20
Outer mitochondrial membrane Intermembrane space Mitochondrial matrix FAD O 2 Inner mitochondrial membrane Electron Transport Chain Chemiosmosis ATP Synthase NAD + Glycolysis Pyruvate Glucose Pyruvate Oxidation Acetyl-CoA Krebs Cycle H + CO 2 ATP H 2 O ATP e e e NADH NADH CO 2 ATP NADH FADH 2 Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Outer

mitochondrial

membrane

Intermembrane

space

Mitochondrial

matrix

FAD O2

Inner

mitochondrial

membrane

Electron

Transport Chain

Chemiosmosis

ATP Synthase

NAD+

Glycolysis

Pyruvate

Glucose

Pyruvate

Oxidation

Acetyl-CoA

Krebs

Cycle

H+

CO2

ATPH2O

ATP

e– e–

e–

NADH

NADH

CO2

ATP

NADH

FADH2

Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 2: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 7.7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

NADH

NAD+

NADH

PiNAD+

Glucose

Hexokinase

Phosphofructokinase

Glucose 6-phosphate

Fructose 6-phosphate

Fructose 1,6-bisphosphate

IsomeraseAldolase

Pyruvate Pyruvate

Enolase

Pyruvate kinase

ADP

10

Glu

co

se

Gly

ce

rald

eh

yd

e

3-p

ho

sp

ha

te

Pyru

va

te

Glycolysis: The ReactionsGlycolysis

NADH

Pyruvate Oxidation

H2O

ATP

ADP

Electron Transport Chain

Chemiosmosis

Krebs

Cycle

ATP

ATP

Phosphoglucose

isomerase

Glyceraldehyde 3-

phosphate (G3P)

Dihydroxyacetone

phosphate

1. Phosphorylation of

glucose by ATP.

2–3. Rearrangement,

followed by a second

ATP phosphorylation.

4–5. The 6-carbon molecule

is split into two 3-carbon

molecules—one G3P,

another that is converted

into G3P in another

reaction.

6. Oxidation followed by

phosphorylation produces

two NADH molecules and

two molecules of BPG,

each with one

high-energy phosphate

bond.

7. Removal of high-energy

phosphate by two ADP

molecules produces two

ATP molecules and leaves

two 3PG molecules.

8–9. Removal of water yields

two PEP molecules, each

with a high-energy

phosphate bond.

10. Removal of high-energy

phosphate by two ADP

molecules produces two

ATP molecules and two

pyruvate molecules.

1,3-Bisphosphoglycerate

(BPG)1,3-Bisphosphoglycerate

(BPG)

Glyceraldehyde

3-phosphate

dehydrogenase

Pi

ADP

Phosphoglycerate

kinase

ADP

ATP

3-Phosphoglycerate

(3PG)

3-Phosphoglycerate

(3PG)

2-Phosphoglycerate

(2PG)

2-Phosphoglycerate

(2PG)

H2O

ATP

Phosphoenolpyruvate

(PEP)

Phosphoenolpyruvate

(PEP)

ADP ADP

ATP ATP

Ph

os

ph

oe

no

l-

pyru

va

te

3-P

ho

sp

ho

-

gly

ce

rate

1,3

-Bis

ph

os

ph

o-

gly

ce

rate

Glu

co

se

6-p

ho

sp

ha

te

Fru

cto

se

6-p

ho

sp

ha

te

Fru

cto

se

1,6

-bis

ph

os

ph

ate

Dih

yd

rox

ya

ce

ton

e

Ph

os

ph

ate

2-P

ho

sp

ho

-

gly

ce

rate

CH2OH

O

CH2 O

O

P

CH2 O

O

P

CH2OH

O CH2 CH2 O

O

P P

CHOH

H

C O

CH2 O P

C O

O CH2P

CH2OH

CHOH

O C O

CH2 O

P

P

CHOH

O–

C O

CH2 O P

H C O

O–

C O

CH2OH

P

C O

O–

C O

CH2

P

C O

O–

C O

CH3

8

9

10

7

4 5

3

2

1

6

Phosphoglyceromutase

Page 3: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Without oxygen

NAD+

O2 NADH

ETC in mitochondria

Acetyl-CoA

Ethanol

NAD+

CO2

NAD+

H2O

Lactate

Pyruvate

AcetaldehydeNADH

NADH

With oxygen

Krebs

Cycle

Fig. 7.8

Page 4: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Glycolysis

Pyruvate Oxidation

NADH

Krebs

Cycle

Electron Transport Chain

Chemiosmosis

Pyruvate Oxidation: The Reaction

NAD+

CO2

CoA

Acetyl Coenzyme A

Pyruvate

Pyru

vate

Acety

l C

oe

nzym

e A

O

CH 3

C

O–

C O

S CoA

CH3

OC

NADH

Fig. 7.9

Page 5: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Glycolysis

NADH

FADH2

Pyruvate Oxidation

ATP

Krebs Cycle: The Reactions

Citratesynthetase

NAD+

NADH

H2O

NAD+

NADH

CO2

Isocitratedehydrogenase

Fumarase

CoA-SH1

2

Aconitase3

4

8

9

7

CoA-SH

NAD+

CO2

5

6

NADH

CoA-SH

GDP + Pi

Acetyl-CoA

CH3—C— S

O CoA—

Krebs

Cycle

Malate

dehydrogenase

-Ketoglutarate

dehydrogenase

Succinyl-CoA

synthetase

GTP

ATP

ADP

Succinate

dehydrogenase

FADH2

8–9. Reactions 8 and 9: Regeneration of

oxaloacetate and the fourth oxidation

7. Reaction 7: The third oxidation

6. Reaction 6: Substrate-level phosphorylation

5. Reaction 5: The second oxidation

4. Reaction 4: The first oxidation

2–3. Reactions 2 and 3: Isomerization

1. Reaction 1: Condensation

Electron T ransport Chain

Chemiosmosis

Oxaloacetate (4C)

CH2

O═ C

COO—

COO—

——

Citrate (6C)

HO—C—COO—

COO—

COO—

CH2

CH2

——

——

Isocitrate (6C)

HC—COO—

COO—

COO—

CH2

HO—CH

——

——

-Ketoglutarate (5C)

CH2

COO—

COO—

CH2

C—O—

——

Succinyl-CoA (4C)

CH2

COO—

S—CoA

CH2

C═ O

——

——

Succinate (4C)

COO—

CH2

COO—

CH2

——

Fumarate (4C)

HC

CH

COO—

COO—

——

Malate (4C)

HO—CH

COO—

CH2

COO—

——

FAD

Fig. 7.11

Page 6: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mitochondrial matrix

NADH + H+

ADP + PiH2O

H+H+

2H+ + 1/2O2

Glycolysis

Pyruvate Oxidation

2

Krebs

Cycle ATP

Electron Transport Chain

Chemiosmosis

NADH dehydrogenase bc1 complex

Cytochrome

oxidase complex

Inner

mitochondrial

membrane

Intermembrane space

a. The electron transport chain

ATP

synthase

b. Chemiosmosis

NAD+

Q

C

e–

FADH2

H+H+

H+H+

e–22 e–22

Fig. 7.12

ATP

FAD

Page 7: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

H2O

CO2

CO2

H+

H+

2H+

+1/2O2

H+

e-

H+

32 ATP

Krebs

Cycle

2 ATP

NADH

NADH

FADH2

NADH

Pyruvate

Oxidation

Acetyl-CoA

e-

Q

C

e-

Glycolysis

Glucose

Pyruvate

Fig. 7.14

Page 8: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

ADP+Pi

Catalytic head

Stalk

Rotor

H+

H+

Mitochondrial

matrix

Intermembrane

space

H+ H+

H+

H+H+

ATP

Fig. 7.15Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 9: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Chemiosmosis

Chemiosmosis

2 5

2 3

6 15

2

2

2 5NADH

NADH

NADH

Total net ATP yield = 32

(30 in eukaryotes)

ATP

ATP

ATP

ATP

ATP

ATP

Krebs

Cycle

Pyruvate oxidation

FADH2

Glycolysis2

Glucose

Pyruvate

ATP

Fig. 7.16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 10: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 7.19

CO2

2 Acetaldehyde

2 ADP

2 Lactate

Alcohol Fermentation in Yeast

2 ADP

Lactic Acid Fermentation in Muscle Cells

2 NAD+

2 NAD+

2 NADH

2 NADH

2 ATP

2 ATP

C O

C O

O–

CH3

C O

H

CH3

C O

C O

CH3

O–

CH3

H C OH

C O

O–

H

2 Ethanol

H C OH

CH3

2 Pyruvate

2 Pyruvate

Glucose

Glucose

G

L

Y

C

O

L

Y

S

I

S

G

L

Y

C

O

L

Y

S

I

S

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 11: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CoA

Fatty acid

OO

—C—C—C—

═ H

H

— ═

ATP

NADH

H2O

Krebs

Cycle

PPiAMP +

FADH2

Fatty acid

2C shorter

CoA

CoA

Fatty acid

OH

H

—C—C—C—

——

H

H

— ═

Fatty acid

OH

OH

H

—C—C— C

——

H

H

——

CoA

FAD

Fatty acid

OH

—C═ C —C—

— H— ═

CoA

Fatty acid

OHO

H

—C—C—C—

——

H

H

— ═

— CoA

NAD+

Acetyl-CoA

Fig. 7.22

Page 12: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

O2

Stroma

Photosystem

Thylakoid

NADP+ADP + Pi

CO2

Sunlight

Photosystem

Light-Dependent

Reactions

Calvin

Cycle

Organic

molecules

O2

ATP NADPH

H2O

Page 13: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.5

Wavelength (nm)

400 450 500 550 600 650 700

Lig

ht

Ab

so

rbti

on

low

highcarotenoidschlorophyll a

chlorophyll b

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Page 14: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

e–Photon

Photosystem

Thylakoid membrane

Chlorophyll

molecule

Electron

acceptor

Reaction center

chlorophyll

Thylakoid membrane

Electron

donor e–

Page 15: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

En

erg

y o

f ele

ctr

on

s

Photon

Excited reaction center

Excited reaction center

Plastoquinone

Plastocyanin

Ferredoxin

Photosystem II

Photosystem I

Photon

b6-f

complex

3. A pair of chlorophylls in the reaction

center absorb two photons. This

excites two electrons that are passed to

NADP+, reducing it to NADPH. Electron

transport from photosystem II replaces

these electrons.

H2O

H+PC

Fd

2H+ + 1/2O2

NADP+ + H+

2

2

2

2

2

1. A pair of chlorophylls in the reaction center absorb

two photons of light. This excites two electrons that

are transferred to plastoquinone (PQ). Loss of

electrons from the reaction center produces an

oxidation potential capable of oxidizing water.

Reaction

center

Proton gradient formed

for ATP synthesis

Reaction

center

e–

e–

PQ

e–

NADP

reductase

NADPHe–

2. The electrons pass through the b6-f

complex, which uses the energy

released to pump protons across

the thylakoid membrane. The proton

gradient is used to produce ATP by

chemiosmosis.

e–

Page 16: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Photosystem II Photosystem Ib6-f complex

Stroma

Plastoquinone Plastocyanin Ferredoxin

H+

H+H+

H+

NADPH

ATPADP

+ NADP+

NADPHNADPATPADP + Pi

Calvin

Cycle

PhotonPhoton

H2O

Fd

PC

PQ

1. Photosystem II

absorbs photons,

exciting electrons

that are passed to

plastoquinone (PQ).

Electrons lost from

photosystem II are

replaced by the

oxidation of water,

producing O2

2. The b6-f complex

receives electrons

from PQ and passes

them to plastocyanin

(PC). This provides

energy for the b6-f

complex to pump

protons into the

thylakoid.

3. Photosystem I absorbs

photons, exciting

electrons that are

passed through a

carrier to reduce

NADP+ to NADPH.

These electrons are

replaced by electron

transport from

photosystem II.

4. ATP synthase uses

the proton gradient

to synthesize ATP

from ADP and Pi

enzyme acts as a

channel for protons

to diffuse back into

the stroma using this

energy to drive the

synthesis of ATP.

NADP

reductase

ATP

synthase

1/2O2 2H+

Water-splitting

enzyme

Thylakoid

space

Antenna

complexThylakoid

membrane

Light-Dependent

Reactions

H+

H+

e–

Proton

gradient

22 e– 22 e–22

e–22

Page 17: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 Pi

12 NADP+

12

12 ADP

NADPHNADP+ADP+ Pi

Light-Dependent

Reactions

Calvin

Cycle

6 molecules of12 molecules of

12 molecules of

1,3-bisphosphoglycerate (3C)

12 molecules of

Glyceraldehyde 3-phosphate (3C) (G3P)

10 molecules of

Glyceraldehyde 3-phosphate (3C) (G3P)

Stroma of chloroplast6 molecules of

Carbon

dioxide (CO2)

12 ATP

6 ADP

6 ATP

Rubisco

Calvin Cycle

Pi

Ribulose 1,5-bisphosphate (5C) (RuBP)3-phosphoglycerate (3C) (PGA)

Glyceraldehyde 3-phosphate (3C)

2 molecules of

Glucose and

other sugars

12 NADPH

ATP

Page 18: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

O2

Heat

ATP NADPH NADH

ATP

Sunlight

Pyruvate

CO2

Glucose

ADP + Pi NAD+NADP+

H2O

Photo-

system

II

Photo-

system

I

Electron

Transport

System

ADP + Pi

ADP + Pi

ATP

ATP

Calvin

Cycle

Krebs

Cycle

Page 19: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Heat

Stomata

O2O2

CO2 CO2

Under hot, arid conditions, leaves lose water by

evaporation through openings in the leaves

called stomata.

The stomata close to conserve water but as a

result, O2 builds up inside the leaves, and CO2

cannot enter the leaves.

Leaf

epidermis

H2OH2O

Page 20: Fig. 7.5 Copyright © The McGraw-Hill Companies, Inc. Permission …mmsalemscienceteacher.weebly.com/uploads/2/3/3/6/... · 2018. 9. 9. · ATP ADP Electron Transport Chain Chemiosmosis

Fig. 8.22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CO2

RuBP

3PG

(C3)

a. C3 pathway

Bundle-sheath cellMesophyll cell

Stoma Vein

G3P

b. C4 pathwayStoma Vein

Mesophyll cell

G3P

CO2

CO2

C4

Bundle-

sheath cell

Mesophyll

cell

Bundle-

sheath

cell

Calvin

Cycle

Mesophyll

cell

Calvin

Cycle

a. © John Shaw/Photo Researchers, Inc. b. © Joseph Nettis/National Audubon Society Collection/Photo Researchers, Inc.