl 926.1.6 of IRC-83(III)

    C. Calculation for permissible stresses in pedestal concrete & bottom flange:

    = M 40

    = 10 As per cl 926.2.1.1 of IRC-83(III)

    The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm

    Bottom:

    = 224 mm

    = 39408.138 mm2

    = 304 mm Cl 926.2.1.1 of IRC-83(III)

    = 72583.357 mm2

    = 13.57 Mpa

    Top:

    = 187.5 Mpa

    Neoprene Pad Size dia

    Neoprene Pad Thickness

    Pot Base Thickness

    Pot base effective dia (consider 1:2

    dispersion from elastomer base)

    Spigott Projection > 30mm

    Bolt Dia

    No of Bolts per component

    Bolt flange thickness

    No of sealing rings

    Total thickness of ring

    Pot Internal Dia

    Pot wall Depth >28mmPot wall thickness

    Piston thickness above spigot

    Piston effective contact area diameter

    (consider 1:2 dispersion from spiggot)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Vertical face of piston wall for contact with

    pot internal wall < 20 mmfy for the mild steel

    Longitudinal movement

    Transverse movement

    Rotation (total)

    Rotation (Permanent actions) WL2/(24EI)

    Rotation (Variable actions) WL2/(24EI)

    Neoprene pad stress

    Dia after dispersion(1:2)

    Dispersion Area A1

    Permissible concrete stress

    =0.25fck (A1/A2)

    PTFE stress (working)

    Steel stress (working) for design

    Grade of concrete for Pedestal

    Permissible direct compressive Stress in

    concrete= 0.25* fck

    Dia of loaded area

    Loaded Area A2

    Permissible bearing stress in

    bottom flange (= 0.75*fy)

    Dispersion of 1(V) :2(H)

    Fig 5 of IRC 83(iii)

    Pot Depth

    Pot Wall thck

    Pedestal

    Bearing

    Pot

    Neoprene pad

    Spigot projection

    pad thk

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    8/47

    d. Neoprene Pad stress: Ref: Clause 926.2.3 of IRC:83(III)-2002

    Max Min max Min

    = 28.83 26.89 31.05 24.67

    = 35.00 35.00 35.00 35.00

    = 5.00 5.00 5.00 5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III)

    OK OK OK OK OK

    Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III)

    = 0.0057 Radians

    = 0.63 mm

    = 16.00 mm

    Check OK

    Concentrated stresses at pot base (at concrete pedastal):

    Max Min max Min

    = 9.81 9.14 10.56 8.39

    = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III)

    = 0.72 0.67 0.62 0.49 OK

    Maximum Permissible Average

    stress (Mpa)

    Ref : clause 926.2.3.2 and clause 926.2.3.5 of

    IRC:83(Part -III)

    Minimum Permissible Average

    stress (Mpa)

    Rotaiton of pad

    Deforamtion of pad due to

    rotation

    he,eff (as per Figure)

    Non-Seismic Seismic

    Actual Stress (Mpa)

    i)

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress

    Permissible stress (Mpa)

    Actual : PermissibleIncrease by 25% when wi

    earthquake taken into acc

    As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments

    prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered.

    Non-Seismic Seismic

    he,effhe

    < he,eff * 0.15

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    9/47

    = 64.00 64.00 64.00 64.00

    = 1.31 1.29 2.74 1.07

    iii)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.0034 0.0034 0.0034 0.0034

    = 39.93 39.93 39.93 39.93

    = 0.0022 0.0022 0.0022 0.0022

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 113.57 112.24 238.17 93.02

    = 2.54 2.51 5.33 2.08

    iii-3) = 3.61 3.58 6.40 3.15

    iii-4) = 0.65 0.64 1.15 0.57

    = 1.96 1.94 3.89 1.64

    = 13.20 13.20 16.50 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III)

    = 0.15 0.15 0.24 0.10 OK

    = 11.76 11.08 14.45 10.03

    = 13.57 13.57 16.96 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III)

    = 0.87 0.82 0.85 0.59 OK

    = Ref: Cl 926.2.1.3 of IRC-83(III)

    = 0.87 0.82 0.86 0.59 OK OK

    Concentrated stresses at piston base : Ref: Cl 926.1.5 of IRC-83(III)

    Max Min max Min

    = 110.35 102.89 118.81 94.43

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(I II )

    = 0.59 0.55 0.63 0.50 OK

    = 74.00 74.00 74.00 74.00

    = 1.80 1.78 3.78 1.48

    iii)

    Ref: Cl 926.1.5.1 of IRC-83(III)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.003 0.003 0.003 0.003

    = 39.933 39.933 39.933 39.933

    = 0.002 0.002 0.002 0.002

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 113.57 112.24 238.17 93.02

    = 2.54 2.51 5.33 2.08

    iii-3) = 3.61 3.58 6.40 3.15

    ii)

    Flexural Stress due to active Moment resulting from acting Horizontal Forces

    eccentricity (mm), From the

    bottom of bearing

    Flexural Stress (Mpa)

    Flexural Stress due to induced Moment resulting from resistance to rotation due to the

    effect of tilting stiffness of elastomeric pressure pad

    iii-1)

    Me.d = di3

    * (k1.p k2.v) Ref: Cl 926.1.5.1 of IRC-83(III)

    di (dia of elastomeric pad, mm)

    he (thickness of confined

    elastomeric pressure pad,mm)

    Horizontal force acts at the

    center line of bearing

    H (KN)

    MR.d (KN-m)

    di/he

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    Total induced moment

    = Me,d + MR,d (KN-m)

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iii-2)

    MR.d = 0.2*C*H

    C (mm), Perpendicular distance

    from the point of action of

    horizontal force on cylinde wall

    to the axis of rotation

    Non-Siesmic Siesmic

    i

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress due to

    Vertical Load (Mpa)

    Permissible Stress (Mpa)

    Actual:Permissible

    iii-6)

    Total Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iv)Coexisting Direct & Flexural

    Stress Ratio > 1

    ii)

    Flexural Stress due to active Moment resulting from acting horizontal forces

    eccentricity (mm)

    Stress (Mpa)

    Stress due to induced moment from resistance to rotation

    iii-1)

    Me.d = di3

    * (k1.p k2.v)

    di (dia of elastomer pad, mm)

    he (thickness of confined

    elastomeric pressure pad in mm)

    di/he

    Total induced moment = Me.d +

    MR.d (KN-m)

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    iii-2)

    MR.d = 0.2*C*H

    C (mm)

    H (KN)

    MR.d (KN-m)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    10/47

    iii-4) = 0.78 0.77 1.37 0.68

    = 2.58 2.55 5.16 2.15

    = 165.00 165.00 165.00 224.40 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III)

    = 0.02 0.02 0.03 0.01 OK

    = 112.93 105.44 123.97 96.58

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III)

    = 0.60 0.56 0.66 0.52 OK

    Cl 926.2.2.5 of IRC-83(III)

    191.15 178.23 205.85 163.57

    225.00 225.00 225.00 225.00 Cl 926.2.2.5 of IRC-83(III)

    0.850 0.792 0.915 0.727 OK OK

    Stresses at Pot Wall cl 926.3.1.1.7 of IRC-83(III)

    Max Min max Min

    i) 129.18 120.45 139.09 110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III)

    ii) 40.37 37.64 43.46 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III)

    iii)-a 113.57 112.24 238.17 93.02

    iii)-b35.49 35.07 74.43 29.07

    iv) 75.86 72.71 117.89 63.61

    v) 204.00 204.00 204.00 204.00 Cl 926.2.2 of IRC-83(III)

    vi) 0.37 0.36 0.58 0.31 OK

    i) 14.42 13.44 15.52 12.34

    ii) 19.01 18.79 39.87 15.57

    33.43 32.23 55.39 27.91

    153.00 153.00 153.00 153.00 Cl 926.2.2.3 of IRC-83(III)

    0.22 0.21 0.36 0.18 OK

    i) 21.63 20.16 23.28 18.51

    ii) 68.45 67.64 143.54 56.06

    90.07 87.81 166.82 74.57

    224.40 224.40 224.40 224.40 Cl 926.2.2.2 of IRC-83(III)

    0.40 0.39 0.74 0.33 OK

    107.08 104.05 192.45 88.87306 306 306 306 Cl 926.2.2.5 of IRC-83(III)

    0.35 0.34 0.63 0.29 OK OK

    Check for Thickness of Pot in Bending-Bottom

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 384.00 384.00 384.00 384.00

    iii)1.16E+05 1.16E+05 1.16E+05 1.16E+05

    iv) 9.81 9.15 10.56 8.40

    v) 224.00 224.00 224.00 224.00

    vi) 80.00 80.00 80.00 80.00

    vii) 31397.69 29275.30 33805.65 26867.34

    viii)28.97 27.98 30.06 26.80

    stress = BM*6/(b*d2)=0.66*

    ix) 40.00 40.00 40.00 40.00

    OK OK OK OK OK

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (0.66fy) (Mpa)

    Actual : Permissible

    Actual:Permissible

    Non-Siesmic Siesmic

    Check of Hoop Tensile stress

    Force from pad (KN per I section of ring)

    Pressure from Pad (P1) (Mpa)

    iii-6)

    Total Stress (Mpa)

    Permissible Stress (Mpa)

    Actual : Permissible

    iv)

    Coexisting Direct & Flexural Stress Check

    Combined Stresses (Mpa)

    Permissible stress (0.9fy) (Mpa)

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Shear Stress P = P1 + P2 (Mpa)

    Permissible Stress (0.45fy)

    Actual : Permissible

    Bending Stress at cylinder & base interface considering 1mm slice

    Total horizontal force into wall (KN)

    Total horizontal stress into wall due to

    horizontal force (P2) (Mpa)

    Total P = P1 + P2 (Mpa)

    Permissible stress (0.6fy) (Mpa)Actual:Permissible

    Shear stress at cylinder & base interface considering 1mm slice

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Bending Stress (Mpa) P1 + P2

    Permissible Stress (0.66fy)

    Actual : Permissible

    iii) Combined Stress (Mpa)Permissible Stress (0.9fy) Mpa

    Actual : Permissible

    Non-Siesmic Siesmic

    Max Vertical Load (KN)

    Pot Base effective Contact Dia (mm)

    Effective area of the Plate in contact to

    concrete (mm2)

    Stress on Plate (N/mm2)

    Dia of loaded area (mm)

    Projection of pot (mm)

    Bending Moment at Top (N-mm)

    Thickness of top plate required to cater tothis BM (mm)

    Provided thickness (mm)

    Pot

    Neoprene pad

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    11/47

    Check for Thickness of Piston in Bending-Top

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 362.00 362.00 362.00 362.00

    iii)1.03E+05 1.03E+05 1.03E+05 1.03E+05

    iv) 11.04 10.29 11.89 9.45

    v) 224.00 224.00 224.00 224.00

    vi) 69.00 69.00 69.00 69.00

    vii) 2.63E+04 2.45E+04 2.83E+04 2.25E+04

    viii)26.51 25.60 27.51 24.52

    ix) 35.00 35.00 35.00 35.00

    OK OK OK OK OK

    Miscellaneous Design Checks:

    Rotation Capacity cl 926.2.3 of IRC-83(III)

    i)

    16.00 mm

    2.40 mm

    ii) Cl 926.2.3.4 of IRC-83(III)

    0.02 radians >= 0.0057 radians

    OK

    Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002

    10.00 mm

    0.0057 radians

    9.14 mm

    OK

    Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III)

    ii) 20.00 mm > 16 mm

    OK cl 926.2.3.6 of IRC-83(III)iii) 224.00 mm > 180 mm

    OK cl 926.2.3.6 of IRC-83(III)

    SiesmicNon-Siesmic

    gap after rotation

    Check compression at edge of neoprene pad 15% of T1

    Projection of piston (mm)

    T1 = thickness of pad less seal rings thickness

    Rotation (Radius)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Rotaion

    Thickness of pad

    Dia of pad

    Provided thickness (mm)

    Bending Moment at Top (N-mm)

    Thickness of top plate required to cater to

    this BM (mm)

    Max Vertical Load (KN)

    Effective Dia of Piston (mm)

    Effective area of the Top Plate in contact to

    steel/concrete (mm2)

    Stress at Top Plate (N/mm)

    Dia of loaded area (mm)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    12/47

    Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III)

    i) 4.09 mm

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    13/47

    Stress into Lugs because of Horizontal Force

    Max Min max Min

    i) 113.57 112.24 238.17 93.02

    ii) 84.00 84.00 84.00 84.00

    iii) 20.00 20.00 20.00 20.00

    iv) 1680.00 1680.00 1680.00 1680.00

    v) 8.00 8.00 8.00 8.00

    vi) 14.20 14.03 29.77 11.63vii) 8.45 8.35 17.72 6.92

    viii) 153.00 153.00 153.00 153.00

    ix) 0.06 0.05 0.12 0.05 OK

    Non-Siesmic Siesmic

    Actual : Permissible

    Total horizontal force on bearing (KN)

    Effective length of lug taking shear (mm)

    Thickness of lug (mm)

    Total cross sectional area of each lug (mm2)

    No. of lugs in each bearing

    Horizontal force on each lug (KN)Stress on lug due to Horz. Force (Mpa)

    Permissible Stress (0.45fy)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    14/47

    BEARING DESIGN :

    40 40

    40

    40

    a. Design Inputs:

    = 224 mm

    = 20 mm OK Ref : Cl 926.2.3.6 of IRC83(III)

    = 40 mm

    =384

    mmCl 926.3.1.1.6.1 of IRC83(III)

    = 224 mm

    = 40 mm

    = 40 mm

    = 35 mm

    =362

    mm

    = 43 mm

    = 28 mm

    = 8 mm

    = 12 mm

    = 2 Nos 10 43

    = 4 mm

    = 10 mm8 mm

    40 20

    = 8 mm

    = 224 mm = 4.5 mm Thk>=4.5 mm Ref: Table 4 of IRC:83 (Part-III)-2002

    = 28 mm

    = 50 mm

    = 312 mm

    = 350 mm OK

    = 350 mm OK

    = 36 mm

    = 35 Mpa Cl 926.2.3.2 of IRC-83(III)

    = 40 Mpa Cl 926.2.4.3 of IRC-83(III)

    = 340 Mpa Grade-340-570W as per IS-1030

    = 250 Mpa

    b. Design Requirements

    = 21.798 mm= 5.449411 mm

    = 0.00566 Radians

    = 0.00342 Radians Cl 926.1.6 of IRC-83(III)

    = 0.00224 Radians Cl 926.1.6 of IRC-83(III)

    C. Calculation for permissible stresses in pedestal concrete & bottom flange:

    = M 40

    = 10 As per cl 926.2.1.1 of IRC-83(III)

    The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm

    Bottom:

    = 224 mm

    = 39408.138 mm2

    = 304 mm Cl 926.2.1.1 of IRC-83(III)

    = 72583.357 mm2

    Neoprene Pad Size dia

    Neoprene Pad Thickness

    Pot Base Thickness

    Pot base effective dia (consider 1:2

    dispersion from elastomer base)

    Spigott Projection > 30mm

    Bolt Dia

    No of Bolts per component

    Bolt flange thickness

    No of sealing rings

    Total thickness of ring

    Neoprene pad stress

    Pot Internal Dia

    Pot wall Depth >28mm

    Pot wall thickness

    Piston thickness above spigot

    Piston effective contact area diameter

    (consider 1:2 dispersion from spiggot)

    Slide Stainless steel Plate (Thickness)

    PTFE size (thickness)

    Height of Guide Bar

    Width of Guide Bar

    Length of piston flat

    Slide Stainless steel Plate (Length)

    Slide Stainless steel Plate (Width)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Vertical face of piston wall

    fy for the mild steel

    PTFE size (dia)

    PTFE stress (working)

    Steel stress (working) for design

    Grade of concrete for Pedestal

    Permissible direct compressive Stress in

    concrete= 0.25* fck

    Dia of loaded area

    Loaded Area A2

    Transverse movement

    Rotation (total)

    Rotation (Permanent actions) WL2/(24EI)

    Rotation (Variable actions) WL2/(24EI)

    Dia after dispersion(1:2)

    Dispersion Area A1

    Longitudinal movement

    Dispersion of 1(V) :2(H)

    Fig 5 of IRC 83(iii)

    Pot Depth

    Pot Wall thck

    Pedestal

    Bearing

    Pot

    Neoprene pad

    Spigot projection

    pad thk

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    15/47

    d. Neoprene Pad stress: Ref: Clause 926.2.3 of IRC:83(III)-2002

    Max Min max Min

    = 28.83 26.89 31.05 24.67

    = 35.00 35.00 35.00 35.00

    = 5.00 5.00 5.00 5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III)

    OK OK OK OK OKRotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III)

    = 0.0057 Radians

    = 0.63 mm

    = 16.00 mm

    Check OK

    PTFE stress

    28.82 26.87 31.03 24.66

    40.00 40.00 40.00 40.00 Ref: Cluse 926.2.4.3 & 926.2.4.4 of IRC-83(III)

    0.72 0.67 0.78 0.62 OK

    Coeffecient of friction (): Ref: Table 5 of IRC:83 (part-III)-2002

    Ref: Clause 926.2.4.2 of IRC:83 (Part-III)-2002

    Max Min max Min

    = 28.82 26.87 31.03 24.66

    = 0.08 0.08 0.06 0.08

    Concentrated stresses at pot base:(At concrete pedastal)

    Max Min max Min

    = 9.81 9.14 10.56 8.39

    = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III)

    = 0.72 0.67 0.62 0.49 OK

    Ref : clause 926.2.3.2 and clause 926.2.3.5 of

    IRC:83(Part -III)

    Minimum Permissible Average

    stress (Mpa)

    Rotaiton of pad

    Deforamtion of pad due to

    rotation

    he,eff (as per Figure)

    Non-Seismic Seismic

    Actual Stress (Mpa)

    Maximum Permissible Average

    stress (Mpa)

    i)

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress

    Permissible stress (Mpa)

    Actual : PermissibleIncrease by 25% when wi

    earthquake taken into acc

    Actual (Mpa)

    Permissible (Mpa)

    Ratio Actual:Permissible

    As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments

    prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered.

    Non-Seismic Seismic

    Maximum Design

    Coeffecient of friction

    5 0.08 0.16

    10 0.06 0.12

    Non-Siesmic Siesmic

    Average Pressure on PTFE (Mpa)

    Coeffecient of friction ()

    20

    Average Pressure on confined

    PTFE (Mpa)

    Maximum

    Coeffecient of friction

    0.04 0.08

    more than 30 0.03 0.06

    he,effhe

    < he,eff * 0.15

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    16/47

    = 64.00 64.00 64.00 64.00

    = 1.48 1.38 1.19 1.19

    iii)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.0034 0.0034 0.0034 0.0034

    = 39.93 39.93 39.93 39.93

    = 0.0022 0.0022 0.0022 0.0022

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 128.49 119.81 103.76 103.76

    = 2.88 2.68 2.32 2.32

    iii-3) = 3.95 3.75 3.39 3.39

    iii-4) = 0.71 0.68 0.61 0.61

    = 2.19 2.05 1.80 1.80

    = 13.20 13.20 16.50 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III)

    = 0.17 0.16 0.11 0.11 OK

    = 12.00 11.20 12.36 10.20

    = 13.57 13.57 16.96 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III)

    = 0.88 0.83 0.73 0.60 OK

    = Ref: Cl 926.2.1.3 of IRC-83(III)

    = 0.89 0.83 0.73 0.60 OK OK

    Concentrated stresses at piston base: Ref: Cl 926.1.5 of IRC-83(III)

    Max Min max Min

    = 110.35 102.89 118.81 94.43

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(I II )

    = 0.59 0.55 0.63 0.50 OK

    = 74.00 74.00 74.00 74.00

    = 2.04 1.90 1.65 1.65

    iii)

    Ref: Cl 926.1.5.1 of IRC-83(III)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.003 0.003 0.003 0.003

    = 39.933 39.933 39.933 39.933

    = 0.002 0.002 0.002 0.002

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 128.49 119.81 103.76 103.76

    = 2.88 2.68 2.32 2.32

    iii-3) = 3.95 3.75 3.39 3.39

    ii)

    Flexural Stress due to active Moment resulting from acting Horizontal Forces

    eccentricity (mm), From the

    bottom of bearing

    Flexural Stress (Mpa)

    Flexural Stress due to induced Moment resulting from resistance to rotation due to the

    effect of tilting stiffness of elastomeric pressure pad

    iii-1)

    Me.d = di3

    * (k1.p k2.v) Ref: Cl 926.1.5.1 of IRC-83(III)

    di (dia of elastomeric pad, mm)

    he (thickness of confined

    elastomeric pressure pad,mm)

    Horizontal force acts at the

    center line of bearing

    H (KN)

    MR.d (KN-m)

    di/he

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    Total induced moment

    = Me,d + MR,d (KN-m)

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iii-2)

    MR.d = 0.2*C*H

    C (mm), Perpendicular distance

    from the point of action of

    horizontal force on cylinde wall

    to the axis of rotation

    Non-Siesmic Siesmic

    i

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress due to

    Vertical Load (Mpa)

    Permissible Stress (Mpa)

    Actual:Permissible

    iii-6)

    Total Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iv)Coexisting Direct & Flexural

    Stress Ratio > 1

    ii)

    Flexural Stress due to active Moment resulting from acting horizontal forces

    eccentricity (mm)

    Stress (Mpa)

    Stress due to induced moment from resistance to rotation

    iii-1)

    Me.d = di3

    * (k1.p k2.v)

    di (dia of elastomer pad, mm)

    he (thickness of confined

    elastomeric pressure pad in mm)

    di/he

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    iii-2)

    MR.d = 0.2*C*H

    C (mm)

    H (KN)

    MR.d (KN-m)

    Total induced moment = Me.d +

    MR.d (KN-m)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    17/47

    iii-4) = 0.85 0.81 0.73 0.73

    = 2.89 2.71 2.38 2.38

    = 165.00 165.00 165.00 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III)

    = 0.02 0.02 0.01 0.01 OK

    = 113.24 105.60 121.19 96.80

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III)

    = 0.60 0.56 0.65 0.52 OK

    Cl 926.2.2.5 of IRC-83(III)

    191.15 178.23 205.80 163.57

    225.00 225.00 225.00 225.00 Cl 926.2.2.5 of IRC-83(III)

    0.850 0.792 0.915 0.727 OK OK

    Stresses at Pot Wall cl 926.3.1.1.7 of IRC-83(III)

    Max Min max Min

    i) 129.18 120.45 139.09 110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III)

    ii) 40.37 37.64 43.46 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III)

    iii)-a 128.49 119.81 103.76 103.76

    iii)-b40.15 37.44 32.43 32.43

    iv) 80.52 75.08 75.89 66.97

    v) 204.00 204.00 204.00 204.00 Cl 926.2.2 of IRC-83(III)

    vi) 0.39 0.37 0.37 0.33 OK

    i) 14.42 13.44 15.52 12.34

    ii) 21.51 20.06 17.37 17.37

    35.93 33.50 32.89 29.71

    153.00 153.00 153.00 153.00 Cl 926.2.2.3 of IRC-83(III)

    0.23 0.22 0.21 0.19 OK

    i) 21.63 20.16 23.28 18.51

    ii) 77.44 72.21 62.54 62.54

    99.07 92.37 85.82 81.04

    224.40 224.40 224.40 224.40 Cl 926.2.2.2 of IRC-83(III)

    0.44 0.41 0.38 0.36 OK

    116.99 109.08 103.01 96.00306 306 306 306 Cl 926.2.2.5 of IRC-83(III)

    0.38 0.36 0.34 0.31 OK OK

    Check for Thickness of Pot in Bending-Bottom

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 384.00 384.00 384.00 384.00

    iii)1.16E+05 1.16E+05 1.16E+05 1.16E+05

    iv) 9.81 9.15 10.56 8.40

    v) 224.00 224.00 224.00 224.00

    vi) 80.00 80.00 80.00 80.00

    vii) 31397.69 29275.30 33805.65 26867.34

    viii)28.97 27.98 30.06 26.80

    stress = BM*6/(b*d2)=0.66*

    ix) 40.00 40.00 40.00 40.00

    OK OK OK OK OK

    Actual : Permissible

    Actual:Permissible

    Non-Siesmic Siesmic

    iii-6)

    Total Stress (Mpa)

    Permissible Stress (Mpa)

    Actual : Permissible

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (0.66fy) (Mpa)

    Check of Hoop Tensile stress

    Force from pad (KN per I section of ring)

    Pressure from Pad (P1) (Mpa)

    iv)

    Coexisting Direct & Flexural Stress Check

    Combined Stresses (Mpa)

    Permissible stress (0.9fy) (Mpa)

    Provided thickness (mm)

    Siesmic

    Max Vertical Load (KN)

    Total horizontal force into wall (KN)

    Total horizontal stress into wall due to

    horizontal force (P2) (Mpa)

    Total P = P1 + P2 (Mpa)

    Permissible stress (0.6fy) (Mpa)

    Actual:Permissible

    Shear stress at cylinder & base interface considering 1mm slice

    iii) Combined Stress (Mpa)Permissible Stress (0.9fy) Mpa

    Actual : Permissible

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Shear Stress P = P1 + P2 (Mpa)

    Permissible Stress (0.45fy)

    Pot Base effective Contact Dia (mm)

    Effective area of the Plate in contact to

    concrete (mm2)

    Stress on Plate (N/mm2)

    Dia of loaded area (mm)

    Non-Siesmic

    Permissible Stress (0.66fy)

    Actual : Permissible

    Projection of pot (mm)

    Bending Moment at Top (N-mm)

    Thickness of top plate required to cater tothis BM (mm)

    Actual : Permissible

    Bending Stress at cylinder & base interface considering 1mm slice

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Bending Stress (Mpa) P1 + P2

    Pot

    Neoprene pad

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    18/47

    Check for Thickness of Piston in Bending-Top

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 362.00 362.00 362.00 362.00

    iii)1.03E+05 1.03E+05 1.03E+05 1.03E+05

    iv) 11.04 10.29 11.89 9.45

    v) 224.00 224.00 224.00 224.00

    vi) 69.00 69.00 69.00 69.00

    vii) 2.63E+04 2.45E+04 2.83E+04 2.25E+04

    viii)26.51 25.60 27.51 24.52

    ix) 35.00 35.00 35.00 35.00

    OK OK OK OK OK

    Miscellaneous Design Checks:

    Rotation Capacity cl 926.2.3 of IRC-83(III)

    i)

    16.00 mm

    2.40 mm

    ii) Cl 926.2.3.4 of IRC-83(III)

    0.02 radians >= 0.0057 radians

    OK

    Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002

    10.00 mm

    0.0057 radians

    9.14 mm

    OK

    Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III)ii) 20.00 mm > 16 mm

    OK cl 926.2.3.6 of IRC-83(III)

    iii) 224.00 mm > 180 mm

    OK cl 926.2.3.6 of IRC-83(III)

    Siesmic

    Projection of piston (mm)

    Non-Siesmic

    Dia of loaded area (mm)

    gap after rotation

    Thickness of pad

    Dia of pad

    Check compression at edge of neoprene pad

    Bending Moment at Top (N-mm)

    Thickness of top plate required to cater to

    this BM (mm)

    Provided thickness (mm)

    15% of T1

    T1 = thickness of pad less seal rings thickness

    Rotation (Radius)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Rotaion

    Max Vertical Load (KN)

    Effective Dia of Piston (mm)

    Effective area of the Top Plate in contact to

    steel/concrete (mm2)

    Stress at Top Plate (N/mm)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    19/47

    Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III)

    i) 5.57 mm

    31.80 mm OK

    iv) = 63.00 mm > 15.45 mm OK

    Stress in Guide Bar cl 926.3.5.5 of IRC-83(III)

    Max Min max Min

    8.24 7.68 6.65 6.65

    112.50 112.50 112.50 112.50 cl 926.2.2.3 of IRC-83(III)

    0.07 0.07 0.06 0.06 OK

    22.50 22.50 22.50 22.50

    2891.13 2525.36 5358.75 2092.96

    22.24 19.43 41.22 16.10

    165.00 165.00 165.00 165.00 cl 926.2.2.2 of IRC-83(III)

    0.13 0.12 0.25 0.10 OK

    26.42 23.54 42.80 19.80

    225.00 225.00 225.00 225.00 cl 926.2.2.5 of IRC-83(III)

    0.12 0.10 0.19 0.09 OK

    Check of Weld connection of stainless steel surface:

    = 128.5 119.8 103.8 110.0

    = 110.0 110.0 110.0 110.0 Clause 926.2.6.1 of IRC:83(Part III )-2002

    = 1.19 1.11 0.96 1.01

    = 36.00 36.00 36.00 36.00

    OK OK OK OK OK

    Ref: Clause 926.3.1.5 of IRC:83 (Part - III)-2002

    Stress into Lugs because of Horizontal Force

    Max Min max Min

    i) 128.49 119.81 103.76 103.76

    ii) 84.00 84.00 84.00 84.00

    iii) 20.00 20.00 20.00 20.00

    iv) 1680.00 1680.00 1680.00 1680.00

    v) 8.00 8.00 8.00 8.00

    vi) 16.06 14.98 12.97 12.97

    vii) 9.56 8.91 7.72 7.72

    viii) 153.00 153.00 153.00 153.00

    ix) 0.06 0.06 0.05 0.05 OK

    Size of weld with Bottom Flange:

    Non-Siesmic

    Total horizontal force acting (KN)

    ii)

    Contribution to resistance by bolts (F1)

    No. of bolts used

    Bolt Diameter(mm)

    Cross Sectional Area of one Bolt (mm2)

    Total cross sectional area of bolts (mm2)

    Shear strength of Bolt Gr 8.8

    Total Shear Force Offered By the Bolts (F1)

    Siesmic

    i)

    Shear Stress (Mpa)

    Permissible Stress (0.45fy) (Mpa)

    Actual:Permissible

    Siesmic

    Effective contact Width of pistton and pot

    We = 1.3*(Seismic H Load)*1000/((Pot dia -

    1.5) * 0.75fy)

    iii)

    Combined stress at top plate-guide bar

    Permissible Stress (0.9fy) (Mpa)

    Actual:Permissible

    Stress on lug due to Horz. Force (Mpa)

    Permissible Stress (0.45fy)

    Actual : Permissible

    Movement possible in long direction

    Movement possible in lateral direction

    Non-Siesmic Siesmic

    Total horizontal force on bearing (KN)

    Effective length of lug taking shear (mm)

    Thickness of lug (mm)

    Total cross sectional area of each lug (mm2)

    No. of lugs in each bearing

    Horizontal force on each lug (KN)

    Non-Siesmic Siesmic

    ii)

    Flexural StressEccentricity (mm)

    Moment (M) (KN-mm)

    Flexural stress = M/(LH2/6) (Mpa)

    Permissible Stress (0.66fy) (Mpa)

    Actual:Permissible

    Non-Siesmic

    Thicknes of stainless plate (mm)

    i)

    Slide Plate dimension used:

    Length

    Width

    Induced horizontal force due to friction(KN)

    Permissible stress of weld(Mpa)

    Weld size (mm), assuming welding is done in

    full periphery

    Preset in longitudinal direction

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    20/47

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    21/47

    BEARING DESIGN :

    40 40

    40

    40

    a. Design Inputs:

    = 224 mm

    = 20 mm OK Ref : Cl 926.2.3.6 of IRC83(III)

    = 40 mm

    = 384 mmCl 926.3.1.1.6.1 of IRC83(III)

    = 224 mm

    = 40 mm

    = 40 mm

    = 35 mm

    = 362 mm

    = 43 mm

    = 28 mm

    = 8 mm

    = 12 mm

    = 2 Nos 10 43

    = 4 mm

    = 10 mm8 mm

    40 20

    = 8 mm

    = 224 mm

    = 4.5 mm Thk>=4.5 mm Ref: Table 4 of IRC:83 (Part- III)-2002

    = 28 mm

    = 50 mm

    = 312 mm

    = 350 mm OK

    = 350 mm NA

    = 36 mm

    = 35 Mpa Cl 926.2.3.2 of IRC-83(III)

    = 40 Mpa Cl 926.2.4.3 of IRC-83(III)

    = 340 Mpa Grade-340-570W as per IS-1030

    = 250

    b. Design Requirements

    = 21.79764 mm

    = 0.00000 mm

    = 0.00566 Radians

    = 0.00342 Radians Cl 926.1.6 of IRC-83(III)

    = 0.00224 Radians Cl 926.1.6 of IRC-83(III)

    C. Calculation for permissible stresses in pedestal concrete & bottom flange:

    = M 40

    = 10 As per cl 926.2.1.1 of IRC-83(III)

    The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm

    Bottom:

    = 224 mm

    = 39408.138 mm2

    = 304 mm Cl 926.2.1.1 of IRC-83(III)

    72583 357 mm2

    Neoprene Pad Size dia

    Neoprene Pad Thickness

    Pot Base Thickness

    Pot base effective dia (consider 1:2

    dispersion from elastomer base)

    Spigott Projection > 30mm

    Bolt Dia

    No of Bolts per component

    Bolt flange thickness

    No of sealing rings

    Total thickness of ring

    Neoprene pad stress

    Pot Internal Dia

    Pot wall Depth >28mm

    Pot wall thickness

    Piston thickness above spigot

    Piston effective contact area diameter

    (consider 1:2 dispersion from spiggot)

    Slide Stainless steel Plate (Thickness)

    PTFE size (thickness)

    Height of Guide Bar

    Width of Guide Bar

    Length of piston flat

    Slide Stainless steel Plate (Length)

    Slide Stainless steel Plate (Width)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Vertical face of piston wall

    fy for the mild steel

    PTFE size (dia)

    PTFE stress (working)

    Steel stress (working) for design

    Grade of concrete for Pedestal

    Permissible direct compressive Stress in

    concrete= 0.25* fck

    Dia of loaded area

    Loaded Area A2

    Transverse movement

    Rotation (total)

    Rotation (Permanent actions) WL2/(24EI)

    Rotation (Variable actions) WL2/(24EI)

    Dia after dispersion(1:2)

    Dispersion Area A1

    Longitudinal movement

    Dispersion of 1(V) :2(H)

    Fig 5 of IRC 83(iii)

    Pot Depth

    Pot Wall thck

    Pedestal

    Bearing

    Pot

    Neoprene pad

    Spigot projectio

    pad thk

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    22/47

    d. Neoprene Pad stress: Ref: Clause 926.2.3 of IRC:83(III)-2002

    Max Min max Min

    = 28.83 26.89 31.05 24.67

    = 35.00 35.00 35.00 35.00

    = 5.00 5.00 5.00 5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III)

    OK OK OK OK OK

    Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III)

    = 0.0057 Radians

    = 0.63 mm

    = 16.00 mm

    Check OK

    PTFE stress

    28.82 26.87 31.03 24.66

    40.00 40.00 40.00 40.00 Ref: Cluse 926.2.4.3 & 926.2.4.4 of IRC-83(III)0.72 0.67 0.78 0.62 OK

    Coeffecient of friction (): Ref: Table 5 of IRC:83 (part-III)-2002

    Ref: Clause 926.2.4.2 of IRC:83 (Part-III)-2002

    Max Min max Min

    = 28.82 26.87 31.03 24.66

    = 0.08 0.08 0.06 0.08

    Concentrated stresses at pot base:(At concrete pedastal)

    Max Min max Min

    = 9.81 9.14 10.56 8.39

    = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III)

    = 0.72 0.67 0.62 0.49 OK

    Ref : c lause 926.2.3.2 and clause 926.2.3.5 of

    IRC:83(Part -III)

    Minimum Permissible Average

    stress (Mpa)

    Rotaiton of pad

    Deforamtion of pad due to

    rotation

    he,eff (as per Figure)

    Non-Seismic Seismic

    Actual Stress (Mpa)

    Maximum Permissible Average

    stress (Mpa)

    i)

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress

    Permissible stress (Mpa)

    Actual : PermissibleIncrease by 25% when w

    earthquake taken into ac

    Actual (Mpa)

    Permissible (Mpa)Ratio Actual:Permissible

    As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments

    prodeiced due to design horizontal force and that induced due to resistance to rotation shall be considered.

    Non-Seismic Seismic

    Maximum Design

    Coeffecient of friction

    5 0.08 0.16

    10 0.06 0.12

    Non-Siesmic Siesmic

    Average Pressure on PTFE (Mpa)

    Coeffecient of friction ()

    20

    Average Pressure on confined

    PTFE (Mpa)

    Maximum

    Coeffecient of friction

    0.04 0.08

    more than 30 0.03 0.06

    he,effhe

    < he,eff * 0.15

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    23/47

    = 64.00 64.00 64.00 64.00

    = 1.67 1.56 2.77 1.43

    iii)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.0034 0.0034 0.0034 0.0034

    = 39.93 39.93 39.93 39.93

    = 0.0022 0.0022 0.0022 0.0022

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 145.45 135.61 241.09 124.46

    = 3.26 3.04 5.40 2.79

    iii-3) = 4.33 4.11 6.47 3.86

    iii-4) = 0.78 0.74 1.16 0.69

    = 2.45 2.30 3.94 2.13

    = 13.20 13.20 16.50 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III)

    = 0.19 0.17 0.24 0.13 OK

    = 12.26 11.44 14.50 10.52

    = 13.57 13.57 16.96 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III)

    = 0.90 0.84 0.85 0.62 OK

    = Ref: Cl 926.2.1.3 of IRC-83(III)

    = 0.91 0.85 0.86 0.62 OK OK

    Concentrated stresses at piston base: Ref: Cl 926.1.5 of IRC-83(III)

    Max Min max Min

    = 110.35 102.89 118.81 94.43

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(I II)

    = 0.59 0.55 0.63 0.50 OK

    = 74.00 74.00 74.00 74.00

    = 2.31 2.15 3.83 1.98

    iii)

    Ref: Cl 926.1.5.1 of IRC-83(III)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.003 0.003 0.003 0.003

    = 39.933 39.933 39.933 39.933

    = 0.002 0.002 0.002 0.002

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 145.45 135.61 241.09 124.46

    = 3.26 3.04 5.40 2.79

    iii-3) = 4.33 4.11 6.47 3.86

    ii)

    Flexural Stress due to active Moment resulting from acting Horizontal Forces

    eccentricity (mm), From the

    bottom of bearing

    Flexural Stress (Mpa)

    Flexural Stress due to induced Moment resulting from resistance to rotation due to the

    effect of tilting stiffness of elastomeric pressure pad

    iii-1)

    Me.d = di3

    * (k1.p k2.v) Ref: Cl 926.1.5.1 of IRC-83(III)

    di(dia of elastomeric pad, mm)

    he (thickness of confined

    elastomeric pressure pad,mm)

    Horizontal force acts at the

    center line of bearing

    H (KN)

    MR.d (KN-m)

    di/he

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    Total induced moment

    = Me,d + MR,d (KN-m)

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iii-2)

    MR.d = 0.2*C*H

    C (mm), Perpendicular distance

    from the point of action of

    horizontal force on cylinde wall

    to the axis of rotation

    Non-Siesmic Siesmic

    i

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress due to

    Vertical Load (Mpa)

    Permissible Stress (Mpa)

    Actual:Permissible

    iii-6)

    Total Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iv)Coexisting Direct & Flexural

    Stress Ratio > 1

    ii)

    Flexural Stress due to active Moment resulting from acting horizontal forces

    eccentricity (mm)

    Stress (Mpa)

    Stress due to induced moment from resistance to rotation

    iii-1)

    Me.d = di3

    * (k1.p k2.v)

    di (dia of elastomer pad, mm)

    he (thickness of confined

    elastomeric pressure pad in mm)

    di/he

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    iii-2)

    MR.d = 0.2*C*H

    C (mm)

    H (KN)

    MR.d (KN-m)

    Total induced moment = Me.d +MR.d (KN-m)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    24/47

    iii-4) = 0.93 0.88 1.39 0.83

    = 3.24 3.04 5.22 2.81

    = 165.00 165.00 165.00 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III)

    = 0.02 0.02 0.03 0.02 OK

    = 113.59 105.93 124.03 97.23

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III)

    = 0.61 0.56 0.66 0.52 OK

    Cl 926.2.2.5 of IRC-83(III)191.16 178.24 205.86 163.58

    225.00 225.00 225.00 225.00 Cl 926.2.2.5 of IRC-83(III)

    0.850 0.792 0.915 0.727 OK OK

    Design of Pot Wall cl 926.3.1.1.7 of IRC-83(III)

    Max Min max Min

    i) 129.18 120.45 139.09 110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III)

    ii) 40.37 37.64 43.46 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III)

    iii)-a 145.45 135.61 241.09 124.46

    iii)-b45.45 42.38 75.34 38.89

    iv) 85.82 80.02 118.80 73.44

    v) 204.00 204.00 204.00 204.00 Cl 926.2.2 of IRC-83(III)

    vi) 0.42 0.39 0.58 0.36 OK

    i) 14.42 13.44 15.52 12.34

    ii) 24.35 22.70 40.36 20.84

    38.77 36.15 55.88 33.17

    153.00 153.00 153.00 153.00 Cl 926.2.2.3 of IRC-83(III)

    0.25 0.24 0.37 0.22 OK

    i) 21.63 20.16 23.28 18.51

    ii) 87.66 81.73 145.30 75.01

    109.28 101.90 168.58 93.51

    224.40 224.40 224.40 224.40 Cl 926.2.2.2 of IRC-83(III)

    0.49 0.45 0.75 0.42 OK

    128.26 119.59 194.40 109.76

    306 306 306 306 Cl 926.2.2.5 of IRC-83(III)

    0.42 0.39 0.64 0.36 OK OK

    Check for Thickness of Pot in Bending-Bottom

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 384.00 384.00 384.00 384.00

    iii)1.16E+05 1.16E+05 1.16E+05 1.16E+05

    iv) 9.81 9.15 10.56 8.40

    v) 224.00 224.00 224.00 224.00

    vi) 80.00 80.00 80.00 80.00

    vii) 31397.69 29275.30 33805.65 26867.34viii)

    28.97 27.98 30.06 26.80stress = BM*6/(b*d2)=0.66*

    ix) 40.00 40.00 40.00 40.00

    OK OK OK OK OK

    Actual : Permissible

    Actual:Permissible

    Non-Siesmic Siesmic

    iii-6)

    Total Stress (Mpa)

    Permissible Stress (Mpa)

    Actual : Permissible

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (0.66fy) (Mpa)

    Provided thickness (mm)

    Siesmic

    Max Vertical Load (KN)

    Total horizontal force into wall (KN)

    Total horizontal stress into wall due to

    horizontal force (P2) (Mpa)

    Total P = P1 + P2 (Mpa)

    Permissible stress (0.6fy) (Mpa)

    Actual:Permissible

    Shear stress at cylinder & base interface considering 1mm slice

    Combined Stress (Mpa)

    Permissible Stress (0.9fy) Mpa

    Actual : Permissible

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Shear Stress P = P1 + P2 (Mpa)

    Permissible Stress (0.45fy)

    Pot Base effective Contact Dia (mm)

    Effective area of the Plate in contact to

    concrete (mm2)

    Stress on Plate (N/mm2)

    Dia of loaded area (mm)

    Non-Siesmic

    Check of Hoop Tensile stress

    Force from pad (KN per I section of ring)

    Pressure from Pad (P1) (Mpa)

    iv)

    Coexisting Direct & Flexural Stress Check

    Combined Stresses (Mpa)

    Permissible stress (0.9fy) (Mpa)

    iii)

    Projection of pot (mm)

    Bending Moment at Top (N-mm)Thickness of top plate required to cater to

    this BM (mm)

    Actual : Permissible

    Bending Stress at cylinder & base interface considering 1mm slice

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Bending Stress (Mpa) P1 + P2

    Permissible Stress (0.66fy)

    Actual : Permissible

    Pot

    Neoprene pad

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    25/47

    Check for Thickness of Piston in Bending-Top

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 362.00 362.00 362.00 362.00

    iii)1.03E+05 1.03E+05 1.03E+05 1.03E+05

    iv) 11.04 10.29 11.89 9.45

    v) 224.00 224.00 224.00 224.00

    vi) 69.00 69.00 69.00 69.00

    vii) 2.63E+04 2.45E+04 2.83E+04 2.25E+04

    viii)26.51 25.60 27.51 24.52

    ix) 35.00 35.00 35.00 35.00

    OK OK OK OK OK

    Miscellaneous Design Checks:

    Rotation Capacity cl 926.2.3 of IRC-83(III)

    i)

    16.00 mm

    2.40 mm

    ii) Cl 926.2.3.4 of IRC-83(III)

    0.02 radians >= 0.0057 radians

    OK

    Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002

    10.00 mm

    0.0057 radians

    9.14 mm

    OK

    Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III)ii) 20.00 mm > 16 mm

    OK cl 926.2.3.6 of IRC-83(III)

    iii) 224.00 mm > 180 mm

    OK cl 926.2.3.6 of IRC-83(III)

    Siesmic

    Projection of piston (mm)

    Non-Siesmic

    Dia of loaded area (mm)

    gap after rotation

    Thickness of pad

    Dia of pad

    Check compression at edge of neoprene pad

    Bending Moment at Top (N-mm)

    Thickness of top plate required to cater to

    this BM (mm)

    Provided thickness (mm)

    15% of T1

    T1 = thickness of pad less seal rings thickness

    Rotation (Radius)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Rotaion

    Effective area of the Top Plate in contact to

    steel/concrete (mm2)

    Stress at Top Plate (N/mm)

    Max Vertical Load (KN)

    Effective Dia of Piston (mm)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    26/47

    Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III)

    i) 5.57 mm

    31.80 mm OK

    iv) = 63.00 mm > NA mm NA

    Stress in Guide Bar cl 926.3.5.5 of IRC-83(III)

    Max Min max Min

    9.32 8.69 15.45 7.98

    112.50 112.50 112.50 112.50 cl 926.2.2.3 of IRC-83(III)

    0.08 0.08 0.14 0.07 OK

    22.50 22.50 22.50 22.50

    3272.54 3051.32 5424.51 2800.34

    25.17 23.47 41.73 21.54

    165.00 165.00 165.00 165.00 cl 926.2.2.2 of IRC-83(III)

    0.15 0.14 0.25 0.13 OK

    29.91 27.89 49.57 25.59

    225.00 225.00 225.00 225.00 cl 926.2.2.5 of IRC-83(III)

    0.13 0.12 0.22 0.11 OK

    Stress into Lugs because of Horizontal Force

    Max Min max Min

    i) 145.45 135.61 241.09 124.46

    ii) 84.00 84.00 84.00 84.00iii) 20.00 20.00 20.00 20.00

    iv) 1680.00 1680.00 1680.00 1680.00

    v) 8.00 8.00 8.00 8.00

    vi) 18.18 16.95 30.14 15.56

    vii) 10.82 10.09 17.94 9.26

    viii) 153.00 153.00 153.00 153.00

    ix) 0.07 0.07 0.12 0.06 OK

    Check of Weld connection of stainless steel surface:

    = 90.9 84.7 73.4 77.7

    = 110.0 110.0 110.0 110.0 Clause 926.2.6.1 of IRC:83(Part III)-2002

    = 0.84 0.78 0.68 0.72

    = 36.00 36.00 36.00 36.00

    OK OK OK OK OK

    R f Cl 926 3 1 5 f IRC 83 (P t III) 2002

    No. of bolts used

    Bolt Diameter(mm)

    Cross Sectional Area of one Bolt (mm2)

    Total cross sectional area of bolts (mm2)

    Shear strength of Bolt Gr 8.8

    Total Shear Force Offered By the Bolts (F1)

    Non-Siesmic

    Total horizontal force acting (KN)

    Siesmic

    i)

    Shear Stress (Mpa)

    Permissible Stress (0.45fy) (Mpa)

    Actual:Permissible

    Siesmic

    Effective contact Width of pistton and pot

    We = 1.3*(Seismic H Load)*1000/((Pot dia -

    1.5) * 0.75fy)

    iii)

    Combined stress at top plate-guide bar

    Permissible Stress (0.9fy) (Mpa)

    Actual:Permissible

    Stress on lug due to Horz. Force (Mpa)

    Permissible Stress (0.45fy)

    Actual : Permissible

    ii)

    Contribution to resistance by bolts (F1)

    Total horizontal force on bearing (KN)

    Effective length of lug taking shear (mm)Thickness of lug (mm)

    Total cross sectional area of each lug (mm2)

    No. of lugs in each bearing

    Horizontal force on each lug (KN)

    Thicknes of stainless plate (mm)

    Induced horizontal force due to friction(KN)

    Permissible stress of weld(Mpa)

    Weld size (mm), assuming welding is done in

    full periphery

    Non-Siesmic Siesmic

    ii)

    Flexural Stress

    Eccentricity (mm)

    Moment (M) (KN-mm)

    Flexural stress = M/(LH2/6) (Mpa)

    Permissible Stress (0.66fy) (Mpa)

    Actual:Permissible

    Non-Siesmic

    i)

    Slide Plate dimension used:

    Length

    Width

    Preset in longitudinal direction

    Movement possible in long direction

    Movement possible in lateral direction

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    27/47

    BEARING DESIGN :

    40 40

    40

    40

    a. Design Inputs:

    = 224 mm

    = 20 mm OK Ref : Cl 926.2.3.6 of IRC83(III)

    = 40 mm

    = 384 mm Cl 926.3.1.1.6.1 of IRC83(III)

    = 224 mm

    = 40 mm

    = 40 mm= 35 mm

    =362

    mm

    = 43 mm

    = 28 mm

    = 8 mm

    = 12 mm

    = 2 Nos 10 43

    = 4 mm

    = 10 mm8 mm

    40 20

    = 8 mm

    = 224 mm

    = 4.5 mm Thk>=4.5 mm Ref: Table 4 of IRC:83 (Part-III)-2002= 28 mm

    = 50 mm

    = 312 mm

    = 350 mm NA

    = 350 mm OK

    = 36 mm

    = 35 Mpa Cl 926.2.3.2 of IRC-83(III)

    = 40 Mpa Cl 926.2.4.3 of IRC-83(III)

    = 340 Mpa Grade-340-570W as per IS-1030

    = 250 Mpa

    b. Design Requirements

    = 0.00 mm

    = 5.45 mm

    = 0.00566 Radians

    = 0.00342 Radians Cl 926.1.6 of IRC-83(III)

    = 0.00224 Radians Cl 926.1.6 of IRC-83(III)

    C. Calculation for permissible stresses in pedestal concrete & bottom flange:

    = M 40

    = 10 As per cl 926.2.1.1 of IRC-83(III)

    The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm

    Bottom:

    = 224 mm

    = 39408.1382 mm2

    = 304 mm Cl 926.2.1.1 of IRC-83(III)= 72583.3567 mm

    2

    = 13.57 Mpa

    Neoprene Pad Size dia

    Neoprene Pad Thickness

    Pot Base Thickness

    Pot base effective dia (consider 1:2

    Spigott Projection > 30mm

    Bolt Dia

    No of Bolts per component

    Bolt flange thickness

    No of sealing rings

    Total thickness of ring

    Neoprene pad stress

    Pot Internal Dia

    Pot wall Depth >28mm

    Pot wall thicknessPiston thickness above spigot

    Piston effective contact area diameter

    (consider 1:2 dispersion from spiggot)

    Slide Stainless steel Plate (Thickness)

    PTFE size (thickness)Height of Guide Bar

    Width of Guide Bar

    Length of piston flat

    Slide Stainless steel Plate (Length)

    Slide Stainless steel Plate (Width)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Vertical face of piston wall

    fy for the mild steel

    PTFE size (dia)

    PTFE stress (working)

    Steel stress (working) for design

    Grade of concrete for Pedestal

    Permissible direct compressive Stress in

    concrete= 0.25* fck

    Dia of loaded area

    Loaded Area A2

    Transverse movement

    Rotation (total)

    Rotation (Permanent actions) WL2/(24EI)

    Rotation (Variable actions) WL2/(24EI)

    Dia after dispersion(1:2)Dispersion Area A1

    Permissible concrete stress

    0 25f k (A1/A2)

    Longitudinal movement

    Dispersion of 1(V) :2(H)

    Fig 5 of IRC 83(iii)

    Pot Depth

    Pot Wall thck

    Pedestal

    Bearing

    Pot

    Neoprene pad

    Spigot projection

    pad thk

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    28/47

    Max Min max Min

    = 28.83 26.89 31.05 24.67

    = 35.00 35.00 35.00 35.00

    = 5.00 5.00 5.00 5.00 Ref : clause 926.2.3.3 of IRC:83(Part -III)

    OK OK OK OK OK

    Rotaion check on pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III)

    = 0.0057 Radians

    = 0.63 mm

    = 16.00 mm

    Check OK

    PTFE stress:

    28.82 26.87 31.03 24.66

    40.00 40.00 40.00 40.00 Ref: Cluse 926.2.4.3 & 926.2.4.4 of IRC-83(III)

    0.72 0.67 0.78 0.62 OK

    Coeffecient of friction (): Ref: Table 5 of IRC:83 (part-III)-2002

    Ref: Clause 926.2.4.2 of IRC:83 (Part-III)-2002

    Max Min max Min

    = 28.82 26.87 31.03 24.66

    = 0.08 0.08 0.06 0.08

    Concentrated stresses at pot base:

    Max Min max Min

    = 9.81 9.14 10.56 8.39

    = 13.57 13.57 16.96 16.96 cl 926.2.1.4 of IRC-83(III)

    = 0.72 0.67 0.62 0.49 OK

    Ref : clause 926.2.3.2 and clause 926.2.3.5 of

    IRC:83(Part -III)

    Minimum Permissible Average

    stress (Mpa)

    Rotaiton of pad

    Deforamtion of pad due to

    rotation

    he,eff (as per Figure)

    Actual Stress (Mpa)

    Maximum Permissible Average

    stress (Mpa)

    i)

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress

    Permissible stress (Mpa)

    Actual : PermissibleIncrease by 25% when w

    earthquake taken into a

    Actual (Mpa)

    Permissible (Mpa)

    Ratio Actual:Permissible

    As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced

    due to design horizontal force and that induced due to resistance to rotation shall be considered.Non-Seismic Seismic

    Maximum Design

    Coeffecient of friction

    5 0.08 0.16

    10 0.06 0.12

    Non-Siesmic Siesmic

    Average Pressure on PTFE (Mpa)

    Coeffecient of friction ()

    20

    Average Pressure on confined

    PTFE (Mpa)

    Maximum

    Coeffecient of friction

    0.04 0.08

    more than 30 0.03 0.06

    he,effhe

    < he,eff * 0.15

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    29/47

    = 64.00 64.00 64.00 64.00

    = 1.67 1.56 1.64 1.43

    iii)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.0034 0.0034 0.0034 0.0034

    = 39.93 39.93 39.93 39.93

    = 0.0022 0.0022 0.0022 0.0022

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 145.45 135.61 142.61 124.46

    = 3.26 3.04 3.19 2.79

    iii-3) = 4.33 4.11 4.26 3.86

    iii-4) = 0.78 0.74 0.77 0.69

    = 2.45 2.30 2.41 2.13

    = 13.20 13.20 16.50 16.50 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III)

    = 0.19 0.17 0.15 0.13 OK

    = 12.26 11.44 12.97 10.52

    = 13.57 13.57 16.96 16.96 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III)

    = 0.90 0.84 0.76 0.62 OK

    = Ref: Cl 926.2.1.3 of IRC-83(III)

    = 0.91 0.85 0.77 0.62 OK OK

    Concentrated stresses at piston base: Ref: Cl 926.1.5 of IRC-83(III)

    Max Min max Min

    = 110.35 102.89 118.81 94.43

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(I II )

    = 0.59 0.55 0.63 0.50 OK

    = 74.00 74.00 74.00 74.00

    = 2.31 2.15 2.27 1.98

    iii)

    Ref: Cl 926.1.5.1 of IRC-83(III)

    = 224.00 224.00 224.00 224.00

    = 20.00 20.00 20.00 20.00

    = 11.20 11.20 11.20 11.20

    = 1.64 1.64 1.64 1.64

    = 0.003 0.003 0.003 0.003

    = 39.933 39.933 39.933 39.933

    = 0.002 0.002 0.002 0.002

    = 1.07 1.07 1.07 1.07

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 112.00 112.00 112.00 112.00

    = 145.45 135.61 142.61 124.46

    = 3.26 3.04 3.19 2.79

    iii-3) = 4.33 4.11 4.26 3.86

    ii)

    Flexural Stress due to active Moment resulting from acting Horizontal Forces

    eccentricity (mm), From the

    bottom of bearing

    Flexural Stress (Mpa)

    Flexural Stress due to induced Moment resulting from resistance to rotation due to the

    effect of tilting stiffness of elastomeric pressure pad

    iii-1)

    Me.d = di3

    * (k1.p k2.v) Ref: Cl 926.1.5.1 of IRC-83(III)

    di (dia of elastomeric pad, mm)

    he (thickness of confined

    elastomeric pressure pad,mm)

    Horizontal force acts at the

    center line of bearing

    H (KN)

    MR.d (KN-m)

    di/he

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    Total induced moment

    = Me,d + MR,d (KN-m)

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iii-2)

    MR.d = 0.2*C*H

    C (mm), Perpendicular distance

    from the point of action of

    horizontal force on cylinde wall

    to the axis of rotation

    Non-Siesmic Siesmic

    i

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress due to

    Vertical Load (Mpa)

    Permissible Stress (Mpa)

    Actual:Permissible

    iii-6)

    Total Stress (Mpa)

    Permissible stress (Mpa)

    Actual : Permissible

    iv)Coexisting Direct & Flexural

    Stress Ratio > 1

    ii)

    Flexural Stress due to active Moment resulting from acting horizontal forces

    eccentricity (mm)

    Stress (Mpa)

    Stress due to induced moment from resistance to rotation

    iii-1)

    Me.d = di3

    * (k1.p k2.v)

    di (dia of elastomer pad, mm)

    he (thickness of confined

    elastomeric pressure pad in mm)

    di/he

    k1

    p (radians)

    k2

    v (radians)

    Me.d (KN-m)

    iii-2)

    MR.d = 0.2*C*H

    C (mm)

    H (KN)

    MR.d (KN-m)

    Total induced moment = Me.d +

    MR.d (KN-m)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    30/47

    iii-4) = 0.93 0.88 0.92 0.83

    = 3.24 3.04 3.18 2.81

    = 165.00 165.00 165.00 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III)

    = 0.02 0.02 0.02 0.02 OK

    = 113.59 105.93 121.99 97.23

    = 187.50 187.50 187.50 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III)

    = 0.61 0.56 0.65 0.52 OK

    Cl 926.2.2.5 of IRC-83(III)

    191.16 178.24 205.81 163.58

    225.00 225.00 225.00 225.00 Cl 926.2.2.5 of IRC-83(III)

    0.850 0.792 0.915 0.727 OK OK

    Design of Pot Wall cl 926.3.1.1.7 of IRC-83(III)

    Max Min max Min

    i) 129.18 120.45 139.09 110.54 Cl 926.3.1.1.7.1 (i) of IRC-83(III)

    ii) 40.37 37.64 43.46 34.54 Cl 926.3.1.1.7.1 (ii) of IRC-83(III)

    iii)-a 145.45 135.61 142.61 124.46

    iii)-b45.45 42.38 44.56 38.89

    iv) 85.82 80.02 88.03 73.44

    v) 150.00 150.00 150.00 150.00 Cl 926.2.2 of IRC-83(III)

    vi) 0.57 0.53 0.59 0.49 OK

    i) 14.42 13.44 15.52 12.34

    ii) 24.35 22.70 23.87 20.84

    38.77 36.15 39.40 33.17

    112.50 112.50 112.50 112.50 Cl 926.2.2.3 of IRC-83(III)

    0.34 0.32 0.35 0.29 OK

    i) 21.63 20.16 23.28 18.51

    ii) 87.66 81.73 85.95 75.01

    109.28 101.90 109.23 93.51

    165.00 165.00 165.00 165.00 Cl 926.2.2.2 of IRC-83(III)

    0.66 0.62 0.66 0.57 OK

    128.26 119.59 128.79 109.76225 225 225 225 Cl 926.2.2.5 of IRC-83(III)

    0.57 0.53 0.57 0.49 OK OK

    Check for Thickness of Pot in Bending-Bottom

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 384.00 384.00 384.00 384.00

    iii)1.16E+05 1.16E+05 1.16E+05 1.16E+05

    iv) 9.81 9.15 10.56 8.40

    v) 224.00 224.00 224.00 224.00

    vi) 80.00 80.00 80.00 80.00

    vii) 31397.69 29275.30 33805.65 26867.34

    viii)28.97 27.98 30.06 26.80

    stress = BM*6/(b*d2)=0.66*

    ix) 40.00 40.00 40.00 40.00

    OK OK OK OK OK

    iii-6)

    Total Stress (Mpa)

    Permissible Stress (Mpa)

    Actual : Permissible

    iv)

    Coexisting Direct & Flexural Stress Check

    Combined Stresses (Mpa)

    Permissible stress (0.9fy) (Mpa)

    Stress (Mpa)

    iii-5)

    Total flexural Stress (Mpa)

    Permissible stress (0.66fy) (Mpa)

    Actual : Permissible

    Total horizontal force into wall (KN)

    Total horizontal stress into wall due to

    horizontal force (P2) (Mpa)

    Total P = P1 + P2 (Mpa)

    Permissible stress (0.6fy) (Mpa)

    Actual:Permissible

    Shear stress at cylinder & base interface considering 1mm slice

    Actual:Permissible

    Non-Siesmic Siesmic

    Check of Hoop Tensile stress

    Force from pad (KN per I section of ring)

    Pressure from Pad (P1) (Mpa)

    iii) Combined Stress (Mpa)Permissible Stress (0.9fy) Mpa

    Actual : Permissible

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Shear Stress P = P1 + P2 (Mpa)

    Permissible Stress (0.45fy)

    Actual : Permissible

    Bending Stress at cylinder & base interface considering 1mm slice

    Fluid Pressure (P1) Mpa

    Horizontal Force (P2) Mpa

    Total Bending Stress (Mpa) P1 + P2

    Permissible Stress (0.66fy)

    Actual : Permissible

    Projection of pot (mm)

    Bending Moment at Top (N-mm)

    Thickness of top plate required to cater tothis BM (mm)

    Provided thickness (mm)

    Siesmic

    Max Vertical Load (KN)

    Pot Base effective Contact Dia (mm)

    Effective area of the Plate in contact to

    concrete (mm2)

    Stress on Plate (N/mm2)

    Dia of loaded area (mm)

    Non-Siesmic

    Pot

    Neoprene pad

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    31/47

    Check for Thickness of Piston in Bending-Top

    Max Min max Min

    i) 1135.74 1058.97 1222.84 971.87

    ii) 362.00 362.00 362.00 362.00

    iii)1.03E+05 1.03E+05 1.03E+05 1.03E+05

    iv) 11.04 10.29 11.89 9.45

    v) 224.00 224.00 224.00 224.00

    vi) 69.00 69.00 69.00 69.00

    vii) 2.63E+04 2.45E+04 2.83E+04 2.25E+04

    viii)26.51 25.60 27.51 24.52

    ix) 35.00 35.00 35.00 35.00

    OK OK OK OK OK

    Miscellaneous Design Checks:

    Rotation Capacity cl 926.2.3 of IRC-83(III)

    i)

    16.00 mm

    2.40 mm

    ii) Cl 926.2.3.4 of IRC-83(III)

    0.02 radians >= 0.0057 radians

    OK

    Check on Piston rotaion gap: Ref: Clause 926.3.1.4 of IRC:83 (Part III)-2002

    10.00 mm

    0.0057 radians

    9.14 mm

    OK

    Diameter & Thickness checks cl 926.2.3.6 of IRC-83(III)i 20.00 mm > 16 mm

    OK cl 926.2.3.6 of IRC-83(III)

    ii 224.00 mm > 180 mm

    OK cl 926.2.3.6 of IRC-83(III)

    Non-Siesmic

    Dia of loaded area (mm)Projection of piston (mm)

    Siesmic

    15% of T1

    T1 = thickness of pad less seal rings thickness

    Rotation (Radius)

    Clearance between top edge of pot wall and

    bottom edge of piston

    Rotaion

    gap after rotation

    Thickness of pad

    Dia of pad

    Check compression at edge of neoprene pad

    Bending Moment at Top (N-mm)

    Thickness of top plate required to cater to

    this BM (mm)

    Provided thickness (mm)

    Max Vertical Load (KN)

    Effective Dia of Piston (mm)

    Effective area of the Top Plate in contact to

    steel/concrete (mm2)

    Stress at Top Plate (N/mm)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    32/47

    Vertical Face of Piston required cl 926.3.1.3.1 of IRC-83(III)

    i) 5.57 mm

    NA mm NA

    iv) = 63.00 mm > 15.45 mm OK

    Stress in Guide Bar cl 926.3.5.5 of IRC-83(III)

    Max Min max Min

    9.32 8.69 9.14 7.98

    112.50 112.50 112.50 112.50 cl 926.2.2.3 of IRC-83(III)

    0.08 0.08 0.08 0.07 OK

    22.50 22.50 22.50 22.50

    3272.54 2525.36 5358.75 2092.96

    25.17 19.43 41.22 16.10

    165.00 165.00 165.00 165.00 cl 926.2.2.2 of IRC-83(III)

    0.15 0.12 0.25 0.10 OK

    29.91 24.58 44.16 21.22

    225.00 225.00 225.00 225.00 cl 926.2.2.5 of IRC-83(III)

    0.13 0.11 0.20 0.09 OK

    Stress into Lugs because of Horizontal Force

    Max Min max Min

    i) 145.45 135.61 142.61 124.46

    ii) 84.00 84.00 84.00 84.00iii) 20.00 20.00 20.00 20.00

    iv) 1680.00 1680.00 1680.00 1680.00

    v) 8.00 8.00 8.00 8.00

    vi) 18.18 16.95 17.83 15.56

    vii) 10.82 10.09 10.61 9.26

    viii) 153.00 153.00 153.00 153.00

    ix) 0.07 0.07 0.07 0.06 OK

    Check of Weld connection of stainless steel surface:

    = 90.9 84.7 73.4 77.7

    = 110.0 110.0 110.0 110.0 Clause 926.2.6.1 of IRC:83(Part III) -2002

    = 0.84 0.78 0.68 0.72

    = 36.00 36.00 36.00 36.00

    OK OK OK OK OK

    Ref: Clause 926.3.1.5 of IRC:83 (Part -III)-2002

    SiesmicNon-Siesmic

    ii)

    Effective contact Width of pistton and pot

    We = 1.3*(Seismic H Load)*1000/((Pot dia -

    1.5) * 0.75fy)

    Shear strength of Bolt Gr 8.8

    Total Shear Force Offered By the Bolts (F1)

    Total horizontal force acting (KN)

    Contribution to resistance by bolts (F1)

    No. of bolts used

    Bolt Diameter(mm)

    Cross Sectional Area of one Bolt (mm2)

    Total cross sectional area of bolts (mm2)

    Siesmic

    i)

    Shear Stress (Mpa)

    Permissible Stress (0.45fy) (Mpa)

    Actual:Permissible

    iii)

    Combined stress at top plate-guide bar

    Permissible Stress (0.9fy) (Mpa)

    Actual:Permissible

    Stress on lug due to Horz. Force (Mpa)

    Permissible Stress (0.45fy)

    Actual : Permissible

    Total horizontal force on bearing (KN)

    Effective length of lug taking shear (mm)

    Thickness of lug (mm)

    Total cross sectional area of each lug (mm2)

    No. of lugs in each bearing

    Horizontal force on each lug (KN)

    Non-Siesmic Siesmic

    ii)

    Flexural Stress

    Eccentricity (mm)

    Moment (M) (KN-mm)

    Flexural stress = M/(LH2/6) (Mpa)

    Permissible Stress (0.66fy) (Mpa)

    Actual:Permissible

    Non-Siesmic

    Thicknes of stainless plate (mm)

    i)

    Slide Plate dimension used:

    Length

    Width

    Induced horizontal force due to friction(KN)

    Permissible stress of weld(Mpa)

    Weld size (mm), assuming welding is done in

    full periphery

    Preset in longitudinal direction

    Movement possible in long direction

    Movement possible in lateral direction

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    33/47

    v) 6.00 6.00 6.00 6.00Size of weld to be provided (mm)

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    34/47

    Design of Pin Bearing

    Ref: Clause 923.3 of IRC:83 (Part III)-2002

    Pin Bearing bear and transmit horizontal forces along any direction in the horizontal plane and accomaodatating rotational movement about any axis.

    Pin Bearing can NOT bear or transmit any vertical load.

    Design Load for pin bearing:

    V Hx Hy

    0 1565.51 0.00 KN

    max H 1565.51 KN

    a. Design Inputs:

    = 272 mm

    = 294 mm

    = 20 mm OK Ref : Cl 926.2.3.6 of IRC83(III)

    = 50 mm OK Ref: Cl 926.3.3.8 of IRC 83(III)

    = 494 mmCl 926.3.1.1.6.1 of IRC83(III)

    = 302 mm

    = 80 mm

    = 92 mm

    = 35 mm

    = 440 mm

    = 70 mm

    = 32 mm 10 70

    = 12

    = 12 mm 40 80 20

    = 0 Nos

    = 0 mm

    = 10 mm

    = 40 mm

    = 35 Mpa Cl 926.2.3.2 of IRC-83(III)= 40 Mpa Cl 926.2.4.3 of IRC-83(III)

    = 340 Mpa Grade-340-570W as per IS-1030

    = 250 Mpa

    b. Design Requirements

    = 0.0 mm

    = 0.0 mm

    = 0.00566 Radians

    = 0.00342 Radians Cl 926.1.6 of IRC-83(III)

    = 0.00224 Radians Cl 926.1.6 of IRC-83(III)

    C. Calculation for permissible stresses in pedestal concrete & bottom flange:

    = M 40

    = 10 As per cl 926.2.1.1 of IRC-83(III)

    The projection of the adjacent structure beyond the loaded area shall NOT be less than 150mm

    Bottom:

    = 302 mm

    = 71631.4541 mm2

    = 402 mm Cl 926.2.1.1 of IRC-83(III)

    = 126923.485 mm2

    = 13.31 Mpa

    Top: = 187.5 Mpa

    Grade of concrete for Pedestal

    Longitudinal movement

    Transverse movement

    Rotation (total)

    Vertical face of piston wall

    fy for the mild steel

    Rotation (Permanent actions) WL2/(24EI)

    Rotation (Variable actions) WL2/(24EI)

    Neoprene pad stressPTFE stress (working)

    Steel stress (working) for design

    Neoprene Pad Size dia

    Neoprene Pad Thickness

    Pot Base Thickness

    Pot base effective dia (consider 1:2

    dispersion from elastomer base)

    Spigott Projection > 70mm

    Bolt Dia

    No of Bolts per component

    Piston effective contact area diameter

    (consider 1:2 dispersion from spiggot)

    Clearance between top edge of cylinder and

    bottom edge of piston

    Bolt flange thickness

    No of sealing rings

    Total thickness of ring

    Pot Internal Dia

    Pot wall Depth =61mm

    Pot wall thickness

    Piston thickness above spigot

    Permissible bearing stress in

    bottom flange (= 0.75*fy)

    Permissible direct compressive Stress inconcrete= 0.25* fck

    Dia of loaded area

    Loaded Area A2

    Dia after dispersion(1:2)

    Dispersion Area A1

    Permissible concrete stress

    =0.25fck (A1/A2)

    Dia of pin

    Pedestal

    Bearing

    Pot

    Neoprene pad

    Spigot projection

    pad thk

  • 7/27/2019 Final Pot Ptfe Design Sheet_02.01.13

    35/47

    Rotaion check on Neoprene pad ( Ref: clause 926.2.3.4 of IRC:83 (Part III)

    = 0.0057 Radians

    = 0.83 mm

    = 20.00 mm

    Check OK

    Concentrated stresses at pot base:

    = 0.00

    = 13.31 cl 926.2.1.4 of IRC-83(III)

    = 0.00 OK

    = 90.00

    = 11.90

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 0.00

    = 113.57

    = 0.00

    iii-3) = 0.00

    iii-4) = 0.00

    = 11.90

    = 13.20 Ref: Cl 926.2.1.2 & Cl 926.2.1.4 of IRC-83(III)

    = 0.90 OK

    = 11.90

    = 13.31 cl 926.2.1 & cl 926.2.1.4 of IRC-83(III)

    = 0.89 OK

    = Ref: Cl 926.2.1.3 of IRC-83(III)

    = 0.90 OK

    Concentrated stresses at piston base: Ref: Cl 926.1.5 of IRC-83(III)

    = 0.00

    = 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III)

    = 0.00 OK

    = 85.00

    = 15.91

    Ref: Cl 926.1.5.2 of IRC-83(III)

    = 0.00= 113.57

    = 0.00

    iii-3) = 0.00

    iii-4) = 0.00

    = 15.91

    = 165.00 Cl 926.2.2.2 & cl 926.2.2.6 of IRC-83(III)

    = 0.10 OK

    = 15.91

    = 187.50 Cl 926.2.2.4 & cl 926.2.2.6 of IRC-83(III)

    = 0.08 OK

    Cl 926.2.2.5 of IRC-83(III)

    15.91

    306.00 Cl 926.2.2.5 of IRC-83(III)

    0.052 OK

    Rotaiton of pad

    Deforamtion of pad due to

    rotation

    he,eff (as per Figure)

    As per Clause 926.1.5: For design of bearings or part thereof and the adjacent structures the resultant of the coexisting moments prodeiced

    due to design horizontal force and that induced due to resistance to rotation shall be considered.

    i)

    Direct Bearing Stress due to Vertical Load (Mpa)

    Direct Bearing Stress

    Permissible stress (Mpa)

    Actual : Permissible

    iii-2)

    MR.d = 0.