77
8936 Mechanical Project MATV: Memorial All Terrain Vehicle MINI REPORT #1 JONATHAN COLE FABIO FARAGALLI TREVOR DWYER FEBRUARY 1, 2010

Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

[Type text]  

 

 

 

 

8936  

Mechanical Project    

MATV: Memorial All Terrain Vehicle  

MINI REPORT #1

  

JONATHAN COLE FABIO FARAGALLI TREVOR DWYER 

FEBRUARY 1, 2010 

Page 2: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Page i  

Table of Contents 

1 Scope.....................................................................................................................................................1

2 Project Team.........................................................................................................................................1

3 Specifications ........................................................................................................................................3

3.1 General ........................................................................................................................................3

3.2 Platform.......................................................................................................................................3

3.3 Performance ................................................................................................................................4

4 System Design .......................................................................................................................................4

4.1 Hydraulic Design ..........................................................................................................................4

4.1.1 Gasoline Engine.......................................................................................................................6

4.1.2 Tandem Variable Hydraulic Pump...........................................................................................8

4.1.3 Hydraulic Wheel Motors .........................................................................................................9

4.2 Suspension Design .....................................................................................................................10

4.3 Wheel/hub Design.....................................................................................................................12

4.4 Platform.....................................................................................................................................14

5 Deliverables.........................................................................................................................................15

6 Competitors ........................................................................................................................................16

6.1 Foster‐Miller ..............................................................................................................................16

6.2 Frontline Robotics......................................................................................................................17

7 Project Timeline ..................................................................................................................................18

8 Cost Analysis .......................................................................................................................................19

9 Weight Analysis...................................................................................................................................20

 

Appendices 

Appendix A – Honda GX200 Specifications 

Appendix B – Sauer‐Danfoss 15PT Tandem Pump Specifications 

Appendix C – Parker Hydraulics TJ 0080 Wheel Motor Specifications 

Appendix D – MATV Sizing Calculations

Page 3: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Page ii  

Figures 

Figure 1: MATV Project Management Chart.................................................................................................2 Figure 2: Hydraulic System Model ................................................................................................................6 Figure 3: Honda GX200 Specifications ..........................................................................................................7 Figure 4: Honda GX200 Engine .....................................................................................................................8 Figure 5: Parker TJ 0080 Wheel Motor .........................................................................................................9 Figure 6: Double A‐Arm Suspension with Upper Shock Mount..................................................................11 Figure 7: Alternate A‐Arm Suspension Design............................................................................................12 Figure 8: Wheel Motor Schematic ..............................................................................................................13 Figure 9: Argo ‐ Platform Design Base ........................................................................................................14 Figure 10: Foster Miller Talon.....................................................................................................................16 Figure 11: Frontline Robotics Modified Argo..............................................................................................17 Figure 12: MATV Project Timeline ..............................................................................................................18 Figure 13: MATV Cost Estimate ..................................................................................................................19 Figure 14: MATV Weight Estimate..............................................................................................................20  

 

Page 4: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 1  

1 Scope  

The  scope  of  project MATV  – Memorial  All  Terrain  Vehicle  is  to  design  a  hydraulically  powered 

amphibious  vehicle,  able  to  navigate  through  rough  terrain,  typical  of  a Newfoundland  off  road 

environment.   The vehicle will have automated controls, however  the design of  these are outside 

the scope of the current term deliverables. 

Project MATV strives to improve upon the design of existing competitors vehicles that have inherent 

design weaknesses.  Typical competitors have limited off road abilities, low operational speeds, and 

limited pay loads.  Another common downfall seems to be the low power to weight ratio and short 

autonomy, associated with their choice of battery powered vehicles.  

Future  scope  for  this  project  may  include  autonomous  navigation  through  rough  terrain,  GPS 

surveying,  integration  with  other  potential  projects  such  as  active  suspension  systems,  aerial 

machine vision projects, etc. 

2 Project Team  

Our  project  team  is made  up  of  three  senior mechanical  students,  all  completing  term  8  of  the 

mechanical engineering program at Memorial University of Newfoundland.   This project will serve 

both  as  a  senior mechanical design project  for  the  team,  as well  as  an ongoing  initiative  for  the 

engineering faculty.   

The “ongoing initiative” of the faculty refers to the future scope outlined above, which may become 

a planned progression  for  the project, most  likely completed as part of  future design projects  for 

future engineering students. 

Page 5: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 2  

The current team management chart is pictured below: 

 

Figure 1: MATV Project Management Chart  

As evident  in the management chart, a  large portion of the project will be  the technical design of 

various systems and components that make up the MATV.   Due to small group numbers, the team 

lead  (team member  that manages communications between  team and  supervisor) has also  taken 

the position of technical lead.  We have broken the technical aspects of the project into 4 sections, 

hydraulic design, suspension design, wheel/hub design, and platform design. 

Hydraulic design can be  thought of as  the design of  the system  from gasoline powered engine  to 

closed pump/motor hydraulic system, and all components supporting these main parts.  Suspension 

design can be thought of as the double a‐arm suspension, the spring/shock combo connected to the 

arms, and the mounting arrangement between the suspension and the main platform or chassis.  

Wheel and hub design  is best described as the design of the wheel uprights, the design of the hub 

connecting  to  the hydraulic wheel motors, and an  integration of  the upright  into  the  suspension 

design.   

Page 6: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 3  

As shown in the aforementioned chart, the design of the platform or chassis will be done as a team, 

after  the  various  components  have  been  completed.   We  reasoned  that  an  integration  of  the 

suspension design and the hydraulic systems design will be significant in platform design, so a team 

effort we will bring the platform design to completion, to incorporate these components and fulfill 

the platform specifications as described in the following section. 

3 Specifications  

3.1 General  

The  vehicle will  incorporate  an  independent  6 wheel  power  train  and  suspension, which will  be 

hydraulically driven.  The suspension design will be a double a‐arm with upper shock mount (shock 

mounted on the upper a‐arm) instead of the standard lower shock mount.  Each wheel will have its 

own  hydraulic  wheel  motor,  with  the  left  side  and  right  side  of  the  vehicle  controlled  with 

independent hydraulic circuits. 

The vehicle will be amphibious, meaning that not only will it be able to navigate water obstacles, but 

it will do so without damage to its onboard operational systems. 

3.2 Platform  

The  current  goal  for  the  total weight  of MATV  is  300lbs, with  additional  allowance  for  a  50  lb 

payload.    The  platform  should  provide  at  least  2  cubic  feet  of  cargo  space,  and  allow  for  the 

attachment of components for navigation, automation, and equipment for various future activities. 

The entire MATV (including platform) will be designed with 12‐14” of ground clearance, and be less 

than 48” wide, with a wheel diameter of 0.3m. 

Page 7: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 4  

3.3 Performance  

The MATV vehicle will be designed  for a 24 hour automation period.   This means that the vehicle 

must be able to carry enough fuel and run long enough to survive at least a 24 hour period without 

any outside interactions.  Currently the only design modification to support this spec will be a larger 

fuel tank, able to carry enough fuel for a 24 hour period. 

The vehicle is designed to attain a speed of 30 km/hr on a flat, horizontal surface.  When designing 

our  hydraulic  system,  this  specification  was  a  crucial  factor  in  the  sizing  of  the  pump  (pump 

flow/displacement), and ultimately in the power required of the engine. 

The MATV is designed with enough torque to climb a vertical wall if encountered, meaning that the 

front  2 wheels  have  enough  torque  to  lift ½  the weight  up  the  vertical  obstacle while  the  rear 

wheels propel the vehicle into the wall.  Theoretically the vehicle could climb a vertical wall with all 

6 wheels; however this is obviously not a consideration in realistic design. 

4 System Design 

4.1 Hydraulic Design  

Project MATV makes use of a robust hydraulic drive train system powered by a 4 stroke, air cooled, 

single piston gasoline engine.  The gasoline engine drives a tandem hydraulic pump, which supports 

two  closed  hydraulic  loops  (one  left  side,  one  right  side),  driving  3  hydraulic wheel motors  per 

loop/side. 

The hydraulic system operates at 2000psi.  Original design was carried out with a standard 3000psi 

baseline,  however  due  to  the  availability  of  essential  components  such  as  the  hydraulic  wheel 

motors, a more “component friendly” 2000psi operating pressure was chosen. 

Page 8: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 5  

Pictured below (on the next page) is a schematic of the hydraulic system that will be implemented in 

the MATV.  Reading from “left to right”, you will first see the gasoline engine driving the reversible 

pump.  This reversible pump in this circuit represents half of the tandem pump that we will be using, 

and  also  represents  a  bi‐directional  hydraulic  transmission  for  the  vehicle.   While  the  hydraulic 

wheel motors  are  of  a  fixed  displacement,  and  the  engine  is  governed  at  3600rpm with  a  fixed 

power  and  torque  setting,  the  variable  pump  is  essentially  what  controls  the  system  during 

operation by adjusting the “slip” or displacement of the pump. 

The  reversible pump drives all 3 wheel motors  in  the  circuit, which have an equal pressure drop 

since they are in series.   Using the stated 2000psi pressure drop, a pressure drop of approximately 

667psi per wheel motor will be seen. 

Each wheel motor as well as the pump share a lubrication drain circuit, which allows the fluid used 

in component lubrication to circulate back to the tank through an air to liquid radiator.  A relief valve 

is  fitted  to  the  system  to  prevent  undesirable  overpressure  of  the  system.    In  the  event  of  an 

overpressure (operating pressure that exceeds the relief valve pressure), the relief valve will open to 

allow high pressure fluid to bypass the hydraulic wheel motors, and take the path of least resistance 

back to the low pressure side of the circuit. 

Finally, you will  see a  filter  located  just after  the  tank; all additional  fluid  required by  the  system 

travels through the filter and into the low pressure side of the system to make up for the loss due to 

the pump and motor drainage circuit. 

Page 9: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 6  

 

Figure 2: Hydraulic System Model 

 

4.1.1 Gasoline Engine  

The gasoline engine chosen for this project is a Honda GX200, it is a reliable 4‐stoke, air cooled, 

overhead valve, single piston engine.  This engine is rated at 5.5Hp (4.1kW) at 3600rpm, with a 

net torque of 9.1 lbs∙ft (12.4 Nm) at 2,500 rpm.  The engine is governed at a speed of 3600rpm, 

achieved through a centrifugal mechanical governor system.  This engine satisfies our calculated 

design specification of 5.11 Hp at a 2000psi operating pressure.   The torque and power curves 

are shown below (next page). 

 

Page 10: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 7  

 

Figure 3: Honda GX200 Specifications  

The displacement of the GX200 is 196 cm3 (12.0 cu in) with a bore of 68mm (2.7 in) and stroke 

of 54 mm (2.1 in).   The compression ratio of the single piston is 8.5:1 with a counter clockwise 

Power Take Off (PTO) shaft rotation.   The engine  is carbureted with a horizontal type butterfly 

valve and dual element type air cleaner, as opposed to the conventional paper type air filter.   

The engine has a forced splash lubrication system with oil capacity of 0.6L (0.63 US qt), and fuel 

tank capacity of 3.1 L (3.3 US Qt.).   The fuel tank, as mentioned will be removed and replaced 

with a modified fuel tank, able to handle the 24 hour automation requirements. 

The dimensions of the engine are (L x W x H) 321mm (12.6 in) x 376mm (14.8 in) x 335mm (13.2 

in), with a dry weight of 16.0 kg  (35.3  lbs).   The engine has a  transistorized magneto  ignition 

system, as well as an electric starter system with backup recoil system. 

 

Page 11: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 8  

 

Figure 4: Honda GX200 Engine  

We are currently awaiting an official quote  from Powerquip‐div.of Barrett Marketing Group  in 

Dartmouth, NS.  Powerquip are an official supplier of Honda small engines for Atlantic Canada, 

and have the GX200 listed at $807 CAD.  Our official quote should come in at a much lower price 

than the list price, as this engine is for use in an official university project; the official price quote 

will be reflected in our next report.  It is worth noting that we are also expecting a quote from 

the local “Honda One” dealership, however we anticipate this quote to come in higher than the 

quote from the official supplier, as they would be acting as a secondary distributor. 

4.1.2 Tandem Variable Hydraulic Pump  

The variable hydraulic pump chosen for our system is a Sauer‐Danfoss “15 Series” 15PT Tandem 

Pump.    The  pump  has  a maximum  displacement  of  0.913  in3/rev  (15  cc/rpm)  ‐  this  is  0.913 

in3/rev per outlet, which means a maximum of 2 x 0.913 in3/rev overall for the variable tandem 

pump; satisfying our calculated design displacement of 0.84 in3/rev.   

The  pump  has  a  continuous  operating  pressure  of  2500  psi,  easily  satisfying  our  2000psi 

requirements, and a maximum operating pressure of 4500psi.   The pump has a charge pump 

built  in, eliminating  the need  for a pressurized  tank, and supplying 0.33  in3/rev  (5.4 cc/rev) of 

charge flow.   

Page 12: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 9  

Using the supplied PV charts (similar model pump), we have estimated the pump flow rate to be 

approximately  51  L/min  (13.5  gpm).    This  satisfies  our  design  calculation  of  44.83  L/min  for 

pump flow rate. 

The pump has overall dimensions of (L x W x H) 394mm (15.5 in) x 215mm (8.5 in) x 178mm (7.0 

in) and an overall dry weight of 64 lbs (29 kg). At the time of this report, we have not acquired 

an official quote  for  this  tandem pump.   We have contacted and  requested a quote  from  the 

local  company Hydraulic Systems  limited, who are an official  supplier, and anticipate a quote 

shortly. 

4.1.3 Hydraulic Wheel Motors  

The hydraulic wheel motors chosen for the project are Parker TJ 0080 motors with built in wheel 

bearings.  These motors are “medium frame” Gerotor motors, and were chosen due to their 

output shaft design, light weight, and close specifications to our design model. 

 

Figure 5: Parker TJ 0080 Wheel Motor 

Page 13: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 10  

The fixed displacement of the motor is 5 in3/rev (82 cm3/rev), which satisfies our requirement of 

4.6 in3/rev (76 cm3/rev), and the continuous flow rate is 45 L/min (12 gpm), satisfying our 

requirement of 44.8 L/min (~12 gpm). The maximum flow rate is 57 L/min (15 gpm). 

The max speed of the motor is 695 rpm, satisfying our 530 rpm requirement, and the continuous 

torque of 160 N∙m (1416 lb∙in) easily satisfies our 50.2 N∙m requirement.  The maximum 

intermittent torque of the motor is 220 N∙m (1947 lb∙in). 

The overall dimensions of the motor (L x W x H) are 222mm (8.73 in) x 135mm (5.31 in) x 135mm 

(5.31  in),  and  the overall dry weight  is 15.6  lbs  (7.1  kg).   We did obtain one  local quote  from 

Beattie  Industrial Ltd.  for $720.00 CAD ea, however we are  still awaiting quotes  from  the  local 

company Hydraulic Systems limited, who are an official supplier for Parker. 

4.2 Suspension Design  

For our suspension design we have decided to use a double wishbone suspension; also referred to 

as a double A‐arm  suspension.   A double wishbone  (or upper and  lower A‐arm)  suspension  is an 

independent (left to right) acting suspension design using two wishbone or A‐shaped arms to locate 

the wheel.  Each wishbone or arm has two mounting points to the chassis and one joint mounted to 

the knuckle (or upright).  The shock absorber and coil spring mount between the chassis and one of 

the wishbones to control vertical movement of the suspension arms.  

This design allows us  to carefully control  the motion of  the wheel  through  the  suspension  travel, 

controlling such parameters as camber, caster, toe, roll center height, scrub radius, scuff and more.  

Due to the design of the platform/body the upper arm will be shorter than the lower arm.  This will 

induce negative camber as the suspension travels through its path.   

Page 14: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 11  

When  the  vehicle  is  in a  turn, body  roll  results  in positive  camber gain on  the  inside wheel, and 

negative  camber  gain  in  the  outside wheel  due  to  the  shorter  upper  arm.   Although  not  overly 

critical  in our relatively  low speed application, our suspension design will attempt to balance these 

two effects and keep the tire perpendicular to the ground.   

Another advantage to the double wishbone suspension is that it is fairly easy to work out the effect 

of moving each joint, so we should be able to easily model our suspension travel to optimize wheel 

motion.  We are also able to work out the loads that each part is subjected to, allowing us to safely 

design our  suspension components.   The picture below  shows a  typical design of a double A‐arm 

suspension system with an upper arm shock mount.  This design allows maximum room for fitment 

of the hydraulic wheel motor at the upright, and between the control arms, even during suspension 

travel. 

 

Figure 6: Double A‐Arm Suspension with Upper Shock Mount  

A design that we had not previously considered, but which came up later during research is the 

extended upright as pictured below.  This design still allows for use of a double a‐arm suspension, 

and also allows for additional ground clearance and additional room for the hydraulic wheel motors. 

Page 15: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 12  

 

Figure 7: Alternate A‐Arm Suspension Design  

Having  both  A‐arms  parallel  and  attached  to  the  upright  as  shown will  provide  greater  ground 

clearance than traditional a‐arms which are angled toward the chassis to provide sufficient ground 

clearance.  Here, our shock absorber can attach to the base of the lower a‐arm, and at a higher point 

on the chassis to allow for maximum strut travel, and hence maximum suspension travel. 

4.3 Wheel/hub Design 

Hub design is based on the stresses generated by operational loads acting on the wheels.  During the 

design of the wheel hub and upright, estimated load conditions must be taken into account as well as 

the stresses and fatigue of the assembly.   

The wheel assembly will include a low speed high torque motor which will drive each individual wheel in 

order for the vehicle to navigate obstacles and rough terrain.  Our team will be designing and fabricating 

both an upright and a wheel hub which will mount directly onto the motor. 

The uprights will attach the wheel motor to the suspension arms, while the hub attaches the wheels to 

the wheel motors, and to the both through the uprights and suspension arms.  The main goal of our 

design is to make the component as light as possible while not altering the performance of the 

mechanism.   

Page 16: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 13  

Wheel sizing was outlined in the original system design calculations, and the task now is to find suitable 

wheels and tires that will provide the correct overall diameters, sufficient grip, and be reasonably light 

weight.  Several companies have been considered for the supply of wheels and tires, some of these 

include Coastal Marine & Recreation, Eastern Hydraulics, Princess Auto and Canadian Tire.  These 

companies are all local, and if suitable wheels and tires are found, the convenience and swift availability 

would make these attractive suppliers for the project.  Approximate dimensions of the tires are 12” 

overall diameter (0.3m), 4‐5 inches wide, and a suitable tread design for an off‐road environment. 

Both the hub and uprights will be designed by the team, and fabricated locally (if not by the team).  The 

hub will be attached to the motor by means of a taper press, key, and castle nut if applicable.  The built 

in bearings in the motor shaft provide a simple solution for attaching the wheels to the vehicle without 

the need for bearings in the upright, or a typical splined hub and CV joint/axle. 

The uprights will be mounted on the cylindrical section adjacent the motor shaft, and bolted to the 

motor using 4 threaded holes located on the motor.   

 

Figure 8: Wheel Motor Schematic 

 

Page 17: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 14  

4.4 Platform  

The design of the MATV platform/chassis is based upon an Argo type rover.  This platform is able to 

support rough terrain and water environments, and is strong enough to sustain damages from rough 

operation.  Our MATV platform will consist of a hull shaped structure, being amphibious and maintaining 

a large top section to support equipment, expansion, and other various tasks.  The platform requires 

approximately 2 cubic feet of cargo space in addition to the room needed for components such as the 

engine, pumps, electronics, hydraulics, etc.  The entire platform should consist of the dimensions of 4 

feet long and 3 feet wide for the purpose of not easily capsizing. 

 

The platform must be light weight to support the overall MATV weight of 300 lbs.  In addition to the 300 

lbs overall weight, a 50lb payload must be supported by the MATV.  The material that most closely 

meets these requirements is aluminum, due to its light weight and rugged properties.  Shown below is a 

picture of an Argo platform, similar to the MATV anticipated design. 

 

Figure 9: Argo ‐ Platform Design Base 

 

Thus far, the designing of the platform has not been explored in detail due to the attention paid to the 

other main components.  Following the design of the main components, the final design of the platform 

will be explored and finalized.   

Page 18: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 15  

5 Deliverables  

Deliverables for this term will focus on the basic operation of the MATV vehicle.  Automation of the 

vehicle  and  detailed  design  of  the  onboard  systems  will  not  be  focused  on  this  term.    One 

deliverable  for the  term will be the design and  fabrication of one complete hydraulically powered 

wheel assembly.   This  includes the closed  loop hydraulic system, the engine to power the system, 

and all components related to hydraulic operation. 

In  addition  to  the  hydraulic  system,  a  large  deliverable  for  the  term  will  be  the  design  and 

fabrication of a wheel, hub and upright assembly, as well as the suspension design to support the 

assembly.  Integration of the hydraulic system into the suspension and wheel design will be a large 

design milestone in the project. 

A final deliverable, if possible, will be the design of an amphibious platform to support the hydraulic 

power  train,  suspension  setup,  vehicle  automation  equipment,  and  payload.    In  addition  to  the 

physical deliverables this term, there are a number of documentation oriented deliverables that tie 

into the course evaluation. 

A final report and presentation will be prepared for the end of the term, documenting all progress 

and deliverables achieved during the term, as well as a complete design package to accompany the 

physical deliverables.  Several mini reports and presentations will also be completed during the term 

to complement term progress and support the final documentation. 

A team website will be maintained throughout the term, as a main hub for all completed work, and 

as a management tool for all team progress.  Finally, log books will be submitted at the end of the 

term to help complete the documentation requirements for the term. 

Page 19: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 16  

6 Competitors 

6.1 Foster­Miller  

Currently Foster‐Miller  is one of  the world’s  largest providers of Robotic  systems, and although  their 

products are world  renowned, we  feel  they  can be  improved.   Foster‐Miller boast having  the  fastest 

robot on the market today with a top speed of 8km/hr, and claim to have a very long battery life, which 

due to battery design is actually limited to just hours.  Foster‐Miller’s family of automated robots, “The 

Talon”, is very limited to the terrain it can cover with a primary track design, limited to “even” ground, 

and not dealing well with any obstacles. 

The Talon’s  line of attachments do provide flexibility, however the quality of attachment and design  is 

often  questionable,  and  sometimes  seem  to  be  a  “quick”  or  “under  designed”  solution.   Often  the 

attachments seem to be “off the shelf” parts that have been attached to the vehicle without any real 

thought  to  base  vehicle  integration.    As  you  can  see  below  the  Talon  does  not  have  any  payload 

capabilities, and the two mounting poles really limit what attachments can be used. 

 

 

Figure 10: Foster Miller Talon 

Page 20: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 17  

 

The MATV platform will not only have 2 cubic feet of cargo space it will have an adjustable attachment 

center allowing the attachment of a wide variety of items.  Our designed top speed is approximately 4 

times faster than that of the Talon family, and with our increased gas tank volume, our operation life is 

designed for at least twenty‐four hours.  With our amphibious design our platform is able to travel over 

land and water and by using hydraulics we have a superior power to weight ratio.  The only advantage 

the “Talon” seems to have is the light weight design; however we feel that our advantages listed above 

outweigh the weight savings. 

6.2 Frontline Robotics  

Frontline Robotics takes the approach of modifying existing vehicles with their control systems to make 

them autonomous or remotely controlled.   This approach allows them to offer a range of vehicles, but 

limits  their attachment abilities and presents size constraints.   One of  the more popular vehicles  they 

modify is the Argo; and although it offers an amphibious platform, it is limited by its suspension design 

and overall size.  

 

Figure 11: Frontline Robotics Modified Argo 

 

Page 21: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 18  

A  disadvantage  of  using  an  existing  vehicle  platform  for  automation  is  the  existing  power  to weight 

ratio’s  and  range  limitations.   Our  vehicle  is  designed with  plenty  of  torque/power,  and  long  range 

operation in mind.  The application for the Frontline fleet is more of security surveillance, they are able 

to  patrol  an  area  and  relay  information  from  the  perimeter  back  to  a  central  system;  they  are  not 

intended  for  long  range expeditions.   For  this  reason  the Frontline Robotics Fleet  is not considered a 

direct competitor.   The MATV will not only be able to patrol a small area  if needed, but can extend  its 

range over long distances, maintaining a fully autonomous operation over harsh terrain. 

7 Project Timeline  

Currently the project is in progress and meeting the majority of the timeline requirements.  As seen in 

the image below, overall project design is progressing well, and we hope to align with all items on the 

the original Gantt chart very soon.   

 

Figure 12: MATV Project Timeline 

Page 22: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 19  

8 Cost Analysis  

Although we are still currently waiting on official quotes from some suppliers, we have received quotes 

or estimated costs on most of the key components for our project.  In the table below you can see which 

items we currently have priced and the estimated cost. 

 

Figure 13: MATV Cost Estimate 

In regards to the hydraulic parts, we gathered an average price of the fittings and hose from McMaster‐

Carr with an estimate of the number of fittings and length of hose that are required.   However we will 

most  likely  acquire  the  hose  and  fittings  from  Princess  Auto  to  ensure  timely  deliver  and  ease  of 

procurement.   The scope of our work  is  to design and  test one complete closed  loop hydraulic wheel 

assembly  therefore  the  cost  of  the  project  will  be  substantially  reduced  compared  to  the 

aforementioned table.   

Page 23: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV  Pg 20  

9 Weight Analysis  

As  outlined  in  the  table,  our  previous  design  specification  of  300lbs  total  came  in much  lower  than 

anticipated.   Due  to  the  large weight  of  fluids,  and  components  located within  the wheel hubs, our 

estimate  is  much  higher  than  the  original  design  weight.    This  additional  weight  will  have  to  be 

accounted for with a slight design iteration. 

 

Figure 14: MATV Weight Estimate 

Furthermore, this excludes the fifty pound payload specified in the original design.  We anticipate that 

the large power to weight ratio provided by the hydraulics will compensate for the additional weight, 

and provide more than enough torque to meet the other design specifications required at the beginning 

of the term. 

Page 24: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV    

Appendix A – Honda GX200 Specifications

Page 25: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

Home | Products | Distributors | Brochures l Product Registration | Product Manuals | Parts & Repair Info | FAQs | Warranty News | Contact Us

| Privacy/Legal | Terms and Conditions | SiteMap

Honda l Honda Marine l Honda Power Equipment

GX200 http://www.honda-engines.com/engines/gx200.htm

1 of 5 2/2/2010 1:42 AM

Page 26: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

GX Series Commercial GradeGX200

Click to enlarge

Features•Honda OHV Commercial-grade engine•Horizontal shaft•Electronic ignition/Oil Alert•EPA/CARB compliant•3 Year Commercial Warranty

Applications: Air compressors, Generators, PumpsPressure washers, Reel-type lawn mowers, Go-Karts,Agricultural equipment, Chipper/Shredders, Smallconstruction equipment, Concrete saws

View SpecificationsView Performance Curve

Specifications

Engine Type Air-cooled, 4-Stroke, OHV, single cylinder

Bore x Stroke 68 x 54 mm (2.7 x 2.1 in)

Displacement 196 cm3 (12.0 cu in)

Compression Ratio 8.5 : 1

Net Horse Power Output* 4.1kW (5.5HP) at 3,600 rpm

Net Torque 12.4 Nm (9.1 lbs ft) at 2,500 rpm

PTO Shaft Rotation Counterclockwise (from PTO shaft side)

Ignition System Transistorized magneto ignition

Starting System Recoil or Electric Starter

Carburetor Horizontal type butterfly valve

OHV Horizontal ShaftGXH50GX100GX120GX160GX200GX240GX270GX340GX390OHV Vertical ShaftGXV50GXV160GXV340GXV390V-TwinOHV Horizontal ShaftGX610GX620

GX630 - new

GX660 - newGX670

GX690 - newV-TwinOHV Vertical ShaftGXV530GXV610GXV620

GXV630 - new

GXV660 - newGXV670

GXV690 - newiGX SeriesiGX440

OHC Horizontal ShaftGC160GC190GS190OHC Vertical ShaftGCV160GCV190GSV190

GX25GX35

GX200 http://www.honda-engines.com/engines/gx200.htm

2 of 5 2/2/2010 1:42 AM

Page 27: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

Lubrication System Forced Splash

Governor System Centrifugal Mechanical

Air Cleaner Dual Element Type (opt Cyclone type)

Oil Capacity 0.6l (0.63 US qt, 0.53 Imp qt)

Fuel Tank Capacity (liter) 3.1l (3.3 US qt)

Dimensions (L x W x H) 321mm (12.6 in) x 376mm (14.8 in) x 335mm (13.2 in)

Dry Weight 16.0 kg (35.3 lbs)

* The power rating of the engine indicated in this document is the net power output tested on aproduction engine for the engine model and measured in accordance with SAE J1349 at 3600 rpm(7000 rpm for model GHX50). Mass production engines may vary from this value. Actual power outputfor the engine installed in the final machine will vary depending on numerous factors, including theoperating speed of the engine in application, environmental conditions, maintenance and other variables.

Performance Curve

GX200 http://www.honda-engines.com/engines/gx200.htm

3 of 5 2/2/2010 1:42 AM

Page 28: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

GX200 http://www.honda-engines.com/engines/gx200.htm

4 of 5 2/2/2010 1:42 AM

Page 29: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV    

Appendix B – Sauer-Danfoss 15PT Tandem Pump Specifications

Page 30: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

Axial Piston

Pumps, Motors

and Transmissions

Technical Information

Series 70 / 15 Series

Page 31: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Series 70 Transmissions and Pumps

����� 2 Transmission Frame Sizes: 10 and 21

����� Variable Pump Version of 10 Frame Size Available

����� Cost Effective, Compact Design

����� Low Noise

����� High Efficiency

����� Worldwide Sales and Service

15 Series Pumps, Motors, and Transmissions

����� Proven Reliability and Performance

����� Variable Pumps, Tandem Pumps, and Fixed Motors Available

����� Two Transmission Configurations: “In-line” and “U” Style

����� PTO Capability on “U” Style Transmission

����� Compact, Lightweight Design

����� Worldwide Sales and Service

CONTENTS APPEAR ON PAGE 4Copyright 1988-2000, Sauer-Sundstrand GmbH

All rights reserved. Contents subject to change. Printed in Germany

Page 32: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

3

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Series 70 Transmissions and Pumps

A Complete Transmission Family to Meetthe Needs of the Lawn and Turf EquipmentMarket

� Two (2) Different Sizes -

.61 in3/Rev. (10 cc/rev)

1.28 in3/Rev. (21 cc/rev)

� “U” Style Transmissions and Variable

Displacement Pump (10 Size Only)

� Closed Circuit Installations

High Performance

� High Efficiency

� Low Noise Levels

Advanced Technology

� Compact, Lightweight Design

� Designed for Economical Manufacturing

� Design Provides for Reduced Operating

Costs

� Direct Displacement Control

Reliability and Support

� Designed and Tested to Rigorous

Standards

� Proven in Laboratory and Field

� Sales and Technical Support in All

Industrialized Countries of the World

� Serviced by a Worldwide Network of

Authorized Service Centers

15 Series Pumps, Motors, and Transmissions

A Complete Transmission Family to Meetthe Needs of the Utility, Construction, andCommercial Turf Maintenance EquipmentMarkets

� Displacement - .913 in3/Rev. (15 cc/rev)

� Variable Displacement Pumps, Tandem

Pumps, and Fixed and Variable Motors

� “U” Style and “In-line” Transmissions

� Wide Range of Installation Options

High Performance

� High Efficiency

� Low Noise Levels

Proven Technology

� Compact Design

� Designed for Economical Manufacturing

� Direct Displacement Control

� Designed to Worldwide Standards

Reliability and Support

� Manufactured to Rigid Quality Standards

� Long Service Life

� Sales and Technical Support in All Industri-

alized Countries of the World

� Serviced by a Worldwide Network of Au-

thorized Service Centers

Page 33: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

4

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Description PageGeneral Description ...................................................................................................................................................................................... 2

Technical Features ........................................................................................................................................................................................ 3

Product Configurations ............................................................................................................................................................................... 5

Technical Specifications - Series 70 Products ................................................................................................................................. 6

Technical Specifications - 15 Series Products ................................................................................................................................. 7

Type Designation and Order Code .......................................................................................................................................................... 8

Series 70 Model Code ............................................................................................................................................................................... 8

15 Series Typical Models ......................................................................................................................................................................... 9

Description of Operation for Series 70 and 15 Series Products ............................................................................................... 10

Basic Pump/Motor Circuit, Variable Displacement Pump, Fixed Displacement Motor, Direct Displacement Control .10

Charge Pump, Inlet filter, Bypass Valve ............................................................................................................................................11

Implement Circuit ......................................................................................................................................................................................12

Easy-Ride Valves ..................................................................................................................................................................................... 13

General Technical Specifications - Series 70 and 15 Series Products ..................................................................................15

Speed Ratings, Pressure Limits, Fluids, Filtration, Reservoir Requirements, Case Pressure ..........................................15

Temperature and Cooling, Auxiliary Mounting Pad (15PV), Mounting Flange Loads (15PT), Allowable Shaft SideLoads ............................................................................................................................................................................................................16

Direct Displacement Control (DDC), Implement Pump Performance, Braking Warning ......................................................17

Efficiency and Performance of Series 70 Units ............................................................................................................................... 18

Efficiency and Performance of 15 Series Units ............................................................................................................................... 19

Definitions of Typical Lawn Care and Turf Maintenance Vehicles ........................................................................................... 20

Component Selection for Lawn Care and Turf Maintenance Vehicles ................................................................................... 20

Installation Drawings ..................................................................................................................................................................................22

Dimensions • BDU-10S and BDU-10L Transmissions ................................................................................................................... 22

Dimensions • BDP-10L Variable Displacement Pump ................................................................................................................... 23

Dimensions • BDU-21L Transmission ................................................................................................................................................. 24

Dimensions • 15 Series Variable Displacement Pump • 15 PV ..................................................................................................25

Dimensions • 15 Series Variable Displacement Tandem Pump • 15 PT ..................................................................................27

Dimensions • 15 Series Fixed Displacement Motor • 15 MF ....................................................................................................... 28

Dimensions • 15 Series In-line Transmission ................................................................................................................................... 29

Dimensions • 15 Series “U” Style Transmission • 15U .................................................................................................................. 30

Contents

Page 34: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

5

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Series 70 / 15 Series - Configuration

Series 70 UnitsSeries 70 units are of axial piston design, utilizingspherical nosed pistons. All Series 70 variable pumpsfeature cradle swashplates with direct displacementcontrol.

� The BDU-10L transmission is a “U” style trans-mission designed for machine applications whereup to 6 horsepower is required for the propelfunction. The variable displacement pump has amaximum displacement of 0.61 in3/Rev. (10 cc/Rev), and the fixed displacement motor has adisplacement of 0.61 in3/Rev. (10 cc/Rev.).

� The BDU-21L transmission is a “U” style trans-mission designed for vehicle applications whereup to 12 horsepower is required for the propelfunction. The variable displacement pump has amaximum displacement of 1.28 in3/Rev. (21 cc/Rev), and the fixed displacement motor has adisplacement of 1.28 in3/Rev. (21 cc/Rev).

� The BDP-10L is a variable displacement pumpdesigned for vehicle applications where up to 6horsepower is required for the propel function, orfor auxiliary functions where the system pres-sure requirements and design life can be metwithin the pump rating. This variable displace-ment pump has a maximum displacement of0.61 in3/Rev. (10 cc/Rev).

15 Series Units15 Series units are of axial piston design, utilizingslippered pistons. All 15 Series variable pumps fea-ture trunnion style swashplates with direct displace-ment control.

� The 15 Series transmission is offered in twoconfigurations; a “U” style and an in-line style.These units are designed for machine applica-tions where up to 15 horsepower is required forthe propel function. The variable displacementpump has a maximum displacement of 0.913 in3/Rev. (15 cc/Rev.), and the fixed displacementmotor has a displacement of 0.913 in3/Rev. (15cc/Rev.).

� The 15 Series variable displacement pump isdesigned for machine applications where up to15 horsepower is required for the propel func-tion, or for auxiliary work functions where thesystem pressure requirements and the designlife can be met within the pump rating. Themaximum pump displacement is 0.913 in3/Rev.(15 cc/Rev.).

� The 15 Series fixed displacement motor is anaxial piston unit with a fixed displacement of0.913 in3/Rev. (15 cc/Rev.). The variable dis-placement motor has a maximum displacementof 0.913 in3/Rev. (15 cc/Rev.).

Page 35: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

6

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Product Type “U” Style Transmissions Variable PumpBDU-10S BDU-10L BDU-21L BDP-10L

DisplacementVariable Pump (Maximum)

in3/Rev 0.61 0.61 1.28 0.61cc/Rev 10 10 21 10

Fixed Motorin3/Rev 0.61 0.61 1.28 DNAcc/Rev 10 10 21 DNA

Input SpeedsMaximum Hi-Idle - rpm 3000 3600 3600 3600Maximum Loaded - rpm 3000 3600 3200 3600Minimum (Pump) - rpm 1800 1800 1800 1800

System Operating Pressure

Maximum psi 2100 2100 2100 2100bar 145 145 145 145

Continuous psi 850 1000 1000 1000bar 60 70 70 70

Case PressureContinuous psi 4

bar 0.3 ALL UNITS ➧

Maximum psi 10(Cold Start) bar 0.7

Weightlbs 15 15 23 10kg 6.8 6.8 10 4.5

Charge Pump Displacementin3/Rev DNA 0.11 0.13 0.11cc/Rev 1.9 2.1 1.9

Motor Output Torque(Approximate)

lbf•in / 1000 psi 85 85 180 DNANm / 100 bar 14 14 30

Control Torque Requiredto Stroke Pump (Approximate)

lbf•in / 1000 psi 65 65 100 65Nm / 70 bar 7.3 7.3 11.3 7.3

Transmission Oil TemperatureMaximum Intermittent ° F 220

° C 104 ALL UNITS ➧

Normal Operating Range ° F -30 to 180° C -34 to 82

Fluid Viscosity Limits —SUS (mm2/sec)Optimum 70 (13)Minimum Continuous 55 (9.0) ALL UNITS ➧

Minimum Intermittent 45 (6.0)

DNA = Does Not Apply

}

}

}

Technical Specifications - Series 70 Products

Page 36: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

7

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Technical Specifications - 15 Series Products

Product Type Transmissions Variable Pump Tandem Pump Fixed Motor15 “U” 15 In-line 15 PV 15 PT 15 MF

DisplacementVariable Pump (Maximum)

in3/Rev 0.913 0.913 0.913 0.913 X 2 DNAcc/Rev 15 15 15 15 X 2

Fixed Motorin3/Rev 0.913 0.913 DNA DNA 0.913cc/Rev 15 15 15

Shaft SpeedsMaximum - rpm 4200 4200 4200 4200 4200Continuous - rpm 4000 4000 4000 4000 4000Minimum (Pump) - rpm 1000 1000 1000 1000 DNA

System Operating PressureMaximum * psi 4500

bar 310 ALL 15 SERIES UNITS ➧

Continuous * psi 2500bar 175

Case PressureContinuous psi 10

bar 0.7 ALL 15 SERIES UNITS ➧

Maximum psi 25(Cold Start) bar 1.7

Weightlbs 33 37 32 64 15kg 15.0 16.5 14.5 29.0 6.5

Charge Pump Displacementin3/Rev 0.30 0.33 0.33 0.33 X 2 DNAcc/Rev 4.9 5.4 5.4 5.4 X 2

Motor Output Torque (Approximate)lbf•in / 1000 psi 135 135 DNA DNA 135

Nm / 100 bar 21 21 21

Control Torque Requiredto Stroke Pump (Approximate)

lbf•in / 1000 psi 65 ALL 15 SERIES PUMPS ➧ DNANm / 70 bar 7.3

Maximum torque on control shaft must not exceed 400 lbf•in (45.2Nm). Maximum radial force on control shaft must not exceed 100lbsf (445 N), applied 3 in (76.2 mm) from seal surface.

Transmission Oil TemperatureMaximum Intermittent ° F 220

° C 104 ALL 15 SERIES UNITS ➧

Normal Operating Range ° F -30 to 180° C -34 to 82

Fluid Viscosity Limits —SUS (mm2/sec)Optimum 70 (13)Minimum Continuous 55 (9.0) ALL 15 SERIES UNITS ➧

Minimum Intermittent 45 (6.0)

DNA = Does Not Apply * = Refer to text for unit life relationship

}}

}

}}

Page 37: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

8

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Series 70 Type Designation and Order Code

BDU Transmissions and BDP Pumps

PRODUCT OR SERIESBD = Bantam Duty Transmission or Variable Pump

1. CONFIGURATIONU = TransmissionP = Pump - Variable (10 cc/Rev., Charge Pump Std.)

2. DISPLACEMENT10 = 10 cc/Rev (0.61 in3/Rev.)21 = 21 cc/Rev (1.28 in3/Rev.) (Charge Pump Std.)

3. STYLES = Standard, 3000 rpm Maximum Input Speed (No Charge Pump)L = With Charge Pump, 3600 rpm Maximum Input Speed

4. CONTROL LOCATION1 = Left Hand Side2 = Right Hand Side3 = Left Hand Side w/Auxiliary Pump (3 cc/Rev.)

5. OPTIONS

Input Shaft StylesShaft

Rotation Pump Motor Other

BDU-10S-1 14 Both 36T, 12.319 PD Spline 36T, 12.319 PD Spline Fits Hydro-Gear 210-1000 AxleBDU-10S-1 15 Both 15 mm dia., Straight Key 16T 32/64P Spline Motor Shaft suitable for Indirect DriveBDU-10S-2 13 Both 15 mm dia., Straight Key 16T 32/64P Spline Motor Shaft suitable for Indirect DriveBDU-10S-2 14 Both 36T, 12.319 PD Spline 36T, 12.319 PD Spline Fits Hydro-Gear 210-1000 Axle

BDU-10L-1 10 LH 15 mm dia., Straight Key 16T 32/64P Spline Fits Hydro-Gear 210-2500 AxleBDU-10L-1 11 RH 15 mm dia., Straight Key 16T 32/64P Spline Motor Shaft suitable for Indirect DriveBDU-10L-2 10 LH 15 mm dia., Straight Key 16T 32/64P Spline Motor Shaft suitable for Indirect DriveBDU-10L-2 11 RH 15 mm dia., Straight Key 16T 32/64P Spline Fits Hydro-Gear 210-2500 Axle

BDP-10L-1 10 RH 15 mm dia., Straight Key N/ABDP-10L-1 11 LH 15 mm dia., Straight Key N/ABDP-10L-1 12 RH 9T 16/32P Spline N/ABDP-10L-1 13 LH 9T 16/32P Spline N/A

BDU-21L-1 10 LH 17 mm dia., Straight Key 22T 32/64P SplineBDU-21L-2 00 RH 17 mm dia., Straight Key 22T 32/64P SplineBDU-21L-2 02 RH 17 mm dia., Straight Key 22T 32/64P Spline Easy-Ride Valves (2)BDU-21L-2 03 RH 17 mm dia., Straight Key 22T 32/64P Spline Fits Hydro-Gear 210-3000 AxleBDU-21L-3 00 RH 17 mm dia., Straight Key 22T 32/64P SplineBDU-21L-3 10 LH 17 mm dia., Straight Key 22T 32/64P Spline

N/A = Not Applicable

B D

Page 38: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

9

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

15 PV

Model Pump Pump Control

Number Rot Shaft Side Comments

15-2125 CW Straight, Sq Key (E) R

15-2133 CCW 17T Spline, Tapped (J) R

15-2158 CCW Straight, Wdrf Key (A) L 7/8-14 Inlet

15 MF

Model Motor

Number Shaft Comments

15-3022 24T Spline (B) Mates with Dana GT-20 Axle (20.9:1)

15-3034 12T Gear (G) Mates with Dana GT-20 Axle (30:1)

15-3043 12T Spline Mates With Peerless 2500 Axle

15-3045 17T Spline Mates With Peerless 2600 Axle

15 U

Model Pump Pump Motor Control

Number Rot Shaft Shaft Side Comments

90-1219 CW .625/.625 Pin (A) 12T Gear (B) L Mates with Dana GT-20 Axle (30:1)

90-1252 CCW .625/.750 Strt Key (D) 16T Gear (D) R Mates with Dana GT-20 Axle (20.9:1)

90-1267 CCW 21T/17T Spline (G) 17T Spline (E) L Mates With Peerless 2600 Axle

15 In-line

Model Pump Pump Motor Control

Number Rot Shaft Shaft Side Comments

90-1303 CCW Straight, Wdrf Key 17T Spline R Mates with Dana GT-20 Axle (20.9:1)

NOTE: Contact Sauer-Sundstrand for information on other available models.

15 Series Typical Models Incorporating Standard Options

Page 39: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 0

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Description of Operation for Series 70 and 15 Series Products

Basic Pump/Motor CircuitA typical hydrostatic transmission consists of a vari-able displacement axial piston pump connected inclosed circuit to a fixed displacement axial pistonmotor. There are two basic arrangements of hydro-static transmissions:

1. A split system in which the pump and motor aremounted separately. Pressurized fluid is con-tained and directed through hoses or tubing.

2. An integral system in which the pump and motorare contained in the same housing with pressur-ized fluid internally contained.

The variable pump (PV) is driven by a prime mover,typically an internal combustion engine. The fixedmotor (MF) drives the vehicle transmission or otherwork function. Direction of rotation and speed of themotor shaft depends on the output flow of the pump.System pressure is dependent upon vehicle tractiveresistance or other work function requirements.

Variable Displacement PumpThe variable displacement pump (PV) is an axialpiston design. It has a mechanical control connectedto the swashplate. In operation, as the machineoperator moves the control handle, the swashplatetilts. This tilting results in fluid flow from the pump,with the amount of fluid flow being proportional to theswashplate tilt angle. The direction in which fluid ispumped depends on input rotation and the side ofneutral that the swashplate is tilted or stroked. Re-versing the swashplate angle reverses the flow offluid.

Fixed Displacement MotorThe fixed displacement motor (MF) is an axial pistonmotor that has the swashplate at a fixed angle, givingit a fixed displacement. The direction of motor shaftrotation depends on the direction of fluid flow throughthe motor. Changing the direction of fluid flow throughthe motor causes opposite motor shaft rotation.

Direct Displacement ControlThe variable displacement pump swashplate in boththe Series 70 and 15 Series transmissions is directlycontrolled. For the Series 70 pump, any movement ofthe control shaft results in a proportional movementof the swashplate, with 21 degrees of control rotationresulting in 15 degrees of swashplate rotation. Forthe 15 Series pump, any movement of the controlshaft results in equivalent swashplate movement,with 15 degrees of control shaft rotation resulting in15 degrees of swashplate rotation.

Basic Closed Circuit

RESERVOIR

INPUT PV OUTPUTMF

CASE DRAIN

FLOW (BI-DIRECTIONAL)

Page 40: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 1

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Description of Operation for Series 70 and 15 Series Products (Continued)

Bypass Valve Circuit

BYPASSVALVE

MF OUTPUT

Charge PumpAxial piston pumps and motors use a small amountof fluid for internal lubrication. This results in fluidbeing lost from the closed circuit that must be replen-ished. A fixed displacement gerotor pump is used toreplenish the lost oil. This gerotor pump, called acharge pump, is driven by the prime mover throughthe piston pump drive shaft.

Since the piston pump and piston motor are con-nected in a closed circuit, either side of the hydro-static loop may be pressurized. To allow charge oil toenter the closed circuit, two check valves are used todirect charge flow to the side of the loop with thelowest pressure.

The pressure in the charge pump circuit is limited bya direct operating relief valve. Any fluid not used asreplenishing oil is discharged over this valve, eitherinto the transmission case or recirculated back to thecharge pump inlet. Flow across a small fixed orificeconnecting the charge circuit with the transmissionhousing, supplements the cooling flow in the Series70 transmissions.

Inlet FilterIt is imperative that only clean fluid enters the hydro-static transmission circuit, therefore a 20 micron(nominal rating) inlet filter is required in the chargepump inlet line. This filter should not have a bypassand should be changed regularly to ensure systemreliability.

Bypass ValveIn some applications, it is desirable to move themachine for short distances at low speeds withoutstarting the engine. A bypass valve allows oil to berouted from one side of the pump/motor circuit to theother, thus allowing the motor to turn. The bypassvalve must be fully closed during normal vehicleoperation.

Series 70 BDU-10L and 21L transmissions utilize aspool type bypass valve. A spring closes this valve onthe 10L transmission, while charge pressure closesthe valve on the 21L transmission. The BDP-10Lpump utilizes a screw type bypass valve.

15 Series PV, PT, and in-line units utilize a screw typebypass valve which is fully open at 1/2 revolution ofthe valve stem. 15 Series U transmissions utilize thecharge check valves for the bypass function. Exter-nal plungers are depressed to hold the charge checkballs off of their seats, allowing oil to bypass from oneside of the pump/motor circuit to the other.

Charge Circuit – Series 70-BD

TOCASEDRAIN

INPUT

CHARGEPUMP

CHARGERELIEF

PV PF

INLETFILTER

RESERVOIR

COOLING ORIFICE

CHARGECHECKVALVES

Charge Circuit – 15 Series

TOCASEDRAIN

INPUT

CHARGERELIEF

CHARGEPUMP

PV PF

INLETFILTER

RESERVOIR

CHARGECHECKVALVES

Page 41: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 2

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Description of Operation for Series 70 and 15 Series Products (Continued)

Implement Circuit – Series 70-BDU-21L

TOCASEDRAIN

INPUT

CHARGEPUMP

CHARGERELIEF

IMPLEMENTVALVE

PV PF

FROM INLETFILTER

IMPLEMENTRELIEF

PRESSUREFILTER

TOCASEDRAIN

INPUT

IMPLEMENTRELIEF

CHARGEPUMP

CHARGERELIEF

IMPLEMENTVALVE

PV PF

TOCASE

FROM INLETFILTER

HEAT EXCHANGER(OPTIONAL)

Implement Circuit – 15 Series

Implement PumpImplement (auxiliary) flow capability is offered on theSeries 70 21 cc transmission and on 15 Series units.Charge (implement) pump sizes available are .18 in3/Rev. (3 cc/rev.) for the Series 70 BDU-21L transmis-sion, .30 in3/Rev. (4.9 cc/rev.) for the 15 U transmis-sion and .33 in3/Rev. (5.4 cc/rev.) for the 15 PV, 15PT, or 15 in-line transmission.

The implement circuit must be of the “open center”type that allows oil from the charge pump circulatingthrough the control valve to return to the transmis-sion.

There are two styles of implement circuits dependingupon whether the Series 70 or the 15 Series is used.

In the Series 70 BDU-21 implement circuit, flow fromthe charge (implement) pump flows first to the imple-ment circuit control valve, then to the charge reliefand charge check valves. The implement circuitmust be designed to return the implement flow to thetransmission. (A check valve is provided to allow oilto be drawn into the charge circuit should the flowreturning from the implement circuit be momentarilyinsufficient to charge the closed loop.) The customermust provide an implement circuit relief valve inaddition to the implement control valve. It is alsorecommended that the customer provide a chargepressure filter between the implement control valveand the transmission to prevent any contaminantscreated in the implement circuit actuator(s) fromentering the charge circuit.

In the 15 Series implement circuit, flow from thecharge (implement) pump flows to the charge checkvalves and charge relief. Once charge pressure isestablished, the charge relief allows oil to flow to theimplement control valve, and on to the transmissioncase drain. (If an oil cooler is required in the circuit, itmay be installed between the implement controlvalve and the case connection.) The implement reliefvalve limits the pressure in the implement circuit (andcharge circuit) when the implement valve is actuated.

Page 42: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 3

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Easy-Ride ValvesThe Series 70 BDU-21L transmissions are availablewith optional Easy-Ride valves to reduce the rate ofchange in acceleration (“jerkiness”) in vehicle propelapplications. Each Easy-Ride valve incorporates apoppet-piston, sleeve assembly, valve spring, andplug.

A sudden increase in pressure in one side of theclosed loop will open the corresponding Easy-Ridevalve, allowing some high pressure fluid to flow to theopposite side of the loop through the charge circuitand charge check. This limits the pressure rise ratein the loop and reduces the acceleration rate of thevehicle.

The poppet-piston, sleeve assembly, and spring actas an accumulator. Once system pressure builds-upbetween the poppet-piston and sleeve assembly, thepoppet-piston will move toward its seat, closing thepassage.

A typical Easy-Ride valve cycle requires 0.5 to 1.0seconds, depending on system oil viscosity and looppressure. If the loop pressure is above the functionalrange of the valve (approximately 1500 psi [103 bar]),the valve spring will compress until the sleeve as-sembly contacts the plug, and the poppet-piston willbe rapidly forced onto its seat.

Description of Operation for Series 70 and 15 Series Products (Continued)

Easy Ride Valve Circuit

FROMCHARGE PUMP

CHARGE CHECK VALVES

INPUT

PV

EASY-RIDEVALVES(OPTION)

Page 43: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 4

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Notes

Page 44: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 5

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Speed RatingsMaximum speed is the highest operating speedrecommended and cannot be exceeded without re-duction in the life of the product or risking prematurefailure and loss of drive line power (which may createa safety hazard).

Continuous speed is the speed limit recommendedat full power condition and is the highest value atwhich normal life can be expected.

Pressure LimitsSystem pressure is a dominant operating variableaffecting hydraulic unit life. High pressure, whichresults from high load, reduces expected life in amanner similar to many mechanical assemblies suchas engines and gear boxes. There are load-liferelationships for the rotating group and for the shaftanti-friction bearings.

Maximum pressure is the highest intermittent pres-sure allowed. It is determined by the maximum ma-chine load demand. Maximum pressure is as-sumed to occur a small percentage of operatingtime, usually less than 2% of the total.

Continuous pressure is the average, regularly oc-curring pressure.

Both the maximum and continuous pressurelimits must be satisfied to achieve the expectedlife.

Series 70 / 15 Series Product PressureLimits for 5 Year (@ 200 Hrs Usage / Yr.)Transmission Life Expectancy, psi (bar)

Continuous MaximumProduct Pressure Pressure

Series 70-BD 1000 2100(69) (145)

15 Series 2500 4500(175) (310)

Operation at these pressure limits (under normalconditions) will give a five year life expectancy (@200 hours usage per year), assuming recommendedmaintenance procedures are followed. In the eventthat an extreme duty cycle is anticipated, consultSauer-Sundstrand.

FluidsRatings and data for Sauer-Sundstrand products arebased on operating with premium hydraulic fluidscontaining oxidation, rust, and foam inhibitors.

These premium fluids include API CD engine oils perSAE J183, Type F automatic transmission fluids,power shift transmission fluids meeting Allison C-3 orCaterpillar TO-2 requirements and certain specialtyagriculture tractor fluids. For further information, con-sult Sauer-Sundstrand.

At continuous operating conditions, fluid viscosityshould be above 55 SUS (9 mm2/sec). Minimum fluidviscosity should be above 45 SUS (6.4 mm2/sec) atintermittent operating conditions.

FiltrationA 20 micron (nominal rating) filter should be placed inthe inlet line to the charge pump. The maximumcontinuous inlet vacuum should not exceed 10 in. Hg(0.7 bar abs.); the filter should be replaced when theinlet vacuum exceeds 10 in. Hg (0.7 bar abs.). Duringcold starts, the inlet vacuum may exceed this level.Inlet vacuum at normal operating conditions shouldnot exceed 5 in. Hg (0.8 bar abs.).

Reservoir RequirementsA suggested minimum reservoir volume is 5/8 of thetotal charge pump flow with a minimum fluid volumeequal to 1/2 of the charge pump flow. This allows 30seconds dwell time for removing any entrained air inthe oil. This is adequate for a closed reservoir in mostapplications.

The reservoir outlet to the charge pump inlet shouldbe near the bottom of the reservoir and must alwaysbe covered with fluid. The reservoir inlet (fluid return)from the transmission should be below the fluid leveland be as far away as possible from the outlet port.

Case PressureUnder normal operating conditions, the maximumcontinuous case pressure must not exceed 4 psi (0.3bar) for Series 70-BD units or 10 psi (0.7 bar) for 15Series units. Maximum allowable intermittent casepressure during cold start must not exceed 10 psi(0.7 bar) for Series 70 units or 25 psi (1.7 bar) for 15Series units.

General Technical Specifications

Page 45: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 6

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

100 00010 000100010010

100

1000

Cold Weather Torque to Turn(@ 400 RPM and 0 Swashplate Angle)

Oil Viscosity - mm2 /sec

To

rqu

e to

Tu

rn —

lb

f•in

15 PV

BDU-21L

BDU-10L

General Technical Specifications (Continued)

Allowable Pump Input Shaft Side LoadsThe following graphs assume that a self tensioningdevice is used to supply tension to the belt, and thatthe belt tension is proportional to the amount oftorque required to turn the shaft. Since torque isproportional to the system pressure generated, belttension can be determined by knowing the operatingsystem pressure and the pitch diameter of the sheave.

Typical self tension devices apply five times thetension to the tight side of the belt as is applied to theloose side of the belt. The following equations can beused to calculate the belt side load.

Belt Side Load (lbs.) = 3 x T in

Ds

OR

Belt Side Load (lbs.) = K x P

Ds

Where:

T in = Maximum Shaft Input Torque in lbf•in.

Ds = Sheave Pitch Diameter in inches

P = System Working Pressure in psi

K = Constant:0.33 for BDP-10L or BDU-10L0.68 for BDU-21L0.48 for 15 Series

The accompanying graph represents the maximumallowable conditions based upon shaft stress. Allexternal shaft loads will have an effect on bearing life.If continuously applied external loads exceed 25% ofthe maximum allowable, contact Sauer-Sundstrandfor unit bearing life evaluation.

Temperature and CoolingThe operating temperature of the transmission shouldnot exceed 180° F (82° C) continuous and 220° F(104° C) intermittent. These temperature limits applyat the hottest point in the transmission, which isnormally the case drain.

Heat exchangers may be installed in the case draincircuit if necessary, and should be sized to keep thefluid within recommended temperature limits. Test-ing to verify that these temperature limits are notexceeded is recommended.

Cold oil will generally not affect durability of thetransmission components, but it may affect the abilityto start the engine, flow oil, and transmit power. Ingeneral, cold starts may be made at a temperature30° F (16° C) above the pour point of the fluid. Theaccompanying graph illustrates the relationship be-tween shaft turning torque at 400 rpm and fluidviscosity.

Auxiliary Mounting Pad (15PV)The 15 Series pump is available with an optional SAE“A” mounting pad for mounting auxiliary hydraulicpumps. Since the auxiliary pad operates under casepressure, an O-ring must be used to seal the auxiliarypump mounting flange to the pad.

The 9 tooth spline has a 450 lbf•in (51 Nm) continu-ous and 950 lbf•in (107 Nm) maximum torque rating.These ratings assume a 58 Rc hardness on themating pump shaft and 0.53 in. (13.5 mm) minimumspline engagement. The continuous torque rating isbased on spline tooth wear.

Mounting Flange Loads (15PT)Subjecting 15 Series tandem pumps to high shockloads may result in excessive loading of the mountingflange. Studs are provided at the rear of the unit forattaching a support bracket.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

100

200

300

400

500

600

700

800

Sid

e L

oad

— lb

sf

Distance from Shaft Seal — in

Maximum Allowable Shaft Loads

15 PV

BDU-21L

BDU/P-10

Page 46: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 7

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

General Technical Specifications (Continued)

10008006004002000

0

1

2

3

4

15 Series Implement Flow(@ 3300 RPM and 180 F)

Pressure — psi

Imp

lem

ent

Flo

w —

gp

m

15 PV

15 "U"

Displacement15 PV — .33 cir15 "U" — .30 cir

Direct Displacement Control (DDC)The Direct Displacement Control can be located oneither side of the Series 70 and 15 Series transmis-sion or pump (except the BDP-10L). It provides asimple, positive method of control. Movement of thecontrol shaft causes a proportional swashplate move-ment, thus varying the pump’s displacement from fulldisplacement in one direction to full displacement inthe opposite direction.

Vehicle propel applications may require a provisionfor non-linear control input to reduce control sensitiv-ity near neutral. Damping or frictional forces may benecessary to produce the desired control feel.

These units do not include any neutral centeringdevice for the swashplate. It is necessary to providea force in the machine’s control system that will holdthe swashplate at the desired angle. A “fail safe”design which will return the swashplate to neutral inthe event of linkage failure is recommended.

WARNING

With no external forces applied to the swash-plate trunnion, internal hydraulic forces maynot return the swashplate to the neutral posi-tion under all conditions of operation.

The approximate torque necessary to rotate thecontrol per 1000 psi (70 bar) of system operatingpressure is as follows:

Series 70 BD-10 65 lbf•in per 1000 psi(7.3 Nm per 70 bar)

Series 70 BD-21 100 lbf•in per 1000 psi(11.3 Nm per 70 bar)

15 Series 65 lbf•in per 1000 psi(7.3 Nm per 70 bar)

The maximum torque that should be applied to thecontrol under any condition is as follows:

Series 70 BD-10 200 lbf•in (22.6 Nm)

Series 70 BD-21 400 lbf•in (45.2 Nm)

15 Series 400 lbf•in (45.2 Nm)*

* With a maximum radial force of 100 lbsf (445 N)applied to the control shaft not more than 3 inches(76.2 mm) from the seal surface.

Implement Pump PerformanceThe following graphs provide typical implement pumpperformance information for the Series 70-BDU-21Land the 15 Series units.

BRAKING WARNING

The loss of hydrostatic drive line power in anymode of operation may cause the loss of hy-drostatic braking capacity. A braking system,redundant to the hydrostatic transmissionmust, therefore, be provided which is adequateto stop and hold the system should the condi-tion develop.

10008006004002000

0

1

2

3

BDU-21L Implement Flow(@ 3200 RPM)

Implement Pressure — PSI

Imp

lem

ent

Flo

w —

gp

m

(150 F)

(180 F)DisplacementBDU-21L — .18 cir

Page 47: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 8

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Efficiency and Performance of Series 70 Units

The following graphs provide typical efficiency andperformance information for Series 70 units.

100806040200

0

100

10

20

30

40

50

60

70

80

90

BDU-10L Overall Efficiency(@ 3000 RPM Pump Input Speed)

Output Torque — lbf•in

Ove

rall

Eff

icie

ncy

— %

200180160140120

Full Displacement

Half Displacement

100806040200

0

3000

250

750

10001250

15001750

20002250

2500

500

2750

BDU-10L Performance(@ 3000 RPM Pump Input Speed)

Output Torque — lbf•in

Ou

tpu

t S

pee

d —

rp

m

200180160140120

Full Displacement

Half Displacement

100806040200

0

100

10

20

30

40

50

60

70

80

90

BDU-21L Overall Efficiency(@ 3000 RPM Pump Input Speed)

Output Torque — lbf•in

Ove

rall

Eff

icie

ncy

— %

200180160140120

Full Displacement

Half Displacement

100806040200

0

3000

250

750

10001250

15001750

20002250

2500

500

2750

BDU-21L Performance(@ 3000 RPM Pump Input Speed)

Output Torque — lbf•in

Ou

tpu

t S

pee

d —

rp

m

200180160140120

Full Displacement

Half Displacement

200015001000

50

100

60

70

80

90

BDP-10L Overall Efficiency(@ Full Displacement [15 Swashplate Angle])

Input Speed — rpm

Ove

rall

Eff

icie

ncy

— %

4000350030002500

1000 psi

1500 psi

200015001000

4

9

5

6

7

8

BDP-10L OutputFlow(@ Full Displacement [15 Swashplate Angle])

Input Speed — rpm

Pu

mp

Flo

w —

gp

m

4000350030002500

No Load1000 psi1500 psi

Page 48: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

1 9

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Efficiency and Performance of 15 Series Units

The following graphs provide typical efficiency andperformance information for 15 Series units.

250200150100500

0

100

10

20

30

40

50

60

70

80

90

15 "U" Overall Efficiency(@ 3300 RPM Pump Input Speed)

Output Torque — lbf•in

Ove

rall

Eff

icie

ncy

— %

500450400350300

Full Displacement

Half Displacement

0

5000

1000

1500

2000

2500

500

3000

3500

4000

4500

15 MF Output Speed

Input Flow — gpm

Mo

tor

Sp

eed

— r

pm

1086420 2018161412

100806040200

0

4000

2000

2500

3000

3500

1500

1000

500

15 "U" Performance(@ 3300 RPM Pump Input Speed)

Output Torque — lbf•in

Ou

tpu

t S

pee

d —

rp

m

200180160140120

0

18

2

4

6

8

10

12

14

16

15 PV OutputFlow(@ Full Displacement)

Input Speed — rpm

Pu

mp

Flo

w —

gp

m

200010000 500040003000

1000 psi2500 psi4000 psi

Full Displacement

Half Displacement

1000 psi

2500 psi

4000 psi

Page 49: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 0

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Definitions of Typical Lawn and Garden and Turf Maintenance Vehicles

Lawn Tractor – Vehicle with an 8 to 16 horsepower (6to 12 kW) gasoline engine that is used primarily formowing with limited drawbar capability and someactive ground engaging attachments (i.e. rotary tillers,snowblowers). Tire diameters are typically 18 to 20in. (457 to 508 mm) and vehicle weights are generally500 lbs. (227 kg) or less.

Yard Tractor – Vehicle with a 12 to 18 horsepower (9to 13.5 kW) gasoline or diesel engine that is usedprimarily for mowing with some drawbar capabilityand some active ground engaging attachments (i.e.rotary tillers, snowblowers, front blade). Tire diam-eters are typically 20 to 23 in. (508 to 584 mm) andvehicle weights range from 650 to 850 lbs. (295 to386 kg).

Garden Tractor – Vehicle with a 14 to 20 horsepower(10.5 to 15 kW) gasoline or diesel engine that is usedas a mowing or utility vehicle. Capability for usingpassive ground engaging implements such as mold-board plows and front end loaders distinguish thesetractors from yard tractors. Tire diameters are typi-cally 23 to 28 in. (584 to 711 mm) and vehicle weightsrange from 1000 to 1200 lbs. (454 to 544 kg).

Front Mount Mower – Vehicle used primarily formowing, where the mowing attachment is located infront of the machine. Some have accessory attach-ments such as brooms, snowblowers, and blades.The vehicle is usually driven through a transmission/transaxle arrangement and the rear wheels aresteered. Vehicle weights and tire diameters vary inrelation to the size of the mower.

Rear Engine Rider – Vehicle used primarily for mow-ing, where the mower deck is located under themachine. The engine is located at the rear, oftenunder the operator's seat. The vehicle is usuallydriven through a transaxle arrangement and the frontwheels are steered. Tire diameters are typically 18 in.(457 mm) or less, and vehicle weights are generally500 lbs. (227 kg) or less.

Dual Path Mower – Vehicle used primarily for mowingwith some accessory attachment capability. Usuallya dual path propelled vehicle in which steering isdone by controlling the speed of each drive wheelindependently. Vehicle weights and tire diametersvary in relation to the size of the mower.

Component Selection for Lawn and Garden or Turf Maintenance Vehicles

Selecting the proper transmission for a vehicle be-gins with determining the maximum vehicle speeddesired and the maximum tractive effort required.The transmission selected must meet both require-ments.

Many lawn and garden hydrostatic transmissions areused in conjunction with readily available transaxles.The maximum hydrostatic motor speed can be calcu-lated by using the following equation. The inputspeed to the pump should be 10% greater than themaximum motor speed.

Max. Motor Speed (rpm) = S x FDR x 168

LR

Where:S = Maximum Vehicle Speed in mphFDR = Transaxle Final Drive RatioLR = Tire Loaded Radius in inches

A useful parameter for determining tractive effort is“pull ratio”. Pull ratio is a dimensionless term that isthe ratio of tractive effort to gross vehicle weight. It isgenerally constant for each class of vehicle. Thesevalues may be used when actual vehicle tractiveefforts are not known.

Typical Pull Ratios for Lawn and GardenVehicles

Maximum TypicalVehicle Class Pull Ratio Pull Ratio

Lawn Tractor 0.73 0.18

Yard Tractor 0.80 0.20

Garden Tractor 1.00* 0.23

Front Mount Mower 0.80** 0.23

Rear Engine Rider 0.50 0.16

Dual Path Mower 0.85 / 2 0.25 / 2

* Assumes weight transfer to the driving wheelsfrom an implement.

** Based on wheel slip for a four-wheel-drive ve-hicle on dry asphalt. For mower service on turf, aratio of 0.62 may be more appropriate.

Page 50: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 1

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Component Selection (Continued)

Because there are no system pressure relief valvesin Series 70 units and many 15 Series transmissions,the maximum hydrostatic motor torque should occurat the vehicle wheel slip condition. Because of weighttransfer from pushing or pulling implements, it maybe difficult to determine the true weight on the drivewheels at wheel slip. Experience has shown that thevalues listed under “Maximum Pull Ratio” in theabove table can be used to determine the maximumtractive effort. The maximum hydrostatic motor torquecan be calculated using the following equation:

Max. Motor Torque(lbf in) =

Maximum PR x GVW x LR

FDR x FD eff

Where:

PR = Pull Ratio

GVW = Gross Vehicle Weight in lbs.

LR = Tire Loaded Radius in inches

FDR = Transaxle Final Drive Ratio

FD eff = Transaxle Final Drive Efficiency

Vehicles generally operate at the maximum tractiveeffort condition less than 2% of their life, therefore itis necessary to select a transmission which will giveadequate life under typical operating conditions. If aduty cycle for the transmission is known, Sauer-Sundstrand can assist in calculating a weightedaverage or root cubic mean motor torque and canestimate the life expectancy of the transmissionselected.

If the vehicle duty cycle is not known, then the valuesin the accompanying table listed under typical oper-ating conditions can be used in the following equationfor the motor torque determination. If the life is notadequate, the transaxle final drive ratio or tire sizemay need to be changed, or the next larger transmis-sion may be needed. Contact Sauer-Sundstrand forassistance in the correct transmission selection.

Typical Operating Motor Torque (lbf in) =

Typ. PR x GVW x LR

FDR x FD eff

Where:

Typ. PR = Typical Pull Ratio

GVW = Gross Vehicle Weight in lbs.

LR = Tire Loaded Radius in inches

FDR = Transaxle Final Drive Ratio

FD eff = Transaxle Final Drive Efficiency

Series 70 / 15 Series Transmission SystemOperating Pressure Limits (andCorresponding Motor Output Torques) for5 Year Life Expectancy

Pressure in psi (Torque in lbf•in)

Typical Continuous Operating Limits

Usage ProductHrs./Yr. BDU-10L BDU-21L 15 Series

100 1300 (115) 1300 (250) 3000 (410)

200 1000 (85) 1000 (190) 2600 (350)

300 800 (70) 800 (155) 2000 (270)

400 650 (55) 650 (125) 1500 (195)

Maximum Operating Limits

Usage ProductHrs./Yr. BDU-10L BDU-21L 15 Series

100 2100 (180) 2100 (400) 4500 (610)

200 2100 (180) 2100 (400) 4500 (610)

300 1900 (170) 1900 (380) 4000 (525)

400 1800 (160) 1800 (355) 3600 (480)

NOTE: Operation at these pressure and output torquelimits (under normal conditions) will give afive year life expectancy, assuming recom-mended maintenance procedures are fol-lowed. In the event that an extreme dutycycle is anticipated, consult Sauer-Sundstrand.

Page 51: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 2

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

10S-114, 10S-116, 10S-119,10S-214 & 10S-215 ONLY

C

C

20 A B

A

AE

2.16 [54.75]CASE DRAINBOTH SIDES

2.20 DIA[56.00]

0.335 DIA [8.500](4) HOLES

2.09[53.00]

2.09[53.00]

OUTPUT ROTATION

2.09[53.00]

2.95 DIA[75.00]

2.95[75.00]

3.33 [84.50]

1.299[33.000]

0.25 DIA [6.37]SPIRAL PIN

1.47 [37.30]BOTH SIDES

2.43[61.80]

4.78 [121.30]

1.32 [33.50]KEYWAY LENGTH

1.06[27.00]

6.48 [164.64]

0.5906 DIA[15.0000]

PUMP SHAFT "A"

0.18[4.62]

0.51[13.00]

3.83 [97.30]4.07 [103.30]CASE DRAIN

1.16[29.42]

0.5906 DIA[15.0000]

0.531DIA[13.495]

MOTOR SHAFT "B"PITCH DIA .5000 [12.7]30 PRESSURE ANGLE16 TEETH, 32/64 PITCH

0.47 [12.00]BOTH SIDES

0.63 [16.00]

1.78 [45.30]BOTH SIDES

0.79 [20.00]BOTH SIDES

MOUNTING SURFACE

0.585 DIA [14.850]

PUMP SHAFT "B"PITCH DIA .5315 [13.5]30 PRESSURE ANGLE18 TEETH, .0295 MODULE

0.496DIA[12.602]

AUXILIARY SHAFTSERRATIONPITCH DIA .485 [12.32]36 TEETHPER SAE J500

0.469 [11.900]

SECTION A-A

0.020 [0.510](2) PLACES

0.198[5.030]

0.29 [7.37]

SECTION C-C

MOUNTINGSURFACE(REF)

0.295 DIA[7.500]

0.551[14.000]

SECTION D-DBOTH SIDES

1.8504 DIA[47.0000]

VIEW E10S-114 & 10S-214 ONLY

0.138[3.500]

2.70 [68.50]

0.395 [10.03]MAX

0.55 [14]

0.236[5.990]

7/8—14 SAE STRTHD O-RING BOSSCASE DRAIN 1(OPTIONAL)7/8—14 SAE STRTHD O-RING BOSSOPPOSITE SIDECASE DRAIN 3(OPTIONAL)

20 2.70 [68.50]

2.09[53.00]

MOTOR SHAFT OPTIONS

INPUT ROTATION

BYPASSVALVE

3.08 [78.12]BYPASSCLOSED

2.86 [72.64]BYPASSOPEN

0.98[25.00]

1.93[49.00]

0.515 [13.081]

LEFT HANDCONTROL SHAFT

RIGHT HANDCONTROL SHAFT(OPTIONAL)

0.276 SPHERICAL R[7](2) PLACES

0.394 [10.008]

0.51 [13.00]

0.020R [0.508](2) PLACES

1.46[37.2]

1.46[37.2]

4.22[107.3]

1.47[37.27]

0.608 [15.440]

0.76 [19.34]

0.045 [1.150]GROOVE WIDTH

0.5906 DIA [15.0000]0.531DIA [13.495]

0.488 DIA [12.400]GROOVE

MOTOR SHAFT "A"PITCH DIA .5000 [12.7]30 PRESSURE ANGLE16 TEETH, 32/64 PITCH

0.395 MAX [10.033] MOTOR SHAFT "C"SERRATIONPITCH DIA .485 [12.32]36 TEETHPER SAE J500

0.496 DIA [12.602]

INPUT TORQUE TOTRUNNION SHAFTMUST NOT EXCEED200 LBF•IN [22.6 NM]

2.48[63.00]

9/16—18 SAE STRTHD O-RING BOSSSYSTEM PRESSUREGAGE PORT(2) PLACES

.7/8—14 SAE STRTHD O-RING BOSSCASE DRAIN 4

7/16—20 SAE STRTHD O-RING BOSSCHARGE PUMP INLET 2(FOR UNITS WITHCHARGE PUMP ONLY)

.4719 DIA[11.985]

.295 [7.5]

CW CCW

D DCW CCW

Dimensions • Series 70 BDU-10S and BDU-10L Transmissioninches

[mm]Input Shaft Rotation CW CCW

Control Shaft Rotation A B A BOutput Shaft Rotation CW CCW CCW CW

Page 52: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 3

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Input Shaft Rotation CW CCWControl Shaft Rotation A B A BPort A Flow Out In In OutPort B Flow In Out Out In

3/4—16 SAE STRTHD O-RING BOSS(2) HOLESB

B

M6x1 THD.39 [10] DEEPA

A

2.83[72.00]

3.33 [84.50]

2.20 DIA[56.00]

0.4719 DIA[11.9850]

0.295[7.500]

INPUT TORQUE TOTRUNNION SHAFTMUST NOT EXCEED 200 LBF•IN [22.6 NM]

3.07[78.00]

PORT "A" PORT "B"

0.944 [23.980](2) PLACES

2.75[69.80]

0.222 [5.640]

3.249 DIA[82.525]

1.95 [49.50]

1.181 [30.000]

0.315 [8.000]

0.5906 DIA[15.0000]

PUMP SHAFT "A"

0.1969[5.0000]

0.469[11.900]

SECTION A-A

0.591DIA [15.000]

1.25 [31.70]

0.39 [10.00]

PUMP SHAFT "C"PITCH DIA .5625 [14.288]30 PRESSURE ANGLE9 TEETH, 16/32 PITCHSAE CLASS 1, 1963

5.16 [131.00]2.70 [68.50]

0.515 [13.081]

0.200 DIA[5.080]

20

7/16—2O SAE STRTHD O-RING BOSSCHARGE PUMP INLET

9/16—18 SAE STRTHD O-RING BOSSCASE DRAIN

20 BA

BYPASS VALVE OPTION "B"FULL OPEN AT (2) REVOLUTIONS84-120 LBSF•IN [9.5-14.3 NM]CLOSING TORQUE.62 [15.75] DIA HEADWITH (2) .266 [6.76] DIAHOLES DRILLED THRU 90 APART

0.25 [6.35]

0.39 [9.91]

2.83 [72.00]

2.52[64.00]

2.09 [53.20](2) PLACES

2.32 [58.90]

0.441 DIA [11.200](2) PLACES

BYPASS VALVE OPTION "A"FULL OPEN AT (2) REVOLUTIONS84-120 LBSF•IN [9.5-14.3 NM]CLOSING TORQUE.625 [15.87] HEX

2.75[69.80]

0.394 [10.008]4.02

[102.00]

0.020 R [0.508](2) PLACES

VIEW B-B

0.98 [25.00]

4.02 [102.00]2.09[53.20]

CW CCW

INPUT ROTATION

Dimensions • Series 70 BDP-10L Pumpinches

[mm]

Page 53: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 4

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Dimensions • Series 70 BDU-21L Transmissioninches

[mm]Input Shaft Rotation CW CCW

Control Shaft Rotation A B A BOutput Shaft Rotation CCW CW CW CCW

C C

E

E

H

2.09[53.00]

2.50 [63.50]

1.70[43.11]

1.85[47.00]

2.89 [73.41]

CW CCW

CHECK VALVE SIDE "B"(OPPOSITE SIDE SIDE "A")

1.18[30.00]

0.7874DIA[20.0000]

SECTION C-C2 CHARGE PUMP INLET

0.198[5.03]

.24 [6.0]A

A

2.05[52.07]

0.86 [21.80]

2.09[53.00]

5.93 [150.50]3.07 [78.00]

2 CHARGE PUMP INLET

1.26 [31.99]

22

.625 DIA [15.88]

0.413[10.490]

22

0.547 [13.900]0.020 [0.51](2) PLACES

SECTION A-A0.19 [4.88]0.068 [1.720]

GROOVEWIDTH

0.646 DIA[16.400]GROOVE

0.719DIA[18.263]

0.7874 DIA[20.0000]

0.982 [24.940]

PUMP SHAFT "C"(INPUT)NON-AUXILIARYPUMP MODELS ONLY

7.70 [195.70] TOMOUNTING SURFACE1.18 [30.0]KEYWAY LENGTH

0.625DIA [15.875]

7.32 [185.93] TOMOUNTING SURFACE

VIEW E-E

0.630[16.000]

2.436[61.870]

CL OFTRUNNIONSHAFT

0.45 MIN[11.43]

.7087 DIA[18]

0.39 [9.90] MIN FULL THD

5.18 [131.50]

1.26[31.99]

PUMP SHAFT "A"(INPUT)

0.63[16.00]2.38

[60.50]

EASY-RIDE VALVES(OPTIONAL)

OUTPUT ROTATION

1CASEDRAIN

1.32 [33.52]KEYWAY LENGTH

0.19[4.79]

7.70 [195.70]

0.74 [18.78]

A B

A

A

2.09 [53.00]

2.09 [53.00]

4.055[103.000]

0.157 [4.000]

0.335DIA [8.509](4) HOLES

3.07 [78.00]

3.82 [97.00]

3.07 [78.00]

3.543DIA [90.000]

2.83DIA[72.00]

INPUT TORQUE TO TRUNNION SHAFT MUST NOT EXCEED 300 LBF•IN (34 NM)

MOTOR SHAFT "A"PITCH DIA .6875 [17.46]30 PRESSURE ANGLE22 TEETH 32/64 PITCH

M8x1.25-6H THD.52 MIN FULL THD[13.2] MOTOR SHAFT "B"

PITCH DIA .6875 [17.46]30 PRESSURE ANGLE22 TEETH 32/64 PITCH

PUMP SHAFT "B"(INPUT)PITCH DIA .5938 [15.08]30 PRESSURE ANGLE19 TEETH, 32/64 PITCH

PITCH DIA .5938 [15.08]30 PRESSURE ANGLE19 TEETH 32/64 PITCH

15

M6x1.0-6H THD 4.82 [122.51]

0.719DIA[18.263]

0.669 DIA[17.00]

0.59[15.00]

0.354[9.000]

RIGHT HANDCONTROL SHAFT

2.86 [72.59]BYPASSOPEN

1.02[26.00]

M6x1.0-6H THD

K

WITH AUXILIARY PUMP

0.4724[12.0000]

INPUT ROTATION

3.08 [78.12]BYPASSCLOSED

3.35[85.00]

2.70[68.51]

BYPASSVALVE

0.5906 DIA[15.0000]

0.236 DIA[6.000]

LEFT HANDCONTROL SHAFT(OPTIONAL)

.02 MAX R[.5](2) PLACES

0.305 SPHERICAL R[7.740](2) PLACES

1.83[46.38]

1.83[46.38]

MOUNTING SURFACE(REF)

SECTION K-K

0.830 [21.082]

0.663 [16.840]

0.605 [15.367]

CHARGERELIEFVALVE

CW SHAFT ROTATION

0.830 [21.082]

0.605[15.367]

0.663[16.840]

CCW SHAFT ROTATION

SECTION J-J

1.345 [34.171]BOTH PORTS

MOUNTINGSURFACEREF

0.591 [15.000]

.7087 DIA[18]

3/4—16 SAE STRTHD O-RING BOSS

3.05[77.47]

CENTERLINE

5.24 [133.1]

CHARGERELIEFVALVE

K

63/4—16 SAE STR THDO-RING BOSSCASE DRAIN STYLE "B"LOCATED IN CENTER

59/16—18 SAE STRTHD O-RING BOSS(RETURN)

49/16—18 SAE STRTHD O-RING BOSS(DISCHARGE)

49/16—18 SAE STRTHD O-RING BOSS(DISCHARGE)

59/16—18 SAE STRTHD O-RING BOSS(RETURN)

SECTION D-D1 CASE DRAIN - STANDARD (STYLE "A")FOR UNIT WITH R.H. CONTROL SHAFT3 (OPPOSITE SIDE FOR UNITWITH L.H. CONTROL SHAFT)

SECTION D-D1 CASE DRAIN - OPTIONAL (STYLE "B")FOR UNIT WITH R.H. CONTROL SHAFT3 (OPPOSITE SIDE FOR UNITWITH L.H. CONTROL SHAFT)

VIEW HTHRU AUXILIARY PUMP SHAFT

(OPTIONAL)

D

D

CCWCW

J

J

Page 54: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 5

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

CCW CW178.3[7.02]MAX

"X"

169.7[6.68]

74.2 [2.92]CHARGE PUMP INLET (ON LEFT SIDE)

80.0[3.15]

VIEW IN DIRECTION "X"FRONT VIEW

80.0[3.15]

74.2 [2.92]CHARGE PUMP INLET (ON RIGHT SIDE)

73.03[2.875]

(2) PLACES

70.4[2.77]

22.86[0.9]

9.53[0.375]DIA

155.7 [6.13] MAX

57.15[2.25]

92.7 [3.65]MAX

CHARGE PRESSURE RELIEF VALVE(IMPLEMENT RELIEF VALVE FOR PUMPS WITH IMPLEMENT CIRCUIT)

CHARGE PRESSURE RELIEF VALVE(PUMPS WITH IMPLEMENT CIRCUITONLY)

101.6[4.00]DIA.

35.0[1.38]

68.8[2.71]

30.7 [1.21]17.3 [0.68]

64.8[2.55]

21.3[.84]

21.3[.84]

24.6[0.97]

12.3[0.485]

MINOR DIA. 14.2 [0.56] MIN DEPTH FOR .250 IN. SELF-TAPPING SCREWS(3) HOLES, BOTH SIDES

15 MAX DISPL

15 MAX DISPL

134.1[5.28]

39.6[1.56]

BYPASS VALVEROTATE 180 FORBYPASS POSITION

39.6[1.56]

34.5 [1.36]

9/16 — 18 SAE STRTHD O-RING BOSSFROM IMPLEMENT CONTROL VALVE V2(OPTION)

9/16 — 18 SAE STRTHD O-RING BOSSTO IMPLEMENT CONTROL VALVE V1(OPTION)

1/8 — 27 NPTFCHARGE PRESSURE GAGE PORTS M3

VIEW IN DIRECTION "Y"TOP VIEW

"Y"

LEFT SIDE VIEW

VIEW IN DIRECTION "W"BOTTOM VIEW

"W"

ab

"Z"

VIEW IN DIRECTION "Z" REAR VIEW

3/4 — 16 SAE STRTHD O-RING BOSSCASE OUTLET L1

101.9[4.01]

141.5[5.57]

28.19[1.11]

28.19[1.11]

59.44[2.34]

3/4 — 16 SAE STRTHD O-RING BOSSPORT "B"

3/4 — 16 SAE STRTHD O-RING BOSSPORT "A"

1/8 — 27 NPTFSYSTEM PRESSURE GAGE PORTSM1 AND M2

CHARGE RELIEF(WITH OPTIONAL IMPLEMENT CIRCUIT)

PV PF

CHARGE RELIEF (IMPLEMENT RELIEF WITHOPTIONAL IMPLEMENT CIRCUIT)

BYPASS VALVE(OPTION)

M2

PORT "A"

PORT "B"

M1

M3

M3

V1V2SL1

SYSTEM PRESSURE RELIEF VALVES(2) PLACES (OPTION)

Dimensions • 15 Series Variable Displacement Pump • 15 PVmm

[in.]Input Shaft Rotation CW CCW

Control Trunnion Rotation a b a bPort A Flow In Out Out InPort B Flow Out In In Out

All SAE straight thread O-ring ports per SAE J514.

Shaft rotation is determined by viewing pump from input shaft end.

Contact SAUER-SUNDSTRAND Application Engineering for specific installation drawings.

Page 55: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 6

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

196.3[7.73]

9/16 — 18 SAE STRTHD O-RING BOSSSYSTEM GAGE PORTS M1 AND M2 BOTH SIDES LEFT SIDE VIEW

WITH OPTIONAL SAE "A" AUXILIARY FLANGE,SYSTEM PRESSURE RELIEF VALVES,

AND LARGE INLET CHARGE PUMP

SHAFT MUST NOT PROTRUDEBEYOND 32.71 [1.288] MAX

"Z"

VIEW IN DIRECTION "Z" REAR VIEW

WITH OPTIONAL SAE "A" AUXILIARY FLANGE AND SYSTEM PRESSURE RELIEF VALVES

88.65[3.490]

82.60[3.252]

0.5 MAX R[0.02]1.0 MAX R[0.04]

O-RING SEAL REQUIREDREF 82.22 [3.237] ID x 2.62 [0.103] DIA CROSS SECTION

14.29 [0.5625] PITCH DIA30 PRESSURE ANGLE9 TEETH 16/32 PITCHMATES MALE SPLINE WITH FILLET ROOT OR FLAT ROOT SIDE FIT

7/8 — 14 SAE STRTHD O-RING BOSSCHARGE PUMP INLET S (LEFT OR RIGHT SIDE)

30

0.375-16 THD THRU(4) HOLES

53.19 [2.094]

53.19 [2.094]

106.38 [4.188]

106.38 [4.188]

STYLE "A" STYLE "B"

BYPASS VALVE STYLES

4.78 [0.188] THRU 1.8 [0.07] WIDE x 3.0 [0.12] DEEP SLOT

TRUNNION SHAFT STYLES(FRONT VIEW)

17.45[0.687]DIA

6.32 [0.249]DIA THRU

99.6 [3.92]

87.6 [3.45](LESS

TRUNNION)

87.6 [3.45](LESS

TRUNNION)7.9 [0.31]

7.62 [0.3]

106.2 [4.18]

13.2 [0.52]28.2 [1.11]

4.57 R [0.18] (4) PLACES

17.45 DIA[0.687]

15.82[0.623] (2) PLACES

ROUND TRUNNION STYLE(LEFT SIDE SHOWN)

SQUARE TRUNNION STYLE (RIGHT SIDE SHOWN)

"V"

VIEW IN DIRECTION "V "SQUARE TRUNNION

STYLE

47.63 [1.875]MAX

19.05 DIA[0.750]

INPUT SHAFT STYLE "H"

57.15 [2.250]

3.6 [0.14] MAX

1.17 [0.046] MAX

19.02 DIA[0.749]

17.88 DIA[0.704]

21.13 [0.832]MAX

INPUT SHAFT STYLE "E"

25.6 [1.01] MIN FULL SPLINE

17.462 [0.6875]PITCH DIA30 PRESSURE ANGLE11 TEETH 16/32 PITCHFILLET ROOT SIDE FIT

1/4 — 20 THD19.05 [0.75] DEEP

38.86 [1.53]MAX

21.26 [0.837]

INPUT SHAFT STYLE "F"

1/4 — 20 THD19.05 [0.75] DEEP

11.94 [0.47]4.7625 x 15.875 [0.1875 x 0.625]WOODRUFF KEY

19.05 DIA[0.750]

MOUNTING FLANGE (REF)

MOUNTING FLANGE (REF)

4.7625 [0.1875] SQ KEY25.4 [1.00] LONG

MOUNTING FLANGE (REF)

SYSTEM PRESSURE RELIEF VALVES(OPTION)

17.78 [0.70] MAX

1.96 [0.077]7.4 [0.29] MIN

All SAE straight thread O-ring ports per SAE J514.

Shaft rotation is determined by viewing pump from input shaft end.

Contact SAUER-SUNDSTRAND Application Engineering for specific installation drawings.

Dimensions • 15 Series Variable Displacement Pump • 15 PV (Continued)mm

[in.]

Page 56: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 7

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Dimensions • 15 Series Variable Displacement Tandem Pump (15 PT)Dimensions in inches

TandemPumpFrontSection

TandemPumpRearSection

Input Shaft Rotation CW CCW

Trunnion Rotation a b a b

Port A Flow In Out Out In

Port B Flow Out In In Out

Trunnion Rotation c d c d

Port C Flow Out In In Out

Port D Flow In Out Out In

Page 57: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 8

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

.44 DIA THRU HOLES(2) PLACES

4.1872.094

3.90MAX

5.24MAX

SEALOPTIONAL

.25

2.197CASE DRAIN(2) PLACES 3.25

DIA

ACCELERATION VALVEBOTH SIDES(OPTIONAL)

L1

L2

6.38MAX

6.02MAX

2.54MAX

2.28

3.23MAX

3/4 — 16 UNF-2BSAE STRT THDO-RING BOSS(BOTH SIDES)CASE DRAIN PORTS L1 AND L2

3/4 — 16 UNF-2BSAE STRT THDO-RING BOSSPORT "B"

3/4 — 16 UNF-2BSAE STRT THDO-RING BOSSPORT "A"

.61

3.004.45

5.54MAX

1.11

1.11

TOP VIEW

LEFT SIDE VIEW FRONT VIEWREAR VIEW

1.35MAX

.750 DIA

.837

.47

.1875 X .625WOODRUFFKEY

STYLE A

1.35MAX1.25.947

.046MIN

.046MIN

.733 DIA.733 DIA

.7813 DIA

.7500 PITCH DIA24 TEETH, 32/64 PITCH30 PRESSURE ANGLEFILLET ROOT SIDE FITSTYLE B

S.A.E. 45 SERRATION(MODIFIED).733 PITCH DIA.48 TEETH

.749 DIA

.50

.06

1.28MAX

STYLE C

.6875GAGE DIA.

.1875 X .625WOODRUFFKEY

.944 MAX.547.155 GAGE DIM.

.751 DIA.

1/2 — 20 UNF-2A THD

1.500 TAPER PER FOOTCOMPATIBLE WITHS.A.E. J501.75 NOM. SHAFT DIA.

STYLE D

1.75MAX

1.250 DIA

1.000 PITCH DIA12 TEETH, 12 PITCH20 PRESSURE ANGLE

STYLE G

FOR PEERLESS 2600 AXLEVIEW A

A

.7083 PITCH DIA17 TEETH, 24/48 PITCH30 PRESSURE ANGLEFILLET ROOT SIDE FIT

.646 DIA (GROOVE)

.688 DIA

.051.202

1.509

1.612MAX

.093

.051 5 MAX(2) PLACES

3.629 DIA

3.90 MAX 3.84 MAX

3.437 3.437

3.062 3.062

2.562 2.562

2.000 2.000

3.96MAX

3.4373.062

2.5622.000

3.96MAX

3.4373.062

2.5622.000

.41 DIA THRU(16) HOLES

8.99 DIA MAX

FRONT VIEW(FOR PEERLESS 2500 AXLE)

2.34(2) PLACES

2.189

3.73MAX

.25

.621.895

6.499DIA

3.18MAX

.60 MINFULL SPLINE

.633 DIA

1.59 DIA. MINRETAINING RINGCLEARANCE

2.048 DIA.MIN

.6000 PITCH DIA12 TEETH, 20/40 PITCH30 PRESSURE ANGLETO MATE FEMALE SPLINEWITH FILLET OR FLATROOT SIDE FIT

2.498DIA

2.398

LEFT SIDE VIEW(FOR PEERLESS 2500 AXLE)

L1 L2

MF

PORT "A" PORT "B"

ACCELERATION VALVES(OPTIONAL)

CCW CW

Dimensions • 15 Series Fixed Displacement Motor • 15 MFDimensions in inches

Flow DirectionOutput Shaft Rotation Port A Port BClockwise (CW) In OutCounter-clockwise (CCW) Out In

All SAE straight thread O-ring ports per SAE J514.

Shaft rotation is determined by viewing motor from output shaft end.

Contact SAUER-SUNDSTRAND Application Engineering for specific installation drawings.

Page 58: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

2 9

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Dimensions • 15 Series In-line TransmissionDimensions in inches

Input Shaft Rotation CW CCWControl Trunnion Rotation a b a bOutput Shaft Rotation CCW CW CW CCW

Pickup Drawing fromold book

Page 59: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

3 0

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Dimensions • 15 Series “U” Style Transmission (15U)Dimensions in inches

Motor Output Shaft Gear DataShaft Shaft Pitch No. Press.Style Dia. Dia. Teeth Pitch Angle

A 1.05 .833 10 12 25°B 1.25 1.00 12 12 20°

Input Shaft Rotation CW CCWControl Trunnion Rotation a b a bOutput Shaft Rotation CW CCW CCW CW

Keyed Pump Shaft DataShaft Dim. Dim. Dim. Dim.Style “A” “B” “C” “D”

C 5.04 .45 .731 .626D 5.35 .47 .875 .750E 5.35 .47 .729 .625

Page 60: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

3 1

Axial Piston Pumps, Motors, and Transmissions Series 70 / 15 Series

Notes

Page 61: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

Hydraulic Power Systems

SAUER-SUNDSTRAND Hydraulic Power Systems - Market Leaders Worldwide

SAUER-SUNDSTRAND specializes in integrating a fullrange of system components to provide vehicledesigners with the most advanced total-design system.

SAUER-SUNDSTRAND is Your World Source for Con-trolled Hydraulic Power Systems.

Worldwide Service Support

SAUER-SUNDSTRAND provides comprehensive worldwide service forits products through an extensive network of Authorized Service Centersstrategically located in all parts of the world.

Look to SAUER-SUNDSTRAND for the best in WORLDWIDE SERVICE.

Hydrostatic TransmissionsPackages

Genuine Service PartsGear Pumps and Motors

Cartridge Motors/Compact Wheel Drives

Medium Duty Axial PistonPumps and Motors

Mikrocontrollers andElectrohydraulic Controls

Open Circuit Axial Piston Pumps

SAUER-SUNDSTRAND is a world leader in the designand manufacture of Hydraulic Power Systems. Re-search and development resources in both NorthAmerica and Europe enable SAUER-SUNDSTRAND tooffer a wide range of design solutions utilizing hydraulicpower system technology.

Heavy Duty Bent AxisVariable Motors

Heavy Duty Axial PistonPumps and Motors

SAUER-SUNDSTRAND COMPANY2800 East 13th StreetAmes, IA 50010 • U.S.A.Phone: (515) 239-6000 • Fax: (515) 239-6618

http://www.sauer.com

SAUER-SUNDSTRAND GMBH & CO.Postfach 2460 • D-24531 NeumünsterKrokamp 35 • D-24539 Neumünster • GermanyPhone: (04321) 871-0 • Fax: (04321) 871 122

TI-Series 70 (BDU-10S+L, 21L, BDP-10L) 15 Series (15U+I, 15PV, PT, MF)-E (BLN10006) • 06/2000 • 369 629A

Page 62: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV    

Appendix C – Parker Hydraulics TJ 0080 Wheel Motor Specifications

Page 63: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série HY13-1590-005/US,EU

70 Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

006 TJ.indd, js

14 Displacements (2.5 – 24.0 in3/rev)14 Schluckvolumen 41 . . . 390 cm3/rev14 Cylindrée14 Despazamientos

Cont IntMaximum Pressure (to 2030 psi) (to 2750 psi)Eingangsdruck . . .140 bar . . .190 barPression entrée Presion Maxima

Maximum Oil Flow (to 20 gpm)Schluckstrom . . . 75 lpmDébit d’huile Caudal Maximo de Aceite

Maximum Speed (1024 rpm)Drehzahl 1024 rpmVitisse de rotation MaxiVelocidad Maxima

Cont IntMaximum Torque (4139 lb in) (5728 lb in)Max Drehmoment 467 Nm 648 NmCouple MaxiTorque Maximo

Maximum Side Load at Key (to 3150 lb)Seitenlast . . . 14000 NCharges latèrales Carga Maxima Lateral

Technical Information / TechnischeInformation / Segni / Informacion Tecnica

The Ultimate in Performance from a Medium Frame MotorParker’s TJ Series motor provides all that could be expected of a general purpose motor and more. Patented 60:40 spline geometry provides drivetrain strength for severe applications. Roller vanes and sealed orbit commutation assure high volu-metric effi ciency and smooth slow speed operation. Cooling fl uid fl ow across splines and seals mean long, trouble-free life.

Page 64: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

006 TJ.indd, js

71

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série

Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

HY13-1590-005/US,EU

Max

diff

eren

tial p

ress

ure

Max

. Dru

ckge

fälle

C

hute

de

pres

sion

max

i

P

resi

on d

ifere

ncia

l max

ima

Max

. oil

fl ow

Max

. Sch

luck

stro

m

D

ébit

d´hu

ile m

axi

C

auda

l Max

imo

de A

ceite

Max

. sup

ply

pres

sure

Max

. Ein

gang

sdru

ck

Pr

essi

on m

axi e

ntré

e

P

resi

on m

axim

a de

alim

enta

cion

Max

. tor

que

Max

. Dre

hmom

ent

C

oupl

e m

axi

T

orqu

e M

axim

o M

ax. p

erfo

rman

ce

Max

. Lei

stun

gabg

abe

Pu

issa

nce

de s

ortie

max

i

M

axim

o re

ndim

ieto

TJ 0045

TJ 0050

TJ 0065

TJ 0080

TJ 0100

TJ 0130

TJ 0165

TJ 0195

TJ 0230

TJ 0260

TJ 0295

TJ 0330

TJ 0365

TJ 0390

412.5

493.0

654.0

825.0

986.0

1308.0

16310.0

19511.9

22813.9

26015.9

29317.9

32820.0

37022.6

39224.0

MotorSeries

TJ

cm3/revin3/rev

cont / int*l/ming/min

rev/min

maxbarpsi

cont / int*barpsi

cont / int*Nmlb-in

maxKWHP

Geo

met

ric d

ispl

acem

ent

Geo

m. S

chlu

ckvo

lum

en

C

ylin

drée

D

espa

zam

ient

os

cont / int*Nmlb-in

Intermittent operation rating applies to 10% of every minute.

Intermittierende Werte maximal 10% von jeder Betriebsminute.

Fonctionnement interm. 10% max. de chaque minute d`utilisation.

Capacidad de funcionamiento intermitente valida para 10% por cada minuto.

Min

. sta

rtin

g to

rque

Min

. A

nlau

fmom

ent

C

oupl

e m

in. f

ourn

i au

dé m

anra

ge

T

orqu

e m

inim

o de

arr

anqu

e

*

140 190 2000 2750

140 190 2000 2750

140 190 2000 2750

140 190 2000 2750

140 190 2000 2750

140 190 2000 2750

140 190 2000 2750

140 190 2030 2750

120 165 1750 2400

110 155 1650 2250

100 145 1550 2100

100 135 1550 1960

95 125 1325 1825

85 120 1250 1740

1024

1020

877

695

582

438

348

292

328

287

256

228

203

191

34 42 9 11

34 50 9 13

45 57 12 15

45 57 12 15

45 57 12 15

45 57 12 15

45 57 12 15

45 57 12 15

57 75 15 20

57 75 15 20

57 75 15 20

57 75 15 20

57 75 15 20

57 75 15 20

71 99 624 876

90 127 796 1120

125 176 1106 1558

160 220 1416 1947

190 264 1682 2337

255 352 2257 3116

310 436 2744 3846

390 528 3452 4673

380 514 3363 4554

400 550 3540 4870

428 582 3784 5180

443 600 3926 5312

467 648 4133 5728

445 628 3935 5562

10.4 13.9

12.8 17.2

14.7 19.8

17.3 23.2

17.4 23.4

17.3 23.2

17.0 22.8

17.4 23.4

17.7 23.8

16.7 22.4

15.7 21.0

14.8 19.8

13.6 18.2

12.5 16.8

2002900

2002900

2002900

2002900

2002900

2002900

2002900

2002900

2002900

2002900

2002900

2002900

2002900

2002900

46 64 411 565

72 98 637 871

100 137 885 1211

128 171 1133 1515

152 205 1345 1819

204 274 1806 2423

248 338 2195 2992

312 411 2762 3637

304 411 2691 3637

320 449 2832 3977

328 445 2903 3939

344 453 3045 4014

373 477 3301 4223

348 462 3080 4090

Max

. spe

ed @

Max

. int

erm

itten

t fl o

w

Max

. Dre

hzah

l Int

erm

ittie

rend

er B

etrie

b:

Vi

tisse

de

rota

tion

max

i

V

eloc

idad

max

ima

a ca

udal

inte

rmite

nte

max

imo

Performance Data / LeistungsdatenPuissance / Datos Tecnicos

Performance data based on testing using 10W40 oil with a viscosity of 43,1 cSt. (200 SUS) at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.Les donnees sur les performances sont basees sur des tests utilisant de l’huile 10W40 d’une viscosite de 200 SUS a 54°C (130°F). Ces donnees correspondent a des situations typiques. Les donnees reelles peuvent varier legerement d’un moteur de production a l’autre.

Leistungsdaten sind gemessen mit SAE 10W40 bei einer Viskositaet von 43,1 Cst bei 54°C. Geringfuegige Abweichungen von den Katalogdaten sind moeglich.

Datos tecnicos obtenidos con aceite 10W40 de 200 SUS de viscosidad a 54°C (130°F). Los datos proporcionados son valores tipcos. Los valores exactos reales podrian tener una pequena variacion entre distintos motores.

Page 65: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série HY13-1590-005/US,EU

72 Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

006 TJ.indd, js

Code Rotation

0 Standard

cm3/U / cm3/rev Code cm3/tr / cm3/giro 0045 41 / 2.5

0050 49 / 3.0

0065 65 / 4.0

0080 82 / 5.0

0100 98 / 6.0

0130 130 / 8.0

0165 163 / 10.0

0195 195 / 11.9

0230 228 / 13.9

0260 260 / 15.9

0295 293 / 17.9

0330 328 / 20.0

0365 370 / 22.6

0390 392 / 24.0

Code Mounting/PortingWheel Mount, 7/8-14 SAE

US

TJ

Series

US 08 0

OptionsOpciones

XXXXXXXX

Code Shaft1 1/4" Tapered*

08

*See installation instructions.

DisplacementSchluckvolumen

CylindréeDesplazamiento

Mounting/PortsGehäuse/

Carter/Plan de raccordementMontaje/Lumbreras

ShaftWelleArbre

Eje

RotationDrehrichtung

Direction de rotationRotacion

CodeNo Paint

No lackiert

Black PaintSchwarz lackiert

AAAB

AAAA

Ordering Information / BestellschlüsselSystem de Commande / Imformacion para pedidos

Consult factory for other available options, confi gurations ordering codes and lead times.

Page 66: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

006 TJ.indd, js

73

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série

Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

HY13-1590-005/US,EU

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

140

190

100

70

35

5 15 3425 422 10 20 30

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

140

190

100

70

35

4 15 5027112 8 19 34

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800 850

140

190

100

70

35

5 20 40 57452 10 15 25 30

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

250

500

750

1000

1250

1500

1750

0 100 200 300 400 500 600 700 800 850

2000

2750

1500

1000

500

2 5 9 15121 7430.5

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 100 200 300 400 500 600 700 800 900 1000

2000

2750

1500

1000

500

2 5 97 131 430.5

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

100

200

300

400

500

600

700

800

900

1000

1100

0 100 200 300 400 500 600 700 800 900 1000

2000

2750

1500

1000

500

2 5 97 111 430.5

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

TJ 0065

TJ 0050

TJ 0045

Cont. Int.

Performance Data / LeistungsdatenPuissance / Datos Tecnicos

US

US

US

Intermittent operation rating applies to 10% of every minute. Intermittierende Werte maximal 10% von jeder Betriebsminute.

Fonctionnement interm. 10% max. de chaque minute d`utilisation. Capacidad de funcionamiento intermitente valida para 6 segundos por cada minuto.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

Les donnees sur les performances sont basees sur des tests utilisant de l’huile 10W40 d’une viscosite de 200 SUS a 54°C (130°F). Ces donnees correspon-dent a des situations typiques. Les donnees reelles peuvent varier legerement d’un moteur de production a l’autre.

Leistungsdaten sind gemessen mit SAE 10W40 bei einer Viskositaet von 43,1 Cst bei 54°C. Geringfuegige Abweichungen von den Katalogdaten sind moeg-lich.

Datos tecnicos obtenidos con aceite 10W40 de 200 SUS de viscosidad a 54°C (130°F). Los datos proporcionados son valores tipcos. Los valores exactos reales podrian tener una pequena variacion entre distintos motores.

Page 67: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série HY13-1590-005/US,EU

74 Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

006 TJ.indd, js

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700

2000

2750

1500

1000

500

2 5 9 15121 7430.5

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

20

40

60

80

100

120

140

160

180

200

220

0 100 200 300 400 500 600 700

140

190

100

70

35

5 15 30 57402 10 20 25 45

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

25

50

75

100

125

150

175

200

225

250

275

0 100 200 300 400 500 600

140

190

100

70

35

5 20 40 57452 10 15 25 30

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400 450

140

190

100

70

35

5 20 30 57452 10 15 25 40

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

TJ 0130

TJ 0100

TJ 0080

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 100 200 300 400 500 600

2000

2750

1500

1000

500

1 5 9 15122 7430.5

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450

2000

2750

1500

1000

500

2 5 9 151210.5 3 4 7

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

Cont. Int.

Performance Data / LeistungsdatenPuissance / Datos Tecnicos

US

US

US

Intermittent operation rating applies to 10% of every minute. Intermittierende Werte maximal 10% von jeder Betriebsminute.

Fonctionnement interm. 10% max. de chaque minute d`utilisation. Capacidad de funcionamiento intermitente valida para 6 segundos por cada minuto.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

Les donnees sur les performances sont basees sur des tests utilisant de l’huile 10W40 d’une viscosite de 200 SUS a 54°C (130°F). Ces donnees correspon-dent a des situations typiques. Les donnees reelles peuvent varier legerement d’un moteur de production a l’autre.

Leistungsdaten sind gemessen mit SAE 10W40 bei einer Viskositaet von 43,1 Cst bei 54°C. Geringfuegige Abweichungen von den Katalogdaten sind moeg-lich.

Datos tecnicos obtenidos con aceite 10W40 de 200 SUS de viscosidad a 54°C (130°F). Los datos proporcionados son valores tipcos. Los valores exactos reales podrian tener una pequena variacion entre distintos motores.

Page 68: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

006 TJ.indd, js

75

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série

Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

HY13-1590-005/US,EU

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350

140

190

100

70

35

5 20 40 57452 10 15 25 30

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

50

100

150

200

250

300

350

400

450

500

550

0 50 100 150 200 250 300

140

190

100

70

35

5 20 40 57452 10 15 25 30

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

50

100

150

200

250

300

350

400

450

500

550

0 50 100 150 200 250 300 350

120

140

165

100

70

35

5 20 40 57 752 10 15 25 30 50

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300 350

1750

2000

2400

1500

1000

500

2 5 9 15 201 127430.5

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300

2000

2750

1500

1000

500

2 5 9 151210.5 743

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

0 50 100 150 200 250 300 350

2000

2750

1500

1000

500

2 5 9 151210.5 3 4 7

Speed [Rpm]

Flow [G/min]

Torq

ue [

lb in

]

psi

TJ 0230

TJ 0195

TJ 0165

Cont. Int.

US

US

US

Performance Data / LeistungsdatenPuissance / Datos Tecnicos

Intermittent operation rating applies to 10% of every minute. Intermittierende Werte maximal 10% von jeder Betriebsminute.

Fonctionnement interm. 10% max. de chaque minute d`utilisation. Capacidad de funcionamiento intermitente valida para 6 segundos por cada minuto.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

Les donnees sur les performances sont basees sur des tests utilisant de l’huile 10W40 d’une viscosite de 200 SUS a 54°C (130°F). Ces donnees correspon-dent a des situations typiques. Les donnees reelles peuvent varier legerement d’un moteur de production a l’autre.

Leistungsdaten sind gemessen mit SAE 10W40 bei einer Viskositaet von 43,1 Cst bei 54°C. Geringfuegige Abweichungen von den Katalogdaten sind moeg-lich.

Datos tecnicos obtenidos con aceite 10W40 de 200 SUS de viscosidad a 54°C (130°F). Los datos proporcionados son valores tipcos. Los valores exactos reales podrian tener una pequena variacion entre distintos motores.

Page 69: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série HY13-1590-005/US,EU

76 Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

006 TJ.indd, js

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300

1650

2250

1500

1000

500

2 5 9 15 200.5 1 3 4 7 12

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

50

100

150

200

250

300

350

400

450

500

550

600

0 50 100 150 200 250 300

115

155

100

70

35

5 15 30 50 752 10 20 25 40 57

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

50

100

150

200

250

300

350

400

450

500

550

600

0 25 50 75 100 125 150 175 200 225 250 275

105

145

70

35

5 20 40 57 752 10 15 25 30 50

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 50 100 150 200 250

135

100

70

35

5 20 40 57 752 10 15 25 30 50

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 25 50 75 100 125 150 175 200 225 250

1950

1500

1000

500

2 5 9 15 201 7430.5 12

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 25 50 75 100 125 150 175 200 225 250 275

1550

2100

1000

500

2 5 9 15 2010.5 743 12

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

TJ 0330

TJ 0295

TJ 0260

Cont. Int.

US

US

US

Performance Data / LeistungsdatenPuissance / Datos Tecnicos

Intermittent operation rating applies to 10% of every minute. Intermittierende Werte maximal 10% von jeder Betriebsminute.

Fonctionnement interm. 10% max. de chaque minute d`utilisation. Capacidad de funcionamiento intermitente valida para 6 segundos por cada minuto.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

Les donnees sur les performances sont basees sur des tests utilisant de l’huile 10W40 d’une viscosite de 200 SUS a 54°C (130°F). Ces donnees correspon-dent a des situations typiques. Les donnees reelles peuvent varier legerement d’un moteur de production a l’autre.

Leistungsdaten sind gemessen mit SAE 10W40 bei einer Viskositaet von 43,1 Cst bei 54°C. Geringfuegige Abweichungen von den Katalogdaten sind moeg-lich.

Datos tecnicos obtenidos con aceite 10W40 de 200 SUS de viscosidad a 54°C (130°F). Los datos proporcionados son valores tipcos. Los valores exactos reales podrian tener una pequena variacion entre distintos motores.

Page 70: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

006 TJ.indd, js

77

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série

Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

HY13-1590-005/US,EU

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200 220

125

90

70

35

5 20 30 50 752 10 15 25 40 57

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 20 40 60 80 100 120 140 160 180 200

120

85

70

35

5 20 50 57 752 10 15 25 30 40

Drehzahl [1/min]

Schluckstrom [L/min]

Dre

hmom

ent [

Nm

]

bar

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 20 40 60 80 100 120 140 160 180 200

1750

1250

1000

500

2 5 9 15 201 127430.5

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 20 40 60 80 100 120 140 160 180 200 220

1825

1325

1000

500

2 5 9 15 207430.5 1 12

Speed [Rpm]

Flow [G/min]

Torq

ue [l

b in

]

psi

TJ 0390

TJ 0370

Cont. Int.

US

US

Performance Data / LeistungsdatenPuissance / Datos Tecnicos

Intermittent operation rating applies to 10% of every minute. Intermittierende Werte maximal 10% von jeder Betriebsminute.

Fonctionnement interm. 10% max. de chaque minute d`utilisation. Capacidad de funcionamiento intermitente valida para 6 segundos por cada minuto.

Performance data based on testing using 10W40 oil with a viscosity of 200 SUS at 54° C (130° F.). Performance data is typical. Actual data may vary slightly from one production motor to another.

Les donnees sur les performances sont basees sur des tests utilisant de l’huile 10W40 d’une viscosite de 200 SUS a 54°C (130°F). Ces donnees correspon-dent a des situations typiques. Les donnees reelles peuvent varier legerement d’un moteur de production a l’autre.

Leistungsdaten sind gemessen mit SAE 10W40 bei einer Viskositaet von 43,1 Cst bei 54°C. Geringfuegige Abweichungen von den Katalogdaten sind moeg-lich.

Datos tecnicos obtenidos con aceite 10W40 de 200 SUS de viscosidad a 54°C (130°F). Los datos proporcionados son valores tipcos. Los valores exactos reales podrian tener una pequena variacion entre distintos motores.

Page 71: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série HY13-1590-005/US,EU

78 Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

006 TJ.indd, js

66723(15000)

44482(10000)

0

22241(5000)

0 25.4(1)

50.8(2)

76.2(3)

101.6(4)

127(5)

152.4(6)

The maximum load curve is defi ned by bearing static load capacity. This curve should not be exceeded at any time including shock loads.

Die maximale radiale Wellenbelastungskurve ist defi niert als maximale statische Last ohne Drehzahl. Sie gilt als Grenze und sollte keinesfalls überschritten werden.

La courbe de charge maximale est défi nie par la capacité de charge statique portante. Cette courbe ne devrait être dépassée en aucun mo-ment y compris pour les charges par à-coups.

La curva de carga máxima queda defi nida por la capacidad de carga estática del cojinete. No se deben superar los valores de esta curva, ni siquiera con cargas provisorias de impacto.

Radial Load / Radiale Wellenbelastung Charges Radiale / Carga Radial

Wheel Mount / RadnabengehaeuseMonture à roue / Montaje de rueda

Rad

ial L

oad

- N

(lb

s)

Distance from Mounting Face mm (in)Motor Image Not To Scale

Max Load Curve

The dynamic side load curve is based on uni-directional steady state loads for L10

bearing life at 3 x 106 revolutions.

Die zulässige auslegbare radiale Wellenbelastungskurve ist unter ruhenden, einseitig statisch gerichteten Lastverhältnissen auf eine L10 Lebensdauer mit 3 x 106 Umdrehungen kalkuliert.

La courbe de charge latérale permise se base sur des charges unidirectionnelles en régime permanent pour le roulement L10 à 3 x 106 révolutions.

La curva de valores admisibles de carga lateral está basada en cargas constantes para cojinetes L10 a 3 x 106 revoluciones.

Equation to Calculate the Expected Radial Bearing LifeGelichung zur Ermittlung der Lagerlebensdauer

Equation to calculate the dynamic bearing life for a given load:Bestimmung der erlaubten radialen Wellenbelastung mit vorgegebener Last

Use Fa, Fb and S in equation to determine hours of L10 bearing life.Die Lebensdauer in Stunden ergibt sich durch einsetzen von Fa, Fb, und S in die nachstehende Formel.

3 x 106 { Fa }3.33

L = 60 x S Fb

Where / Mit: S = Shaft Speed RPM / Abtriebswellendrehzahl in min-1

L = Life In Hours / Lebensdauer in Stunden Fa = Dynamic side load defi ned by above curve at a distance from mounting fl ange. / Erlaubte radiale Wellenbelastung als Function der Laenge Fb = Application side load. / Anwendungsseitige Wellenbelastung

Note: Calculations are based on L10 bearing life per ISO 281.Auslegung basiert auf einer L10 Lenbendauer nach ISO 281

Dynamic Load Curve

Page 72: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

006 TJ.indd, js

79

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série

Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

HY13-1590-005/US,EU

Code: US

Wheel Mount, 7/8-14 SAE O-Ring

Code US disp. 0045 0050 0065 0080 0100 0130 0165 0195 0230 0260 0295 0330 0365 0390Weight/Gewicht kg 6.80 6.90 7.00 7.10 7.20 7.60 7.80 8.10 8.30 8.60 8.80 9.10 9.40 9.60Poids/Peso (lb) (15.0) (15.2) (15.4) (15.6) (15.8) (16.7) (17.2) (17.9) (18.3) (19.0) (19.4) (20.0) (20.7) (21.2)Length "L" mm 107 109 112 115 118 125 131 137 144 150 156 163 171 176

"L" (in) (4.21) (4.27) (4.39) (4.52) (4.64) (4.89) (5.14) (5.39) (5.64) (5.89) (6.14) (6.39) (6.73) (6.89)

36.83(1.45)

"L"

ø 91.56 / 93.35 (3.605/3.675)

ø 126.97/126.95 (4.9988/4.9980)

12.4(.488)

ø 4.06 (.16)

46.74(1.84)

40.13(1.58)Max

ø 72.90 (2.87)as cast

ø 82.55/82.50 (3.249/3.248)

45˚

*To Port Spotface

13.5 (17/32)

63.83*(2.513)*

A

B

A

B

147.6(5.81)

135.0 (5.31)

ø 95.25/95.15 (3.750/3.746)

4.562(.1796)19.0

(.75)

50.8 (2.0)

2 x 25.4 (1.0)7/8-14 SAE O-Ring

Mounting,Ports/Gehäuse,AnschlüßeCarter,Orifi ces / Montaje,Lumbreras

English equivalents for metric specifi cations are shown in ( ).

Page 73: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série HY13-1590-005/US,EU

80 Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

006 TJ.indd, js

106.9(4.21)

1:8

5/16x1 SAE J502

1-20UNEF

ø 31.88/31.50 (1.25/1.24)

19 (.748)

35(1.378)

7.96/7.94(.313/.312)

3.5/3.1(.13/.12)

Md: 407-542Nm (300-400 Ft Lb)

Code: 08

1 1/4" Tapered

English equivalents for metric specifi cations are shown in ( ).

Shafts / AbtriebswellenArbre / Ejes

Code U

Page 74: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

006 TJ.indd, js

81

LSHT Torqmotors™ and Nichols™ MotorsTJ Series / Serie / Série

Parker Hannifi n CorporationHydraulic Pump/Motor DivisionGreeneville, Tennessee, USA

HY13-1590-005/US,EUNotes

Page 75: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

MINI REPORT #1 MATV 

 

8936 Mechanical Project – MATV    

Appendix D – MATV Sizing Calculations

Page 76: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

Summary:Operating Pressure 3000 psi 2000 psiEngine Power 3.41 Hp 5.11 HpPump Displacement 0.56 in^3/rev 0.84 in^3/revPump Flow 29.89 L / min 44.83 L / minMotor Displacement 3.09 in^3/rev 4.64 in^3/revMotor Flow 29.89 L / min 44.83 L / min

Calculations:Sizing Specs - 3000psi Operating P Sizing Specs - 2000psi Operating POperating P 3000 psi Operating P 2000 psiMATV Weight 300 lb MATV Weig 300 lbVmax 30 km/h Vmax 30 km/hRPM (governed) 3600 rev/min RPM (gove 3600 rev/minWheel D 0.3 m Wheel D 0.3 mη (all) 0.9 η (all) 0.9SIN (30) 0.5 SIN (30) 0.5Gravity 9.81 m/s^2 Gravity 9.81 m/s^2W - hp 746 hp/w W - hp 746 hp/wkm - m 1000 m/km km - m 1000 m/kmL - m^3 1000 L/m^3 L - m^3 1000 L/m^3h - s 3600 s / h h - s 3600 s / hs - min 60 sec/min s - min 60 sec/minin - m 0.0254 m/in in - m 0.0254 m/inLB-KG 0.45359237 kg/lb LB-KG 0.4535924 kg/lbPSI - Pa 6.8927x103 (N/m^2) / (lb/in^2) PSI - Pa 6.8927x103 (N/m^2) / (lb/in^2)

6892.7 6892.7rev - rad 0.15915494 rev/rad rev - rad 0.1591549 rev/rad

Force required 30° slope Force required 30° slopeFg = m · 1/2 · g Fg = m · 1/2 · gFg = (300lb)(1/2 Weight)(1kg / 2.2 lb)(9.81 m/s^2) Fg = (300lb)(1/2 Weight)(1kg / 2.2 lb)(9.81 m/s^2)Fg = 667.46 N Fg = 667.46 N

Fr = Fg · Sin 30 Fr = Fg · Sin 30Fr = (667.46 N) · Sin(30) Fr = (667.46 N) · Sin(30)Fr = 333.73 N Fr = 333.73 N

Torque required per wheel Torque required per wheelTr = Fr · r Tr = Fr · rTr = (333.73 N)(0.3 / 2 m) Tr = (333.73 N)(0.3 / 2 m)Tr = 50.06 N·m Tr = 50.06 N·m

Page 77: Final MATV Mini Report #1 - Memorial University of ...jcole/Rep1.pdf · Hydraulic design can be thought of as the design of the system from gasoline powered engine to closed pump/motor

Single Motor Displacement Single Motor DisplacementT = Dm · P · ηmm T = Dm · P · ηmmDm = (50.06 N·m) / (3000 psi)(6.8927x10^3 Pa/psi)(1/3)(0.9) Dm = (50.06 N·m) / (3000 psi)(6.8927x10^3 Pa/psi)(1/3)(0.9)Dm = 8.07E-06 m^3 / rad Dm = 1.21E-05 m^3 / rad

Dm = (8.07x10^-6 m^3/rad)(2π rad/rev) Dm = (8.07x10^-6 m^3/rad)(2π rad/rev)Dm = 5.07E-05 m^3/rev Dm = 7.61E-05 m^3/revDm = 50.70 cm^3/rev Dm = 76.05 cm^3/revDm = 3.09 in^3/rev Dm = 4.64 in^3/rev

Size Pump Displacement Size Pump DisplacementVmax = (30 km/h)(1000 m/km)(1h / 3600s) Vmax = (30 km/h)(1000 m/km)(1h / 3600s)Vmax = 8.33 m/s Vmax = 8.33 m/s

V = ωm · π · D V = ωm · π · Dω = 8.84 rev/s ω = 8.84 rev/s

Motor Flow Motor FlowQm = (ωm · Dp) / ηvm Qm = (ωm · Dp) / ηvmQm = 4.98E-04 m^3/s Qm = 7.47E-04 m^3/sQm = 29.89 L / min Qm = 44.83 L / min

Size Pump Size PumpQp = Qm Qp = QmQp = ωp · Dp · ηvp Qp = ωp · Dp · ηvpDp = 9.22E-06 m^3/rev Dp = 1.38E-05 m^3/revDp = 9.22 cm^3/rev Dp = 13.84 cm^3/revDp = 0.56 in^3/rev Dp = 0.84 in^3/rev

Rolling resistance (10% Operating P) Rolling resistance (10% Operating P)Tp = (Dp · P) / (ηmp) Note: 300psi Tp = (Dp · P) / (ηmp) Note: 300psiTp = 3.37 N·m Tp = 5.06 N·m

Engine Power Engine Power¶ = T · ω ¶ = T · ω¶ = 1271.65 W ¶ = 1907.47 W

¶ = 1.70 Hp ¶ = 2.56 Hp¶ = 3.41 Hp Note: 2 pumps ¶ = 5.11 Hp Note: 2 pumps