12
Vibration and Stochastic Wave Response of a Tension Leg Platform Written By: Joshua Harris, August 26, 2015 Abstract The equation of motion for a single tendon of a tension leg platform is presented. The equation is uncoupled, linear and non-homogenous. The force on the tension leg platform is modeled as a random harmonic load, which is interpreted to be the waves hitting the tension leg platform at random. The model is a compliant structure that allows for small deformations and displacements. The tension leg platform is modeled as a rod connected to a torsional spring with a mass at the end. There is viscous damping that accounts for the drag that is caused by the seawater. The first method of analysis involves finding the input spectral density and multiplying it by the transfer function to receive the output spectral density plot. The second method involves solving the equation of motion to find the motion of the tension leg platform as a function of time. 1. Introduction A tension leg platform (TLP) is a vertically moored floating structure that is usually used for the offshore production of oil and gas, however the idea has been considered for wind turbines. There are best suited for use in water that is 1000 feet in depth. The usual method for installing TLPs start with foundation piles being lowered into the seabed and hammered into the bottom of the ocean floor. The platform itself is moored by tethers or tendons, which are connected to the foundation piles. A group of tethers is known as a tension leg. A tendon support buoy will next be inserted on top of the topmost tendons. The giant TLP hull is then bought in by boats and attached to the tendons. There are typically two types of TLP structures: fixed and compliant. Fixed structures are rigid and do not allow for any motion in the tethers. Compliant structures, which are more commonly used, allow for small deformations and displacements to occur, thus making it easier to design and account for the waves that are hitting the TLP. The deeper the water depth, the better it is to use compliant structures. 2. Formulation of Spectral Density Plots The most direct process in acquiring the spectral density plot of a system is to find the corresponding autocorrelation function and then take the Fourier transform of it. This would give the input spectral density plot. To get the output

FINAL PAPER Vibration and Stochastic Wave Response of a TLP

Embed Size (px)

Citation preview

VibrationandStochasticWaveResponseofaTensionLeg

Platform

WrittenBy:JoshuaHarris,August26,2015

Abstract

Theequationofmotionforasingletendonofatensionlegplatformispresented.Theequationisuncoupled,linearandnon-homogenous.Theforceonthetensionlegplatformismodeledasarandomharmonicload,whichisinterpretedtobethewaveshittingthetensionlegplatformatrandom.Themodelisacompliantstructurethatallowsforsmalldeformationsanddisplacements.Thetensionlegplatformismodeledasarodconnectedtoatorsionalspringwithamassattheend.Thereisviscousdampingthataccountsforthedragthatiscausedbytheseawater.Thefirstmethodofanalysisinvolvesfindingtheinputspectraldensityandmultiplyingitbythetransferfunctiontoreceivetheoutputspectraldensityplot.Thesecondmethodinvolvessolvingtheequationofmotiontofindthemotionofthetensionlegplatformasafunctionoftime.1.Introduction

Atensionlegplatform(TLP)isaverticallymooredfloatingstructurethatisusuallyusedfortheoffshoreproductionofoilandgas,howevertheideahasbeenconsideredforwindturbines.Therearebestsuitedforuseinwaterthatis1000feetindepth.TheusualmethodforinstallingTLPsstartwithfoundationpilesbeingloweredintotheseabedandhammeredintothebottomoftheoceanfloor.Theplatformitselfismooredbytethersortendons,whichareconnectedtothefoundationpiles.Agroupoftethersisknownasatensionleg.Atendonsupportbuoywillnextbeinsertedontopofthetopmosttendons.ThegiantTLPhullisthenboughtinbyboatsandattachedtothetendons.

TherearetypicallytwotypesofTLPstructures:fixedandcompliant.Fixed

structuresarerigidanddonotallowforanymotioninthetethers.Compliantstructures,whicharemorecommonlyused,allowforsmalldeformationsanddisplacementstooccur,thusmakingiteasiertodesignandaccountforthewavesthatarehittingtheTLP.Thedeeperthewaterdepth,thebetteritistousecompliantstructures.

2.FormulationofSpectralDensityPlots ThemostdirectprocessinacquiringthespectraldensityplotofasystemistofindthecorrespondingautocorrelationfunctionandthentaketheFouriertransformofit.Thiswouldgivetheinputspectraldensityplot.Togettheoutput

2

spectraldensityplot,whichisofimportancehere,thetransferfunctionmustbefoundandmultipliedbytheinputspectraldensityplot. 2.1PhysicalRepresentationoftheModelandNomenclature

Figure1,showsthephysicalrepresentationofthemodel.ThenomenclatureisfoundinTable1.Someofthesevaluesareborrowedfrom[5],whileotherswerecalculated,inordertocreateamorerealisticmodel

Figure1–SchematicDiagramofTether

3

Table1-NomenclatureSymbol Meaning ValueL Length 260mϕ RandomVariable [0,∞)π Pi 3.1415τ Timeconstant Secondst Time [0,∞)secondsk Torsionalstiffness 100kN•mc ViscousDamping 3.036x1010kg•m/sω Frequency [rangeofvalues]rad/sωn NaturalFrequency [rangeofvalues]rad/sωo InitialFrequency(when

n=0)[rangeofvalues]rad/s

m Mass 169,353kgA Amplitude 2000Nθ Angle(ofmotion) RadiansN UpperLimit ∞Boldfacedvaluesareborrowedfrom[5]2.2IdentificationoftheInputForces

Itisnecessarytoderivetheinputforceonthesystem.Theautocorrelationfunctionofthisforcecanthanbefound.Theoceanwavescanbemodeledasastochastic,harmonicforcethatactsonthesystem.Thedifferentnaturalfrequenciesneedtobeaddedtogetherbecausetheycontributetotheoverallforce.Arandomvariablegeneratorcanbeusedtocreatetherandomvariablethatiswithinthesamerangeasthenaturalfrequency.Itdoesnotmatteriftherandomvariableisaddedorsubtracted.

(1)

Althoughthecosinefunctionisusedhere,thesinefunctioncanbeusedaswell.Theupperlimitcanbeadjustedbasedonhowmanyfrequencyvaluesneedtobeevaluated.Itshouldbenotedthatthenaturalfrequencyisdefinedas:

(2)

WhereTisafixedtimeperiod,butniffromtherangeof0,1,2,..N.

4

2.3DerivationofInputandOutputSpectralDensitiesAmajorassumptionthatismadeisthattheentireprocessisstationary.Inaphysicalsense,itistobeassumedthatthefunctionandtheprocesswillentersteadystateafteralongperiodoftime.Therearenosuddenimpulseforcesactingonthesystem.Statisticallythismeansthatthejointprobabilitydensityfunctionatadistinctsetoftimeswillequalthejointprobabilitydensityfunctionandanentirelydifferentsetoftimes.Thus,thisslightlychangesthedefinitionoftheautocorrelationfunction:

(3)

ThisistheautocorrelationfunctionofastationaryrandomprocesswhereF(t)istheinputforceasafunctionoftime.Whentheforceispluggedintoequation3,

(4)

Thetwoexpectationsarefirstfoundseparatelyandthenmultipliedtogether.Afterfurtherevaluationandsimplificationandfactoredoutcoefficients,thefinalresultisanautocorrelationfunctionthatisafunctionofthetimeconstant.

(5)

Thedetailedprocessoffindingtheseexpectationsandsimplifyingtermsisfoundintheappendix.TheinputspectraldensityisfoundbytakingtheFouriertransformoftheautocorrelationfunction.ByusingatableofFouriertransforms,theInputspectraldensityisequalto:

(6)

δrepresentstheDiracdeltafunctionevaluatedatthevaluewithintheparenthesis.Thenextstepistofindthetransferfunction,H(iω),andmultiplythetransferfunctionbytheinputspectraldensitytogettheoutputspectraldensity.

(7)

5

Equation7isthefundamentalresultforlinear,stationarysystems.ThemostreliablewaytofindthetransferfunctionistotaketheFouriertransformoftheequationofmotion.Becausethereareimaginarynumbersinthetransferfunction,themagnitudeofitistaken,beforebeingmultipliedbytheinputspectraldensity,becausetheoutputspectraldensityplotmustberealandonlyafunctionofthefrequency.Thus,itisnecessarytofindtheequationofmotionforthesystem.TheequationofmotionisfoundbyapplyingNewton’ssecondlawtothesystemandthenequatingittotheforce(1)previouslydescribed.AsnoticedinFigure1,thereisamass,viscousdamper,andtorsionalstiffnessthatareassociatedwiththesystem.Moreover,thetether’smotionismodeledasanangularmotionthatrotatesinradians.Theequationofmotionisrepresentedbelow,withasingleover-dotrepresentingthefirstderivativeandtwoover-dotsrepresentingasecondderivative.

(8)

AgainF(t)isdenotedbyequation1.Thissameequationofmotionwillbeusedinsolvingthepositionasafunctionoftime.OnceF(t)ispluggedintotheequation,theFouriertransformcanbetakentogetthetransferfunction.However,inordertomakeitsimplertotaketheFouriertransform,asimplesubstitutiontoconvertequation8asafunctionofθtoafunctionofx.

Thiscanbeappliedtoanyrotationalsystem.Becausethetetherisfixedaboutatorsionalspring,itcanbeusedhereaswell.ItistobenotedthathererisequivalenttoL.TheFouriertransformoftherightsideoftheequationofmotiongivestheinputfunctionF(ω)andthetransformoftheleftsideoftheequationofmotiongivestheoutputfunctionX(iω).Dividingthelatterbytheformeristhetransferfunction.

TheFouriertransferistakenandthensubstitutedintotheformaldefinitionofthetransferfunction.

6

Asaforementionedfromequation7,themagnitudeofH(iω)mustbetaken.

(9)

Alloftheunknownsinequation7arefound.Afterfactoringtheappropriateconstants,theoutputspectraldensityisobtained.Notethatωcanequalωn.

(10)

Thecomplete,detailedmathematicalsolutionforeachstepisfoundintheappendix.2.4PlotsofPowerSpectraBydefinitionoftheDiracdeltafunction,itiszeroeverywhereexceptwhenthetermevaluatedinsidetheparenthesisisequivalenttozero.Also,itsareamustequalone.Sointhiscase,theDiracdeltafunctionisonlyzerowheneitherωn=-ω0forthefirsttermofthesummationorwhenωn=ω0forthesecondtermofthesummation.AsFigure2shows,thefollowingresultwillbespikesattheaforementionedvaluesofω.Thespectraldensityplotcanbeusedtomeasuretheamountofenergyinastochasticprocess.Higheramplitudesingraphicalresultsindicatedthatthereismoreenergyatthoseparticularfrequencies.Therefore,thephysicalsignificanceofthesegraphicalresultsliesinthefactthattheenergyofthesystemishighlyconcentratedattwodifferentfrequencies.Thecoefficientinfrontofthesummationofequation10iswhatdeterminestheamountofareaunderthespike.Again,theareaundertheDiracdeltafunctionmustequalone.Thus,thecoefficientcanincreaseordecreasetheamountofareaunderneaththespike.

7

Figure2-GeneralGraphofEquation10

Theareaunderneaththepowerspectrumisequivalenttothemean-valuesquared,whichalsocanbeexpressedasthevariancesubtractedbythemean.Thus,itcanbeusedtocalculatethevarianceifthemeanisknownorvice-versa.Statistically,thismeansthatthespectraldensityplotisadistributionofthevarianceaccordingtothefrequency.

X(t)issimplytherandomvariableasafunctionoftime.Inthissystem,itisthepositionofthetetherasafunctionoftime.ByusingthenomenclaturefromTable1,aspecificcoefficient,asafunctionofω,inequation10wasfound.Specificfrequencieswerepluggedin,evaluated,andgraphed.Figure3showsthevariousgraphsatvariousfrequencies.Theareaunderneatheachspikebecomesmorevisibleasthefrequenciesbecomehigher.

8

a.Thefrequencyωequals0.Thevalueof

266.87ismultipliedbyδ(0).

b.Thefrequencyωequals10rad/s.Thevalueof2.9x10-11ismultipliedbyδ(0).

c.Frequencyofωequals100rad/s.Thevalueof2.9x10-13ismultipliedbyδ(0).

Figure3–SpectralDensityPlotsatDifferentFrequencies

3.FormulationofthePositionFunctionandItsMean-ValueSquared

Theprocessbehindfindingthepositionasafunctionoftimerequiressolvingtheequationofmotion.Thispositionfunctioncanbeusedasa“randomvariable”andbeusedtofindthemean-valueandthemean-valuesquared.Equation8showstheequationofmotionintermsofθ,butbyusingtherelationshipofbetweenθandx,theequationofmotioncanbeafunctionofx.However,thiswillbedoneaftertheequationissolvedintermsofθfirst.3.1SolvingtheDifferentialEquation Aspreviouslymentioned,equation8isasecond-order,linear,uncoupled,nonhomogeneousdifferentialequation.Thesolutionisthereforethehomogeneoussolutionaddedtothenonhomogeneoussolution.Tofindthehomogeneoussolutiontotheequation,thecharacteristicequationissolvedanditssolutionisusedasexponentsofe,multipliedbyt.

9

(11)Thecoefficientsc1andc2,arefoundbytheinitialconditionsthatcanbeuniquelyformulatedbasedonthespecificconditionssurroundingthesystem.Itisnottobeconfusedwiththecintheexponent,whichistheviscousdampingcausedbythewater.Tofindthenonhomogeneoussolution,themethodofundeterminedcoefficientscanbeused,especiallysincetheforceisaharmonicfunctionofcosine.

(12)

Thenextstepistoaddequations11and12togethertogetthegeneralsolution.Itisstillafunctionofθ.

(13)

Thefinalstepistorelateθtox.Aspreviouslymentioned,risequaltoL.Therefore,Lisinthefinalsolutioninplaceofr.

(14)

Thecomplete,detailedmathematicalsolutionforeachstepisfoundintheappendix.

3.2FindingtheMean-ValueSquared Thereisarelativelysimplywaytofindthemean-valuedsquaredofacontinuousrandomvariablethatinvolvesonlycalculus.

10

Inthiscase,n=2.However,aproblemarisesbecausethereisnofunctionf(x)anditcannotbederivedorfoundwithease.Therefore,theassumptionofergodicityhastobemade.Formally,astationaryrandomprocessisergodicifthetimeaverageofaneventatasingletimeperiodisequaltotheensembleaverage.Inotherwords,theaverageisconstant.Withergodicity,anaverageoveralongperiodoftimecanbetaken,insteadofnumerousaveragesatmanydifferenttimeperiods.Also,anergodicprocessisalwaysstationary.SinceTLPsaredesignedtolastoverlongperiodsoftime,theassumptionofergodicitycanbemade.Itissafetosaythattheaverageoveralongperiodoftimeisthesameasoveraverylongperiodoftime.Forexample,theaverageoverasix-monthperiodwillnotbetoodifferentfromanaverageoveratwo-yearperiod.Mathematically,asthetimeapproachesinfinity,theexponentialswillapproachzero;itistheexponentialpartthatwouldprovidethemostchangeanddiscrepancyinaverages.Withthisnewergodicassumption,thedefinitionofthemean-valuesquaredchanges,anditdoesnotrequireafunctionofx.

(15)

Thecoefficientsthatprecedethesineandcosinetermsarenowconstant,andthroughouttheintegrationprocess,canbefactoredoutinfrontoftheintegral.Foreaseofcalculation,thecoefficientsarerenamedasAandB.

Asseen,thecoefficientsofAandBarenotfunctionsofT,sotheyareconstantalways.Thesesamecoefficientsareusedandrepresentedinthefinalanswer.

(16)

11

Asaforementioned,themean-valuedsquaredcanbecomparedtothespectraldensityplotandcanbeusedtofindandevaluatethevariance.Thecomplete,detailedmathematicalsolutionforeachstepisfoundintheappendix.4.SummaryandConclusions AmodelofatendoninaTensionLegPlatform(TLP)ismodeledasarotatingbeamaboutatorsionalspring.Ithasviscousdamping,torsionalstiffness,andarandomharmonicload.Theprocessisassumedtobeergodic.TakingtheFouriertransformoftheautocorrelationfunctionprovidedthefunctionofthepowerspectrum,specificallytheinputspectraldensity.AfterusingaFourierTransformfortheequationofmotiontogetthetransferfunctionofthesystem,theoutputspectraldensityisfound.Thesecondmethodofanalysisinvolvedsolvingtheequationofmotion.Theresultwasusedtofindthemean-valuesquaredofthesystem,whichisquiteusefulinfindingotherstatisticallyproperties.ThemanyresultsstemmingfromsuchanalysescanbeusedforthedesignprocessofTLPs.Thespectraldensityplotscanshowwherealloftheenergyisconcentrated.Whentesting,suchfrequenciescanbefocusedon.Ifthemotionofatetherneedstobelimitedorevenmademoremovable,valuesofviscousdampingandtorsionalspringconstantscanbeusedinthepositionfunction,toseewhichparameteraffectsthemotionofthetendonthemost.Differentfrequencies,lengths,andmassescanbeeasilysubstitutedtoseehowthesystemreactstochangesintheseparameters.Byusingthevarianceandmean-valuesquared,thechangesinthepositioncanbeevaluated,analyzed,andaccountedforduringthedesignprocess.Adesignercanrecognizeiftheaveragepositionwouldleadtofailureorinstability.Althoughtheforcesduetotheoceanwavesarestochastic,theycanstillbepredictedusingprobabilisticmodels.5.Appendix Theappendixprovidesallofthedetailedcalculationsdoneinthisworkintheiroriginalform.Itincludesthekeyassumptionsthatweremadeinordertoapplycertainformulasandcarryoutthemathematics.References1.Benaroya,Haym,andMangalaM.Gadagi."DynamicResponseofanAxiallyLoaded

TendonofaTensionLegPlatform."JournalofSoundandVibration293(2005):38-58.Elsevier.Web.26Aug.2015.

2.Benaroya,Haym,andRonAdrezin."ResponseofaTensionLegPlatformto

StochasticWaveForces."ProbabilisticEngineeringMechanics14(1999):3-17.Elsevier.Web.26Aug.2015.

12

3.Benaroya,Haym,andS.M.Han."Non-LinearCoupledTransverseandAxial

VibrationofaCompliantStructurePart1:FormulationandFreeVibration."JournalofSoundandVibration237.5(200):837-73.IdealLibrary.Web.26Aug.2015.

4.Han,SeonMi,andHaymBenaroya."ComparisonofLinearandNon-linear

ResponsesofaCompliantTowertoRandomWaveForces."ChaosSolitonsandFractals14(2001):269-91.Elsevier.Web.26Aug.2015.

5.Mathisen,Jan,OddrunSteinkjer,IngeLotsburg,andOisteinHagen.Guidelinefor

OffshoreStructuralReliabilityAnalysis-ExamplesforTensionLegPlatforms.Tech.no.95-3198.Ed.VigliekHansen.N.p.:n.p.,n.d.JointIndustryProject.DetNorskeVeritas,27Sept.1996.Web.26Aug.2015.

6.Benaroya,Haym,andMarkL.Nagurka.MechanicalVibration:Analysis,

Uncertainties,andControl.3rded.BocaRaton,FL:CRC/Taylor&Francis,2010.Print.